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Abstract We introduce Gaussian-type measures on the manifold of all metrics with a fixed
volume form on a compact Riemannian manifold of dimension ≥3. For this random model
we compute the characteristic function for the L2 (Ebin) distance to the reference metric.
In the Appendix, we study Lipschitz-type distance between Riemannian metrics, and give
applications to the diameter, eigenvalue and volume entropy functionals.
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Résumé Nous introduisons des mesures de type gaussien sur la variété des métriques rie-
manniennes a forme volume fixée definies sur une variété compacte de dimension ≥3. Pour
ce modèle aléatoire, nous calculons la fonction caractéristique de la distance L2 (Ebin) à
une métrique de référence donnée. Dans un appendice, nous étudions une distance de type
Lipschitz entre métriques riemanniennes, et donnons des applications aux fonctionnelles
associées ai diamètre, aux valeurs propres du laplacien et à l’entropie de volume.

1 Introduction

In this paper we construct Gaussian-type measures on the space of Riemannian metrics on a
fixedmanifold andmake some elementary observations about them, leaving deeper results for
further work. We will being with several motivations for our construction and with directions
for further work.

Let (M, g) be a Riemannian manifold. Quantum Chaos is a general term for the study of
connections between the dynamics of the associated geodesic flow on T M (corresponding
to the physics of a classical particle moving freely on M) and the spectrum of the Laplace–
Beltrami operator on L2(M) (corresponding to the physics of a quantum particle moving
freely onM).We note the conjectures ofBohigas,Giannoni and Schmidt [7] about asymptotic
behaviour of level spacings between Laplace eigenvalues for classically chaotic systems, and
M.Berry’s randomwave conjectures [5] about asymptotic properties of eigenfunctions. These
conjectures appear to be very difficult to prove using standard semiclassical methods, and a
natural idea is instead to consider them on average in some sense in the space of metrics on
M , or perhaps to use random methods to construct examples or counter examples.

Another motivation for our construction is of developing geometric analysis on (often
infinite-dimensional) manifolds of metrics. Most important progress to date involved differ-
entiation on manifolds of metrics, in particular the study of L2 distance between metrics
and related questions [10–12]. The next natural step is to define integration on manifolds of
metrics, hence the need to define and study measures on those manifolds. Related questions
have been considered in [17] (for manifolds of maps) and in [8].

We now turn to our construction. In the predecessor work [8], the authors took a fixed
“reference” (or “background”) metric g0 on M , and then considered a random metric g =
e2ϕg0 in the conformal class of g0, where the (logarithm of) the conformal factor ϕ varied as
a Gaussian random field on M , constructed using the eigenfunctions of the Laplacian for the
reference metric. In the present paper, we work in a transverse direction: given the reference
metric g0 we choose a random deformation g among those metrics having the same volume
form as g0. Again we parametrize those metrics by exponentiating a Gaussian random field
on M . Beyond describing the construction we limit out study to the statistics of various
distance functions on the space of metrics, leaving deeper investigation for later papers.

Remark 1.1 It is possible to combine the two constructions, adding a conformal factor to
our deformation. We mainly avoid doing this since the (completion of the) space of all
Riemannian metrics is singluar, unlike the case of a fixed volume form.

Remark 1.2 Our construction depends on a choice of a global orthonormal frame in the
tangent bundle (a global section of the frame bundle). The existence of such a frame is known
as parallelizability, and is a topological property of M . We do not believe this assumption
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Gaussian measures on the of space of Riemannian metrics 131

is essential; rather it simplifies the presentation here. For example, if one patches together
deformations on parts of the manifold using a partition of unity, the distance statistics would
not be as nice.

With this choice in hand, our construction is equivariant under the diffeomorphism group
of the manifold: the pushforward of our probability measure by a diffeomorphism is equal
to the measure obtained by pushing forward the reference metric and the frame.

We give the construction in Sect. 3. It is based on viewing the space of metrics with a
given volume form as the space of sections of a bundle over M with fibers diffeomophic
to the symmetric space S = SLn(R)/SO(n) (n = dim M). This symmetric space supports
an invariant Riemannian metric which can then be used to define an L2 distance on the
space of metrics, which coincides with the distance arising from a Riemannian structure on
this (infinite-dimensional) space. This distance is introduced in Sect. 2.3 and is studied as a
random variable in Sect. 4, where tail estimates are obtained in terms of geometric constants.

In the Appendix, similar computations are carried out for a Lispchitz-type distance, also
considered in [3]. Those estimates are then applied to establish integrability and existence of
exponential moments for the diameter, Laplace eigenvalue and volume entropy functionals
of our random Riemannian metrics.

Initial directions for further work involve studying the nature of the deformation we obtain
(computation of the probability of the metric to lie in a small ball around the reference metric,
and the behaviour of the isoperimetic constant under the deformation). In a foundational
direction, we will address in a sequel questions about convergence and tightness (i.e. relative
compactness in the weak-* topology) of our families of measures.

We expect that the Gaussian measure we have introduced in this paper will have appli-
cations that extend significantly beyond the basic questions considered here, in particular to
the motivating problems discussed above.

2 The space of metrics

We fix once and for all a compact smooth manifold M without boundary and write n for its
dimension. We also fix a smooth volume form dv on M .

We rely crucially on the symmetric space structure of the space P of positive-definite
matrices of determinant 1 and on the related structure theory of SLn(R). In the discussion
below we state the facts we use; proofs and further details may be found in the text [18],
which concentrates on this case, and in [13] which develops the general theory of symmetric
spaces associated to semisimple Lie groups.

2.1 The space of metrics

We start by giving a coordinate-free description of the set of Riemannian metrics with the
volume form dv on M . We then restrict to a class of manifolds for which there is a coordinate
system simplifying the description.

Let V be a finite-dimensional real vector space with dual space V ∗, and let Sym(V ) =
{g ∈ Hom(V, V ∗)|g∗ = g} be the space of symmetric bilinear forms on V . Among those we
distinguish Pos(V ) = {g ∈ Sym(V )|∀v ∈ V : g(v, v) > 0}, the space of positive-definite
bilinear forms on V . Let SL(V ) ⊂ GL(V ) denote the special and general linear groups on
V , and sl(V ) ⊂ gl(V ) their Lie algebras. Then GL(V ) acts on Pos(V ) by

h−1 · g = h∗ ◦ g ◦ h. (1)
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132 B. Clarke et al.

It is well-known that this action is transitive; the stabilizer of any h ∈ Pos(V ) is a maximal
compact subgroup isomorphic to O(n). Moreover, the orbits of SL(V ) are precisely the level
sets of the determinant function g �→ det(g−1

0 g) where g0 is a fixed isomorphism V → V ∗.
Each level set is then of the form SL(V )/Kg0 where Kg0 = StabSL(V )(g0) 
 SO(n) and we
give it the SL(V )-invariant Riemannian structure coming from the Killing form of SL(V ),
making it into a simply connected Riemannian manifold of non-positive curvature.

Remark 2.1 Since Pos(V ) is an open subset of the vector space Sym(V ), we may trivialize
its tangent bundle by identifying each tangent space with Sym(V ). The reader may then
verify that with this identification, the tangent space at g to the SL(V )-orbit of g is exactly
{X ∈ Sym(V )|Tr(g−1X) = 0}. Here we compose the linear maps X ∈ Hom(V, V ∗) and
g−1 ∈ Hom(V ∗, V ) to obtain a map in End(V )which has a trace. The reader may also verify
that, since the congruence action above is linear as an action on Sym(V ), the derivative of
the action of h−1 at g is the map X �→ h−1Xh (composition of linear maps).

Now the Riemannian structure on the orbit claimed above is

ρg(X, X) = Tr(g−1Xg−1X), (2)

and it is an immediate calculation that thismetric is SL(V )-equivariant: thatρh.g(h.X, h.X) =
ρg(X, X).

With the usual translation of notions from vector spaces to vector bundles, we associate to
the tangent bundle T M the vector bundles Hom(T M, T ∗M) and Sym(T M), the symmetric
space-valued bundle Pos(T M), and the group bundles GL(T M) and SL(T M).

By definition, a Riemannian metric on M is a smooth section of Pos(M); we denote the
space of sections by Met(M). To such a metric there is an associated Riemannian volume
form, and we let Metdv(M) denote the space of metrics whose volume form is dv. Fixing a
metric g0 ∈ Metdv(M), the above discussion identifies Metdv(M) with the space of sections
of the bundle over M whose fibers are isomorphic to SLn(R)/SO(n). Moreover, the fibre
at x of this bundle is equipped with a transitive isometric action of SL(TxM), where the
metric is the one pulled back from the identification with S = SLn(R)/SO(n) (the pullback
is well-defined since the metric on S is SLn(R)-invariant).

Remark 2.2 It is a classical result of Ebin [11] that the diffeomorphism group acts transi-
tively on the space of smooth volume forms of total volume 1, and therefore that the foliation
of Met(M) by the orbits of the diffeomorphism group Diff(M) descends to a foliation of
Metdv(M) by the group Diffdv(M) of volume-preserving diffeomorphisms. It follows that
Met(M)/Diff(M) 
 Metdv(M)/Diffdv(M); we regard this space as the space of geometries
on M .

In local co-ordinates (x1, . . . , xn), the above construction reads as follows. One takes the
basis { ∂

∂xi
}ni=1 for TxM and its dual basis {dxi }ni=1 for T ∗

x M . Then fibers of Sym(M) are
represented by symmetricmatrices, fibers of Pos(M) by positive-definite symmetricmatrices.
The volume form associated to g ∈ Met(M) is then given by | det(gx )|1/2dx1 ∧ · · · ∧ dxn .
Metdv(M) is then the metrics g such that det(gx ) = det(g0x ) for all x ∈ M , where g0 is
any metric with Riemannian volume form dv. The group GLn(R) then acts on the fibres via
congruence transformations h−1 · g = ht gh, with the stabilizer of gx being the orthogonal
group Ogx (R) 
 O(n). Similarly, the group SLn(R) acts transitively on the subset of the
fibre with a given determinant, with point stabilizer SOgx (R) 
 SO(n).

123



Gaussian measures on the of space of Riemannian metrics 133

2.2 Deforming a metric

Fix g0 ∈ Metdv(M), and for x ∈ M let Kx ⊂ Gx = SL(TxM) be the orthogonal group of the
positive-definite quadartic form g0x , which is also the stabilizer of g0x under the congruence
action (1). Fix a frame fx in TxM , orthonormal with respect to the inner product defined by
g0x , and let Ax ⊂ Gx be the subgroup of matrices which are diagonal with positive entries in
the basis fx . As noted above we can identify the set of positive-definite quadratic forms on
TxM with the same determinant as g0 with the symmetric space Gx/Kx .

Remark 2.3 We warn the reader that we use the usual letter G to denote a semisimple Lie
group and the letter g to denote a Riemannian metric. As such we don’t have gx ∈ Gx , and
rather use hx to denote an arbitrary element of Gx .

Recall now the Cartan decomposition

Gx = Kx Ax Kx (3)

(see for example [18, §5.1]). This states that every hx ∈ Gx can be written in the form
hx = k1,xaxk2,x with ki,x ∈ Kx and ax ∈ Ax , with ax being unique up to the action of
the Weyl group NGx (Ax )/ZGx (Ax ), a group isomorphic to Sn acting by permutation of the
coordinates with respect to the basis fx . Given ax , the two elements ki,x ∈ Kx are unique up
to the fact that ZKx (ax ) may not be trivial (generically this centralizer is equal to ZKx (Ax ),
which is either trivial or {±1} depending on whether n is odd or even).

Recalling that k2,x ∈ Kx stabilizes g0x , it follows that for hx ∈ Gx decomposed as above
we have

hx · g0x = (k1,xax ) · g0x .
Since Gx acts transitively on the level set, it follows that every g1x with the same determinant
g0x is of this form, and moreover that in that form the ax is unique up to the action of Sn on
Ax .

Our goal is to randomly deform g0 by choosing elements kx and ax for every x ∈ M . We
shall discuss the “random” aspect of the construction in the next section, and concentrate at
the moment on the topological issues involved in making such constructions well-defined.

Given the orthonormal frame fx , we can identify Ax with the space of positive diagonal
matrices of determinant 1. Further, using the exponential map we may identify this group
with its Lie algebra a 
 R

n−1 of diagonal matrices of trace zero. We will therefore specify
ax by choosing such a matrix at each x , that is by choosing a function H : M → a.

While this clearly works locally, making a global identification requires a choice of frame
fx at every x ∈ M , that is an everywhere non-zero section of the frame bundle of M or
equivalently a trivialization of the tangent bundle of M , something which is not possible in
general. For simplicity we have decided to only discuss here the case of manifolds where
such sections exist, and defer more general constructions to future papers.

Remark 2.4 We required the existence of a smooth g0-orthonormal frame. However, this is
equivalent to the topological condition (“parallelizability”) of the existence of a smooth but
not necessarily orthonormal frame. To see this note that starting with any non-zero smooth
section of the frame bundle, applying pointwise the Gram–Schmidt procedure with respect
to the metric g0 is a smooth operation and will produce a smooth orthonormal frame.

We survey here some facts about parallelizable manifolds, mainly to note that this class is
rich enough to make our construction interesting. First, a parallelizable manifold is clearly
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orientable. Second, a necessary condition for parallelizability is the vanishing of the second
Stiefel–Whitney class of the tangent bundle, which for orientable manifolds is equivalent to
M being a spin manifold. Examples of parallelizable manifolds include all 3-manifolds, all
Lie groups, the frame bundle of any manifold and the spheres Sn with n ∈ {1, 3, 7}.
2.3 The L2 metric

Once the volume form is fixed, the action of SL(TxM) on the stalk ofMetdv(M) at x identifies
it with the symmetric space S = SLn(R)/SO(n). As noted above this space supports an
SLn(R)-invariant Riemannian metric of non-positive curvature. Denote its distance function
dS ; we then write dx for the well-defined metric on the stalk at x of Metdv(M). Integrating
this over M then gives a metric (to be denoted �2) on Metdv(M): given two Riemannian
metrics g0, g1 ∈ Metdv(M) on M with the same Riemannian volume form dv, we set

�2
2(g

0, g1) =
∫
M
d2x (g

0
x , g

1
x )dv(x).

For a different point of view on thismetric, recall that dS is the distance function associated
to the Riemannian metric (2). Fixing V = R

n with its standard metric and frame, we write
G = SLn(R), K = SO(n) so that S = G/K . In this setting one can find directly the geodesics
connecting the standard metric to any metric which is diagonal in the standard basis. Using
G-equivariance and the Cartan decomposition (3), the upshot is the following (for details see
[18, §5.1]): let hK , h′K ∈ S = G/K correspond to two metrics of equal determinant. Then
Kh−1h′K is a well-defined element of K\G/K 
 A/Sn , where A is the group of diagonal
matrices of determinant 1 and positive entries. Let a ∈ A be a representative for Kh−1h′K .
We then say that g and h are in relative position a. Writing log a for the vector of n logarithms
of the diagonal entries of a (note that the entries of log a sum to 1, since det a = 1), it turns
out that and dS(hK , hK ) = ‖log a‖, where and ‖·‖ is the usual �2 norm.

3 Gaussian measures on the space of metrics

We next turn to the question of actually constructing our Gaussian measures. For a general
reference on Gaussian random variables see [6]. In view of the decomposition considered in
Sect. 2.1, it is natural to split the construction into diagonal and orthogonal parts.

Let g0 be our reference metric. Every other metric of Metdv is of the form g1x = kxax · g0x
where k, a are smooth functions on M such that kx ∈ Kx and ax ∈ Ax . In Sects. 3.1 and 3.2
we describe random constructions of ax and kx respectively.

It is not hard to verify that
⋃

x Kx ,
⋃

x Ax ,
⋃

x Gx are subbundles of the Lie-group bundle
GL(T M), and that their Lie algebras therefore furnish subbundles of the Lie algebra bundle
gl(T M) 
 End(T M). Specifically, Lie(Gx ) consists of the endomorphisms of TxM of trace
zero, Lie(Kx ) consists of the endomorphisms which are skew-symmetric in the frame fx ,
and Lie(Ax ) consists of those which are diagonal of trace zero in the frame.

For the constructions below we fix a complete orthonormal basis {ψ j }∞j=0 ⊂ L2(M) such
that �g0ψ j + λ jψ j = 0, with λ j being a non-decreasing ordering of the spectrum of the
Laplace operator �g0 . Our constructions are in fact independent of the choice of basis of
each eigenspace, but it is more convenient to make an explicit choice.
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Gaussian measures on the of space of Riemannian metrics 135

3.1 The radial part

We begin by defining a measure on the space of smooth functions x �→ Hx such that Hx ∈
Lie(Ax ) (sections of the bundle

⋃
x Lie(Ax )). We follow the recipe of [17]: choose decay

coefficients β j = F(λ j ) where F(t) is an eventually monotonically decreasing function of t
and F(t) → 0 as t → ∞. Then set

Hx =
∞∑
j=1

πn(ξ j
)β jψ j (x), (4)

where ξ
j
are i.i.d. standard Gaussians in R

n , and πn : Rn → R
n is the orthogonal projection

on the hyperplane
∑n

i=1 xi = 0.
Finally, set

ax = exp(Hx )

where exp is the exponential map to Ax from its Lie algebra.
The smoothness of H defined by (4) is given by [17, Theorem6.3]. The following two

propositions apply whenever ξ
j
in (4) denotes a d-dimensional standard Gaussian, while M

has dimension n.

Proposition 3.1 If β j = O( j−r ) where r > (q + α)/n + 1/2, then H defined by (4)
converges a.s. in Cq,α(M,Rd).

We remark that the exponents in Proposition 3.1 are independent of d (the dimension of
the “target” space). Now Weyl’s law for M [2,16] states that λ j grows roughly as j2/n . It
follows that

Proposition 3.2 If β j = O(λ−s
j ) where s > q/2 + n/4, then H defined by (4) converges

a.s. in Cq(M,Rd).

3.2 The angular part

In this paper we study invariants of g1 that can be bound only using a, so that our later
calculations will only depend on the marginal distribution of a. Thus, as long as the choices
of k and a are independent, the choice of k has no effect. In future work we plan to ask
more detailed questions where this choice will become relevant. For example, determining
the curvature of g1 following the ideas of [8] requires differentiating g1x with respect to x and
this immediately involves the choice of kx . We thus propose the following specific choice,
again using the recipe of Eq. (4). We set

kx = expx (ux )

where ux is the Gaussian vector

ux =
∞∑
j=1

η
j
δ jψ j (x). (5)

Here η
j
∈ son are i.i.d. standard Gaussian anti-symmetric matrices (i.e. each η

j
is given by

dn = n(n − 1)/2 i.i.d. standard Gaussian variables corresponding to the upper-triangular
part of η

j
), and δ j = F2(λ j ) are decay factors, given as functions of the corresponding

eigenvalues.
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Proposition 3.1 above applies again to give the smoothness properties of our random sec-
tions. In particular, since the exponents in Proposition 3.1 are independent of dn , substituting
into Weyl’s law we get a straightforward analogue of Proposition 3.2 for the expression (5).

3.3 Remarks on the construction

For readers whomay not wish to refer to a textbook such as [6], we briefly recall that a random
vector such as Hx is Gaussian if its finite-dimensional marginals are Gaussian, which in our
case roughly means (though we want more) that for every k points x1, . . . , xk ∈ M , the joint
distribution of the finite-dimensional vector (Hx1 , . . . , Hxk ) is Gaussian.

Our Gaussian vectors are balanced (their expectation is zero) and they are therefore deter-
mined by their covariance function (roughly, the function on M×M given by the expectation
of Hx1 ⊗ Hx2 ).

Remark 3.3 For the convenience of the reader who prefers Gaussian variables to be defined
by their covariance function, we note here the covariance functions relevant to our case.

Let gx = sl(TxM) denote the Lie algebra of SL(TxM). As noted above our Gaussian
measure is defined on appropriate spaces of sections of subbundles of the bundle

⋃
x gx .

With sufficient continuity it is enough to consider the covariance operator evaluated on linear
functionals of the form X �→ αx (X (x)), where X is a section of the bundle and αx ∈ g∗

x .
Our Gaussian measure for the diagonal part then has the covariance functions

R((x, k), (x ′, k′)) = δkk′
∑
j

β2
jψ j (x)ψ j (x

′), (6)

where k is an index for the diagonal entries of a matrix in gx , diagonal with respect to our
fixed frame and (x, k) therefore denote the functional mapping the section Hx to the kth
entry of the diagonal matrix at x . The angular part has a similar covariance function.

For standard choices of βk , we note that the covariance function for analogously-defined
scalar fields would be well-known spectral invariants: we’d have

r(x, y) =
{
Z(x, y, 2s) := ∑∞

k=1
ψk (x)ψk (y)

λ2sk
, βk = λ−s

k ;
e∗(x, y, 2t) := ∑∞

k=1
ψk (x)ψk (y)

e2tλk
, βk = e−tλk .

(7)

Here Z(x, y, 2s) is known as the spectral zeta function of�0 (see e.g. [16]),while e∗(x, y, 2t)
is the corresponding heat kernel (see e.g. [4] or [9, Ch.6]), both taken without the constant
term that would correspond to the constant eigenfunction ψ0 with eigenvalue zero.

Remark 3.4 When taking β j = λ−s
j , the parameter s determines the a.s. Sobolev regularity

of the random metric g via Propositions 3.1 and 3.2. If the metric g0 is real-analytic, then
letting βk = e−tλk makes the random metric g real-analytic as well, with the parameter t
related to the a.s. radius of analyticity (the exponent in rate of decay of Fourier coefficients).

Remark 3.5 A similar construction applies to the space of all Riemannian metrics on
M (without necessarily fixing the volume form). We now work in the symmetric space
GL(TxM)/O(g0x ). The only change is that in Eq. (4) one lets A j be standard vector-valued
Gaussians without the projection.

There is a Riemannian structure and an L2 metric (due to Ebin) defined on the space of
all metrics. A detailed study of the metric properties of this space was undertaken in [10].
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4 �2 as a random variable

In this section we study the statistics of �2
2.

4.1 The distribution function

We recall one definition of the (fiber-wise) distance dx introduced in Sect. 2.3. For this
choose a basis for TxM orthonormal with respect to g0(x) (in this basis the reference metric
g0x is represented by the identity matrix). If the translation from g0x to g1x is given by the
element kxax ∈ Gx with ax diagonal in the chosen basis, kx orthogonal, then the metric
g1x is represented by the symmetric positive-definite matrix kxa2x k

−1
x . Writing ebi (x) for the

diagonal entries of ax , we have

d2x (g
0
x , g

1
x ) =

n∑
i=1

bi (x)
2.

Accordingly,

�2
2(g

0, g1) =
∫
M

(
n∑

i=1

bi (x)
2

)
dv(x). (8)

In our random model, the vector-valued function b(x) is a Gaussian random field, chosen
according to Eq. (4), where here we choose πn to be the orthogonal projection. In other words
b(x) is defined by projecting an isotropic Gaussian in R

n orthogonally to the hyperplane∑
i bi (x) = 0. Integrating over x , we find that the distribution of �2

2 is given by:

�2
2

D=
∑
j

β2
j

n−1∑
i=1

Wi, j

where the Wi, j are independent random variables with χ2 distribution. We can rewrite this
as

�2
2

D=
∑
j

β2
j V j

with i.i.d. Vj ∼ χ2
n−1 (χ

2 distribution with n − 1 degrees of freedom).
Recall that the moment generating function of the random variable X is the function

MX (t) = E (exp(t X)). These can be used, for example, to estimate the probability of large
deviations of the variable X . Having represented �2

2 as the sum of independent variables
with known distribution, we can now explicitly compute its moment generating function as
the product

M�2
2
(t) =

∏
j

n−1∏
i=1

Mχ2
1
(tβ2

j ) =
∏
j

n−1∏
i=1

(1 − 2tβ2
j )

−1/2

=
∏
j

(1 − 2tβ2
j )

−(n−1)/2

The following result is proved similarly.
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Proposition 4.1 The characteristic function E(exp(i t�2
2)) can be computed explicitly as

∏
j

n−1∏
k=1

(1 − 2i tβ2
j )

−1/2 =
∏
j

(1 − 2i tβ2
j )

−(n−1)/2.

4.2 Tail estimates for �2
2

Here we apply [14, Lemma1, (4.1)] to estimate the probability of the following events:

Prob{�2
2 > R2}, R → ∞. (9)

We letW = ∑
i ai Z

2
i with Zi i.i.d. standard Gaussians, and for (n− 1)( j − 1)+ 1 ≤ i ≤

(n − 1) j , we have ai = β2
j (i.e. each β2

j is repeated (n − 1) times). We let ‖a‖∞ = sup j a j .
Assume from now on that β j = F(λ j ) is a monotone decreasing function; then ‖a‖∞ =
a1 = β2

1 .

It is shown in [14, Lemma1, (4.1)] that for Wk = ∑k(n−1)
i=1 ai Z2

i , we have

Prob

⎧⎪⎨
⎪⎩Wk ≥

k(n−1)∑
i=1

ai + 2

⎛
⎝k(n−1)∑

i=1

a2i

⎞
⎠

1/2

√
y + 2 ‖a‖∞ y

⎫⎪⎬
⎪⎭ ≤ e−y .

Letting k → ∞, we get the following quantities:

W := limk→∞ Wk = �2
2;

A2 = ∑∞
i=1 ai = (n − 1)

∑∞
j=1 β2

j ;

B4 = ∑∞
i=1 a

2
i = (n − 1)

∑∞
j=1 β4

j ;

‖a‖∞ = a1 = β2
1 .

With x2 instead of y, we get:

Prob{W ≥ A2 + 2B2x + 2 ‖a‖2∞ x2} ≤ e−x2 .

Solving

R2 = 2||a||2∞x2 + 2B2x + A2.

for x gives (for R ≥ A) the following root:

x(R) = −B2 + √
B4 + 2(R2 − A2)||a||2∞

2||a||2∞
. (10)

We conclude that

Prob{�2 ≥ R} ≤ e−(x(R))2 ,

where x(R) is given by (10).
It is easy to show that there exists a constant C = C(A, B, ||a||∞) such that for R ≥ A,

we have

x(R)2 ≥ R2

2||a||2∞
− CR = R2

2β2
1

− CR.

We also notice that

Prob{�2 ≥ R} ≥ Prob{β2
1 Z

2
1 ≥ R2} = �

(
R

β1

)
≥ C

β1e−R2/(2β2
1 )

R
,

123



Gaussian measures on the of space of Riemannian metrics 139

provided R ≥ β1.
To summarize:

Theorem 4.2 For R ≥ A, we have

Cβ1

R
exp

(
−R2

2β2
1

)
≤ Prob{�2 ≥ R} ≤ exp

(
−R2

2β2
1

+ CR

)
.
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Appendix by Y. Canzani, D. Jakobson and L. Silberman Lipschitz distance.
Applications to the study of diameter and Laplace eigenvalues

In this section we shall prove tail estimates for a Lipschitz-type distance ρ defined below,
and use those estimates to prove that the diameter and Laplace eigenvalue functionals are
measurable with respect to the Gaussian measures defined in Sect. 3, and to give tail esti-
mates for them. We maintain the hypothesis that all metrics under consideration have the
same associated volume form dv, though the results could be easily modified to remove this
assumption.

Lipschitz distance

Here we study a (Lipschitz-type) distance ρ related to the distance used in [3] by Bando and
Urakawa. It is defined by

ρ(g0, g1) = sup
x∈M

sup
0 �=ξ∈Tx M

∣∣∣∣ln g1(ξ, ξ)

g0(ξ, ξ)

∣∣∣∣ (11)

In other words, it is determined by taking the identity map on M and considering its Lipschitz
constants between the two metrics. Note that the fiber-wise constant is also the larger of the
Lipschitz constants of themap and its inverse: on the one hand, clearly for any curve onM , its
g1-length is atmost exp(ρ(g0, g1)) times its g0 length, and conversely for the (x, ξ) achieving
the supremum, taking y near x in the direction ξ we see that the g0 and g1- distances between
x, y are roughly distorted by the same factor (though we do not know which is larger).

As in the case of �2, ρ(g1, g0) depends only on ax where g1x = kxax · g0x (action of Gx

on Hom(TxM, T ∗
x M) by composition; in the representation of metrics are positive-definite

matrices this is the congruence action g2x = kxax g0xaxk
−1
x ). In the our adapted frame, the

diagonal part of g1 has entries e2bi (x), where
∑

i bi (x) = 0 for every x ∈ M , and where the
vector b(x) = (b1(x), . . . , bn(x)) is defined by the formula (4). Specifically, for any x ∈M
the second supremum in (11) is equal to

2 sup
i

|bi (x)| (12)
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The supremum is attained for ξ = ei (the i th unit vector in TxM). Accordingly,

ρ(g0, g1) = 2 sup
1≤i≤n

sup
x∈M

|bi (x)| (13)

Tail estimate for ρ

Now, ρ > R iff sup j supx∈M |2bi (x)| > R. Accordingly,

Prob{ρ(g0, g1) > R} ≤ Prob

{
sup
x∈M

sup
i

|bi (x)| > R/2

}
. (14)

Recall that diag(b1, . . . , bn) is given by projecting a randomvector on a particular hyperplane,
which does not increase the maximum norm. It follows that

Prob{ρ(g1, g0) > R} ≤ Prob

{
sup
x∈M

sup
j

|a j (x)| > R/2

}
,

where a j are the components of an R
n-valued Gaussian vector. By symmetry we have for

fixed i that

Prob{ sup
x∈M

|ai (x)| > u} ≤ 2 · Prob
{
sup
x∈M

ai (x) > u

}
.

Taking the union bound we find that

Prob{ρ(g0, g1) > R} ≤ 2n · Prob
{
sup
x∈M

a1(x) > R/2

}
. (15)

We would like to estimate this probability as R → ∞. We will need the covariance
function for the scalar random field a1(x), given by (see (6))

ra1(x, y) =
∞∑
k=1

β2
kψk(x)ψk(y),

where ψk denote the L2-normalized eigenfunctions of �(g0).
The following result now follows in a standard way from the Borell-TIS theorem; it can

be easily deduced from the calculations in [8, §3] and [1, §2, (2.1.3)]. We denote by σ 2 the
supremum of the variance ra1(x, x):

σ 2 := σ(a1)
2 := sup

x∈M
ra1(x, x). (16)

Proposition 5.1 Let σ(a j ) be as in (16). Then

lim
R→∞

ln Prob{supx∈M a1(x) > R/2}
R2 = −1

8σ 2 .

Proposition 5.1 and (15) imply the following

Corollary 5.2 Let σ 2 := supx∈M ra1(x, x). Then

lim
R→∞

ln Prob{ρ(g0, g1) > R}
R2 ≤ −1

8σ 2 . (17)

In the sequel, we shall need a slightly more precise estimate; it follows from the previous
discussion and the estimates in [1, §2,p.50].
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Proposition 5.3 There exists α > 0 such that for a fixed ε > 0 and for large enough R, we
have

Prob{ρ(g1, g0) > R} ≤ 2n exp

(
αR

2
− R2

8σ 2

)
.

Diameter and eigenvalue functionals

In this sectionwe use Corollary 5.2 to give estimates for the diameter and Laplace eigenvalues
of the random metric g1.

Lemma 5.4 Assume that dvol(g0) = dvol(g1), and that in addition ρ(g0, g1) < R. Then

e−R ≤ diam(M, g1)

diam(M, g0)
≤ eR . (18)

and also

e−2R ≤ λk(�(g1))

λk(�(g0))
≤ e2R . (19)

Proof The definition (11) implies that for any fixed path γ : [0, 1] → M , the ratio of its
lengths with respect to the metrics g0 and g1 is satisfies

e−R ≤ Lg1(γ )

Lg0(γ )
≤ eR .

Since

diam(M, g) = sup
x,y∈M

inf
γ :γ (0)=x,γ (1)=y

Lg(γ ),

the inequality (18) follows.
To prove (19), we let h ∈ H1(M), h �≡ 0 be a test function. Then ||h||2g := ∫

M h2dv is
independent of the metric, since the volume form dv is fixed. The Rayleigh quotient of h is
equal to

〈dh, dh〉g−1

||h||2g
,

where g−1 denotes the co-metric corresponding to g. Since the Lipschitz distance is sym-
metric in its two arguments, we conclude that if ρ(g0, g1) < R, then ρ(g−1

0 , g−1
1 ) < R as

well. It follows that

e−2R ≤
〈dh, dh〉g−1

0

〈dh, dh〉g−1
1

≤ e2R . (20)

By the min-max characterization of the eigenvalues (see e.g. [3, §2]),

λk(�(g)) = inf
U⊂H1(M): dimU=k+1

sup
h∈U, h �≡0

||dh||2
g−1

||h||2g
.

The estimate (19) now follows from (20). ��
We next establish some integrability results for the diameter functional diam(M, g1).

They follow from Lemma 5.4 and the stronger form of Corollary 5.2.
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Theorem 5.5 Let h : R+ → R
+ be a monotonically increasing function such that for some

δ > 0

h(ey) = O
(
exp

[
y2(1/(8σ 2) − δ)

])
.

Then h(diam(g1)) is integrable with respect to the probability measure dω(g1) constructed
in Sect. 3.

In the proof we shall use Proposition 5.3.

Proof Without loss of generality, assume that we have normalized g0 so that diam(g0) = 1.
We have shown in (18) that if ρ(g0, g1) < R, then

diam(g1) ≤ diam(g0) · eR = eR,

so (h being monotone) we have under the same assumption that

h(diam(g1)) < h(eR).

Since h ≥ 0, the function h(diam(g1)) is integrable provided the sum

∞∑
k=N

h(ek) · Prob{g1 : k − 1 ≤ ρ(g1, g0) ≤ k}

converges. By the hypotheses on h and Corollary 5.2, that sum is dominated by

2n
∞∑

k=N

h(ek) exp

(
α(k − 1)

2
− (k − 1)2

8σ 2

)
≤

2n
∞∑

k=N

exp

[
α(k − 1)

2
+

(
k2

8σ 2 − δk2
)

− (k − 1)2

8σ 2

]

Choosing N large enough, we find that the last sum is dominated by

2n
∞∑

k=N

exp

[−δk2

2

]
,

and the last expression clearly converges. ��
Remark 5.6 The proof of Theorem 5.5 can be easily modified to establish analogous results
for averages of the distance function. For example, given t > 0, consider the functional

Et (g) :=
∫
M

∫
M

(distg(x, y))
t dv(x) dv(y).

We leave the details to the reader.

Another corollary is the following

Theorem 5.7 Let h : R+ → R
+ be a monotonically increasing function such that for some

δ > 0

h(e2y) = O
(
exp

[
y2(1/(8σ 2) − δ)

])
.

Then h(λk(�(g1))) is integrable with respect to the probability measure dω(g1) constructed
in Sect. 3.
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Proof The proof is similar to the proof of Theorem 5.5. We let λk(g0) =: e2βk =: e2β .
It follows from (19) that if ρ(g0, g1) < R, then λk(g1) ≤ λk(g0) · e2R = e2(R+β). By

monotonicity of the function h, we have

h(λk(g1)) < h(e2(R+β)).

Since h ≥ 0, the function h(λk(g1)) is integrable provided the sum

∞∑
m=N

h(e2(m+β)) · Prob{g1 : m − 1 ≤ ρ(g1, g0) ≤ m}

converges.
By the assumptions on h and Corollary 5.2, that sum is dominated by

2n
∞∑

m=N

h(e2(m+β)) exp

(
α(m − 1)

2
− (m − 1)2

8σ 2

)
≤

2n
∞∑

m=N

exp

[
α(m − 1)

2
+

(
(m + β)2

8σ 2 − δ(m + β)2
)

− (m − 1)2

8σ 2

]

Choosing N large enough, we find that the last sum is dominated by

2n
∞∑

m=N

exp

[−δm2

2

]
,

and the last expression clearly converges. ��
Remark 5.8 Theorems 5.5 and 5.7 prove integrability results about the diameter and eigen-
value functionals. We plan to further study those and other functionals in future papers.

Volume entropy functional

The volume entropy functional hvol(g) of a metric g was defined by Manning in [15] as the
exponential growth rate of volume in the universal cover (by showing that this growth rate
is independent of the point of reference). In other words, it was shown that for any point x
in the universal cover N of a compact Riemannian manifold M , the limit

hvol = lim
s→∞

1

s
ln vol(B(x, s)), (21)

exists and is independent of the choice of x . Here, volumes and distances (and thus balls) in
N are with respect to the metric lifted from M .

We first prove the following counterpart of Lemma 5.4.

Lemma 5.9 Assume that dvol(g0) = dvol(g1), and that in addition ρ(g0, g1) < R. Then

e−R ≤ hvol(M, g1)

hvol(M, g0)
≤ eR . (22)

Proof By symmetry it is enough to prove the right-side inequality. Since ρ bounds the
Lipschitz constant of the identity map (the argument above lifts to the universal cover), we
have (balls in N with respect to the lifts of the respective metrics)

Bg1(x, s) ⊂ Bg0(x, e
R · s). (23)
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By definition of hvol , for any ε > 0 there exists s0 > 0 such that for every s > s0, we have

1

s
ln volBg0(x, s) ≤ hvol(g0) + ε.

Combining the two claims, it follows that for s > s0,

1

s
ln volBg1(x, s) ≤ eR

1

seR
ln volBg0(x, e

Rs) ≤ eR(hvol(g0) + ε)

(we used here the assumption that g0, g1 have the same volume form, so that the set-theoretic
inclusion of balls implied an inequality on the volumes; without the assumption the volume
would be an additional factor from the distortion of the volume form, but note that this factor
would not affect the inequality in the limit s → ∞).

Letting s → ∞ we obtain hvol(g1) ≤ eR(hvol(g0)+ ε), and letting ε → 0 we finally get

hvol(g1) ≤ eRhvol(g0).

��
Lemma 5.9 now easily implies

Theorem 5.10 The conclusion of the Theorem 5.5 remains true if the diameter functional is
replaced by the volume entropy functional hvol .
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