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Abstract We prove the new upper bound 5.095412 for the irrationality exponent of ζ(2) =
π2/6; the earlier record bound 5.441243 was established in 1996 by G. Rhin and C. Viola.

Résumé Nous obtenons une nouvelle borne pour l’exposant d’irrationnalité de ζ(2) = π2/6,
à savoir 5.095412, cette dernière améliorant le record 5.441243 établi par G. Rhin et C. Viola.
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1 Introduction

The principal aim of this note is to prove the following result.

Theorem 1 The irrationality exponent μ(ζ(2)) of ζ(2) = π2/6 is bounded from above by
5.09541178 . . . .

Recall that the irrationality exponent μ(α) of a real number α is the supremum of the set
of exponents μ for which the inequality |α − p/q| < q−μ has infinitely many solutions in
rationals p/q .

The history of μ(ζ(2)) can be found in the 1996 paper [13] of G. Rhin and C. Viola,
where they not only establish the previous record estimate μ(ζ(2)) ≤ 5.44124250 . . . but
also introduce the remarkable permutation group arithmetic method based on birational
transformations of underlying multiple integrals.
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102 W. Zudilin

One of the corollaries of Theorem 1 is the estimateμ(π
√

d) ≤ 10.19082357 . . . valid for
any choice of nonzero rational d . Note, however, that for some particular values of d better
bounds are known: the results

μ(π) ≤ 7.606308 . . . , μ(π
√

3) ≤ 4.601057 . . . and μ(π
√

10005) ≤ 10.021363 . . .

are due to Salikhov [9], Androsenko and Salikhov [1], and the present author [18], respec-
tively.

A particular case of the hypergeometric constructions below was discussed in [20, Sec-
tion 1.3] (see also [19, Section 2]) in relation with simultaneous rational approximations
to ζ(2) and ζ(3). In the joint paper [4] with S. Dauguet, we address these simultaneous
approximations more specifically.

Our proof of Theorem 1 below is organised as follows. In Sect. 2 we introduce some
analytical and arithmetic ingredients, while Sects. 3 and 4 are devoted to exposing details
of our first hypergeometric construction of rational approximations to ζ(2). Sections 2–4
are closely related to the corresponding material in [4]. In Sect. 5 we discuss an identity
between two hypergeometric integrals that motivates another hypergeometric construction
of approximations to ζ(2), the construction we further examine in Sect. 6. We finalise our
findings in Sect. 7, where we prove Theorem 1 and comment on related hypergeometric
constructions.

2 Prelude: auxiliary lemmata

This section discusses auxiliary results about decomposition of Barnes–Mellin-type integrals
and special arithmetic of integer-valued polynomials.

Lemma 1 For � = 0, 1, 2, . . . ,

1

2π i

1/2+i∞∫

1/2−i∞

( π

sin π t

)2 (t − 1)(t − 2) · · · (t − �)

�! dt = (−1)�

�+ 1
· (1)

Proof The integrand is

1

�!
( π

sin π t

)2 �(t)

�(t − �)
= (−1)�

�! �(t)2�(1 − t) �(1 + �− t);
the evaluation in (1) follows from Barnes’s first lemma [10, Section 4.2.1]. ��
Lemma 2 For k = 0, 1, 2, . . . ,

1

2π i

1/2+i∞∫

1/2−i∞

( π

sin π t

)2 dt

t + k
=

∞∑
m=1

1

(m + k)2
= ζ(2)−

k∑
�=1

1

�2 · (2)

Proof Since
( π

sin π t

)2
dt = d(−π cot π t),

partial integration on the left-hand side in (2) transforms the integral into

− 1

2π i

1/2+i∞∫

1/2−i∞

π cot π t dt

(t + k)2
·
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Two hypergeometric tales and a new irrationality measure of ζ(2) 103

By considering first integration along the rectangular closed contour with vertices at

(1/2 ± i N , N + 1/2 ± i N ),

where N > 0 is an integer, applying the residue sum theorem as in [15, Lemma 2.4] and
finally letting N → ∞, we arrive at claim (2). ��
Remark 1 The form and principal ingredients of Lemma 2 are suggested by [7, Lemma
2]. The statement is essentially a particular case of [15, Lemma 2.4], where an artificial
assumption on the growth of a regular rational function at infinity was used; the assumption
can be dropped out by applying partial integration as above.

In what follows Dn denotes the least common multiple of the numbers 1, 2, . . . , n.

Lemma 3 Given integers b < a, set

R(t) = R(a, b; t) = (t + b)(t + b + 1) · · · (t + a − 1)

(a − b)! ·

Then for any k, � ∈ Z, � 	= k,

R(k) ∈ Z, Da−b · dR(t)

dt

∣∣∣∣
t=k

∈ Z and Da−b · R(k)− R(�)

k − �
∈ Z.

Proof Denote by m = b − a the degree of the polynomial R(t). The first two family of
inclusions are classical [17]. For the remaining one, introduce the polynomial

P(t) = R(t)− R(�)

t − �

of degree m − 1. As Dm · 1/(k − �) is an integer for k = � + 1, � + 2, . . . , � + m as well
as R(k) − R(�) ∈ Z, we deduce that Dm · P(k) ∈ Z for those values of k. This means that
the polynomial Dm P(t) of degree m − 1 assumes integer values at m successive integers.
By [12, Division 8, Problem 87] the polynomial is integer-valued. ��
Lemma 4 Let R(t) be a product of several integer-valued polynomials

R j (t) = R(a j , b j ; t) = (t + b j )(t + b j + 1) · · · (t + a j − 1)

(a j − b j )! ,

where b j < a j and m = max j {a j − b j }. Then for any k, � ∈ Z, � 	= k,

R(k) ∈ Z, Dm · dR(t)

dt

∣∣∣∣
t=k

∈ Z and Dm · R(k)− R(�)

k − �
∈ Z. (3)

Proof It is sufficient to establish the result for a product of just two polynomials R(t) and
R̃(t) satisfying the assertions in (3) and then use mathematical induction on the number of
such factors. We have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
R(t)R̃(t)

)∣∣
t=k = R(k)R̃(k) ∈ Z,

Dm
d(R(t)R̃(t))

dt

∣∣∣
t=k

= R(k) · Dm
d R̃(t)

dt

∣∣∣
t=k

+ Dm
dR(t)

dt

∣∣∣
t=k

· R̃(k) ∈ Z

Dm
R(k)R̃(k)− R(�)R̃(�)

k − �
= Dm

R(k)− R(�)

k − �
· R̃(k)+ R(�) · Dm

R̃(k)− R̃(�)

k − �
∈ Z,

and the result follows. ��
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104 W. Zudilin

3 First hypergeometric tale

The construction in this section is a general case of the one considered in [19, Section 2].
For a set of parameters

(a, b) =
(

a1, a2, a3, a4

b1, b2, b3, b4

)

subject to the conditions{
b1, b2, b3 ≤ a1, a2, a3, a4 < b4,

d = (a1 + a2 + a3 + a4)− (b1 + b2 + b3 + b4) ≥ 0,
(4)

define the rational function

R(t) = R(a, b; t)

= (t + b1) · · · (t + a1 − 1)

(a1 − b1)! × (t + b2) · · · (t + a2 − 1)

(a2 − b2)!
× (t + b3) · · · (t + a3 − 1)

(a3 − b3)! × (b4 − a4 − 1)!
(t + a4) · · · (t + b4 − 1)

(5)

= �(a, b)× �(t + a1) �(t + a2) �(t + a3) �(t + a4)

�(t + b1) �(t + b2) �(t + b3) �(t + b4)
, (6)

where

�(a, b) = (b4 − a4 − 1)!
(a1 − b1)! (a2 − b2)! (a3 − b3)! ·

We also introduce the ordered versions a∗
1 ≤ a∗

2 ≤ a∗
3 ≤ a∗

4 of the parameters a1, a2, a3, a4

and b∗
1 ≤ b∗

2 ≤ b∗
3 of b1, b2, b3, so that {a∗

1 , a∗
2 , a∗

3 , a∗
4 } coincide with {a1, a2, a3, a4} and

{b∗
1, b∗

2, b∗
3} coincide with {b1, b2, b3} as multi-sets. Then R(t) has poles at t = −k where

k = a∗
4 , a∗

4 + 1, . . . , b4 − 1, has zeroes at t = −� where � = b∗
1, b∗

1 + 1, . . . , a∗
3 − 1 and has

double zeroes at t = −� where � = b∗
2, b∗

2 + 1, . . . , a∗
2 − 1.

Decomposing (5) into the sum of partial fractions, we get

R(t) =
b4−1∑
k=a∗

4

Ck

t + k
+ P(t), (7)

where P(t) is a polynomial of degree d (see (4)) and

Ck = (
R(t)(t + k)

)|t=−k

= (−1)d+b4+k
(

k − b1

k − a1

)(
k − b2

k − a2

)(
k − b3

k − a3

)(
b4 − a4 − 1

k − a4

)
∈ Z (8)

for k = a∗
4 , a∗

4 + 1, . . . , b4 − 1.

Lemma 5 Set c = max{a1 − b1, a2 − b2, a3 − b3}. Then Dc P(t) is an integer-valued
polynomial of degree d.

Proof Write R(t) = R1(t)R2(t), where

R1(t) =
∏a1−1

j=b1
(t + j)

(a1 − b1)! ×
∏a2−1

j=b2
(t + j)

(a2 − b2)! ×
∏a3−1

j=b3
(t + j)

(a3 − b3)!
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Two hypergeometric tales and a new irrationality measure of ζ(2) 105

is the product of three integer-valued polynomials and

R2(t) = (b4 − a4 − 1)!∏b4−1
j=a4

(t + j)
=

b4−1∑
k=a4

(−1)k−a4
(b4−a4−1

k−a4

)
t + k

·

It follows from Lemma 4 that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dc · dR1(t)

dt

∣∣∣
t= j

∈ Z for j ∈ Z,

Dc · R1( j)− R1(m)

j − m
∈ Z for j,m ∈ Z, j 	= m.

(9)

Furthermore, note that

Ck = R1(−k) · (
R2(t)(t + k)

)∣∣
t=−k

= R1(−k) · (−1)k−a4

(
b4 − a4 − 1

k − a4

)
for k ∈ Z,

and the expression in fact vanishes if k is outside the range a∗
4 ≤ k ≤ b4 − 1.

For � ∈ Z, we have

d

dt

(
R(t)(t + �)

)∣∣∣∣
t=−�

= d

dt

(
R1(t) · R2(t)(t + �)

)∣∣∣∣
t=−�

= dR1(t)

dt

∣∣∣∣
t=−�

· (
R2(t)(t + �)

)∣∣
t=−� + R1(−�) · d

dt

(
R2(t)(t + �)

)∣∣∣∣
t=−�

= dR1(t)

dt

∣∣∣∣
t=−�

· (−1)�−a4

(
b4 − a4 − 1

�− a4

)

+ R1(−�) · d

dt

b4−1∑
k=a4

(−1)k−a4

(
b4 − a4 − 1

k − a4

) (
1 − −�+ k

t + k

) ∣∣∣∣
t=−�

= dR1(t)

dt

∣∣∣∣
t=−�

· (−1)�−a4

(
b4 − a4 − 1

�− a4

)
+ R1(−�)

b4−1∑
k=a4
k 	=�

(−1)k−a4
(b4−a4−1

k−a4

)
−�+ k

and

d

dt

⎛
⎝b4−1∑

k=a∗
4

Ck

t + k
· (t + �)

⎞
⎠

∣∣∣∣
t=−�3

= d

dt

⎛
⎝b4−1∑

k=a4

Ck

t + k
· (t + �)

⎞
⎠

∣∣∣∣
t=−�

= d

dt

b4−1∑
k=a4

Ck

(
1 − −�+ k

t + k

) ∣∣∣∣
t=−�

=
b4−1∑
k=a4
k 	=�

Ck

−�+ k

=
b4−1∑
k=a4
k 	=�

R1(−k) · (−1)k−a4
(b4−a4−1

k−a4

)
−�+ k

·
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106 W. Zudilin

Therefore,

P(−�) = d

dt

(
P(t)(t + �)

)∣∣∣∣
t=−�

= d

dt

⎛
⎝R(t)(t + �)−

b4−1∑
k=a∗

4

Ck

t + k
· (t + �)

⎞
⎠

∣∣∣∣
t=−�

= dR1(t)

dt

∣∣∣∣
t=−�

· (−1)�−a4

(
b4 − a4 − 1

�− a4

)

+
b4−1∑
k=a4
k 	=�

(−1)k−a4

(
b4 − a4 − 1

k − a4

)
R1(−�)− R1(−k)

−�+ k
,

and this implies, on the basis of the inclusions (9) above, that Dc P(−�) ∈ Z for all � ∈ Z.
��

Finally, define the quantity

r(a, b) = (−1)d

2π i

C+i∞∫

C−i∞

( π

sin π t

)2
R(a, b; t) dt, (10)

where C is arbitrary from the interval −a∗
2 < C < 1−b∗

2. The definition does not depend on
the choice of C , as the integrand does not have singularities in the strip −a∗

2 < Re t < 1−b∗
2.

Proposition 1 We have

r(a, b) = q(a, b)ζ(2)− p(a, b) with

{
q(a, b) ∈ Z,

Dc1 Dc2 p(a, b) ∈ Z,
(11)

where {
c1 = max{a1 − b1, a2 − b2, a3 − b3, b4 − a∗

2 − 1},
c2 = max{d + 1, b4 − a∗

2 − 1}.
Furthermore, the quantity r(a, b)/�(a, b) is invariant under any permutation of the para-
meters a1, a2, a3, a4.

Proof We choose C = 1/2 − a∗
2 in (10) and write (7) as

R(t) =
b4−1∑
k=a∗

4

Ck

t + k
+

d∑
�=0

A�P�(t + a∗
2 ),

where

P�(t) = (t − 1)(t − 2) · · · (t − �)

�!
and Dc A� ∈ Z in accordance with Lemma 5. Applying Lemmas 1 and 2 we obtain

r(a, b) = (−1)d

2π i

1/2+i∞∫

1/2−i∞

( π

sin π t

)2
R(t − a∗

2 ) dt

= ζ(2) · (−1)d
b4−1∑
k=a∗

4

Ck − (−1)d
b4−1∑
k=a∗

4

Ck

k−a∗
2∑

�=1

1

�2 +
d∑
�=0

(−1)d+�A�
�+ 1

·
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Two hypergeometric tales and a new irrationality measure of ζ(2) 107

This representation clearly implies that r(a, b) has the desired form (11), while the invariance
of r(a, b)/�(a, b) under permutations of a1, a2, a3, a4 follows from (6) and definition (10)
of r(a, b). ��

4 Towards proving Theorem 1

For the particular case{
a1 = 7n + 1, a2 = 6n + 1, a3 = 5n + 1, a4 = 8n + 1,

b1 = 1, b2 = 1n + 1, b3 = 2n + 1, b4 = 14n + 2,
(12)

from Proposition 1 we obtain

rn = r(a, b) = qnζ(2)− pn, where qn, D9n D8n pn ∈ Z. (13)

The asymptotic behaviour of rn and qn for a generic choice{
a1 = α1n + 1, a2 = α2n + 1, a3 = α3n + 1, a4 = α4n + 1,

b1 = β1n + 1, b2 = β2n + 1, b3 = β3n + 1, b4 = β4n + 2,
(14)

where the integral parameters α j and β j satisfy

β1, β2, β3 < α1, α2, α3, α4 < β4, α1 + α2 + α3 + α4 > β1 + β2 + β3 + β4

(to ensure the earlier imposed conditions (4)), is pretty standard.

Lemma 6 Assume that the cubic polynomial

4∏
j=1

(τ − α j )−
4∏

j=1

(τ − β j )

has one real zero τ1 and two complex conjugate zeroes τ0 and τ0. Then

lim sup
n→∞

log |rn |
n

= Re f0(τ0) and lim
n→∞

log |qn |
n

= f0(τ1),

where

f0(τ ) =
4∑

j=1

(
α j log(τ − α j )− β j log(τ − β j )

)

−
3∑

j=1

(α j − β j ) log(α j − β j )+ (β4 − α4) log(β4 − α4).

For a proof of the statement we refer to similar considerations in [15–17]. An alternative
proof can be given, based on Poincaré’s theorem and on explicit recurrence relations satisfied
by both rn and qn — we touch the latter aspect for our concrete choice (12) in Sect. 5.

When the parameters are chosen in accordance with (12), we obtain⎧⎪⎪⎨
⎪⎪⎩

− lim sup
n→∞

log |rn |
n

= C0 = 15.88518998 . . . ,

lim
n→∞

log |qn |
n

= C1 = 23.22906071 . . . .

(15)
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108 W. Zudilin

For a generic choice (14), the quantities c1 and c2 in Proposition 1 assume the form γ1n
and γ2n, where the integers γ1 and γ2 only depend on the data α j , β j for j = 1, . . . , 4; for
simplicity we order them: γ1 ≥ γ2. In what follows, � ·  denotes the integer part of a real
number.

Lemma 7 In the above notation, we have

�−1
n qn, �

−1
n Dγ1n Dγ2n pn ∈ Z (16)

with

�n =
∏

√
2γ0n<p prime ≤γ2n

pϕ(n/p),

where

ϕ(x) = max
α′=σα:σ∈S4

⎛
⎝ �(β4 − α4)x − �(β4 − α′

4)x
−∑3

j=1

(�(α j − β j )x − �(α′
j − β j )x)

⎞
⎠ ,

the maximum being taken over all permutations (α′
1, α

′
2, α

′
3, α

′
4) of (α1, α2, α3, α4). Further-

more,

lim
n→∞

log�n

n
=

1∫

0

ϕ(x) dψ(x)−
1/γ2∫

0

ϕ(x)
dx

x2 ,

where ψ(x) is the logarithmic derivative of the gamma function.

Proof The arithmetic “correction” in (16) uses by now a standard method, based on the
permutation group from Proposition 1; see the original source [13] or its adaptation to hyper-
geometric settings in [17] for details. The function ϕ(x) is chosen to count the maximum

ϕ

(
n

p

)
= max
σ∈S4

ordp
�(a, b)
�(σ a, b)

·

��
Remark 2 There is an alternative way to compute ϕ(x) using

ϕ(x) = min
0≤y<1

(∑3
j=1

(�y − β j x − �y − α j x − �(α j − β j )x)
+�(β4 − α4)x − �β4x − y − �y − α4x

)
,

though it is not at all straightforward that this expression represents the same function ϕ(x)
as in Lemma 7. The technique is discussed in related contexts, for example, in [15, Section
4], [17, Section 7] and [8, Section 2]. We use this strategy in Sect. 6 below.

Under the choice (12), we get γ1 = 9, γ2 = 8 and

ϕ(x) =

⎧⎪⎪⎨
⎪⎪⎩

2 if x ∈ [ 1
6 ,

1
5

) ∪ [ 1
4 ,

2
7

) ∪ [ 1
2 ,

4
7

) ∪ [ 5
6 ,

6
7

)
,

1 if x ∈ [ 1
8 ,

1
7

) ∪ [ 1
5 ,

1
4

) ∪ [ 2
7 ,

3
7

) ∪ [ 4
7 ,

5
6

) ∪ [ 6
7 ,

8
9

)
,

0 otherwise,

(17)
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Two hypergeometric tales and a new irrationality measure of ζ(2) 109

so that

lim
n→∞

log�n

n
= 8.12793878 . . . .

Taking then

C2 = lim
n→∞

log(�−1
n D9n D8n)

n
= 9 + 8 − 8.12793878 . . . = 8.87206121 . . .

and applying [6, Lemma 2.1] we arrive at the following irrationality measure for ζ(2):

μ(ζ(2)) ≤ C0 + C1

C0 − C2
= 5.57728968 . . . .

This estimate is clearly worse than the one obtained by Rhin and Viola in [13]. We will see
later that the inclusions (16) can be further sharpened in our case (12).

Remark 3 A different choice of parameters than in (12), namely,{
a1 = 4n + 1, a2 = 5n + 1, a3 = 6n + 1, a4 = 7n + 1,

b1 = 1, b2 = n + 1, b3 = 2n + 1, b4 = 12n + 2,

allows us to obtain the estimateμ(ζ(2)) ≤ 5.20514736 . . . already better than the one in [13].
This choice, however, fails to achieve a significant sharpening by means of the machinery
that we discuss below.

5 Interlude: a hypergeometric integral

Let us prove the following result.

Proposition 2 For each n = 0, 1, 2, . . . , the following identity is true:

(6n)!
(7n)! (5n)! (3n)!

1

2π i

C1+i∞∫

C1−i∞

�(7n + 1 + t) �(6n + 1 + t) �(5n + 1 + t)

�(1 + t) �(n + 1 + t) �(2n + 1 + t)

× �(8n + 1 + t)

�(14n + 2 + t)

( π

sin π t

)2
dt

= (6n)!2
(9n)! (3n)!

1

2π i

C2+i∞∫

C2−i∞

�(11n + 2 + 2t) �(3n + 1 + t)

�(2n + 2 + 2t) �(1 + t)

× �(4n + 1 + t) �(5n + 1 + t)

�(10n + 2 + t) �(11n + 2 + t)

π

sin 2π t
dt, (18)

where the integration paths separate the two groups of poles of the integrands; (for example,
C1 = −2n − 1/2 and C2 = −1/2).

Proof Executing the Gosper–Zeilberger algorithm of creative telescoping for the rational
functions

R(t) =
∏7n

j=1(t + j)

(7n)! ×
∏5n

j=1(t + n + j)

(5n)! ×
∏3n

j=1(t + 2n + j)

(3n)! × (6n)!∏6n+1
j=1 (t + 8n + j)

123



110 W. Zudilin

and

R̂(t) =
∏9n+1

j=2 (2t + 2n + j)

(9n)! ×
∏3n

j=1(t + j)

(3n)! × (6n)!∏6n+1
j=1 (t + 4n + j)

× (6n)!∏6n+1
j=1 (t + 5n + j)

,

we find out that the integrals

rn = 1

2π i

i∞∫

−i∞
R(t)

( π

sin π t

)2
dt and r̂n = 1

2π i

i∞∫

−i∞
R̂(t)

π

sin 2π t
dt

satisfy the same recurrence equation

s0(n)rn+3 + s1(n)rn+2 + s2(n)rn+1 + s3(n)rn = 0 for n = 0, 1, 2, . . . ,

where s0(n), s1(n), s2(n) and s3(n) are polynomials in n of degree 64. Verifying the equality
in (18) directly for n = 0, 1 and 2, we conclude that it is valid for all n. ��

Other applications of the algorithm of creative telescoping to proving identities for Barnes-
type integrals are discussed in [5,11].

Remark 4 Note that the left-hand side in (18) is the linear form from Sect. 3 which corre-
sponds to our particular choice (12) of the parameters. The characteristic polynomial of the
recurrence equation is equal to

22 312 714 λ3 + 33 77 794493690983053821271 λ2 − 220 34 75 2687491277 λ+ 248,

and its zeroes determine the asymptotics (15) of rn and qn by means of Poincaré’s theorem.

For a “sufficiently generic” set of integral parameters, the following identity is expected
to be true:

1

2π i

i∞∫

−i∞

�(a + t) �(b + t) �(e + t) �( f + t)

�(1 + t) �(1 + a − e + t) �(1 + a − f + t) �(g + t)

( π

sin π t

)2
dt

= (−1)a+b+e+ f �(e + f − a) �(e) �( f )

�(g − b)

× 1

2π i

i∞∫

−i∞

�(a − b + g + 2t) �(a + t) �(e + t) �( f + t)

�(1 + a + 2t) �(1 + a − b + t) �(e + f + t) �(g + t)

( π

sin 2π t

)
dt.

(19)

The satellite identity, in which (π/ sin π t)2 and π/ sin 2π t are replaced with

π3 cosπ t/(sin π t)3 and (π/ sin π t)2

respectively, is expected to hold as well; the other integrals represent rational approximations
to ζ(3) [4,20]. These identities can be possibly shown in full generality using contiguous
relations for the integrals on both sides; it seems to be a tough argument though.

Proposition 2 is a particular case of (19) when

a = 8n + 1, b = 5n + 1, e = 6n + 1, f = 7n + 1 and g = 14n + 2.

Identity (19) and its satellite should be a special case of a hypergeometric-integral identity
valid for generic complex parameters. We could not detect the existence of the more general
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identity in the literature, though there are a few words about it at the end of W. N. Bailey’s
paper [2]:

“The formula (1.4)1 and its successor are rather more troublesome to generalize, and
the final result was unexpected. The formulae obtained involve five series instead of
three or four as previously obtained. In each case two of the series are nearly-poised
and of the second kind, one is nearly-poised and of the first kind, and the other two are
Saalschützian in type. In the course of these investigations some integrals of Barnes’s
type are evaluated analogous to known sums of hypergeometric series. Considerations
of space, however, prevent these results being given in detail.”

It is quite similar in spirit to Fermat’s famous “I have discovered a truly marvelous proof
of this, which this margin is too narrow to contain”, is not it? Interestingly enough, the last
paragraph in Chapter 6 of Bailey’s book [3] again reveals us no details about the troublesome
generalization. Did Bailey possess the identity?

6 Second hypergeometric tale

Our discussion in the previous section suggests a different construction of rational approxi-
mations to ζ(2). This time we design the rational function to be

R̂(t) = R̂(â, b̂; t) = (2t + b̂0)(2t + b̂0 + 1) · · · (2t + â0 − 1)

(â0 − b̂0)!
× (t + b̂1) · · · (t + â1 − 1)

(â1 − b̂1)!
× (b̂2 − â2 − 1)!
(t + â2) · · · (t + b̂2 − 1)

× (b̂3 − â3 − 1)!
(t + â3) · · · (t + b̂3 − 1)

= �̂(â, b̂) · �(2t + â0) �(t + â1) �(t + â2) �(t + â3)

�(2t + b̂0) �(t + b̂1) �(t + b̂2) �(t + b̂3)
,

where

�̂(â, b̂) = (b̂2 − â2 − 1)! (b̂3 − â3 − 1)!
(â0 − b̂0)! (â1 − b̂1)!

and the integral parameters

(â, b̂) =
(

â0; â1, â2, â3

b̂0; b̂1, b̂2, b̂3

)

satisfy the conditions
{

1
2 b̂0, b̂1 ≤ 1

2 â0, â1, â2, â3 < b̂2, b̂3,

â0 + â1 + â2 + â3 = b̂0 + b̂1 + b̂2 + b̂3 − 2.
(20)

The latter condition implies that R̂(t) = O(1/t2) as t → ∞. Though it will not be as
important as it was in our arithmetic consideration of Sect. 3, we introduce the ordered
versions â∗

1 ≤ â∗
2 ≤ â∗

3 of the parameters â1, â2, â3 and b̂∗
2 ≤ b̂∗

3 of b̂2, b̂3. Then this
ordering and conditions (20) imply that the rational function R̂(t) has poles at t = −k for

1 This formula appears as equation (26) below.
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â∗
2 ≤ k ≤ b̂∗

3 − 1, double poles at t = −k for â∗
3 ≤ k ≤ b̂∗

2 − 1, and zeroes at t = −�/2 for
b̂0 ≤ � ≤ â∗

0 − 1 where â∗
0 = min{â0, 2â∗

2 }.
The partial-fraction decomposition of the regular rational function R̂(t) assumes the form

R̂(t) =
b̂∗

2−1∑
k=â∗

3

Ak

(t + k)2
+

b̂∗
3−1∑

k=â∗
2

Bk

t + k
,

where

Ak = (
R̂(t)(t + k)2

)|t=−k

= (−1)d̂
(

2k − b̂0

2k − â0

)(
k − b̂1

k − â1

)(
b̂2 − â2 − 1

k − â2

)(
b̂3 − â3 − 1

k − â3

)
∈ Z (21)

with d̂ = b̂2 + b̂3, for k = â∗
3 , â∗

3 + 1, . . . , b̂∗
2 − 1 and, similarly,

Bk = d

dt

(
R̂(t)(t + k)2

)∣∣∣∣
t=−k

for k = â∗
2 , â∗

2 + 1, . . . , b̂∗
3 − 1. In addition,

b̂∗
3−1∑

k=â∗
2

Bk = − Rest=∞ R̂(t) = 0 (22)

by the residue sum theorem.
The inclusions

Dmax{â0−b̂0,â1−b̂1,b̂∗
3−â2−1,b̂∗

3−â3−1} · Bk ∈ Z (23)

follow then from standard consideration; see, for example, Lemma 3 and the proof of Lemma
4 in [17]. More importantly, for primes p we have

ordp Ak, 1 + ordp Bk ≥
⌊

2k − b̂0

p

⌋
−

⌊
2k − â0

p

⌋
−

⌊
â0 − b̂0

p

⌋

+
⌊

k − b̂1

p

⌋
−

⌊
k − â1

p

⌋
−

⌊
â1 − b̂1

p

⌋

+
3∑

j=2

(⌊
b̂ j − â j − 1

p

⌋
−

⌊
k − â j

p

⌋
−

⌊
b̂ j − 1 − k

p

⌋)
(24)

for k = â∗
2 , . . . , b̂∗

3 − 1. These estimates on the p-adic order of the coefficients in the partial-
fraction decomposition of R̂(t) follow from [17, Lemmas 17 and 18].

The quantity of our interest in this section is

r̂(â, b̂) = (−1)d̂

2π i

C/2+i∞∫

C/2−i∞

π

sin 2π t
R̂(â, b̂; t) dt,

where C is arbitrary from the interval −â∗
0 < C < 1 − b̂0.
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Proposition 3 We have

r̂(â, b̂) = q̂(â, b̂)ζ(2)− p̂(â, b̂) with

{
q̂(â, b̂) ∈ Z,

Dĉ1 Dĉ2 p̂(â, b̂) ∈ Z,
(25)

where {
ĉ1 = max{â0 − b̂0, â1 − b̂1, b̂∗

3 − â2 − 1, b̂∗
3 − â3 − 1, 2b̂∗

2 − â∗
0 − 2},

ĉ2 = 2b̂∗
3 − â∗

0 − 2.

Proof We use

Rest=m/2
π R̂(t)

sin 2π t
= (−1)m

2
R̂(t)

∣∣∣
t=m/2

for m ≥ 1 − â∗
0 to write

r̂(â, b̂) = − (−1)d̂

2

∞∑
m=1−â∗

0

(−1)m R̂(t)

∣∣∣∣
t=m/2

= (−1)d̂
b̂∗

2−1∑
k=â∗

3

2Ak

∞∑
m=1−â∗

0

(−1)m−1

(m + 2k)2
+ (−1)d̂

b̂∗
3−1∑

k=â∗
2

Bk

∞∑
m=1−â∗

0

(−1)m−1

m + 2k

= 2
∞∑
�=1

(−1)�−1

�2 · (−1)d̂
b̂∗

2−1∑
k=â∗

3

Ak − (−1)d̂
b̂∗

2−1∑
k=â∗

3

2Ak

2k−â∗
0∑

�=1

(−1)�−1

�2

+
∞∑
�=1

(−1)�−1

�
· (−1)d̂

b̂∗
3−1∑

k=â∗
2

Bk − (−1)d̂
b̂∗

3−1∑
k=â∗

2

Bk

2k−â∗
0∑

�=1

(−1)�−1

�

= ζ(2) · (−1)d̂
b̂∗

2−1∑
k=â∗

3

Ak − (−1)d̂
b̂∗

2−1∑
k=â∗

3

2Ak

2k−â∗
0∑

�=1

(−1)�−1

�2

−(−1)d̂
b̂∗

3−1∑
k=â∗

2

Bk

2k−â∗
0∑

�=1

(−1)�−1

�
,

where the equality (22) was used. In view of the inclusions (21), (23) the found representation
of r̂(â, b̂) implies the form (25). ��

Remark 5 The binomial expressions (8) and (21) allow us to write

q(a, b) = (−1)d
b4−1∑
k=a∗

4

Ck and q̂(â, b̂) = (−1)d̂
b̂∗

2−1∑
k=â∗

3

Ak

as certain 4 F3- and 5 F4-hypergeometric series, respectively (see the books [3,10] for the
definition of generalized hypergeometric series). Then Whipple’s classical transformation
[10, p. 65, eq. (2.4.2.3)],
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4 F3

(
f, 1 + f − h, h − a, −N

h, 1 + f + a − h, g

∣∣∣∣ 1

)
= (g − f )N

(g)N

×5 F4

(
a, −N , 1 + f − g, 1

2 f, 1
2 f + 1

2

h, 1+ f +a−h, 1
2 (1 + f − N − g), 1

2 (1+ f − N − g)+ 1
2

∣∣∣∣ 1

)
,

(26)

can be stated as the following identity:

q

(
a1, a2, a3, a4

1, a4 − a1 + 1, a4 − a2 + 1, b4

)

= q̂

(
b4 − a3 + a4; a2, a1, a4

a4 + 1; a4 − a3 + 1, a1 + a2, b4

)
.

Note that (19) is equivalent to

r

(
a1, a2, a3, a4

1, a4 − a1 + 1, a4 − a2 + 1, b4

)

= r̂

(
b4 − a3 + a4; a2, a1, a4

a4 + 1; a4 − a3 + 1, a1 + a2, b4

)
,

so that it is Whipple’s transformation (26) that offers us to expect the coincidence of the two
families of linear forms in 1 and ζ(2).

As in Sect. 4, we take the parameters (â, b̂) as follows:{
â0 = α̂0n + 2, â1 = α̂1n + 1, â2 = α̂2n + 1, â3 = α̂3n + 1,

b̂0 = β̂0n + 2, b̂1 = β̂1n + 1, b̂2 = β̂2n + 2, b̂3 = β̂3n + 2,
(27)

where the fixed integers α̂ j and β̂ j , j = 0, . . . , 3, satisfy

1
2 β̂0, β̂1 <

1
2 α̂0, α̂1, α̂2, α̂3 < β̂2, β̂3, α̂0 + α̂1 + α̂2 + α̂3 = β̂0 + β̂1 + β̂2 + β̂3

to ensure that all hypotheses (20) are satisfied. Though we can give the analogue of Lemma
6, our principal interest in the construction of this section is purely arithmetic.

Lemma 8 Assuming the choice (27), for each prime p we have

ordp q̂(â, b̂) ≥ ϕ̂(n/p) and ordp p̂(â, b̂) ≥ −2 + ϕ̂(n/p),

where the (1-periodic and integer-valued) function ϕ̂(x) is given by

ϕ̂(x) = min
0≤y<1

⎛
⎜⎜⎝

�2y − β̂0x − �2y − α̂0x − �(α̂0 − β̂0)x
+�y − β̂1x − �y − α̂1x − �(α̂1 − β̂1)x
+∑3

j=2

(�(β̂ j − α̂ j )x − �β̂ j x − y − �y − α̂ j x)

⎞
⎟⎟⎠ .

Proof This follows from the estimates (24), the explicit expressions for q̂(â, b̂) and p̂(â, b̂)
given in the proof of Proposition 3: we simply assign y = (k − 1)/p and minimise over k.

��
Note that the special choice of parameters (â, b̂),{

â0 = 11n + 2, â1 = 3n + 1, â2 = 4n + 1, â3 = 5n + 1,

b̂0 = 2n + 2, b̂1 = 1, b̂2 = 10n + 2, b̂3 = 11n + 2,
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results in the linear forms

r̂n = r̂(â, b̂) = q̂nζ(2)− p̂n,

which are related, by Proposition 2, to the linear forms (12), (13) as follows:

rn = qnζ(2)− pn = q̂nζ(2)− p̂n,

so that qn = q̂n and pn = p̂n for n = 0, 1, 2, . . . .
Then with the help of Lemma 8, we find that

�̂−1
n qn = �̂−1

n q̂n ∈ Z and �̂−1
n D9n D8n pn = �̂−1

n D9n D8n p̂n ∈ Z,

where

�̂n =
∏

p≤8n

pϕ̂(n/p)

and

ϕ̂(x) = min
0≤y<1

⎛
⎜⎝

�2y − 2x − �2y − 11x − �9x + �y
−�y − 3x − �3x + �6x − �10x − y
−�y − 4x + �6x − �11x − y − �y − 5x

⎞
⎟⎠

=

⎧⎪⎪⎨
⎪⎪⎩

2 if x ∈ [ 1
6 ,

2
9

) ∪ [ 1
2 ,

5
9

) ∪ [ 5
6 ,

7
8

)
,

1 if x ∈ [ 2
9 ,

4
9

) ∪ [ 5
9 ,

7
9

) ∪ [ 7
8 ,

8
9

)
,

0 otherwise,

(28)

so that

lim
n→∞

log �̂n

n
= 7.03418177 . . . .

Comparing (17) and (28) we find out that ϕ(x) ≥ ϕ̂(x) for all x ∈ [0, 1) except for
x ∈ [ 1

5 ,
2
9

) ∪ [ 3
7 ,

4
9

) ∪ [ 6
7 ,

7
8

)
. It means that with the choice

�̃n =
∏

p≤8n

pϕ̃(n/p)

where

ϕ̃(x) = max{ϕ(x), ϕ̂(x)} =

⎧⎪⎪⎨
⎪⎪⎩

2 if x ∈ [ 1
6 ,

2
9

) ∪ [ 1
4 ,

2
7

) ∪ [ 1
2 ,

4
7

) ∪ [ 5
6 ,

7
8

)
,

1 if x ∈ [ 1
8 ,

1
7

) ∪ [ 2
9 ,

1
4

) ∪ [ 2
7 ,

4
9

) ∪ [ 4
7 ,

5
6

) ∪ [ 7
8 ,

8
9

)
,

0 otherwise,

we have the inclusions

�̃−1
n qn, �̃

−1
n D9n D8n pn ∈ Z for n = 0, 1, 2, . . . , (29)

and

lim
n→∞

log �̃n

n
= 8.79117698 . . . .
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7 Finale: Proof of Theorem 1 and concluding remarks

Here is the

Proof of Theorem 1 In the course of our study, we constructed the forms

rn = qnζ(2)− pn, n = 0, 1, 2, . . . ,

such that their rational coefficients qn and pn satisfy (29), while the growth of rn and qn as
n → ∞ is determined by (15). Denoting

C̃2 = lim
n→∞

log(�̃−1
n D9n D8n)

n
= 8.20882301 . . .

and applying [6, Lemma 2.1] we arrive at the estimate

μ(ζ(2)) ≤ C0 + C1

C0 − C̃2
= 5.09541178 . . .

for the irrationality exponent of ζ(2) = π2/6. ��
As discussed in [4], the sequence of approximations rn = qnζ(2)− pn constructed in the

proof of Theorem 1 can be complemented with the satellite sequence

r ′
n = qnζ(3)− p′

n

of rational approximations to ζ(3), which satisfy

�̃−1
n D9n D2

8n p′
n ∈ Z for n = 0, 1, 2, . . .

and

lim sup
n→∞

log |r ′
n |

n
= −C0 = −15.88518998 . . .

(cf. (15)). Because

lim
n→∞

log(�̃−1
n D9n D2

8n)

n
= 16.20882301 . . . > C0,

the linear forms

�̃−1
n D9n D2

8nr ′
n ∈ Zζ(3)+ Z

are unbounded as n → ∞ and, therefore, cannot be used for proving the irrationality of ζ(3)
(which would in this case also lead to the Q-linear independence of 1, ζ(2) and ζ(3)).

With the help of the recurrence equation, used in our proof of Proposition 2 and satisfied
by the sequences

qn, rn = qnζ(2)− pn and r ′
n = qnζ(3)− p′

n,

we computed the first 300 terms of the sequence

�n = gcd(�̃−1
n D9n D2

8nqn, �̃
−1
n D9n D2

8n pn, �̃
−1
n D9n D2

8n p′
n), n = 0, 1, 2, . . . .

The primes involved in the factorisation of�n do not seem to possess a structural dependence
on n, and for the majority of n’s these primes p are in the (asymptotically neglectable) range
p ≤ √

8n. Nevertheless, the absolute values of the forms

(�n�̃n)
−1 D9n D2

8nrn ∈ Zζ(2)+ Z and (�n�̃n)
−1 D9n D2

8nr ′
n ∈ Zζ(3)+ Z
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happen to be simultaneously less than 1 for

n = 1, . . . , 21, 23, . . . , 35, 37, 38, 39, 41, 42, 43, 47, . . . , 50, 53, 54, 64, 68,

71, . . . , 74, 79, 80, 81, 84, 85, 89, 101, 102, 106, 110, 113, 128, 129, 178, 228

in the range n ≤ 300.
It would be nice to investigate arithmetically the other classical hypergeometric instances

from Bailey’s and Slater’s books [3,10]: the philosophy is that behind any hypergeometric
transformation there is some interesting arithmetic. Already the previously achieved irra-
tionality measure for ζ(2) in [13] and the best known irrationality measure for ζ(3) in [14],
both due to Rhin and Viola, have deep hypergeometric roots (see [17]). Another example in
this direction is the hypergeometric construction of rational approximations to ζ(4) in [16].
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