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Abstract
Let G be a finite Jordan domain bounded by a Dini-smooth curve � in the complex
plane C. In this work, approximation properties of the Faber–Laurent rational series
expansions in variable exponent Morrey spaces L p(·),λ(·)(�) are studied. Also, direct
theorems of approximation theory in variable exponent Morrey–Smirnov classes,
defined in domains with a Dini-smooth boundary, are proved.

Keywords Faber–Laurent rational functions · Conformal mapping · Dini-smooth
curve · Variable exponent Morrey spaces · Modulus of smoothness
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1 Introduction, Some Auxiliary Results andMain Results

Let J denote the interval [0, 2π ] or a Jordan rectifiable curve � ⊂ C. Let us denote
by ℘ the class of Lebesgue measurable functions p(·) : � → [0,∞) such that

1 < p∗ := essinf z∈J p(z) ≤ p∗ := esssupz∈J p(z) < ∞. (1.1)

Let |J | be the Lebesgue measure of J . We suppose that the function p(·) satisfies the
condition
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630 S. Z. Jafarov

|p(z1) − p(z2)| ln
( |J |

|z1 − z2|
)

≤ c, for all z1, z2 ∈ J , (1.2)

where the constant c is independent of z1 and z2. A function p(·) ∈ ℘ is said to belong
to the class ℘log(J ), if the condition (1.2) is satisfied.

For p(·) ∈ ℘log(�), we define a class L p(·)(�) of Lebesgue measurable functions
f (·) : � → R satisfying the condition

∫
�

| f (z)|p(z) |dz| < ∞.

This class L p(·)(�) is a Banach space with respect to the norm

‖ f ‖L p(·)(�) := inf

{
λ > 0 :

∫
�

∣∣∣∣ f (x)λ

∣∣∣∣
p(z)

|dz| ≤ 1

}
.

Let G be a finite domain in the complex planeC, bounded by the rectifiable Jordan
curve �. Without loss of generality we assume 0 ∈ Int �. Let G− := Ext �. Let also
T := {w ∈ C : |w| = 1}, D = IntT and D

− = ExtT. We recall that if for a given
analytic function f (·) on G, there exists a sequence of rectifiable Jordan curves (�n)

inG tending to the boundary� in the sense that�n eventually surrounds each compact
subdomain of G such that

∫
�n

| f (z)|p |dz| ≤ M < ∞,

then we say that f (·) belongs to the Smirnov class E p(G−), 1 ≤ p < ∞. Each
function f (·) ∈ E p(G) has non-tangential limits almost everywhere (a.e.) on � and
the boundary function belongs to L p(�).

We denote by ϕ(·) the conformal mapping of G− onto D
− normalized by

ϕ(∞) = ∞, lim
z→∞

ϕ(z)

z
> 0.

Letψ(·) be the inverse of ϕ(·). The functions ϕ(·) andψ(·) have continuous extensions
to � and T, their derivatives ϕ′(·) and ψ ′(·) have definite non-tangential limit values
on � and T a.e., and they are integrable with respect to the Lebesgue measure on �

and T, respectively. It is known that ϕ′(·) ∈ E1(G−) and ψ ′(·) ∈ E1(D−). Note that
the general information about Smirnov classes can be found in [14, pp. 168–185], [22,
pp. 438–453].

Let � be a rectifiable Jordan curve in the complex plane. We denote �(t, r) =
� ∩ B(t, r), t ⊂ �, r > 0, where B(t, r) = {z ∈ C : |z − t | < r}. The Morrey
spaces L p,λ(�) for a given 0 ≤ λ ≤ 1 and p ≥ 1, are defined as the set of functions
f (·) ∈ L p

loc(�) such that

‖ f ‖L p,λ(�) := sup
z∈�, 0<r<L

r−λ/p‖ f ‖L p(�(t,r)) < ∞,
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Approximation by Faber–Laurent Rational Functions… 631

where L is the length of the curve �.
Note that L p,0(�) = L p(�), and if λ < 0 or λ > 1, then L p,λ(�) = �, where �

is the set of all functions equivalent to 0 on �.
Let G := Int � and L p,λ(�), 0 < λ ≤ 1 and 1 < p < ∞, be a Morrey space

defined on �. We also define the Morrey-Smirnov classes E p,λ(G) as

E p,λ(G) := { f (·) ∈ E1(G) : f (·) ∈ L p,λ(�)}.

Hence for f (·) ∈ E p,λ(G) we can define the E p,λ(G) norm as

‖ f ‖E p,λ(G) := ‖ f ‖L p,λ(�).

Let p(·) : � → [1,+∞] be a Lebesgue measurable function satisfying condition
(1.1) and λ(·) : � → [0, 1] be a measurable function. We define the variable exponent
Morrey spaces L p(·),λ(·)(�) as the set of Lebesgue measurable functions f (·) defined
on �, such that

Sp(·),λ(·)( f ) = sup
t∈�, 0<r<L

r−λ(x)
∫

�(t,r)
| f (s)|p(s) ds < ∞.

The norm in L p(·),λ(·)(�) is defined as follows

‖ f ‖L p(·),λ(·)(�) := inf

{
ν > 0 : Sp(·),λ(·)

(
f

ν

)
< 1

}
.

It is known that L p(·),λ(·)(�) is a Banach space. Note that the properties of classical
Morrey spaces and variable exponent Morrey spaces have been investigated by several
authors (see, for example, [3,16–19,30,40,42,46–48,50,51,54]).

We define also the variable exponent Morrey-Smirnov class E p(·),λ(·)(G) as

E p(·),λ(·)(G) :=
{
f (·) ∈ E1(G) : f (·) ∈ L p(·),λ(·)(�)

}
.

Note that E p(·),λ(·)(G) is a Banach space with respect to the norm

‖ f ‖E p(·),λ(·)(G) := ‖ f ‖L p(·),λ(·)(�).

Let p(·) : T → [1,+∞] and λ(·) : T → [0, 1] be measurable functions such that
0 ≤ λ∗ ≤ λ∗ < 1. Also assume that p(·) ∈ ℘log. For f (·) ∈ L p(·),λ(·)(T) we define
the operator

(νhi f )(ω) := 1

h

∫ h

0
f (ωeit )dt, ω ∈ T, 0 < h < π.

It is clear that the operator νh is a bounded linear operator on L p(·)λ(·)(T) [21]:

‖νh( f )‖L p(·)(T) ≤ c1‖ f ‖L p(·)(T).
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632 S. Z. Jafarov

The function

�( f , δ)p(·),λ(·) := sup
0<h≤δ

‖ f (·) − νh f (·)‖L p(·),λ(·)(T), δ > 0,

is called the modulus of smoothness of f (·) ∈ L p(·)λ(·)(T).
It can easily be shown that �( f , ·)p(·),λ(·) is a continuous, non-negative and non-

decreasing function satisfying the conditions

lim
δ→0

�( f , δ)p(·),λ(·) = 0,

�( f + g, δ)p(·),λ(·) ≤ �( f , δ)p(·),λ(·) + �(g, δ)p(·),λ(·), δ > 0,

for f (·), g(·) ∈ L p(·),λ(·)(T).
We denote by w = φ(z) the conformal mapping of G− onto the domain D : =

{w ∈ C : |w| > 1} normalized by the conditions

φ(∞) = ∞, lim
z→∞

φ(z)

z
> 0

and let ψ(·) be the inverse mapping of φ(·).
We denote by w = φ1(z) the conformal mapping of G onto the domain D = {w ∈

C : |w| > 1}, normalized by the conditions

φ1(0) = ∞, lim
z→0

(zφ1(z)) > 0,

and let ψ1(·) be the inverse mapping of φ1(·).
The functions ψ(·) and ψ1(·) have in some deleted neighborhood of the point

w = ∞ the representations

ψ(w) = γw + γ0 + γ1

w
+ γ2

w2 + · · · , γ > 0,

and

ψ1(w) = α1

w
+ α2

w2 + · · · + αk

wk
+ · · · , α1 > 0.

The following expansions hold [10,14,41,49]:

ψ ′(w)

ψ(w) − z
=

∞∑
k=0

�k(z)

wk+1 , z ∈ G and w ∈ D
−, (1.3)

and

ψ ′
1(w)

ψ1(w) − z
=

∞∑
k=0

−
F

(
1
z

)
wk+1 , z ∈ G− and w ∈ D

−, (1.4)
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where �k(z) and Fk(1/z) are the Faber polynomials of degree k with respect to z and
1/z for the continuums G and C\G, respectively. Also, for the Faber polynomials
�k(z) and rational functions Fk(1/z) the integral representations

�k(z) = [φ(z)]k + 1

2π i

∫
�

[φ(ζ )]n
ζ − z

dζ, k = 0, 1, 2, . . . , z ∈ G, (1.5)

Fk

(
1

z

)
= [φ1(z)]k − 1

2π i

∫
�

[φ1(ζ )]n
ζ − z

dζ, k = 0, 1, 2, . . . , z ∈ G (1.6)

hold [10,49].
Let also χ(·) be a continuous function on 2π . Its modulus of continuity is defined

by

ω(t, χ) := sup
t1,t2∈[0,2π ],|t1−t2|<t

|χ(t1) − χ(t2)|, t ≥ 0.

The curve � is called Dini-smooth if it has the parametrization

� : χ(t), 0 ≤ t ≤ 2π,

such that χ ′(t) is Dini-continuous, i.e.
∫ π

0

ω(t, χ ′)
t

dt < ∞

and

χ ′(t) �= 0

[45, p. 48]
Let f (·) ∈ L1(�). Then the functions f +(·) and f −(·) defined by

f +(z) = 1

2π i

∫
�

f (ζ )

ζ − z
dζ = 1

2π i

∫
T

f (ψ(w))ψ ′(w)

ψ(w) − z
dw, z ∈ G (1.7)

and

f −(z) = 1

2π i

∫
�

f (ζ )

ζ − z
dζ = 1

2π i

∫
T

f (ψ1(w))ψ ′
1(w)

ψ1(w) − z
dw, z ∈ G− (1.8)

are analytic in G and G−, respectively, and f −(∞) = 0. Thus the limit

S�( f )(z) := lim
ε→∞

1

2π i

∫
�∩{ζ : |ζ−z|>ε}

f (ζ )

ζ − z
dζ

exists and is finite for almost all z ∈ �.
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The quantity S�( f )(z) is called the Cauchy singular integral of f (·) at z ∈ �.
According to the Privalov theorem [22, p. 431], if one of the functions f +(·) or f −(·)
has non-tangential limits a.e. on �, then S�( f )(z) exists a.e. on � and also the other
one has non-tangential limits a.e. on �. Conversely, if S�( f )(z) exists a.e. on �, then
the functions f +(·) and f −(·) have non-tangential limits a.e. on �. In both cases, the
formulae

f +(z) = S�( f )(z) + 1

2
f (z), f −(z) = S�( f )(z) − 1

2
f (z) (1.9)

and hence

f (z) = f +(z) − f −(z) (1.10)

hold a.e. on �. From the results in [39] , it follows that if � is a Dini-smooth curve S�

is bounded on L p(·),λ(·)(�). Note that some properties of the Cauchy singular integral
in the different spaces were investigated in [8,13,15,20,34–36,38].

Let f (·) ∈ L p(·),λ(·)(�): Using (1.3), (1.4), (1.7), (1.8) and (1.10) we can associate
the Faber-Laurent series

f (z) �
∞∑
k=0

ak�k(z) +
∞∑
k=1

bk Fk

(
1

z

)
,

where the coefficients ak and bk are defined by

ak := 1

2π i

∫
T

f [ψ(w)]
wk+1 dω, k = 0, 1, 2, . . .

and

bk := 1

2π i

∫
T

f [ψ1(w)]
wk+1 dw, k = 0, 1, 2, . . . .

The coefficients ak and bk are said to be the Faber-Laurent coefficients of f (·).
If � is a Dini-smooth curve, then from the results in [53], it follows that

0 < c2 < |φ′(w)| < c3 < ∞, 0 < c4 < |φ′
1(w)| < c5 < ∞

0 < c6 < |ψ ′(w)| < c7 < ∞, 0 < c8 < |ψ ′
1(ω)| < c9 < ∞

}
(1.11)

where the constants c2, c3, c4, c5 and c6, c7, c8, c9 are independent of z ∈ Ḡ− and
|w| ≥ 1, respectively.

Let � be a Dini-smooth curve and let f0(w) := f [ψ(w)] for f (·) ∈ L p(·),λ(·)(�),
p0(w) := p(ψ(w)) and let f1(w) := f [ψ1(w)] for f (·) ∈ L p(·),λ(·)(�), p1(w) :=
p(ψ1(w)). Then using (1.11) and the method applied for the proof of a similar result
in [29, Lem. 1], we obtain f0(·) ∈ L p0(·),λ(·)(T) and f1(·) ∈ L p1(·),λ(·)(T).
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Moreover, f −
0 (∞) = f −

1 (∞) = 0 and by (1.10)

f0(w) = f +
0 (w) − f −

0 (w)

f1(w) = f +
1 (w) − f −

1 (w)

}
(1.12)

a.e. on T.
Note that the density of polynomials is an indispensable condition in approximation

problems.Therefore, the polynomials are dense in the spaces L p(·),λ(·)(�), E p(·)λ(·)(G)

and E p(·)λ(·)(G−).
Using [21, Thm. 6.1] and the method applied for the proof of a similar result in

[10] we can prove the following Lemma:

Lemma 1.1 Let p(·) : T → [1,+∞] and λ(·) : T → [0, 1] be measurable functions.
Let g(·) ∈ E p(·),λ(·)(D) with p(·) ∈ ℘log(T), 0 ≤ λ∗ ≤ λ∗ < 1. If

∑n
k=0 dk(g)w

k is
the nth partial sum of the Taylor series of g(·) at the origin, then

∥∥∥∥∥g(w) −
n∑

k=0

dkw
k

∥∥∥∥∥
L p(·),λ(·)(T)

≤ c10(p)�

(
g,

1

n

)
p(·),λ(·)

, for all n ∈ N

with some constant c10(p) > 0 independent of n.

Lemma 1.2 Let p(·) : T → [1,+∞] and λ(·) : T → [0, 1] be measurable functions.
Let g(·) ∈ L p(·),λ(·)(T) with p(·) ∈ ℘log(T), 0 ≤ λ∗ ≤ λ∗ < 1. Then the inequality

�(g+, ·)p(·),λ(·) ≤ c11�(g, ·)p(·),λ(·) (1.13)

holds.

Proof of Lemma 1.2 It is clear that the equality

g+ = ST(g) + 1

2
g (1.14)

holds a.e. on T. Using the method of proof of [10, Lem. 3.3] (see also, [29, Lem. 2]
and the boundedness of the singular operator ST(g) in L p(·),λ(·)(T) we can prove that

�(ST (g), ·)p(·),λ(·) ≤ c12�(g, ·)p(·),λ(·). (1.15)

Then using the subadditivity of the modulus of smoothness �(g+, ·)p(·),λ(·), (1.14)
and (1.15) we obtain inequality (1.13) of Lemma 1.2. �

We set

Rn( f , z) :=
n∑

k=0

ak�k(z) +
n∑

k=0

bk Fk

(
1

z

)
.
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The rational function Rn( f , z) is called the Faber-Laurent rational function of degree
n of f (·).

The problems of approximation of the functions in classicalMorrey spaces and vari-
able exponent Morrey spaces were investigated in [1,2,9,11,12,21,26,27]. In this work
the approximation of the functions by Faber-Laurent rational functions in the variable
exponent Morrey classes defined on the Dini-smooth curve are investigated. Similar
problems of approximation of the functions by Faber-Laurent rational functions in
different spaces were studied in [6,7,10,23,25,28,29,31–33,43,44,55].

Our main results are as follows.

Theorem 1.1 Let � be a Dini-smooth curve. Let p(·) : � → [1,+∞] and λ(·) : � →
[0, 1] be measurable functions. If p(·) ∈ ℘log(�), 0 ≤ λ∗ ≤ λ∗ < 1 and f (·) ∈
L p(·)λ(·)(�), then for every natural number n there are a constant c10 > 0 and rational
function

Rn(z, f ) :=
n∑

k=−n

a(n)
k zk

such that

‖ f − Rn(·, f )‖L p(·),λ(·)(�) ≤ c13

[
�

(
f0,

1

n

)
p0(·),λ(·)

+ �

(
f1,

1

n

)
p1(·),λ(·)

]
,

where Rn(·, f ) is the n-th partial sum of the Faber-Laurent series of f (·).
Theorem 1.2 Let � be a Dini-smooth curve. Let p(·) : � → [1,+∞] and λ(·) : � →
[0, 1] be measurable functions. If p(·) ∈ ℘log(�), 0 ≤ λ∗ ≤ λ∗ < 1 and f (·) ∈
E p(·)λ·)(G), then for every natural number n the inequality

∥∥∥∥∥ f (z) −
n∑

k=0

ak�k(z)

∥∥∥∥∥
L p(·),λ(·)(�)

≤ c14�

(
f0,

1

n

)
p0(·),λ(·)

(1.16)

holds with a constant c14 > 0 independent of n.

Note that the order of polynomial approximation in E p(G), p ≥ 1 has been inves-
tigated by several authors. In [52] Walsh an Rusel gave results when � is an analytic
curve. When � is a Dini-smooth curve direct and inverse theorems were proved by S.
Y. Alper [4], These results were later extended to domains with regular boundary for
p > 1 byKokilashvili [37] and for p ≥ 1 byAndersson [5]. For domainswith a regular
boundary the approximation directly as the nth partial sums of p-Faber polynomial
of f (·) ∈ E p(G) have been constructed in [23]. The approximation properties of
the p-Faber series expansions in the ω-weighted Smirnov class E p(G, ω) of analytic
functions in G whose boundary is a regular Jordan curve are investigated in [24].
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Theorem 1.3 Let � be a Dini-smooth curve. Let p(·) : � → [1,+∞] and λ(·) : � →
[0, 1] be measurable functions. If p(·) ∈ ℘log(�), 0 ≤ λ∗ ≤ λ∗ < 1 and f (·) ∈
E p(·)λ(·)(G−), then for every natural number n the inequality

∥∥∥∥∥ f − f (∞) −
n∑

k=0

−bk Fk

(
1

z

)∥∥∥∥∥
L p(·),λ(·)(�)

≤ c15�

(
f1,

1

n

)
p1(·),λ(·)

(1.17)

holds, with a constant c15 > 0 independent of n.

2 Proof of theMain Result

Proof of Theorem 1.1 Let f (·) ∈ L p(·),λ(·)(�). Then from (1.11), we have f0(·) ∈
L p0(·),λ(·)(T), f1(·) ∈ L p1(·),λ(·)(T). According to(1.12) we obtain that

f (ζ ) = f +
0 (φ(ζ )) − f −

0 (φ(ζ )), f (ξ) = f +
1 (φ1(ξ)) − f −

1 (φ1(ξ)). (2.1)

a.e. on �.
We prove that the rational function

f (z) =
n∑

k=0

ak�k(z) +
n∑

k=1

bk Fk

(
1

z

)

satisfies the condition of Theorem 1.1.
Let z∗ ∈ G−. Using the method of proof in [28], we can prove that f −

0 (φ(ζ )) ∈
E p(·),λ(·)(G−) ∈ E1(G−). Then it is clear that

1

2π i

∫
�

f −
0 (φ(ζ ))

ζ − z∗
dζ = − f −

0 (φ(z∗)).

Then from last equality, (1.5) and (2.1) we have

n∑
k=0

ak�k(z
∗) =

n∑
k=0

ak[φ(z∗)]k + 1

2π i

∫
�

1

ζ − z∗
n∑

k=0

ak[φ(ζ )]kdζ

=
n∑

k=0

ak[φ(z∗)]k + 1

2π i

∫
�

1

ζ − z∗
n∑

k=0

ak[φ(ζ )]k − f +
0 [φ(ζ )]dζ

+ 1

2π i

∫
�

f (ζ )

ζ − z∗
dζ − f −

0 [φ(z∗)]. (2.2)
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Use of(1.8) and (2.2) gives us

n∑
k=0

ak�k(z
∗) =

n∑
k=0

ak[φ(z∗)]k + 1

2π i

∫
�

1

ζ − z∗
n∑

k=0

ak[φ(ζ )]kdζ

=
n∑

k=0

ak[φ(z∗)]k + 1

2π i

∫
�

1

ζ − z∗
n∑

k=0

ak[φ(ζ )]k − f +
0 [φ(ζ )]dζ

+ f −(z∗) − f −
0 [φ(z∗)]. (2.3)

Taking the limit as z∗ → z ∈ � along all non-tangential paths outside � and consid-
ering (1.9), (1.10), (2.1) and (2.3) we obtain

f +(z) −
n∑

k=0

ak�k(z
∗) = 1

2

[
f +
0 [φ(z∗)] −

n∑
k=0

ak[φ(z∗)]k
]

+S�

([
f +
0 [φ(z∗)] −

n∑
k=0

ak[φ(z∗)]k
])

. (2.4)

According to [39] the singular operator S� : L p(·),λ(·)(�) → L p(·),λ(·)(�) is bounded.
Then using (2.1), Minkowski’s inequality, Lemma 1.1 and 1.2 we reach

∥∥∥∥∥ f +(z) −
n∑

k=0

ak�k(z
∗)

∥∥∥∥∥
L p(·),λ(·)(�)

≤ 1

2

∥∥∥∥∥ f +
0 [φ(z∗)] −

n∑
k=0

ak[φ(z∗)]k
∥∥∥∥∥
L p(·),λ(·)(�)

+
∥∥∥∥∥S�

([
f +
0 [φ(z∗)] −

n∑
k=0

ak[φ(z∗)]k
])∥∥∥∥∥

L p(·),λ(·)(�)

≤ 1

2

∥∥∥∥∥ f +
0 (w) −

n∑
k=0

akw
k

∥∥∥∥∥
L p0(·),λ(·)(T)

+ c16

∥∥∥∥∥ f +
0 (w) −

n∑
k=0

akw
k

∥∥∥∥∥
L p0(·),λ(·)(T)

≤ c17

∥∥∥∥∥ f +
0 (w) −

n∑
k=0

akw
k

∥∥∥∥∥
L p0(·),λ(·)(T )

≤ c18

∥∥∥∥∥ f +
0 (w) −

n∑
k=0

αk( f
+
0 )wk

∥∥∥∥∥
L p0(·),λ(·)(T )

≤ c19�

(
f +
0 ,

1

n

)
p0(·),λ(·)

≤ �20

(
f0,

1

n

)
p0(·),λ(·)

. (2.5)
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Let z∗ ∈ G. Using the method of proof in [28] we can prove that f −
1 (φ1(ζ )) ∈

E pt(·),λ(·)(G−) ∈ E1(G−). Therefore,

1

2π i

∫
�

f −
1 (φ1(ζ ))

ζ − z∗
dζ = f −

1 (φ1(z
∗)).

Then, using the last equality, (1.6) and (2.1) we have

n∑
k=1

bk Fk

(
1

z∗

)

=
n∑

k=1

bk[φ1(z
∗)]k − 1

2π i

∫
�

1

ξ − z∗
n∑

k=1

bk[φ1(ξ)]kdξ

=
n∑

k=1

bk[φ1(z
∗)]k − 1

2π i

∫
�

1

ξ − z∗

(
n∑

k=1

bk[φ1(ξ)]k − f +
1 [φ1(ξ)]

)
dξ

− 1

2π i

∫
�

f (ξ)

ξ − z∗
dξ − 1

2π i

∫
�

f −
1 (φ1(ζ ))

ζ − z∗
dζ

=
n∑

k=1

bk[φ1(z
∗)]k − 1

2π i

∫
�

1

ξ − z∗

(
n∑

k=1

bk[φ1(ξ)]k − f +
1 [φ1(ξ)]

)
dξ

− f +(z∗) − f −
1 [φ1(z

∗)].

Taking the limit as z∗ → z along all non-tangential paths inside of � we have

n∑
k=1

bk Fk

(
1

z

)

=
n∑

k=1

bk[φ1(z)]k − 1

2

(
n∑

k=1

bk[φ1(z)]k − f +
1 [φ1(z)]

)

−S�

(
n∑

k=1

bk[φ1(z)]k − f +
1 [φ1(z)]

)
− f +(z) − f −

1 [φ1(z)]

a.e. on �. Use of(1.10) and (2.1) gives

f −(z) +
n∑

k=1

bk Fk

(
1

z

)

= 1

2

(
n∑

k=1

bk[φ1(z)]k − f +
1 [φ1(z)]

)

−S�

(
n∑

k=1

bk[φ1(z)]k − f +
1 [φ1(z)]

)
. (2.6)
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Consideration of (2.6), Minkowski’s inequality and the boundedness of S� in
L p(·),λ(·)(�), Lemma 1.1 and 1.2 gives rise to

∥∥∥∥∥ f −(z) +
n∑

k=1

bk Fk

(
1

z

)∥∥∥∥∥
L p(·)λ(·)(�)

≤
∥∥∥∥∥
1

2

(
n∑

k=1

bk[φ1(z)]k − f +
1 [φ1(z)]

)∥∥∥∥∥
L p(·)λ(·)(�)

+
∥∥∥∥∥S�

(
n∑

k=1

bk[φ1(z)]k − f +
1 [φ1(z)]

)∥∥∥∥∥
L p(·),λ(·)(�)

≤ 1

2

∥∥∥∥∥
n∑

k=1

bkw
k − f +

1 (w)

∥∥∥∥∥
L p1(·),λ(·)(T)

+c21

∥∥∥∥∥
n∑

k=1

bkw
k − f +

1 (w)

∥∥∥∥∥
L p1(·),λ(·)(T)

≤ c22

∥∥∥∥∥
n∑

k=1

bkw
k − f +

1 (w)

∥∥∥∥∥
L p1(·),λ(·)(T)

= c22

∥∥∥∥∥
n∑

k=1

βk( f
+
1 )wk − f +

1 (w)

∥∥∥∥∥
L p1(·),λ(·)(T)

≤ c23�

(
f +
1 ,

1

n

)
p1(·),λ(·)

≤ c24�

(
f1,

1

n

)
p1(·),λ(·)

(2.7)

Now combining (1.9), (2.5) and (2.7) we obtain

‖ f − Rn(·, f )‖L p(·)(�) ≤ c25(p)

[
�

(
f0,

1

n

)
p0(·),λ(·)

+ �

(
f1,

1

n

)
p1(·),λ(·)

]
.

The proof of Theorem 1.1 is completed. �
Proof of Theorem 1.2 Let z∗ ∈ G−. If f (·) ∈ E p(·),λ(·)(G), then f (·) ∈ E p(G) and
f (ζ )/(ζ − z∗) ∈ E p(G). Therefore,

∫
�
f (ζ )/(ζ − z∗)dζ = 0. That is f −(z) = 0

a.e. on �. Then taking into account (1.10),

∥∥∥∥∥ f +
0 (w) −

n∑
k=0

akw
k

∥∥∥∥∥
L p(·),λ(·)(T)

≤ c26(p)�

(
f0,

1

n

)
p(·),λ(·)

for all n ∈ N,

∥∥∥∥∥ f +
0 (z) −

n∑
k=0

ak�k(z)

∥∥∥∥∥
L p(·),λ(·)(�)

≤ c27

∥∥∥∥∥ f +
0 (w) −

n∑
k=0

akw
k

∥∥∥∥∥
L p(·),λ(·)(T)
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we have the inequality (1.16) of Theorem 1.2. �

Proof of Theorem 1.3 Let z∗ ∈ G and f (·) ∈ E p(·),λ(·)(G−). It is clear that∫
�
f (ζ )/(ζ − z∗) = f (∞). Then we have f +(z) = f (∞) a.e. on �. Now com-

bining (1.10),

∥∥∥∥∥ f +
1 (w) −

n∑
k=0

bkw
k

∥∥∥∥∥
L p(·),λ(·)(T)

≤ c28(p)�

(
f1,

1

n

)
p(·),λ(·)

for all n ∈ N,

∥∥∥∥∥ f −(z) −
n∑

k=0

bk Fk

(
1

z

)∥∥∥∥∥
L p(·),λ(·)(�)

≤ c29

∥∥∥∥∥ f +
1 (w) −

n∑
k=0

bkw
k

∥∥∥∥∥
L p(·),λ(·)(T)

we obtain the inequality (1.17) of Theorem 1.3. �
Acknowledgements The author would like to thank the referees for all their valuable advice and helpful
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