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Abstract
As is the case for the theory of holomorphic functions in the complex plane, the
Cauchy Integral Formula has proven to be a cornerstone of Clifford analysis, the
monogenic function theory in higher dimensional euclidean space. In recent years,
several new branches of Clifford analysis have emerged. Similarly as to how hermitian
Clifford analysis in euclidean spaceR

2n of even dimension emerged as a refinement of
euclidean Clifford analysis by introducing a complex structure on R

2n , quaternionic
Clifford analysis arose as a further refinement by introducing a so-called hypercomplex
structure Q, i.e. three complex structures (I, J, K) which follow the quaternionic
multiplication rules, on R

4p, the dimension now being a fourfold. Two, respectively
four, differential operators lead to first order systems invariant under the action of the
respective symmetry groups U(n) and Sp(p). Their simultaneous null solutions are
called hermitianmonogenic and quaternionicmonogenic functions respectively. In this
contribution we further elaborate on the Cauchy Integral Formula for hermitian and
quaternionic monogenic functions. Moreover we establish Caychy integral formulæ
for osp(4|2)-monogenic functions, the newest branch of Clifford analysis refining
quaternionic monogenicity by taking the underlying symplectic symmetry fully into
account.
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1 Introduction

The concept of a fundamental solution of a differential operator is crucial to the
development of the function theory for the null-solutions of this operator. In particular,
the Cauchy kernel

E(z) = 1

2π i

1

z

which is the fundamental solution of the Cauchy–Riemann operator ∂z = 1
2 (∂x+i ∂y),

i.e.

∂z E(z) = δ(z)

is at the heart of the theory of the holomorphic functions in the complex plane. A
cornerstone in this theory is the Cauchy Integral Formula, which reproduces a holo-
morphic function f in the interior of a bounded domain D from its values on the
(piecewise) smooth boundary ∂D:

f (z) = 1

2π i

∫
∂D

f (ξ)

ξ − z
dξ, z ∈ ◦

D. (1)

The Cauchy kernel also is the key ingredient of the Cauchy transform which generates
a holomorphic function H in the interior and the exterior of D from a given smooth
function h on the boundary ∂D, through the integral

H(z) = 1

2π i

∫
∂D

h(ξ)

ξ − z
dξ, z /∈ ∂D.

The Cauchy Integral Formula in the complex plane has been generalised to the case
of several complex variables in twoways. On the one hand taking a holomorphic kernel
and integrating over the distinguished boundary ∂0D = ∏n

j=1 ∂Dj of a polydisk
D = ∏n

j=1 Dj in C
n leads to the representation formula

f (z1, . . . , zn) = 1

(2π i)n

∫
∂0D

f (ξ1, . . . , ξn)

(ξ1 − z1) · · · (ξn − zn)
dξ1 ∧ · · · ∧ dξn , z j ∈ ◦

D j .

On the other hand integrating over the (piecewise) smooth boundary ∂D of a bounded
domain D in C

n in combination with the Martinelli–Bochner kernel, see e.g. [20,21],
which is no longer holomorphic but still harmonic, results into the formula

f (�z) =
∫

∂D
f (�ξ)U (�ξ, �z) , �z = (z1, z2, . . . , zn) ∈ ◦

D, (2)
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The Cauchy Integral Formula in Hermitian, Quaternionic… 433

with

U (�ξ, �z) = (n − 1)!
(2π i)n

n∑
j=1

(−1) j−1
ξ cj − zcj
|ξ − z|2n

[
dξ j

]
(3)

where

[
dξ j

] = dξ c1 ∧ · · · ∧ dξ cj−1 ∧ dξ cj+1 ∧ · · · ∧ dξ cn ∧ dξ1 ∧ · · · ∧ dξn

and ·c denotes complex conjugation. For some historical background on formula (2),
which was obtained independently by Martinelli and Bochner, we refer to [20]. When
n = 1 it reduces to the traditional Cauchy Integral Formula (1); for n > 1, it establishes
a connection between harmonic and complex analysis.

An alternative for generalising the Cauchy Integral Formula to higher dimension is
offered by Clifford analysis, which originally studied the so-called monogenic func-
tions, i.e. continuously differentiable functions defined in an open region of euclidean
space R

m , taking their values in the Clifford algebra R0,m , or subspaces thereof, and
vanishing under the action of the Dirac operator

∂ =
m∑

α=1

eα ∂Xα

which corresponds, under Fourier duality, to the Clifford vector variable

X =
m∑

α=1

eα Xα

(eα)mα=1 being an orthonormal basis of R
m underlying the construction of the Clifford

algebra R0,m . Monogenic functions are the natural higher dimensional counterparts
of holomorphic functions in the complex plane. The Dirac operator factorizes the
Laplacian �m = −∂2, and is invariant under the action of the Spin(m)-group which
doubly covers the SO(m)-group, whence this framework is usually referred to as
euclidean (or orthogonal) Clifford analysis. Standard references in this respect are
[7,16,18,19].

In euclidean Clifford analysis the Cauchy Integral Formula for a monogenic func-
tion f in an open neighbourhood of the closure of a bounded domain D in R

m with
smooth boundary ∂D reads

f (X) =
∫

∂D
E(Y − X) dσY f (Y ) , X ∈ ◦

D, (4)
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434 F. Brackx et al.

where now the Cauchy kernel E(X) is the fundamental solution of the Dirac operator.
It is given by

E(X) = 1

am

X∣∣X ∣∣m

am being the area of the unit sphere Sm−1 inR
m , ·̄denotingClifford algebra conjugation

and dσX being a Clifford algebra valued differential form of order (m − 1) given by

dσX =
m∑
j=1

e j (−1) j−1 d̂ X j

where the notation d̂ X j means that dX j is omitted in the outer product of the differ-
entials, i.e.

d̂ X j = dX1 ∧ . . . ∧ dX j−1 ∧ dX j+1 ∧ . . . ∧ dXn, j = 1, . . . ,m.

For a thorough study of the concept of fundamental solutions in Clifford analysis we
refer to [13].

The Cauchy Integral Formula (4), which reproduces a monogenic function in the
interior of the domain D from its values on ∂D, has been a cornerstone in the function
theoretic development of euclidean Clifford analysis. The related Cauchy transform
acting on smooth functions h on ∂D, generates monogenic functions in the interior

D+ = ◦
D and the exterior D− = R

m\D of D through

g(X) =
∫

∂D
E(Y − X) dσY h(Y ) , X ∈ D+ ∪ D−, (5)

with

lim
X→∞ g(X) = 0

the non-tangential boundary values on ∂D being given by Plemelj–Sokhotzki type
formulæ, see [3] or [19, Sect. 3.5].

This paper is devoted to establishing a Cauchy Integral Formula for so-called
osp(4|2)-monogenic functions, the newest branch in Clifford analysis, meanwhile
giving an overview of the attempts to establish Cauchy integral formulæ in hermitian
and quaternionic Clifford analysis. The ingredients in any of these settings should
thus be: a differential operator D and its fundamental solution K serving as a kernel
for an integral transform which will reproduce null solutions of D in the interior of a
bounded domain D out of their values on the boundary ∂D of that domain, and also
will generate null solutions of D in the interior and the exterior of D out of given
function values on ∂D.
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The Cauchy Integral Formula in Hermitian, Quaternionic… 435

2 HermitianMonogenicity

The first refinement of monogenicity is so-called hermitian monogenicity, for which
the setting is fixed as follows: take the dimension to be even m = 2n, rename the
variables as

(X1, . . . , X2n) = (x1, y1, x2, y2, . . . , xn, yn)

and consider the standard complex structure I2n , i.e. the complex linear real SO(2n)-
matrix

I2n = diag

(
0 1

−1 0

)
,

for which I
2
2n = −E2n , E2n denoting the identity matrix. We then define the rotated

vector variable X
I
and the corresponding rotated Dirac operator ∂I by

X
I
= I2n[X ] =

n∑
k=1

(−yke2k−1 + xke2k),

∂I = I2n[∂] =
n∑

k=1

(−∂yk e2k−1 + ∂xk e2k).

A differentiable function F taking values in the complex Clifford algebra C2n then is
called hermitian monogenic in some open region	 ofR

2n , if and only if in that region
F is a solution of the system

{∂F = 0, ∂IF = 0}. (6)

However, one can also introduce hermitian monogenicity, involving a complexifica-
tion, by means of the projection operators π± = ± 1

2 (1 ± i I2n). They produce the
Witt basis vectors

fk = π−[e2k−1] = −1

2
(1 − i I2n)[e2k−1], k = 1, . . . , n,

f†k = π+[e2k−1] = 1

2
(1 + i I2n)[e2k−1], k = 1, . . . , n,

following to the properties

f j fk + fkf j = 0, f†j f
†
k + f†kf

†
j = 0, f j f

†
k + f†kf j = δ jk, j, k = 1, . . . , n,
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436 F. Brackx et al.

which imply their isotropy. Bymeans of thisWitt basis, we define the hermitian vector
variables

z = π−[X ] = −1

2
(1 − i I2n)[X ] =

n∑
k=1

(xk + iyk) fk =
n∑

k=1

zkfk,

z† = π+[X ] = 1

2
(1 + i I2n)[X ] =

n∑
k=1

(xk − iyk) f
†
k =

n∑
k=1

zckf
†
k

having introduced complex variables (zk, zck) in n respective complex planes. Corre-
spondingly, the hermitian Dirac operators arise

∂†z = 1

2
π−[∂] = −1

4
(1 − i I2n)[∂] =

n∑
k=1

∂zck
fk,

∂z = 1

2
π+[∂] = 1

4
(1 + i I2n)[∂] =

n∑
k=1

∂zk f
†
k .

It follows that for a function F on R
2n ∼= C

n the hermitian monogenic system (6) is
equivalent to the system

{∂z F = 0, ∂†z F = 0}

which can be shown to be invariant under the action of the unitary group U(n). The
basics of hermitian monogenicity theory can be found in e.g. [4,5,14,22]; for group
theoretical aspects of this function theory we refer to [15,17].

In the real approach to hermitian monogenicity we have the fundamental solutions

E(X) = 1

a2n

X

|X |2n , EI(X) = 1

a2n

X
I

|X
I
|2n ,

for the operators ∂ and ∂I respectively, where now a2n denotes the area of the unit
sphere S2n−1 in R

2n . By projection they give rise to their hermitian counterparts,
explicitly given by

E(z) = 2π−[E(X)] = −E(X) + i EI(X) = 2

a2n

z∣∣z∣∣2n ,

E†(z) = 2π+[E(X)] = E(X) + i EI(X) = 2

a2n

z†∣∣z∣∣2n ,

whence

E(X) = 1

2
(E†(z) − E(z)).
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However, the latter turn out not to be fundamental solutions for the hermitian Dirac
operators. Indeed, it holds, in the distributional sense, that

∂z E(z) = 1

2p
β δ(z) + 2

a4p
β Fp

1

|z|4p − 2

a4p
(2p)Fp

z†z

|z|4p+2 , (7)

∂†z E
†(z) = 1

2p
(2p − β) δ(z) + 2

a4p
(2p − β)Fp

1

|z|4p − 2

a4p
(2p)Fp

zz†

|z|4p+2 ,

(8)

where β = ∑n
k=1 f†k fk is a Clifford constant and Fp stands for the finite parts distri-

bution. But introducing the particular circulant (2 × 2) matrices

D(z,z†) =
(

∂z ∂z†

∂z† ∂z

)
, E(z) =

(
E(z) E†(z)
E†(z) E(z)

)
, δ(z) =

(
δ(z) 0
0 δ(z)

)

it was obtained in [6] that

D(z,z†)E(z) = δ(z),

whence the concept of a fundamental solution has to be reinterpreted for a matrix
Dirac operator. Also observe that the matrix Dirac operatorD(z,z†) still factorizes the
Laplacian, since

4D(z,z†)D†
(z,z†)

= �2n,

where �2n denotes the diagonal matrix with the Laplace operator in dimension 2n as
the diagonal element.

Consequently, also the concept of hermitian monogenicity has to be reinterpreted:
we say that a circulant matrix function

G1
2 =

(
g1 g2
g2 g1

)

with continuously differentiable entries g1 and g2 defined in an open region 	 ⊂ R
2n

and taking values in C2n , is hermitian monogenic if and only if it satisfies in 	 the
system

D(z,z†)G
1
2 = O,

where O denotes the zero matrix, or, explicitly,

{
∂z g1 + ∂

†
z g2 = 0,

∂
†
z g1 + ∂z g2 = 0.
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Clearly if the functions g1 and g2 both are hermitian monogenic then the circulant
matrix function G1

2 is hermitian monogenic, but the converse does not hold in general.
However for the special case of a diagonal or anti-diagonal matrix function

G0 =
(
g 0
0 g

)
or G0 =

(
0 g
g 0

)

i.e. when g1 = g and g2 = 0 or vice versa, the hermitianmonogenicity ofG0 coincides
with the hermitian monogenicity of g.

3 The Cauchy Integral Formula in the Hermitian Case

In even dimensional Euclidean space (m = 2n) the classical Cauchy Integral Formula
(4) still reads

f (X) =
∫

∂D
E(Y − X) dσY f (Y ) , X ∈ ◦

D,

but now with E(X) as given in the previous section and the differential form dσX of
order (2n − 1) given by

dσX =
n∑
j=1

(
e2 j−1 d̂x j − e2 j d̂y j

)

according to the new notations.
A formal Cauchy Integral Formula for hermitian monogenic circulant matrix func-

tions was first obtained in [6]. We recall the consecutive steps needed to arrive at this
result. Introducing the notations

d̂z j = dz1 ∧ dzc1 ∧ . . . ∧ dz j−1 ∧ dzcj−1 ∧ dzcj ∧ dz j+1 ∧ dzcj+1 ∧ . . . ∧ dzn ∧ dzcn,

(9)

d̂zcj = dz1 ∧ dzc1 ∧ . . . ∧ dz j−1 ∧ dzcj−1 ∧ dz j ∧ dz j+1 ∧ dzcj+1 ∧ . . . ∧ dzn ∧ dzcn, ,

(10)

it is easily obtained that

d̂z j = 2n−1(−i)n
[
d̂x j + i d̂y j

]
,

d̂zcj = 2n−1(−i)n
[
d̂x j − i d̂y j

]
,

leading to the hermitian differential forms defined to be

dσz =
n∑
j=1

f†j d̂z j , dσz† = −
n∑
j=1

f j d̂zcj ,
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which also may be obtained by projection

dσz = (−i)n2n−1π−[dσX ] = −1

2
(−i)n2n−1 (

dσX − i dσX I

)
,

dσz† = (−i)n2n−1π+[dσX ] = 1

2
(−i)n2n−1 (

dσX + i dσX I

)
,

whence

dσX = 1

2n−1(−i)n
(dσz† − dσz).

Then, for a bounded domain D ⊂ R
2n with smooth boundary ∂D and a hermitian

monogenic full circulant matrix function G1
2 in an open neighbourhood of D, the

Cauchy Integral Formula reads

G1
2(X) = 1

(−2i)n

∫
∂D

E(v − z) d�(v,v†) G
1
2(Y ), X ∈ ◦

D, (11)

where v is the hermitian vector variable corresponding to Y = v† − v running over
∂D, and z is the hermitian vector variable corresponding to X = z† − z situated in
the interior of D. The matrix differential form d�(v,v†) is given by

d�(v,v†) =
(
dσv dσv†

dσv† dσv

)
.

The multiplicative constant appearing at the right hand side of formula (11) originates
from the re-ordering of 2n real variables into n complex planes.

In the special case where G1
2 is taken to be the diagonal matrix function G0, the

above formula reduces to a genuine Cauchy Integral Formula for the hermitian mono-
genic function g, which explicitly reads

g(X) = 1

(−2i)n

∫
∂D

[
E(v − z)dσv + E†(v − z)dσv†

]
g(Y ), X ∈ ◦

D, (12)

together with the additional integral identity

∫
∂D

[
E(v − z)dσv† + E†(v − z)dσv

]
g(Y ) = 0, X ∈ ◦

D, (13)

which thus should be fulfilled by every function g which is hermitian monogenic in
an open neighbourhood of D.

Remark 1 In formulæ like (11), (12) and (13) we have used, next to each other, the
cartesian variables X and Y on the one hand, and the hermitian variables z and v on
the other. They are linked by the transition formulae X = z† − z and Y = v† − v

respectively. Because the variables X and Y represent points located in
◦
D and on ∂D
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respectively, we have kept them as function arguments emphasizing their geometric
location, but it is, quite naturally, well understood that the functions involved should
be expressed in terms of the vector variables (z, z†) and (v, v†) respectively. In the
forthcoming integral formulæ next in this paper the same notation convention will be
used.

Now we will follow another approach and show how the formulæ (12) and (13)
may be directly derived from the euclidean Cauchy Integral Formula (4). To that end
we consider functions taking values in complex spinor space

S = C2n I ∼= Cn I ,

which is realized here by means of the primitive idempotent I = I1 . . . In , with

I j = f j f
†
j , j = 1, . . . , n.

In [5] it was shown that complex spinor space S, considered as a U(n)-module, decom-
poses as

S =
n⊕

r=0

S
r =

n⊕
r=0

(C�†
n)

(r) I (14)

into the U(n)-invariant and irreducible subspaces

S
r = (C�†

n)
(r) I , r = 0, . . . , n,

each of them consisting of r -vectors from C�
†
n multiplied by the idempotent I , where

C�
†
n is the Grassmann algebra generated by the Witt basis elements {f†1, . . . , f†n}. The

spaces S
r are also called the homogeneous parts of spinor space. Consequently, any

spinor valued function g decomposes as

g =
n∑

r=0

gr , gr : C
n −→ S

r , r = 0, . . . , n,

in its so-called homogeneous components. It is worth observing that the action of the
hermitian Dirac operators on a function Fr taking values in a fixed homogeneous part
S
r , will have the following effect:

∂z F
r : C

n −→ S
r+1,

∂†z F
r : C

n −→ S
r−1,

whence for such a function, the notions of monogenicity and hermitian monogenicity
are equivalent. Indeed, taking into account the fact that

∂ = 2(∂z − ∂†z ),

123



The Cauchy Integral Formula in Hermitian, Quaternionic… 441

hermitian monogenicity clearly implies monogenicity for any differentiable function.
Moreover for each homogeneous component gr taking values in the homogeneous
part S

r , we have seen above that ∂zgr will be S
r+1 valued, while ∂

†
z gr will be S

r−1

valued, whence ∂gr = 0 will force both terms to be zero separately.
A similar decomposition, followed by an analysis of the values, may now be applied

to the Cauchy Integral Formula (4). Indeed, as all building blocks of the hermitian
framework are obtained, up to constants, by projection, we may, conversely, decom-
pose

E(X) = 1

2

(
E†(z) − E(z)

)
and dσX = in

2n−1

(
dσz† − dσz

)
.

Substituting these into (4) yields, for each r = 0, 1, 2, . . . , n,

gr (X) = 1

(−2i)n

∫
∂D

(
E†(v − z) − E(v − z)

) (
dσv† − dσv

)
gr (Y )

or rather

gr (X) = 1

(−2i)n

[∫
∂D

(
E†(v − z)dσv† + E(v − z)dσv

)
gr (Y )

−
∫

∂D

(
E†(v − z)dσv + E(v − z)dσv†

)
gr (Y )

]
.

Taking into account the definitions of E(z), E†(z), dσz and dσz† , we will have

(
E†(v − z) dσv† + E(v − z) dσv

)
gr (Y ) : S

r −→ S
r ,

while

E†(v − z) dσv g
r (Y ) : S

r −→ S
r+2 and E(v − z) dσv† g

r (Y ) : S
r −→ S

r−2.

We thus directly obtain (12) for each homogeneous component gr

gr (X) = 1

(−2i)n

∫
∂D

(
E†(v − z)dσv† + E(v − z)dσv

)
gr (Y ), X ∈ ◦

D,

while (13) can be replaced by the even stronger result

∫
∂D

E(v − z)dσv† g
r (Y ) = 0 =

∫
∂D

E†(v − z)dσv g
r (Y ), X ∈ ◦

D,

since both terms take values in different homogeneous parts. Note that the latter iden-

tities are not trivial. Indeed, as X ∈ ◦
D, the integral kernels are not differentiable in

◦
D,

whence the Stokes Theorem may not be applied.
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This conclusion may be directly generalised to any spinor valued function g. It
suffices to decompose such a function into its homogeneous parts and invoke the fact
that g is hermitian monogenic if and only if all its homogeneous parts gr are. We may
thus write the above results separately for each component gr and by adding them up
we obtain the following result.

Proposition 1 Let the spinor-valued function g be hermitian monogenic in the open
region 	 ⊂ R

2n. Then for each bounded domain D with smooth boundary ∂D, such
that D ⊂ 	, it holds that

g(X) = 1

(−2i)n

∫
∂D

(
E†(v − z)dσv† + E(v − z)dσv

)
g(Y ), X ∈ ◦

D,

together with the non-trivial integral identities

∫
∂D

E(v − z)dσv† g(Y ) = 0, X ∈ ◦
D, (15)

∫
∂D

E†(v − z)dσv g(Y ) = 0, X ∈ ◦
D. (16)

Additional identities are obtained through the action of the hermitian Dirac opera-
tors ∂z and ∂

†
z on formula (12)

0 =
∫

∂D
∂z E(v − z) dσv g(Y ), X ∈ ◦

D,

0 =
∫

∂D
∂†z E†(v − z) dσv† g(Y ), X ∈ ◦

D.

Putting, for v − z �= 0,

K (v − z) = − ∂z E(v − z) = ∂†z E†(v − z)

= 2

a2n

1

|v − z|2n+2

(
β (v − z)(v† − z†) + (β − n)(v† − z†)(v − z)

)
,

we obtain the non-trivial integral identities

0 =
∫

∂D
K (v − z) dσv g(Y ), X ∈ ◦

D,

0 =
∫

∂D
K (v − z) dσv† g(Y ), X ∈ ◦

D.

involving a hermitian monogenic integral kernel with a pointwise singularity in
◦
D.

Remark 2 As mentioned in the introduction, in complex analysis an alternative way
of generalising the Cauchy Integral Formula to higher dimension is by means of the
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Martinelli–Bochner kernel, see e.g. [20,21]. One of the remarkable results of her-
mitian monogenic function theory is that, when the considered functions take their
values in the nth homogeneous part S

n of complex spinor space, hermitian mono-
genicity coincides with holomorphy in the complex variables (z1, . . . , zn) and the
above hermitian Cauchy Integral Formula reduces to the Martinelli–Bochner formula,
in this way establishing a nice and interesting connection between hermitian Clifford
analysis and complex analysis in several variables, see also Example 1 in the next
section.

4 The Cauchy Transform in the Hermitian Case

Given a smooth function h on the smooth boundary ∂D of the bounded domain D
in R

2n , our aim is to generate, through the Cauchy transform, a hermitian monogenic
function in its interior D+ and its exterior D−. To that end we consider the integral

∫
∂D

E(v − z) d�(v,v†) H0(Y ), X ∈ D+ ∪ D−,

for a diagonal matrix function H0 with h as diagonal entry. This integral results in a
circulant matrix function G1

2 in D+ ∪ D−, with entries g1 and g2, given by

g1(X) =
∫

∂D
E(v − z) dσv h(Y ) + E†(v − z) dσv† h(Y ),

g2(X) =
∫

∂D
E(v − z) dσv† h(Y ) + E†(v − z) dσv h(Y ).

Action by the matrix operator D(z,z†) learns that the functions g1 and g2 satisfy in
D+ ∪ D− the system

{
∂z g1 + ∂

†
z g2 = 0,

∂
†
z g1 + ∂z g2 = 0.

Now we restrict ourselves to considerations about the interior D+ of the bounded
domain D, the results for the exterior D− being completely similar. Apparently there
are two possibilities for generating a hermitian monogenic function in D+. The first
possibility consists in assuming that the boundary function h satisfies the condition
g2(X) = 0 for all X ∈ D+, whence the function g1(X) will be hermitian monogenic
in D+. The second possibility consists in assuming that h satisfies the condition
g1(X) = 0 for all X ∈ D+ which entails the hermitian monogenicity of g2(X). At
first sight both possibilities are of equal value, but it will become apparent that the first
option is to be preferred.
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Let us consider the first possibility and assume that the boundary function h satisfies
the condition

g2(x) =
∫

∂D
E(v − z) dσv† h(Y ) + E†(v − z) dσv h(Y ) = 0 for all X ∈ D+

turning

g1(X) =
∫

∂D
E(v − z) dσv h(Y ) + E†(v − z) dσv† h(Y )

into a hermitianmonogenic function in D+. Assuming now that the boundary function
h is spinor valued, we can decompose it into its homogeneous parts

h =
n∑

r=0

hr , hr : ∂D → S
r ,

whence the function g1 may be rewritten as

g1(X) =
n∑

r=0

∫
∂D

E(v − z) dσv h
r (Y ) + E†(v − z) dσv† h

r (Y )

=
n∑

r=0

gr1(X),

where, for each r = 0, . . . , n, the function gr1 takes its values in S
rand inherits its

hermitian monogenicity in D+ from g1. In this way the Cauchy transform generates,
out of the spinor-valued boundary function h, a hermitian monogenic function in D+,
this construction being carried out componentwise.

Now consider the case where the spinor-valued boundary function h satisfies the
second condition

∫
∂D

E(v − z) dσv h(Y ) + E†(v − z) dσv† h(Y ) = 0.

Clearly this condition is fulfilled by the function h if each of its homogeneous com-
ponents hr satisfies it. However, for each r = 0, . . . , n, the hermitian monogenic
function

gr2(X) =
∫

∂D
E(v − z) dσv† h

r (Y ) + E†(v − z) dσv h
r (Y )

takes values in S
r−2 ⊕

S
r+2, and the hermitian monogenic function g2 = ∑n

r=0 gr2

in
◦
D is not constructed componentwise. This explains our preference for the first

approach.
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Note that the same results may be obtained, starting from the euclidean Cauchy
transform (5) for monogenic functions, by decomposing the Cauchy kernels and the
differential forms into their hermitian counterparts. Indeed, let us consider a smooth
function h on ∂D and let us assume from the beginning that it satisfies the condition

g2(X) =
∫

∂D
E(v − z) dσv† h(Y ) + E†(v − z) dσv h(Y )

= 0 for all X ∈ D+. (17)

Its Cauchy transform, see (5), yields a monogenic function in D+

g(X) =
∫

∂D
E(Y − X) dσY h(Y ), X ∈ D+. (18)

Due to condition (17) this function g takes the form

g(X) = 1

(−2i)n

∫
∂D

E(v − z) dσv h(Y ) + E†(v − z) dσv† h(Y ), X ∈ D+,

in which we recognize, up to a constant, the function g1, in other words: the function
g is not only monogenic but also hermitian monogenic in D+.

It is interesting to investigate the boundary value of this hermitian monogenic
function g(X) for X ∈ D+ tending non-tangentially to a certain point � on ∂D.
Boundary values of monogenic functions have been studied in e.g. [3]; for a matricial
treatment of the boundary behaviour of hermitian monogenic functions we refer to
[2]. Recall that the Cauchy transform of the smooth function h on the boundary ∂D
of the bounded domain D, given by

g(X) =
∫

∂D
E(Y − X) dσY h(Y ), X ∈ D+ ∪ D−,

belongs to the Hardy spaces H2(D+) and H2(D−) with non-tangential boundary
values belonging to the Hardy spaces H+

2 (∂D) and H−
2 (∂D) respectively, given by

the Plemelj–Sokhotzki formulæ

g̃+(�) = lim
D+� X−→�

g(X) = 1

2
h(�) + 1

2
H[h](�), � ∈ ∂D,

and

g̃−(�) = lim
D−� X−→�

g(X) = − 1

2
h(�) + 1

2
H[h](�), � ∈ ∂D,
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where H stands for the Hilbert transform given by

H[h](�) = 2 Pv
∫

∂D
E(Y − �) dσY h(Y )

= 2 lim
ε→+0

∫
∂Dε

E(Y − �) dσY h(Y ) (19)

with ∂Dε = {Y ∈ ∂D : d(Y , �) > ε}.
Now, as alreadymentioned above, for a boundary functionh satisfying the condition

∫
∂D

E(v − z) dσv† h(Y ) + E†(v − z) dσv h(Y ) = 0 for all X ∈ D+ ∪ D−

the Cauchy transform g(X) becomes hermitianmonogenic in D+∪D− and so belongs
to the Hardy spaces H2(D+) and H2(D−) of hermitian monogenic functions in D+
and D− respectively, assuming non-tangential boundary values in L2(∂D), see [2,3].
Introducing the Hardy space H2(∂D) as the closure in L2(∂D) of the non-tangential
boundary values of the functions inH2(D+), these considerations lead to the following
result.

Proposition 2 If the function h belongs to the Hardy space H2(∂D) and satisfies the
integral condition

∫
∂D

E(v − z) dσv† h(Y ) + E†(v − z) dσv h(Y ) = 0 for all X ∈ D+ ∪ D− (20)

then h belongs to the Hardy space H2(∂D)

As to the converse of Proposition 2 we are able to prove the following.

Proposition 3 If the spinor-valued function h belongs to the Hardy space H2(∂D),
then h trivially belongs to the Hardy space H2(∂D) and moreover satisfies the integral
condition (20).

Proof If a function f belongs to the Hardy spaceH2(∂D) then there exists a function
G ∈ H2(D+) ⊂ H2(D+) such that

lim
X→�

G(X) = f (�), � ∈ ∂D.

On the other hand the Cauchy transform F of f belongs to H2(D+) and assumes the
non-tangential boundary value f . This means that the function F − G is monogenic
in D+ and assumes the non-tangential boundary value 0, whence F = G. In other
words: the Cauchy transform of a function f ∈ H2(∂D) is hermitian monogenic in
D+ and belongs to H2(D+) with non-tangential boundary value f . When applying
this property to the r -homogeneous component hr of h, we find that the Cauchy
transform of hr , which a priori takes values in S

r ⊕ S
r+2 ⊕ S

r−2, assumes the non-
tangential boundary value hr which takes values only in S

r . This implies that the

123



The Cauchy Integral Formula in Hermitian, Quaternionic… 447

Cauchy transformof hr also takes its values in onlyS
r , whence it is the r -homogeneous

component of the Cauchy transform of h. It follows that each of the homogeneous
components of the boundary function h, and hence also h itself, satisfies the integral
condition (20) and even the stronger conditions (15) and (16). ��
Remark 3 Proposition 3 was formulated for spinor valued functions, however there is
no loss of generality since the complex Clifford algebra C2n decomposes into a direct
sum of copies of spinor space S.

In addition, condition (20) makes it possible to rewrite and simplify expression (19)
defining the Hilbert transform, in terms of the hermitian counterparts to the Cauchy
kernel functions and the differential forms involved. To that end we need the results
of the following lemmata.

Lemma 1 Let X be a point in the interior of a bounded domain D with smooth bound-
ary ∂D. One has

(i) 1
(−2i)n

∫
∂D E†(v − z) dσv† + E(v − z) dσv = 1,

(ii)
∫
∂D E†(v − z) dσv = 0,

(iii)
∫
∂D E(v − z) dσv† = 0.

Proof These formulæ readily follow from the well-known result, see e.g. [3],

∫
∂D

E(Y − X) dσY = 1, X ∈ ◦
D.

��
Lemma 2 Let � be a boundary point of a bounded domain D with smooth boundary
∂D. One has

(i) 1
(−2i)n Pv

∫
∂D E†(v − ξ) dσv† + E(v − ξ) dσv = 1

2 ,

(ii) Pv
∫
∂D E†(v − ξ) dσv = 0,

(iii) Pv
∫
∂D E(v − ξ) dσv† = 0.

Proof These formulæ readily follow from the well-known result, see e.g. [3],

Pv
∫

∂D
E(Y − �) dσY = 1

2
.

��
Lemma 3 If the smooth function h defined on the boundary ∂D of a bounded domain
D satisfies condition (17), viz.

∫
∂D

E(v − z) dσv† h(Y ) + E†(v − z) dσv h(Y ) = 0 for all X ∈ D+

then, for each point (ξ , ξ†) ≡ � ∈ ∂D, it holds that

Pv
∫

∂D
E(v − ξ) dσv† h(Y ) + E†(v − ξ) dσv h(Y ) = 0.
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Proof In view of Lemma 1 (ii) and (iii), it follows from (17) that

lim
X→�

∫
∂D

(
E(v − z) dσv† + E†(v − z) dσv

) (
h(Y ) − h(�)

) = 0,

whence

lim
ε→+0

∫
∂Dε

(
E(v − ξ) dσv† + E†(v − ξ) dσv

) (
h(Y ) − h(�)

) = 0.

Invoking Lemma 2 (ii) and (iii), we thus obtain

lim
ε→+0

∫
∂Dε

(
E(v − ξ) dσv† + E†(v − ξ) dσv

)
h(Y ) = 0.

��
The results of the above lemmata now lead to the following.

Proposition 4 For a smooth function h defined on the smooth boundary ∂D of a
bounded domain D, satisfying condition (20), viz.

∫
∂D

E(v − z) dσv† h(Y ) + E†(v − z) dσv h(Y ) = 0 for all X ∈ D+ ∪ D−

the expression for its Hilbert transform reduces to

H[h](�) = 2

(−2i)n
Pv

∫
∂D

E(v − ξ) dσv h(Y ) + E†(v − ξ) dσv† h(Y ).

Note that we may now check the well-known Hilbert transform H[1] = 1. The
constant function 1 indeed satisfies condition (20) due to Lemma 1 (ii) and (iii). Next,
invoking Lemma 2 (i), we find

H[1](�) = 2

(−2i)n
Pv

∫
∂D

E(v − ξ) dσv + E†(v − ξ) dσv† = 2
1

2
= 1.

There is, however, still a third approach possible to establish a Cauchy transform
in the hermitian monogenic setting. Indeed, if the smooth boundary function h on ∂D
is assumed to satisfy the condition

∫
∂D

K (v − z) dσY h(Y ) = 0, (21)

where, recall, the hermitian monogenic kernel K is given by

K (v − z) = − ∂z E(v − z) = ∂z† E
†(v − z),
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then, for the monogenic Cauchy transform of h, viz.

g(X) =
∫

∂D
E(Y − X) dσY h(Y )

= 1

2

∫
∂D

(
E†(v − z) − E(v − z)

)
dσY h(Y ), X ∈ D+ ∪ D−,

it holds that

∂z† g(X) = 1

2

∫
∂D

∂z† E
†(v − z) dσY h(Y )

= 1

2

∫
∂D

K (v − z) dσY h(Y ) = 0, X ∈ D+ ∪ D−,

and also ∂z g(X) = 0 in D+ ∪ D− since ∂ g(X) = 2(∂z − ∂z†) g(X) = 0, in other
words: g(X) is hermitian monogenic in D+ ∪ D−.

Condition (21) now is the key to the following alternative characterization of the
Hardy space H2(∂D) in terms of the Hardy space H2(∂D).

Proposition 5 A function f belongs to the Hardy space H2(∂D) if and only if f
belongs to the Hardy space H2(∂D) and moreover satisfies the integral condition

∫
∂D

K (v − z) dσY f (Y ) = 0, X ∈ D+. (22)

Proof (i) Suppose that f ∈ H2(∂D). Then its Cauchy transform F belongs to
H2(D+) and assumes the non-tangential boundary value f on ∂D. Now if f
satisfies condition (22) then, as was shown above, F is hermitian monogenic in
D+, in other words: F ∈ H2(D+) and so f ∈ H2(∂D).

(ii) Suppose that f ∈ H2(∂D). The following reasoning is similar to the proof of
Proposition 3. There exists a function G ∈ H2(D+) the non-tangential boundary
value on ∂D of which is precisely the function f . As H2(∂D) ⊂ H2(∂D) the
Cauchy transform F of f belongs to H2(D+) and assumes the non-tangential
boundary value f on ∂D. Consider the function F − G; it is monogenic in D+
and assumes the non-tangential boundary value 0 on ∂D, whence F = G in D+.
So it holds that F is hermitian monogenic in D+, whence for X ∈ D+,

∂z† F(X) = 1

2
∂z†

∫
∂D

(
E†(v − z) − E(v − z)

)
dσY f (Y )

= 1

2

∫
∂D

K (v − z) dσY f (Y ) = 0

and condition (22) follows. ��
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We conclude this section by the following nice example.

Example 1 Consider the function

f = F f†1f
†
2 · · · f†n I

with F a scalar function defined in an open neighbourhood	 of D, D being a bounded
domain in R

2n with a smooth boundary ∂D. Clearly f takes values in the n-th homo-
geneous part Sn of spinor space. As was already mentioned in Remark 2, it was proven
in [6] that f is hermitian monogenic in 	 if and only if F is a holomorphic function
in the complex variables (z1, . . . , zn) and does not depend on the complex conjugates
(zc1, . . . , z

c
n). Assuming now that the function F(z1, . . . , zn) is indeed holomorphic in

	, or, equivalently, that the S
n- valued function f is hermitian monogenic in 	, the

Cauchy Integral Formula (12) and the additional integral identities (15) and (16) hold
for this function f . Taking into account the algebraic structure of f , implying that
dσv f (Y ) = 0, these formulæ reduce to

f (X) = 1

(−2i)n

∫
∂D

E†(v − z) dσv† f (Y ), X ∈ D+, (23)

and
∫

∂D
E(v − z) dσv† f (Y ) = 0, X ∈ D+, (24)

which, as we know, lead to the Martinelli–Bochner representation formula (2), viz.

F(z1, . . . , zn) =
∫

∂D
U (�ξ, �z) F(ξ1, . . . , ξn)

and the additional identities
∫

∂D
F(z1, . . . , zn)

1

ρ2n (v j − z j ) d̂vck

=
∫

∂D
F(z1, . . . , zn)

1

ρ2n (vk − zk) d̂vcj , j �= k.

Now consider the continuous boundary function hn = f |∂D : ∂D → S
n , for which

we have, invoking (24), that

∫
∂D

E(v − z) dσv† h
n(Y ) = 0, X ∈ D+,

meaning that the boundary function hn satisfies the first assumption. It follows that
the function g given by

g(X) = 1

(−2i)n

∫
∂D

E†(v − z) dσv† h
n(Y ) (25)
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is hermitian monogenic in D+. Putting g(X) = G f†1 · · · f†n I , the function G then is
holomorphic in the same region. Moreover it is clear that, by (23), the function g
coincides with the initial hermitian monogenic function f in D+, while g = 0 in D−.
It follows that, for X ∈ D+ −→ � ∈ ∂D,

lim
X→�

g(X) = lim
X→�

f (X)

or

1

2
hn(�) + 1

2
H[hn](�) = hn(�)

or even

H[hn](�) = hn(�),

confirming that the restriction hn to ∂D of the hermitian monogenic function F in
	 ⊃ D belongs to theHardy space H+

2 (∂D), see [2,3]. Note that for the non-tangential
boundary values where X ∈ D− −→ � ∈ ∂D we find

lim
X→�

g(X) = 0

or

− 1

2
hn(�) + 1

2
H[hn](�) = 0,

again confirming that

H[hn](�) = hn(�).

5 Quaternionic Monogenicity

A further refinement of hermitian monogenicity is obtained by taking the dimension
to be a fourfold: m = 2n = 4p, reordering the variables as follows:

(X1, . . . , X4p) = (x1, y1, x2, y2, . . . , x2p, y2p)

and considering the hypercomplex structureQ = (I4p, J4p, K4p) onR
4p. This hyper-

complex structure arises by introducing, next to the complex structure I4p, a second
one, J4p, given by

J4p = diag

⎛
⎜⎜⎝

1
−1

−1
1

⎞
⎟⎟⎠ .
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Clearly J4p ∈ SO(4p), with J
2
4p = −E4p, and it anti-commutes with I4p. A third

SO(4p)-matrix

K4p = I4p J4p = −J4p I4p

then arises naturally, for which K
2
4p = −E4p and which anti-commutes with both

I4p and J4p. Note that the representation of vectors is assumed to be by rows and the
action of matrices on vectors thus is given by right multiplication, whence the above
relation between the matrices K, I and J in fact signifies that K = J ◦ I.

Along with the vector variable

X =
n∑

k=1

(xke2k−1 + yke2k + xk+1e2k+1 + yk+1e2k+2)

we now introduce the rotated variables

X
I
= I[X ] =

n∑
k=1

(−yke2k−1 + xke2k − yk+1e2k+1 + xk+1e2k+2),

X
J

= J[X ] =
n∑

k=1

(−xk+1e2k−1 + yk+1e2k + xke2k+1 − yke2k+2),

X
K

= K[X ] =
n∑

k=1

(yk+1e2k−1 + xk+1e2k − yke2k+1 − xke2k+2)

and we introduce the concept of quaternionic monogenicity by means of the following
four operators: the Dirac operator

∂ =
n∑

k=1

(∂xk e2k−1 + ∂yk e2k + ∂xk+1e2k+1 + ∂yk+1e2k+2)

and the three additional rotated Dirac operators

∂I = I4p[∂] =
n∑

k=1

(−∂yk e2k−1 + ∂xk e2k − ∂yk+1e2k+1 + ∂xk+1e2k+2),

∂J = J4p[∂] =
n∑

k=1

(−∂xk+1e2k−1 + ∂yk+1e2k + ∂xk e2k+1 − ∂yk e2k+2),

∂K = K4p[∂] =
n∑

k=1

(∂yk+1e2k−1 + ∂xk+1e2k − ∂yk e2k+1 − ∂xk e2k+2).

Definition 1 A differentiable function F : R
4p −→ S is called quaternionic mono-

genic in an open region 	 of R
4p, if and only if in that region F is a solution of the
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system

{∂F = 0, ∂IF = 0, ∂JF = 0, ∂KF = 0}.

Here too an alternative characterization is possible through complexification. In the
actual dimension the hermitian vector variables read

z = −1

2
(1 − i I4p)[X ] =

p∑
j=1

(z2 j−1f2 j−1 + z2 j f2 j ),

z† = 1

2
(1 + i I4p)[X ] =

p∑
j=1

(zc2 j−1f
†
2 j−1 + zc2 j f

†
2 j )

and their images under the action of J4p turn out to be

z J = J4p[z] = −1

2
(J4p − i K4p)[X ] =

p∑
j=1

(z2 j f
†
2 j−1 − z2 j−1f

†
2 j ),

z†J = J4p[z†] = 1

2
(J4p + i K4p)[X ] =

p∑
j=1

(zc2 j f2 j−1 − zc2 j−1f2 j ).

The corresponding quaternionic Dirac operators are

∂z = 1

4
(1 + i I4p)[∂] =

p∑
j=1

(∂z2 j−1 f
†
2 j−1 + ∂z2 j f

†
2 j ),

∂†z = −1

4
(1 − i I4p)[∂] =

p∑
j=1

(∂zc2 j−1
f2 j−1 + ∂zc2 j

f2 j ),

∂ J
z = 1

4
(J4p + i K4p)[∂] = J4p[∂z] =

p∑
j=1

(∂z2 j f2 j−1 − ∂z2 j−1 f2 j ),

∂†Jz = −1

4
(J4p − i K4p)[∂] = J4p[∂†z ] =

p∑
j=1

(∂zc2 j
f†2 j−1 − ∂zc2 j−1

f†2 j ).

For a function F on R
4p ∼= C

2n the quaternionic monogenic system of Definition 1
then is easily seen to be equivalent to the system

{∂z F = 0, ∂†z F = 0, ∂ J
z F = 0, ∂†Jz F = 0},

which can be shown to be invariant under the action of the symplectic group Sp(p).
The basics of the quaternionic monogenic function theory were developed in [8–10].
For group theoretical aspects we refer to [11,12].
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In the real approach to quaternionic monogenicity we have the fundamental solu-
tions

E(X) = 1

a4p

X

|X |4p , EI(X) = 1

a4p

X
I

|X
I
|4p ,

EJ(X) = 1

a4p

X
J

|X
J
|4p , EK(X) = 1

a4p

X
K

|X
K
|4p

for the operators ∂ , ∂I, ∂J and ∂K respectively, where now a4p denotes the area of the
unit sphere S4p−1 in R

4p. By similar projections/decompositions as above they give
rise to their quaternionic counterparts, explicitly given by

E(z) = −E(X) + i EI(X) = 2

a4p

z∣∣z∣∣4p ,

E†(z) = E(X) + i EI(X) = 2

a4p

z†∣∣z∣∣4p ,

E J (z) = −EJ(X) + i EK(X) = 2

a4p

z J∣∣z∣∣4p ,

E† J (z) = EJ(X) + i EK(X) = 2

a4p

z†
J

∣∣z∣∣4p .

However, as could be expected, the latter are not fundamental solutions for the quater-
nionic Dirac operators, whence, again, a circulant matrix approach has to be followed.
Recall that, in the distributional sense,

∂z E(z) = 1

2p
β δ(z) + 2

a4p
β Fp

1

|z|4p − 2

a4p
(2p)Fp

z†z

|z|4p+2 ,

∂†z E
†(z) = 1

2p
(2p − β) δ(z) + 2

a4p
(2p − β)Fp

1

|z|4p − 2

a4p
(2p)Fp

zz†

|z|4p+2 ,

whence

∂z E(z) + ∂†z E†(z) = δ(z).

In addition we now have, again in the distributional sense, that

∂ J
z E

J (z) = 1

2p
(2p − β) δ(z) + 2

a4p
(2p − β)Fp

1

|z|4p − 2

a4p
(2p)Fp

z†J z J

|z|4p+2 ,

∂†Jz E† J (z) = 1

2p
β δ(z) + 2

a4p
β Fp

1

|z|4p − 2

a4p
(2p)Fp

z J z†J

|z|4p+2 ,
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whence

∂ J
z E J (z) + ∂†Jz E†J (z) = δ(z).

The matrix operator D given by

D =

⎛
⎜⎜⎜⎜⎝

∂z ∂
†
z ∂ J

z ∂
†J
z

∂
†J
z ∂z ∂

†
z ∂ J

z

∂ J
z ∂

†J
z ∂z ∂

†
z

∂
†
z ∂ J

z ∂
†J
z ∂z

⎞
⎟⎟⎟⎟⎠

factorizes the matrix Laplace operator in the sense that 2DD† = �4p. Introducing
the matrices

E(z) =

⎛
⎜⎜⎜⎜⎝

E E† E J E† J

E† J E E† E J

E J E† J E E†

E† E J E† J E

⎞
⎟⎟⎟⎟⎠ and δ(z) =

⎛
⎜⎜⎝

δ(z) 0 0 0
0 δ(z) 0 0
0 0 δ(z) 0
0 0 0 δ(z)

⎞
⎟⎟⎠ ,

it is easily shown that

DE T(z) = 2δ(z),

whence a matrix fundamental solution has been found for the matrix Dirac operator
D. Notice that in the hermitian case transposing the matrix Ewas not necessary, since
a circulant 2×2 matrix always is symmetric. A similar (yet slightly different) strategy
was developed in [1].

However, another approach is possible as well, since the actions ∂z E†(z), ∂†z E(z),

∂ J
z E

† J (z) and ∂
†J
z E J (z) all equal to zero, implying that we can also consider

D(z,z J ) =

⎛
⎜⎜⎜⎝

∂z ∂
†
z 0 0

∂
†
z ∂z 0 0
0 0 ∂ J

z ∂
†J
z

0 0 ∂
†J
z ∂ J

z

⎞
⎟⎟⎟⎠ and E =

⎛
⎜⎜⎜⎝

E E† 0 0
E† E 0 0

0 0 E J E† J

0 0 E† J E J

⎞
⎟⎟⎟⎠

(26)

for which we have that 4D(z,z J )D(z,z J )
† = � and

D(z,z J )E(z) = δ(z). (27)

In the next section we will find out which of both possibilities is best suited for
establishing a Cauchy Integral Formula in the quaternionic Clifford setting.
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6 The Cauchy Integral Formula in the Quaternionic Case

In order tomake a deliberate choice between both approaches sketched in the preceding
section, wewill first have a look at the underlying group symmetry for the quaternionic
monogenic function theory. To that end let us again consider functions taking values
in complex spinor space, which now is given by

S = C4p I ∼= C2p I

and which is realized by means of the primitive idempotent I = I1 · · · I2p, with
I j = f j f

†
j , j = 1, . . . , 2p. We already know that, as a U(n)-module, complex spinor

space decomposes into homogeneous parts as

S =
2p⊕
r=0

S
r =

2p⊕
r=0

(C�
†
2p)

(r) I .

An important observation is that the spaces S
r , which are invariant and irreducible

U(n) modules, are reducible under the action of the fundamental symmetry group
Sp(p).

It still holds that a spinor valued function g is quaternionic monogenic if and only
if all its homogeneous parts gr are. However for a fixed component gr quaternionic
monogenicity is not equivalent to monogenicity. Yet we have the following result, see
[9].

Lemma 4 For a function gr defined on (a domain in) R
4p ∼= C

2n and taking values
in S

r , r ∈ {0, 1, . . . , 2p}, it holds that gr is quaternionic monogenic if and only if gr

is simultaneously ∂ and ∂J monogenic.

This result shows that, in viewof establishing aCauchy Integral Formula, the second
attempt (26)–(27) is the right one to pursue, since the structure of the involvedmatrices
reflects the importance of ∂ and ∂J monogenicity in this setting. We thus introduce the
concept of matricial quaternionic monogenicity as follows.

Definition 2 A block diagonal matrix function

G =

⎛
⎜⎜⎝
g1 g2 0 0
g2 g1 0 0
0 0 g3 g4
0 0 g4 g3

⎞
⎟⎟⎠

with continuously differentiable entries g1, g2, g3, g4 in (a domain in) R
4p ∼= C

2p

taking values in (subspaces of) C4p is called quaternionic monogenic if and only if it
satisfies the system

D(z,z J )G = O.
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Note that in the case of a diagonal matrix function G0 with g1 = g = g3 and
g2 = 0 = g4, the quaternionic monogenicity of G0 coincides with the quaternionic
monogenicity of g, which is not the case in general.

Next we define, in a similar way, the matrix differential form

d�(z,z J ) =

⎛
⎜⎜⎜⎝

dσz dσz† 0 0
dσz† dσz 0 0
0 0 dσz J dσ

z† J

0 0 dσ
z† J

dσz J

⎞
⎟⎟⎟⎠ .

Here, as above, we have introduced

dσz =
p∑

j=1

(
f†2 j−1 d̂z2 j−1 + f†2 j d̂z2 j

)
,

dσz† = −
p∑

j=1

(
f2 j−1 d̂zc2 j−1 + f2 j d̂zc2 j

)
,

where the notations d̂zk and d̂zck keep their original definition, see (9)–(10), whence

dσz = (−i)2p22p−1π−[dσX ] = −1

2
(−i)2p22p−1 (

dσX − i dσX I

)
,

dσz† = (−i)2p2p−1π+[dσX ] = 1

2
(−i)2p22p−1 (

dσX + i dσX I

)

and in a similar way we have defined

dσz J =
p∑

j=1

(
f2 j−1 d̂z2 j − f2 j d̂z2 j−1

)
,

dσz†J = −
p∑

j=1

(
f†2 j−1 d̂z

c
2 j − f†2 j d̂z

c
2 j−1

)

or, expressed in the original real variables

dσz = J [dσz] = −1

2
(−i)2p22p−1

(
dσXJ

− i dσXK

)
,

dσz† = J [dσz† ] = 1

2
(−i)2p22p−1

(
dσXJ

+ i dσXK

)
.

TheCauchy Integral Formula formatrix quaternionicmonogenicity readily follows;
its proof is similar to the one in the hermitian monogenic setting.
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Proposition 6 Let the block diagonal matrix function G be quaternionic monogenic in
an open neighbourhood of D, D ⊂ R

4p being a bounded domain in R
4p with smooth

boundary ∂D. Then it holds that

G(X) = 1

(−4)p

∫
∂D

E(v − z) d�(v,v J ) G(Y ), X ∈ ◦
D,

where v is the hermitian vector variable corresponding to Y ∈ ∂D, and z is the one

corresponding to X ∈ ◦
D.

Againnote that themultiplicative constant appearing at the right hand side originates
from the re-ordering of 4p real variables into 2p complex planes.

Taking for G the diagonal matrix function G0, the above result reduces to a genuine
Cauchy Integral Formula for the quaternionic monogenic function g.

Corollary 1 Let the function g be quaternionic monogenic in an open neighbourhood
of D, D ⊂ R

4p being a bounded domain in R
4p with smooth boundary ∂D. Then one

has the two reproducing formulæ

g(X) = 1

(−4)p

∫
∂D

[
E(v − z) dσv + E†(v − z) dσv†

]
g(Y ), X ∈ ◦

D, (28)

g(X) = 1

(−4)p

∫
∂D

[
E J (v − z) dσv J + E† J (v − z) dσv†J

]
g(Y ), X ∈ ◦

D,

(29)

and the two additional integral identities

∫
∂D

[
E(v − z) dσv† + E†(v − z) dσv

]
g(Y ) = 0, X ∈ ◦

D, (30)
∫

∂D

[
E J (v − z) dσv†J + E† J (v − z) dσv J

]
g(Y ) = 0, X ∈ ◦

D. (31)

An alternative proof of Corollary 1 is obtained, as has been done explicitly in the
hermitian case, by splitting a spinor valued function into its homogeneous compo-
nents, writing down, for each component, the Cauchy Integral Formulæ for ∂ and ∂J
monogenicity, while invoking the structural decompositions for all building blocks
involved and the subsequent splitting of the values, and finally adding up all interme-
diate results. In this way the reproducing formulæ (28) and (29) are recovered, while
the integral identities (30) and (31) are replaced by the stronger results

∫
∂D

E(v − z)dσv† g(Y ) = 0 = E†(v − z)dσv g(Y ), X ∈ ◦
D,

∫
∂D

E J (v − z)dσv†J g(Y ) = 0 = E† J (v − z)dσv J g(Y ), X ∈ ◦
D.

Now recall that interesting results were obtained in the hermitian framework by
restricting the values of the considered functions to the different homogenous parts
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of spinor space, which are suggested by the U(n) symmetry. For quaternionic mono-
genics the underlying Sp(p) invariance has not yet been fully exploited, since the
homogeneous parts of spinor space are reducible under Sp(p) and split further into
so-called symplectic cells, see e.g. [8,10]. This splitting is caused by the action of the
multiplication operators

P = f2f1 + f4f3 + · · · + f2pf2p−1, Q = f†1f
†
2 + f†3f

†
4 + · · · + f†2p−1f

†
2p

for which we define, for r = 0, . . . , p, the kernel spaces

S
r
r = Ker P|Sr , S

2p−r
r = Ker Q|S2p−r

and for k = 0, . . . , p−r , the subspaces obtained by iterative action of Q on the kernel
of P and vice versa

S
r+2k
r = Qk

S
r
r , S

2p−r−2k
r = Pk

S
2p−r
r .

It was shown in [8,17] that, for all r = 0, . . . , p,

S
r =

� r
2 �⊕

j=0

S
r
r−2 j , S

2p−r =
� r
2 �⊕

j=0

S
2p−r
r−2 j

and each of the symplectic cells S
r
s in the above decompositions is an irreducible

4Sp(p)-representation. Whence, we can now decompose a function F : R
4p −→ S

into components taking values in these symplectic cells

F =
n∑

r=0

Fr =
n∑

r=0

∑
s

Fr
s , Fr

s : R
4p −→ S

r
s .

The quaternionic monogenicity of F then is shown to be equivalent to the quaternionic
monogenicity of each of its components Fr

s , entailing an even further refinement of
the results obtained above.

7 The osp(4|2)-Monogenic Framework

In [12] it was shown that, from a group theoretical point of view, the definition of
quaternionic monogenicity is not the best possible one. For instance, spaces Qr ,s

a,b of
quaternionic monogenic bi-homogeneous polynomials of bi-degree (a, b)with values
in the symplectic cellSrs , still remain reducible under the action of the symplectic group
Sp(p), an unfortunate situation. This has led to the definition of so-called osp(4|2)-
monogenicity in [11,12], where a function, apart from being quaternionic monogenic,
is requested to be in the kernel of the above mentioned multiplication operator P

P = f2f1 + · · · + f2pf2p−1
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and in the kernel of the Euler like scalar differential operator

E =
p∑

k=1

z2k−1 ∂zc2k
− z2k ∂zc2k−1

,

which arises when computing the anti-commutators of all operators in the odd part of
the involved Lie superalgebra osp(4|2).
Definition 3 A function f is osp(4|2)-monogenic in an open region 	 of R

4p if in 	

it belongs to the kernel of the six operators: ∂z , ∂
†
z , ∂ J

z , ∂
†J
z , P and E .

As KerP = ⊕p
r=1 S

r
r , an osp(4|2)-monogenic function f ought to take its values

in
⊕p

r=1 S
r
r , whence it can be decomposed as

f =
p∑

r=1

f rr

and such a function is quaternionic monogenic if and only if all the components f rr
are. Because for each r it trivially holds that ∂

†
z f rr = ∂

†J
z f rr = 0, the quaternionic

monogenicity of f is equivalent with the system {∂z f rr = 0, ∂ J
z f rr = 0}.

Exploiting the results on quaternionicmonogenic functions, we are able to establish
a Cauchy Integral Formula for osp(4|2)-monogenic functions.

Theorem 1 Let the function g be osp(4|2)-monogenic in an open neighbourhood 	

of D, D being a bounded domain D ⊂ R
4p with smooth boundary ∂D. Then the

following representation formulae hold:

g(X) = 1

(−2i)n

∫
∂D

(
E(v − z) dσv + E†(v − z) dσv†

)
g(Y ), X ∈ ◦

D, (32)

g(X) = 1

(−2i)n

∫
∂D

(
E J (v − z) dσv J + E J†(v − z) dσv†J

)
g(Y ), X ∈ ◦

D,

(33)

together with the integral identities

0 =
∫

∂D
E†(v − z) dσv g(Y ), X ∈ ◦

D, (34)

0 =
∫

∂D
E J (v − z) dσv†J g(Y ), X ∈ ◦

D, (35)

0 =
∫

∂D

(
E E(v − z) dσv + E E†(v − z) dσv†

)
g(Y ), X ∈ ◦

D, (36)

0 =
∫

∂D

(
E E J (v − z) dσv J + E E J†(v − z) dσv†J

)
g(Y ), X ∈ ◦

D. (37)
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Proof (i) The representation formulae (32) and (33) are due to the quaternionicmono-
genicity of the function g in 	.

(ii) The identities (34) and (35) hold for the same reason, taking into account that,
trivially,

0 =
∫

∂D
E(v − z) dσv† g(Y ), X ∈ ◦

D,

and

0 =
∫

∂D
E J†(v − z) dσv J g(Y ), X ∈ ◦

D.

(iii) The identities (36) and (37) are the result of the action of the operator E on the
representation formulae (32) and (33), taking into account that Eg = 0. ��

Remark 4 The kernel functions appearing in the identities (36) and (37) may be cal-
culated explicitly. We obtain

E E(v − z) = 4p

a4p

v − z

ρ4p+2

p∑
j=1

(z2 j−1v2 j − z2 jv2 j−1),

E E†(v − z) = 4p

a4p

v† − z†

ρ4p+2

p∑
j=1

(z2 j−1v2 j − z2 jv2 j−1) + 2

a4p

1

ρ4p z J ,

E E J (v − z) = 4p

a4p

v J − z J

ρ4p+2

p∑
j=1

(z2 j−1v2 j − z2 jv2 j−1),

E E J†(v − z) = 4p

a4p

v†J − z†J

ρ4p+2

p∑
j=1

(z2 j−1v2 j − z2 jv2 j−1) − 2

a4p

1

ρ4p z.

Nowwe try to establish the concept of Cauchy transform in the context of osp(4|2)-
monogenicity. As usual we start with a bounded domain D in R

4p with a smooth
boundary ∂D and a continuous function h on ∂D, which, from the start, is assumed
to take values in KerP:

h =
p∑

r=0

hrr , hrr : ∂D → S
r
r
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We define the following four functions in
◦
D:

g1(X) =
∫

∂D

(
E(v − z) dσv + E†(v − z) dσv†

)
h(Y ),

g2(X) =
∫

∂D
E†(v − z) dσv h(Y ),

g3(X) =
∫

∂D

(
E J (v − z) dσv J + E J†(v − z) dσv†J

)
h(Y ),

g4(X) =
∫

∂D
E J (v − z) dσv†J h(Y ).

Clearly g2 and g4 take values in
⊕p

r=0 S
r+2
r , whencewemake the first assumption that

the boundary function h satisfies the conditions: g2 = 0 and g4 = 0 for all X ∈ D+.
The functions g1 and g3 take values in KerP . In order that g1 and g3 should belong
to Ker E we make the second assumption that the boundary function h satisfies the
conditions

∫
∂D

(
E E(v − z) dσv + E E†(v − z) dσv†

)
h(Y ) = 0, X ∈ D+,

and

∫
∂D

(
E E J (v − z) dσv J + E E J†(v − z) dσv†J

)
h(Y ) = 0, X ∈ D+.

Further it holds that, in a trivial way, ∂
†
z g1 = ∂ J

z g1 = 0 and ∂
†
z g3 = ∂ J

z g3 = 0.
Moreover, writing the above expressions for g1, g2 = 0, g3, g4 = 0 in amatricial form
and acting with the matricial Dirac operatorD leads to ∂z g1 = 0 and ∂

†J
z g3 = 0. So,

under the first and second assumption, it holds that

(i) if it would be so that g1 = g3, then this function is osp(4|2)-monogenic in D+;
(ii) if ∂

†J
z g1 = 0 then g1 is osp(4|2)-monogenic in D+;

(iii) if ∂z g3 = 0, then g3 is osp(4|2)-monogenic in D+.

The conclusion is that the construction of an osp(4|2)-monogenic function in the
interior of a bounded domain via the Cauchy transform of a continuous boundary
function is not straightforward. But that it is indeed possible is illustrated by the
following example.

Example 2 Take a scalar polynomial V (z1, zc1, . . . , zn, z
c
n) in KerE ; it is even possible

to take a harmonic polynomial, see [10]. Choose a vector f in S
p
p and put H

p
p = V f .

Then H p
p is quaternionic monogenic (trivially), in KerP (trivially) and in Ker E due

to the choice of V ; in other words: H p
p is osp(4|2)-monogenic in R

4p. It follows that

123



The Cauchy Integral Formula in Hermitian, Quaternionic… 463

the identities (36) and (37) hold for H p
p , which, putting h p

p = H p
p |∂D read

0 =
∫

∂D

(
E E(v − z) dσv + E E†(v − z) dσv†

)
h p
p(Y ),

0 =
∫

∂D

(
E E J (v − z) dσv J + E E J†(v − z) dσv†J

)
h p
p(Y ),

showing that h p
p satisfies the second assumption.

Now construct the above mentioned four functions g1, g2, g3 and g4 with h
p
p as the

boundary function. In a trivial way it holds that g2 = g4 = 0, which means that also
the first assumption is satisfied for the boundary function h p

p.
From the general theory we know that

∂z g1 = 0, ∂†z g1 = 0, ∂ J
z g1 = 0,

∂†z g3 = 0, ∂ J
z g3 = 0, ∂†Jz g3 = 0.

But for this boundary function h p
p it holds trivially that ∂

†J
z g1 = 0 and ∂z g3 = 0,

whence

g1(X) =
∫

∂D

(
E(v − z) dσv + E†(v − z) dσv†

)
V (Y ) f

and

g3(X) =
∫

∂D

(
E J (v − z) dσv J + E J†(v − z) dσv†J

)
V (Y ) f

both are osp(4|2)-monogenic in D+.
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