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Abstract
We consider the zero distribution of random polynomials of the form Pn(z) =∑n

k=0 ak Bk(z), where {ak}∞k=0 are non-trivial i.i.d. complex random variables with
mean 0 and finite variance. Polynomials {Bk}∞k=0 are selected from a standard basis
such as Szegő, Bergman, or Faber polynomials associated with a Jordan domain G
whose boundary is C2,α smooth. We show that the zero counting measures of Pn con-
verge almost surely to the equilibrium measure on the boundary of G. We also show
that if {ak}∞k=0 are i.i.d. random variables, and the domain G has analytic boundary,
then for a random series of the form f (z) = ∑∞

k=0 ak Bk(z), ∂G is almost surely the
natural boundary for f (z).

Keywords Random polynomials · Orthogonal polynomials · Zero distribution ·
Natural boundary
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1 Introduction

This work is a sequel to [8] where we showed that zeros of a sequence of random
polynomials {Pn}n (spanned by an appropriate basis) associated to a Jordan domain
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402 I. Pritsker, K. Ramachandran

G with analytic boundary L, equidistributed near L, i.e., distribute according to the
equilibrium measure of L. We refer the reader to [8] for references to the literature on
random polynomials. In this note, we extend the above result to Jordan domains with
lesser regularity, namely domains with C2,α boundary, see Theorem 1.1 below.

To state our results we need to set up some notation. Let G ⊂ C be a Jordan
domain. We set� = C\G, the exterior of G and� the exterior of the closed unit disc.
By the Riemann mapping theorem there is a unique conformal mapping � : � →
�, �(∞) = ∞, �′(∞) > 0. We denote the equilibrium measure of E = G by

μE . For a polynomial Pn of degree n, with zeros at {Zk,n}nk=1, let τn = 1

n

∑n
k=1 δZk,n

denote its normalized zero counting measure. For a sequence of positive measures
{μn}∞n=1, we write μn

w→ μ to denote weak convergence of these measures to μ. A
random variable X is called non-trivial if P(X = 0) < 1.

Theorem 1.1 Let G be a Jordan domain in C whose boundary L is C2,α smooth for
some 0 < α < 1. Consider a sequence of random polynomials {Pn}∞n=0 defined by
Pn(z) = ∑n

k=0 ak Bk(z),where the {ai }∞i=0 are non-trivial i.i.d. random variables with
mean 0 and finite variance, with the basis {Bn}∞n=0 being given either by Szegő, or by

Bergman, or by Faber polynomials. Then, τn
w→ μE a.s.

We summarize some useful facts obtained in the proof of Theorem 1.1 below.

Corollary 1.2 Suppose that E is the closure of a Jordan domain G with C2,α boundary
L, and that the basis {Bk}∞k=0 is given either by Szegő, or by Bergman, or by Faber
polynomials. If {ak}∞k=0 are non-trivial i.i.d. complex random variables with mean 0
and finite variance, then the random polynomials Pn(z) = ∑n

k=0 ak Bk(z) converge
almost surely to a random analytic function f that is not identically zero. Moreover,

lim
n→∞ |Pn(z)|1/n = |�(z)|, z ∈ �, (1.1)

holds with probability one.

As a consequence of Theorem1.1,we show that the zeros of the sequence of derivatives
{P ′

n}∞n=0 also equidistribute.

Corollary 1.3 Let G, {ai }∞i=0 and Pn be as in Theorem 1.1. Let τ ′
n denote the zero

counting measures of P ′
n . Then, τ

′
n

w→ μE a.s.

The natural boundary for a random power series of the form
∑∞

k=0 akz
k where {ak}∞k=0

are i.i.d. random variables has been investigated by quite a few authors. We refer
especially to [2], but see also [6] and the references therein. The result there is that
for such a random series, the circle of convergence is a.s. the natural boundary. Some
extensions are possible when the {ak}∞k=0 are merely independent. Therefore, it seems
reasonable to ask if such a result holds when the random series is formed by other
polynomial bases. In [8], we remarked (without proof) that the random series formed
by the basis {Bk}∞k=0, has natural boundary L. We prove that result here.
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Theorem 1.4 Suppose that E is the closure of a Jordan domain G with analytic
boundary L, and that the basis {Bk}∞k=0 is given either by Szegő, or by Bergman,
or by Faber polynomials. Assume that the random coefficients {ak}∞k=0 are i.i.d. com-
plex random variables which are non-constant almost surely, and furthermore satisfy
E[log+ |a0|] < ∞. Then the series

∞∑

k=0

ak Bk(z)

converges a.s. to a random analytic function f �≡ 0 in G, and moreover, with proba-
bility one, ∂G = L is the natural boundary for f .

We believe that Theorem 1.4 holds for any bounded Jordan domain. It would be
interesting to see a proof of such a result, which we expect will need rather different
techniques from the ones we use.

2 Proofs

Proof of Theorem 1.1 and of Corollary 1.2 We closely follow the ideas in [8]. The proof
consists of two probabilistic lemmas followed by the use of a deterministic theorem
in potential theory. The first lemma below follows from a standard application of the
Borel–Cantelli lemma. 	

Lemma 2.1 If {ak}∞k=0 are non-trivial, independent and identically distributed complex
random variables that satisfy E[log+ |a0|] < ∞, then

lim sup
n→∞

|an|1/n = 1 a.s., (2.1)

and

lim sup
n→∞

(

max
0≤k≤n

|ak |
)1/n

= 1 a.s. (2.2)

A slightly more delicate application of Borel–Cantelli gives the following result. For
the proof, we refer to [8].

Lemma 2.2 If {ak}∞k=0 are non-trivial i.i.d. complex random variables, then there is a
value b > 0 such that

lim inf
n→∞

(

max
n−b log n<k≤n

|ak |
)1/n

≥ 1 a.s. (2.3)

We use the following theorem of Grothmann [4] which describes the zero distribution
of deterministic polynomials.
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Let E ⊂ C be a compact set of positive capacity such that � = C\E is connected
and regular. The Green function of � with pole at ∞ is denoted by g�(z,∞). We use
‖ · ‖K for the supremum norm on a compact set K .

Theorem G. If a sequence of polynomials Pn(z), deg(Pn) ≤ n ∈ N, satisfies

lim sup
n→∞

‖Pn‖1/nE ≤ 1, (2.4)

for any closed set K ⊂ E◦

lim
n→∞ τn(K ) = 0, (2.5)

and there is a compact set S ⊂ � such that

lim inf
n→∞ max

z∈S

(
1

n
log |Pn(z)| − g�(z,∞)

)

≥ 0, (2.6)

then the zero counting measures τn of Pn converge weakly to μE as n → ∞.

The idea now is to check that with probability 1, our sequence of polynomials
satisfies the hypothesis in Grothmann’s theorem. Recall that in our setting g�(z,∞) =
log |�(z)|, z ∈ �.

Note that (2.4) is satisfied for E almost surely by (2.2), and the estimate

‖Pn‖E ≤
n∑

k=0

|ak |‖Bk‖E ≤ (n + 1) max
0≤k≤n

|ak | max
0≤k≤n

‖Bk‖E ,

as

lim sup
n→∞

(

max
0≤k≤n

‖Bk‖E
)1/n

≤ 1.

This last fact follows from thewell known result that in all three cases of polynomial
bases we consider in this theorem, we have

lim
n→∞ |Bn(z)|1/n = |�(z)| (2.7)

holds uniformly on compact subsets of �, see [9]. To check that (2.5) holds, we use
the following lemma from [5].

Lemma 2.3 Letψn be holomorphic functions on a domain
.Assume that
∑∞

n=0 |ψn|2
converges uniformly on compact sets of 
. Let an be i.i.d. random variables with zero
mean and finite variance. Then, almost surely,

∑∞
n=0 anψn(z) converges uniformly on

compact subsets of 
 and hence defines a random analytic function.
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It is well known that
∑∞

n=0 |Bn(z)|2 = K (z, z), where K (z, w) denotes the Bergman
(or correspondingly Szegő) kernel of the domainG when {Bi }∞i=0 denotes theBergman
or Szegő basis respectively. For the case of the Faber polynomials, the convergence
follows from the estimates of the sup norm ||Pn||K on any compact K ⊂ G, see [11,
Ch. 1, Sec. 5]. With this knowledge, taking ψn = Bn and 
 = G in Lemma 2.3, we
obtain that almost surely,

∑∞
n=0 an Bn(z) converges uniformly on compact subsets of

G and hence defines a random analytic function f . The uniqueness of series expan-
sions of these polynomial basis ensures that f is not identically 0. Since Pn → f ,
an application of Hurwitz’s theorem from basic complex analysis now proves (2.5).
Incidentally this also proves the corresponding part of Corollary 1.2.

If τn do not converge to μE a.s., then (2.6) cannot hold a.s. for any compact set
S in �. We choose S = LR = {z : g�(z,∞) = log R}, with R > 1, and find a
subsequence nm, m ∈ N, such that

lim sup
m→∞

‖Pnm‖1/nmLR
< R, (2.8)

holds with positive probability. It follows from a result of Suetin [11, Ch. 1], that for
Bergman polynomials,

Bn(z) =
√
n + 1

π
�n(z)�′(z) (1 + An(z)) , (2.9)

holds locally uniformly in � where we recall that � is the exterior conformal map,
� : � → �, �(∞) = ∞, �′(∞) > 0, and

|An(z)| ≤ c
log(n)

n2
. (2.10)

Similar asymptotic formulas as (2.9) are valid for Szegő and Faber polynomials but
without the factor

√
n + 1.The proofs for these bases have to be accordinglymodified.

Equation (2.9) implies that all zeros of Bn are contained inside LR for all large n. This
allows us to write an integral representation

an = 1

2π i

∫

LR

Pn(z) dz

zBn(z)
, (2.11)

which is valid for all large n ∈ N because Pn(z)/(zBn(z)) = an/z + O(1/z2) for
z → ∞. The asymptotic on Bn from (2.9) implies that there are positive constants c1
and c2 that do not depend on n and z, such that

c2
√
n ρn ≤ |Bn(z)| ≤ c1

√
n ρn, z ∈ Lρ, ρ > 1, n ∈ N. (2.12)

We estimate from (2.11) and (2.12) with ρ = R that

|an| ≤ |LR |
2πd

‖Pn‖LR

c2
√
n Rn

,
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where |LR | is the length of LR and d := minz∈LR |z|. It follows that

‖Pn−1‖LR ≤ ‖Pn‖LR + |an|‖Bn‖LR

≤ ‖Pn‖LR

(

1 + |LR |
2πd

c1
c2

)

=: C ‖Pn‖LR , n ∈ N.

Applying this estimate repeatedly, we obtain that

‖Pn−k‖LR ≤ Ck ‖Pn‖LR , k ≤ n,

so that (2.11) yields

|an−k | ≤ |LR |
2πd

‖Pn−k‖LR

c2
√
n − k Rn−k

≤ |LR |
2πd

Ck ‖Pn‖LR

c2
√
n − k Rn−k

.

Choosing sufficiently small ε > 0 and using (2.8), we deduce from the previous
inequality that

|anm−k | ≤ qnm , 0 ≤ k ≤ εnm,

for some q ∈ (0, 1) and all sufficiently large nm , with positive probability. The latter
estimate clearly contradicts (2.3) of Lemma 2.2. Hence (2.6) holds for S = LR, with
any R > 1, and τn converge weakly to μE with probability one. Note that (2.6) for
S = LR,with R > 1, is equivalent to (1.1). Indeed, we have equality in (2.6), with lim
instead of lim inf, by Bernstein–Walsh inequality and (2.4), see [1, p. 51, Remark 1.2]
for more details. This concludes the proof of Theorem 1.1 as well as the proof of
Corollary 1.2.

Proof of Corollary 1.3 The method of proof is similar to that of Theorem 1.1, namely
check that the conditions in Grothmann’s result hold almost surely. First, we use a
Markov–Bernstein result (cf. [7] and the references therein) to bound the sup norm of
P ′
n on E .

||P ′
n||E ≤ c(E)n2||Pn||E . (2.13)

Therefore, with probability one,

lim sup
n→∞

‖P ′
n‖1/(n−1)

E ≤ lim sup
n→∞

(
c(E)n2‖Pn‖E

)1/(n−1) ≤ 1.

This shows that (2.4) holds for P ′
n . Next, we know from the proof of Theorem 1.1 that

with probability one, Pn → f uniformly on compacts, where f is a non-zero random
analytic function. From this we obtain that P ′

n → f ′ also uniformly on compacts.
The function f ′ is not identically 0, for if it were, f ≡ c for some constant c, and
by the uniqueness of series expansion for the polynomial basis under consideration,
this would imply that ai = 0 for i ≥ 1. This contradicts Lemma 2.2. From here, an
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application of Hurwitz’s theorem now yields that τ ′
n(K ) → 0 for every compact set

K ⊂ G. This proves Equation (2.5) for P ′
n . Finally, recall that

Bn(z) =
√
n + 1

π
�n(z)�′(z) (1 + An(z))

where An(z) satisfies the estimate (2.10). Differentiating this, we obtain bounds for
B ′
n on LR . Namely

c4n
3
2 Rn−1 ≤ |B ′

n(z)| ≤ c5n
3
2 Rn−1. (2.14)

To obtain this asymptotic, we have used a local Cauchy integral to estimate A′
n(z) :

A′
n(z) = 1

2π i

∫

∂Bδ(z)

An(w)

(z − w)2
dw

for z ∈ LR with δ > 0 being chosen so that the ball Bδ(z) stays away from the
boundary, say δ = 1

5d(LR, L). Using the uniform bound (2.10) in the above integral
shows that an analogous estimate holds for A′

n(z).Once we obtain (2.14), we note that
the proof for (2.6) for P ′

n follows as in Theorem 1.1. All the conditions in Grothmann’s
theorem are satisfied and hence we have the required convergence. 	


Remark Although Theorem 1.1 and Corollary 1.3 have been stated for Jordan domains
withC2,α boundary, it is easy to see that the same proof goes through if for instance G
is a Jordan domain whose boundary is piecewise analytic (with angles at the corners
satisfying certain conditions, see [10, Theorem 1.2]). The asymptotic Eq. (2.9) will
then have to be replaced by an analogous one for piecewise analytic boundary.

Proof of Theorem 1.4 We have that E is the closure of a Jordan domain G bounded
by an analytic curve L with exterior �. It is well known that the conformal mapping
� : � → �, �(∞) = ∞, �′(∞) > 0, extends through L into G, so that � maps a
domain�r containing� conformally onto {|z| > r} for some r ∈ (0, 1). In particular,
the level curves of � denoted by Lρ are contained in G for all ρ ∈ (r , 1), L1 = L and
Lρ ⊂ � for ρ > 1.

For the proof that the series
∑∞

k=0 ak Bk(z) converges a.s. to an analytic function
f , we refer the reader to [8, Corollary 2.2].
We now show the result about L being the natural boundary of f . We will give

the proof for the basis of Faber and Bergman polynomials. The proof for the Szegő
polynomials is similar to the Bergman case but simpler.
Let

�(z) = z

cap(E)
+

∞∑

k=1

ck
zk

,
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for z in a neighborhood of infinity. Let Fn be the nth Faber polynomial. By definition,
Fn is the polynomial part of the Laurent expansion of �n at infinity,

�n(z) = Fn(z) + En(z), z ∈ �r , (2.15)

where En is analytic, consisting of all the negative powers of z in the expansion of
�n . Fix ε > 0 such that r + ε < 1. It follows that

En(z) = 1

2π i

∫

�r+ε

�n(t)

t − z
dt, z ∈ �ρ,

for r + ε < ρ. From the above integral representation it is clear that

|En(z)| ≤ |�r+ε |(r + ε)n

2πd(�r+ε, �ρ)
(2.16)

for z ∈ �ρ. Here d(�r+ε, �ρ) denotes the distance between �r+ε and �ρ. Using

(2.16) and the fact that lim sup |an| 1n = 1 a.s. (see Eq. (2.1)), we deduce that the series∑∞
k=0 ak Ek(z) converges a.s. in �ρ and defines a random analytic function there.

From Eq. (2.15) we know that for z ∈ G ∩ �ρ, r + ε < ρ < 1,

∞∑

k=0

ak Fk(z) =
∞∑

k=0

ak�
k(z) −

∞∑

k=1

ak Ek(z).

Now suppose that the series f = ∑∞
k=0 ak Fk(z) has an analytic continuation across

L = L1. Then, together with the fact that the second series on the right defines an
analytic function in �ρ, this implies that

∑∞
k=0 akw

k has an analytic continuation
across |w| = 1, where w = �(z). But this contradicts [2, Satz 8].

If {Bk}∞k=0 denotes the Bergman basis, then Carleman’s asymptotic formula (see
[3, Ch. 1]), yields

Bn(z) =
√
n + 1

π
�n(z)�′(z) (1 + en(z)) (2.17)

where

en(z) =
{
O(

√
n)rn, z ∈ Lρ, ρ > 1

O
(

1√
n

) (
r
ρ

)n
z ∈ Lρ, r < ρ < 1.

(2.18)

Using lim sup |an| 1n = 1 a.s. and estimates (2.18), we observe that the series

∞∑

n=0

an

√
n + 1

π
�n(z)�′(z)en(z)
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converges a.s. in a neighborhood of the boundary L, and defines an analytic function
there. Now from (2.17), we have

∞∑

n=0

an Bn(z) =
∞∑

n=0

an

√
n + 1

π
�n(z)�′(z) +

∞∑

n=0

an

√
n + 1

π
�n(z)�′(z)en(z)

for z ∈ G ∩ �ρ, r < ρ < 1. If the series
∑∞

n=0 an Bn(z) has an analytic continuation
across L, then combined with the fact that the second series on the right defines an

analytic function near L, we would obtain that
∑∞

n=0 an
√

n+1
π

�n(z)�′(z) and hence
∑∞

n=0 an
√

n+1
π

�n(z) has an analytic continuation across L. In other words, taking

w = �(z) the series
∑∞

n=0 an
√

n+1
π

wn has an analytic continuation across |w| = 1.
This contradicts known results on analytic continuation of power series stating that
the unit circle must be the natural boundary for the latter power series with probability
one, see [2, Satz 12]. Since the latter reference is not readily available, we give a
statement and a brief proof of the claimed fact in the concluding lemma below. 	

Lemma 2.4 Let {cn}∞n=0 be a sequence of complex numbers such that

lim
n→∞ |cn|1/n = 1. (2.19)

If {an}∞n=0 are i.i.d. complex random variables that are not a.s. constant, and that
satisfy E[log+ |a0|] < ∞, then the random power series

∞∑

n=0

ancnw
n (2.20)

has the unit circle as its natural boundary with probability one.

Proof We follow, in part, the argument of Kahane [6, p. 41]. Let � be the common
probability space in which all the random variables an are defined. Consider the “sym-
metrized” random power series

F(w) :=
∞∑

n=0

(an(ω1) − an(ω2)) cnw
n

=
∞∑

n=0

an(ω1)cnw
n −

∞∑

n=0

an(ω2)cnw
n =: f1(w) − f2(w),

where (ω1, ω2) ∈ �×�. Note that the random variables (an(ω1) − an(ω2)) cn, n =
0, 1, 2, . . . , are symmetric (a random variable X is symmetric if −X has the same
distribution). Moreover, (an(ω1) − an(ω2)) random variables are non-trivial i.i.d.,
because an are i.i.d., and are not almost surely constant. Since

E[log+ |an(ω1) − an(ω2)|] ≤ 2E[log+ |a0|] < ∞,
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we obtain from Lemma 2.1 that

lim sup
n→∞

|an(ω1) − an(ω2)|1/n = 1 a.s.

Combining this fact with (2.19), we conclude that the random power series F has
radius of convergence equal to 1 a.s. It is also clear that the same conclusion holds by
Lemma 2.1 for the series f1 and f2 that represent the original series (2.20) for different
events from �. Suppose to the contrary that the series (2.20) can be continued beyond
the unit circle with positive probability, which then holds almost surely by a zero-one
law as explained in [6, p. 39]. This means that there is an arc J of the unit circle such
that both series f1 and f2 can be continued analytically beyond J with probability
one. Hence F can be continued analytically beyond J with probability one, which is
in direct contradiction with [6, p. 40, Theorem 1]. 	

Remark Since the submission of this article, it has come to the authors’ notice that
Theorem 1.1 has recently been shown in full generality in the preprint https://arxiv.
org/pdf/1901.07614.pdf.
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