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Abstract
In this paper, we study the existence of entire solutions of finite-order of non-linear
difference equations of the form

f n(z) + q(z)�c f (z) = p1e
α1z + p2e

α2z, n ≥ 2

and

f n(z) + q(z)eQ(z) f (z + c) = p1e
λz + p2e

−λz, n ≥ 3

where q, Q are non-zero polynomials, c, λ, pi , αi (i = 1, 2) are non-zero constants
such that α1 �= α2 and �c f (z) = f (z+ c)− f (z) �≡ 0. Our results are improvements
and complements of Wen et al. (Acta Math Sin 28:1295–1306, 2012), Yang and Laine
(Proc Jpn Acad Ser A Math Sci 86:10–14, 2010) and Zinelâabidine (Mediterr J Math
14:1–16, 2017).
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1 Introduction andMain Results

In this paper, we assume that the reader is familiar with the fundamental results and
standard notation of Nevanlinna theory [5,7,14]. In addition, we use ρ( f ) to denote
the order of growth of f and λ( f ) to denote the exponent of convergence of zeros
sequence of f . For simplicity, we denote by S(r , f ) any quantify satisfying S(r , f ) =
o(T (r , f )), as r → ∞, outside of a possible exceptional set of finite logarithmic
measure, we use S( f ) to denote the family of all small functions with respect to f .

Recently, many scholars have investigated solvability and existence of solutions of
non-linear differential equations or difference equations, see [3,4,8–12,16].

Exponential polynomials are important in complex analysis as they have many
interesting properties as mentioned, for example, in the paper [13] due to Wen, Heit-
tokangas and Laine. In this paper, we mainly give exact expressions of exponential
polynomial solutions of certain class of non-linear difference equations.

In [16], Yang and Laine proved the following result:

Theorem A A non-linear difference equation

f 3(z) + q(z) f (z + 1) = c sin bz, (1.1)

where q is a non-constant polynomial and b, c are non-zero complex constants,
Eq. (1.1) does not admit entire solutions of finite order. If q is a non-zero constant,
then Eq. (1.1) possesses three district entire solutions of finite order, provided b = 3πn
and q3 = (−1)n+1 27

4 c
2 for a non-zero integer n.

Given Theorem A, it is natural to ask about the solutions of the following more
general form

f n(z) + q(z)�c f (z) = p1e
λz + p2e

−λz, (1.2)

where q is a non-zero polynomial, c, λ, pi (i = 1, 2) are non-zero constants such that
�c f (z) = f (z + c) − f (z) �≡ 0 and n ≥ 2 is an integer.

In this paper, we study this problem and obtain the following result.

Theorem 1.1 Let n ≥ 2 be an integer, q be a non-zero polynomial, c, λ, p1, p2 be
non-zero constants. If there exists some entire solution f of finite order to Eq. (1.2),
such that �c f (z) = f (z + c) − f (z) �≡ 0, then q is a constant, and n = 2 or n = 3.
When n = 2, then

f (z) = q + c1e
λ
2 z + c2e

− λ
2 z,

where q4 = 4p1 p2, c21 = p1, c22 = p2, λc = 2kπ i , k ∈ Z and k is an odd.
When n = 3, then

f (z) = c1e
λ
3 z + c2e

− λ
3 z,
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Entire Solutions of Certain Type of Non-Linear Difference Equations 19

where q3 = 27
8 p1 p2, c31 = p1, c32 = p2, λc = 3kπ i , k ∈ Z and k is an odd.

More recently, Zinelâabidine showed in [17]:

Theorem B Let q be a polynomial, pi , αi (i = 1, 2) be non-zero constants such that
α1 ± α2 �= 0. If f is an entire solution of finite order of equation

f 3(z) + q(z)� f (z) = p1e
α1z + p2e

α2z, (1.3)

such that� f (z) = f (z+1)− f (z) �≡ 0, then q is a constant, and one of the following
relations holds:

1. f (z) = c1e
α1
3 z and c1(e

α1
3 − 1)q = p2, α1 = 3α2,

2. f (z) = c2e
α2
3 z and c2(e

α2
3 − 1)q = p1, α2 = 3α1, where c1, c2 are non-zero

constants satisfying c31 = p1, c32 = p2.

The aim of this paper is to study the difference equation

f 2(z) + q(z)�c f (z) = p1e
α1z + p2e

α2z, (1.4)

where q is a non-zero polynomial, c, pi , αi (i = 1, 2) are non-zero constants such that
α1 ± α2 �= 0 and �c f (z) = f (z + c) − f (z) �≡ 0. In fact, we prove the following
result.

Theorem 1.2 Let q beanon-zero polynomial, c, pi , αi (i = 1, 2)benon-zero constants
such that α1 ± α2 �= 0. If f is an entire solution of finite order of Eq. (1.4), such that
�c f (z) = f (z + c) − f (z) �≡ 0, then q is a constant, ρ( f ) = 1 and one of the
following conclusions holds:

1. f (z) = c1e
α1
2 z , and c1(e

α1
2 c − 1)q = p2, α1 = 2α2;

2. f (z) = c2e
α2
2 z , and c2(e

α2
2 c − 1)q = p1, α2 = 2α1, where c1, c2 are non-zero

constants satisfying c21 = p1, c22 = p2;
3.

T (r , ϕ) + S(r , f ) = κT (r , f ), 0 < κ ≤ 1, and

N

(
r ,

1

f

)
+ S(r , f ) = ιT (r , f ), 1 − κ

2
≤ ι ≤ 1,

where ϕ = α1α2 f 2 − 2(α1 + α2) f f ′ + 2( f ′)2 + 2 f f ′′.

Wen, Heittokangas and Laine [13] studied and classified the finite order entire
solutions f of equation

f n(z) + q(z)eQ(z) f (z + c) = P(z), (1.5)

where q, Q, P are polynomials, n ≥ 2 is an integer and c ∈ C\{0}, and obtained the
following Theorem C.
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Recall that a function f of the form

f (z) = P1(z)e
Q1(z) + · · · + Pk(z)e

Qk (z), (1.6)

where P ′
j s and Q′

j s are polynomials in z is called an exponential polynomial. Fur-
thermore, let


1 = {eα(z) + d : d ∈ C and α is a non-constant polynomial},

0 = {eα(z) : α is a non-constant polynomial}.

Theorem C (See [13]) Let n ≥ 2 be an integer, let c ∈ C\{0}, and let q, Q, P be
polynomials such that Q is not a constant and q �≡ 0. Then, we identify the finite order
entire solutions f of equation (1.5) as follows:

(a) Every solution f satisfies ρ( f ) = deg Q and is of mean type.
(b) Every solution f satisfies λ( f ) = ρ( f ) if and only if P �≡ 0.
(c) A solution belongs to 
0 if and only if P ≡ 0. In particular, this is the case if

n ≥ 3.
(d) If a solution f belongs to 
0 and if g is any other finite-order entire solution to

(1.5), then f = ηg, where ηn−1 = 1.
(e) If f is an exponential polynomial solution of the form (1.6), then f ∈ 
1.Moreover,

if f ∈ 
1\
0, then ρ( f ) = 1.

Anatural question to ask is about P(z) = p1eλz+p2e−λz in (1.5),whereλ, p1, p2 ∈
C\{0} are constants. We consider this question and obtain the following result.

Theorem 1.3 Let n ≥ 3 be an integer, let c, λ, p1, p2 ∈ C\{0} be constants and let
q, Q be polynomials such that Q is not a constant and q �≡ 0. If f is an entire solution
of finite order of the equation

f n(z) + q(z)eQ(z) f (z + c) = p1e
λz + p2e

−λz, (1.7)

then the following conclusions hold.

1. Every solution f satisfies ρ( f ) = deg Q = 1.

2. If a solution f belongs to 
0, then f (z) = e
λ
n z+B, Q(z) = − n+1

n λz + b or

f (z) = e− λ
n z+B, Q(z) = n+1

n λz + b, where b, B ∈ C.

Remark 1.1 We conjecture that if n = 2, the conclusions of Theorem 1.3 are still valid,
although we have not found a suitable method of proof yet. For example, f (z) = ez

is an entire solution of finite order of the difference equation

f 2(z) + 2e−3z f (z − log 2) = e2z + e−2z,

and f (z) = ez + e−z is an entire solution of finite order of the difference equation

f 2(z) + 2ez f (z + π i) = −e2z + e−2z .
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Entire Solutions of Certain Type of Non-Linear Difference Equations 21

The following example shows that our estimates in Theorem 1.3 are accurate.

Example 1.1 If f (z) = ez is an entire solution of finite order of the difference equation

f 3(z) + 1

2
e−4z f (z + log 2) = e3z + e−3z,

where λ = 3, n = 3, b = B = 0, then f (z) = e
λ
n z+B = ez , Q(z) = − n+1

n λz + b =
−4z and ρ( f ) = deg Q = 1.

2 Some Lemmas

Lemma 2.1 (Clunie′s Lemma) (See [1], [7, Lem. 2.4.2]) Let f be a transcendental
meromorphic solution of

f n(z)P(z, f ) = Q(z, f ),

where P(z, f ) and Q(z, f ) are polynomials in f and its derivatives withmeromorphic
coefficients, say {aλ|λ ∈ I }, such that m(r , aλ) = S(r , f ) for all λ ∈ I . If the total
degree of Q(z, f ) as a polynomial in f and its derivatives is at most n, then

m(r , P(z, f )) = S(r , f ). (2.1)

Lemma 2.2 (See [6, Cor. 3.3]) Let f be a non-constant finite order meromorphic
solution of

f n(z)P(z, f ) = Q(z, f ),

where P(z, f ) and Q(z, f ) are difference polynomials in f with small meromorphic
coefficients, and let c ∈ C, δ < 1. If the total degree of Q(z, f ) as a polynomial in f
and its shifts at most n, then

m(r , P(z, f )) = o

(
T (r + |c|, f )

r δ

)
+ o(T (r , f )) (2.2)

for all r outside of a possible exceptional set with finite logarithmic measure.

Remark 2.1 In Lemma 2.2, if f is a transcendental meromorphic function with finite
order ρ, and P(z, f ), Q(z, f ) are differential-difference polynomials in f , then by
the same reasoning as in the proof of Lemma 2.1, we also obtain the conclusion (2.2).
Furthermore, if the coefficients of P(z, f ) and Q(z, f ) are polynomials A j , j =
1, . . . , n, for each ε > 0, then (2.2) can be written as:

m(r , P(z, f )) = O(rρ−1+ε) + O

⎛
⎝ n∑

j=1

m(r , A j )

⎞
⎠ , (2.3)

where r is sufficiently large.
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Lemma 2.3 (See [15, Thm. 1.51]) Suppose that f1, f2, . . . , fn(n ≥ 2) are mero-
morphic functions and g1, g2, . . . , gn are entire functions satisfying the following
conditions:

1.
n∑
j=1

f jeg j ≡ 0.

2. g j − gk are not constants for 1 ≤ j < k ≤ n.
3. For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r , f j ) = o(T (r , egh−gk )) (r → ∞, r /∈ E),

where E ⊂ [1,∞) is finite linear measure or finite logarithmic measure.
Then f j ≡ 0 ( j = 1, . . . , n).

Lemma 2.4 (See [11, Lem. 6]) Suppose that f is a transcendental meromorphic
function, a, b, c, d are small functions with respect to f and acd �≡ 0. If

a f 2 + b f f ′ + c( f ′)2 = d, (2.4)

then

c(b2 − 4ac)
d ′

d
+ b(b2 − 4ac) − c(b2 − 4ac)′ + (b2 − 4ac)c′ = 0. (2.5)

Lemma 2.5 (See [2, Cor. 2.6]) Let η1, η2 be two complex numbers such that η1 �= η2
and let f be a finite order meromorphic function. Let ρ be the order of f . Then for
each ε > 0, we have

m

(
r ,

f (z + η1)

f (z + η2)

)
= O(rρ−1+ε). (2.6)

Using an argument similar to that used in [3, Lem. 2.3], we get the following result.

Lemma 2.6 Let n ≥ 1 be an integer, λ be a non-zero constant and H be a non-zero
polynomial. Then, the differential equation

λ2 f − n2 f ′′ = H (2.7)

has a special solution c0 which is a non-zero polynomial.

3 Proof of Theorem 1.1

Denote P = q�c f . Suppose that f is a transcendental entire solution of finite order
of Eq. (1.2). Differentiating (1.2), we have

n f n−1 f ′ + P ′ = λ(p1e
λz − p2e

−λz). (3.1)
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Differentiating (3.1) yields

n(n − 1) f n−2( f ′)2 + n f n−1 f ′′ + P ′′ = λ2(p1e
λz + p2e

−λz). (3.2)

It follows from (1.2) and (3.1) that

λ2 f 2n − n2 f 2(n−1)( f ′)2

+2λ2P f n − 2nP ′ f n−1 f ′ + λ2P2 − (P ′)2 − 4λ2 p1 p2 = 0. (3.3)

It follows from (1.2) and (3.2) that

λ2 f n − n(n − 1) f n−2( f ′)2 − n f n−1 f ′′ + λ2P − P ′′ = 0. (3.4)

Eliminating ( f ′)2 from (3.3) and (3.4) yields

f 2n−1ϕ = Q(z, f ), (3.5)

where

ϕ = λ2 f − n2 f ′′ (3.6)

and

Q(z, f ) = [(n − 2)λ2P + nP ′′] f n − 2n(n − 1)P ′ f n−1 f ′

+(n − 1)[λ2P2 − (P ′)2 − 4λ2 p1 p2], (3.7)

Q(z, f ) is a differential-difference polynomial in f and the total degree is at most
n + 1. Note that when n ≥ 2, then 2n − 1 ≥ n + 1, by Lemma 2.2 and Remark 2.1,
we have m(r , ϕ) = S(r , f ); therefore, T (r , ϕ) = S(r , f ). We distinguish two cases
below:

Case 1 If ϕ ≡ 0, i.e. λ2 f −n2 f ′′ ≡ 0. Every entire solution f ( �≡ 0) of this equation
can be expressed as:

f (z) = c1e
λ
n z + c2e

− λ
n z, (3.8)

where c1, c2 are non-zero constants. Otherwise, if one of c1, c2 is equal to zero, sub-
stituting (3.8) into (1.2) and using Lemma 2.3, we obtain a contradiction.

When n = 3, then f (z) = c1e
λ
3 z + c2e− λ

3 z , substituting this into (1.2) yields

(c31 − p1)e
λz + (c32 − p2)e

−λz + c1
[
q(z)

(
e

λ
3 c − 1

)
+ 3c1c2

]
e

λ
3 z

+ c2
[
q(z)

(
e− λ

3 c − 1
)

+ 3c1c2
]
e− λ

3 z = 0. (3.9)
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It follows from (3.9) and Lemma 2.3 that

⎧⎪⎪⎨
⎪⎪⎩

c31 = p1, c32 = p2;
c1

[
q(z)

(
e

λ
3 c − 1

)
+ 3c1c2

]
≡ 0;

c2
[
q(z)

(
e− λ

3 c − 1
)

+ 3c1c2
]

≡ 0.

Note that c1, c2 ∈ C\{0}, then q(z)(e
λ
3 c − 1) = q(z)(e− λ

3 c − 1) = −3c1c2 �= 0, q(z)
reduces to a constant q and λc = 3kπ i , k ∈ Z\{0} and k is an odd, q3 = 27

8 p1 p2.

When n = 2l(l ≥ 1) is even, f (z) = c1e
λ
2l z + c2e− λ

2l z . Substituting this into (1.2)
yields

(c2l1 − p1)e
λz + (c2l2 − p2)e

−λz +
2l−1∑
k=1

(
k

2l

)
c2l−k
1 ck2e

2l−2k
2l λz

+c1q(z)(e
λc
2l − 1)e

λz
2l + c2q(z)

(
e− λc

2l − 1
)
e− λz

2l = 0. (3.10)

If k = l, then
∑2l−1

k=1

( k
2l

)
c2l−k
1 ck2e

2l−2k
2l λz must have a constant term. That is

( l
2l

)
cl1c

l
2 =

(2l)!
l!l! (c1c2)l . By Lemma 2.3, we obtain c1c2 = 0, a contradiction.

When n = 2l + 1(l ≥ 2) is odd, f (z) = c1e
λ

2l+1 z + c2e
− λ

2l+1 z . Substituting this
into (1.2) yields

2l+1∑
k=0

(
k

2l + 1

)
c2l+1−k
1 ck2e

2l+1−2k
2l+1 λz + c1q(z)

(
e

λc
2l+1 − 1

)
e

λz
2l+1

+ c2q(z)
(
e− λc

2l+1 − 1
)
e− λz

2l+1 = p1e
λz + p2e

−λz,

i.e.

(
c2l+1
1 − p1

)
eλz +

(
c2l+1
2 − p2

)
e−λz +

2l∑
k=1

k �=l,l+1

(
k

2l + 1

)
c2l+1−k
1 ck2e

2l+1−2k
2l+1 λz

+
[
c1q(z)

(
e

λc
2l+1 − 1

)
+

(
l

2l + 1

)
cl+1
1 cl2

]
e

λz
2l+1

+
[
c2q(z)

(
e− λc

2l+1 − 1
)

+
(
l + 1

2l + 1

)
cl1c

l+1
2

]
e− λz

2l+1 = 0.

(3.11)

Since l ≥ 2, then
∑2l

k=1
k �=l,l+1

( k
2l+1

)
c2l+1−k
1 ck2e

2l+1−2k
2l+1 λz contains at least two terms.

By Lemma 2.3, we have
( k
2l+1

)
c2l+1−k
1 ck2 = 0, k �= l, l + 1, k = 1, . . . , 2l. Then,

c1c2 = 0, a contradiction.
Case 2As in the beginning of the proof of Theorem 1.2 below, we obtain ρ( f ) = 1.

If ϕ �≡ 0, since f is a transcendental entire function with order ρ( f ) = 1, we see that
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(3.5) satisfies the conditions of Lemma 2.2 and Remark 2.1. Thus, we have

m(r , λ2 f − n2 f ′′) = S(r , f ) + O(m(r , q)) = O(log r),

which implies that λ2 f − n2 f ′′ is a polynomial. Denote

λ2 f − n2 f ′′ = H , (3.12)

where H is a non-zero polynomial. By Lemma 2.6, we see that (3.12) must have a
non-zero polynomial solution, say, c0(z). Since the differential equation

λ2 f − n2 f ′′ = 0,

has two fundamental solutions

f1(z) = e
λ
n z, f2(z) = e− λ

n z,

the general entire solution f ( �≡ 0) of (3.12) can be expressed as:

f (z) = c0(z) + c1e
λ
n z + c2e

− λ
n z, (3.13)

where c1, c2 are non-zero constants, c0(z) is a non-zero polynomial. Otherwise, if one
of c1, c2 is equal to zero, substituting (3.13) into (1.2) and using Lemma 2.3, we obtain
a contradiction.

When n = 2, then f (z) = c0(z) + c1e
λ
2 z + c2e− λ

2 z . Substituting this into (1.2)
yields

(c21 − p1)e
λz + (c22 − p2)e

−λz + c20(z) + q(z)[c0(z + c) − c0(z)] + 2c1c2

+c1[q(z)(e
λc
2 − 1) + 2c0(z)]e λ

2 z + c2
[
q(z)

(
e− λc

2 − 1
)

+ 2c0(z)
]
e− λ

2 z = 0.

(3.14)

It follows from (3.14) and Lemma 2.3 that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c21 = p1, c22 = p2;
c20(z) + q(z)[c0(z + c) − c0(z)] + 2c1c2 ≡ 0;
c1[q(z)(e

λc
2 − 1) + 2c0(z)] ≡ 0;

c2[q(z)(e− λc
2 − 1) + 2c0(z)] ≡ 0.

Note that c1, c2 ∈ C\{0}, then q(z)(e
λc
2 − 1) ≡ q(z)(e− λc

2 − 1) ≡ −2c0(z) �≡ 0, that
is q(z) ≡ c0(z) and λc = 2kπ i , k ∈ Z\{0} and k is odd. Substituting q(z) ≡ c0(z)
into c20(z) + q(z)[c0(z + c) − c0(z)] + 2c1c2 ≡ 0 yields c0(z + c)c0(z) + 2c1c2 ≡ 0.
Then, c0(z) must be a non-zero constant. Therefore, c40 = q4 = 4c21c

2
2 = 4p1 p2.
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When n ≥ 3, then 2n−2 ≥ n+1, it follows from (3.5) that f 2n−2( f ϕ) = Q(z, f ).
By Lemma 2.2 and Remark 2.1, we havem(r , f ϕ) = S(r , f ). Therefore, T (r , f ϕ) =
S(r , f ). Since ϕ �≡ 0, then T (r , f ) = m(r , f ) ≤ m(r , f ϕ) +m

(
r , 1

ϕ

)
≤ T (r , ϕ) +

S(r , f ) = S(r , f ), which gives a contradiction.
This completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Clearly, ρ(p1eα1z + p2eα2z) = 1, where α1 ± α2 �= 0. From (1.4) and Lemma 2.5,
we have

T (r , p1e
α1z + p2e

α2z) = T (r , f 2(z) + q(z)�c f (z))

≤ T (r , f 2) + m

(
r ,

q(z)�c f (z)

f

)
+ m(r , f ) + O(1)

≤ 3T (r , f ) + S(r , f ),

and

T (r , f 2(z) + q(z)�c f (z)) ≥ T (r , f 2) − T (r , q(z)�c f (z)) + O(1)

≥ 2T (r , f ) −
[
m

(
r ,

q(z)�c f (z)

f

)
+ m(r , f )

]
+ O(1)

≥ 2T (r , f ) − T (r , f ) + S(r , f ) = T (r , f ) + S(r , f ),

i.e.

T (r , f ) + S(r , f ) ≤ T (r , p1e
α1z + p2e

α2z) ≤ 3T (r , f ) + S(r , f ),

thus, ρ( f ) = 1. Denote P = q�c f . Suppose that f is a transcendental entire solution
of finite order of equation (1.4). By differentiating (1.4), we have

2 f f ′ + P ′ = α1 p1e
α1z + α2 p2e

α2z . (4.1)

Eliminating eα2z from (1.4) and (4.1), we have

α2 f
2 − 2 f f ′ + α2P − P ′ = (α2 − α1)p1e

α1z . (4.2)

Differentiating (4.2) yields

2α2 f f
′ − 2( f ′)2 − 2 f f ′′ + α2P

′ − P ′′ = α1(α2 − α1)p1e
α1z . (4.3)

It follows from (4.2) and (4.3) that

ϕ(z) = Q(z, f ), (4.4)
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where

ϕ(z) = α1α2 f
2 − 2(α1 + α2) f f

′ + 2( f ′)2 + 2 f f ′′ (4.5)

and

Q(z, f ) = −α1α2P + (α1 + α2)P
′ − P ′′. (4.6)

We distinguish two cases below:
Case 1 If ϕ ≡ 0, then Q(z, f ) ≡ 0. Since α1 �= α2, we see that α1P − P ′ ≡ 0 and

α2P − P ′ ≡ 0 cannot hold simultaneously. Suppose that α2P − P ′ �≡ 0. By (4.6), we
have

α2P − P ′ = Aeα1z, (4.7)

where A is a non-zero constant. Substituting (4.7) into (4.2), we have

f (α2 f − 2 f ′) = [(α2 − α1)p1 − A]α2

A
P − (α2 − α1)p1 − A

A
P ′. (4.8)

Since the right-hand side of (4.8) is a differential-difference polynomial in f of degree
at most 1, by Lemma 2.2 and Remark 2.1, we have

m(r , α2 f − 2 f ′) = S(r , f ).

Denote ψ = α2 f − 2 f ′. We consider two subcases as follows.
Subcase 1.1 If ψ ≡ 0, that is α2 f − 2 f ′ ≡ 0, then f 2 = p̃2eα2z, p̃2 ∈ C\{0}.

Substituting this and (4.7) into (1.4) yields

(
1 − p2

p̃2

)
f 2 = α2 p1 − A

A
P − p1

A
P ′.

If p2 �= p̃2, by Lemma 2.2 and Remark 2.1, we have T (r , f ) = m(r , f ) = S(r , f ),
a contradiction. Therefore, p2 = p̃2, f (z) = c2e

α2
2 z , c2(e

α2
2 c − 1)q = p1, c22 =

p2, α2 = 2α1.

Subcase 1.2 If ψ �≡ 0, then ψ ′ = α2 f ′ − 2 f ′′, f ′ = α2
2 f − ψ

2 , f ′′ = α2
2
4 f −

α2
4 ψ − ψ ′

2 . Note that ϕ ≡ 0 and substitute this into (4.5) gives

[(
α1 − α2

2

)
ψ − ψ ′] f = −ψ2

2
.

Sinceψ �≡ 0, then
(
α1 − α2

2

)
ψ−ψ ′ �≡ 0. From the above equality, we have T (r , f ) =

S(r , f ), which implies a contradiction.
Similarly, if α1P − P ′ �≡ 0, then we obtain f (z) = c1e

α1
2 z , c1(e

α1
2 c − 1)q = p2,

c21 = p1, α1 = 2α2.
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Case 2 If ϕ �≡ 0, by applying the lemma of logarithmic derivative and Lemma 2.2,
from (4.4)–(4.6), we have

m

(
r ,

ϕ

f

)
= m

(
r ,

Q

f

)
= S(r , f ) and m

(
r ,

ϕ

f 2

)
= S(r , f ).

Then

2m

(
r ,

1

f

)
= m

(
r ,

1

f 2

)
≤ m

(
r ,

ϕ

f 2

)
+ m

(
r ,

1

ϕ

)

≤ T (r , ϕ) + S(r , f ) = T (r , Q) + S(r , f )

≤ m

(
r ,

Q

f

)
+ m(r , f ) + S(r , f )

≤ T (r , f ) + S(r , f ).

(4.9)

Suppose that there exist κ, ι ≥ 0 such that

T (r , ϕ) + S(r , f ) = κT (r , f ), N

(
r ,

1

f

)
+ S(r , f ) = ιT (r , f ),

where 0 ≤ κ, ι ≤ 1. It follows from (4.9) that

2m

(
r ,

1

f

)
≤ T (r , ϕ) + S(r , f ) = κT (r , f )

and

T (r , f ) ≥ N

(
r ,

1

f

)
+ O(1) = T

(
r ,

1

f

)
− m

(
r ,

1

f

)
+ O(1)

≥ T (r , f ) − κ

2
T (r , f ) + O(1) =

(
1 − κ

2

)
T (r , f ) + O(1),

then we have 1 − κ
2 ≤ ι ≤ 1 and 0 ≤ κ ≤ 1.

Next, we deduce that κ �= 0.
If κ = 0, then T (r , ϕ) = S(r , f ). It follows from (4.9) that

m

(
r ,

1

f

)
= S(r , f ), T (r , f ) = N

(
r ,

1

f

)
+ S(r , f ).

By (4.5), if z0 is a multiple zero of f , then z0 must be a zero of ϕ. Hence, N(2

(
r , 1

f

)
=

S(r , f ). Differentiating (4.5) gives

ϕ′ = 2α1α2 f f
′ − 2(α1 + α2) f f

′′ − 2(α1 + α2)( f
′)2 + 6 f ′ f ′′ + 2 f f ′′′. (4.10)
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If z0 is a simple zero of f , it follows from (4.5) and (4.10) that z0 is a zero of
3ϕ f ′′ − [ϕ′ + (α1 + α2)ϕ] f ′. Define

α := 3ϕ f ′′ − [ϕ′ + (α1 + α2)ϕ] f ′

f
, (4.11)

then we have T (r , α) = S(r , f ). It follows that

f ′′ = 1

3

(
ϕ′

ϕ
+ α1 + α2

)
f ′ + α

3ϕ
f . (4.12)

Substituting (4.12) into (4.5) yields

a f 2 + b f f ′ + 2( f ′)2 = ϕ, (4.13)

where a = α1α2 + 2α
3ϕ , b = 2

3

[
ϕ′
ϕ

− 2(α1 + α2)
]
. By Lemma 2.4, we have

2(b2 − 8a)
ϕ′

ϕ
= 2(b2 − 8a)′ − b(b2 − 8a). (4.14)

Now, we distinguish two subcases below.
Subcase 2.1 Suppose that b2 − 8a �≡ 0. It follows from (4.14) that

4
ϕ′

ϕ
= 2(α1 + α2) + 3

(b2 − 8a)′

b2 − 8a
. (4.15)

By integration, we see that there exists a B ∈ C\{0} such that

e2(α1+α2)z = Bϕ4(b2 − 8a)−3, (4.16)

which implies e2(α1+α2)z ∈ S( f ), then α1 + α2 = 0, a contradiction.
Subcase 2.2 Suppose that b2 − 8a ≡ 0. Differentiating (4.13) yields

ϕ′ = a′ f 2 + (2a + b′) f f ′ + b( f ′)2 + b f f ′′ + 4 f ′ f ′′. (4.17)

Suppose z0 is a simple zero of f which is not the zero of a, b. It follows from (4.13)
and (4.17) that z0 is a zero of 2ϕ f ′′ − (

ϕ′ − b
2ϕ

)
f ′. Putting

β := 2ϕ f ′′ − (
ϕ′ − b

2ϕ
)
f ′

f
, (4.18)

we have T (r , β) = S(r , f ). It follows that

f ′′ =
(
1

2

ϕ′

ϕ
− b

4

)
f ′ + β

2ϕ
f . (4.19)
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Substituting (4.19) into (4.17) yields

ϕ′ = c f 2 + d f f ′ + 2
ϕ′

ϕ
( f ′)2, (4.20)

where c = a′ + bβ
2ϕ , d = 2a + b′ + b

2
ϕ′
ϕ

− b2
4 + 2β

ϕ
. Eliminating ( f ′)2 from (4.13) and

(4.20), we have

A(z) f (z) + B(z) f ′(z) ≡ 0, (4.21)

where

A(z) = c − a
ϕ′

ϕ
= a′ + bβ

2ϕ
− a

ϕ′

ϕ
,

B(z) = d − b
ϕ′

ϕ
= 2a + b′ − b

2

ϕ′

ϕ
− b2

4
+ 2β

ϕ
.

Note that A(z) and B(z) are small functions of f . If z0 is a simple zero of f and not
the zero of B(z), it follows from (4.21) that A(z) = B(z) ≡ 0. By (4.19), we have

f ′′ =
(
1

2

ϕ′

ϕ
− b

4

)
f ′ − 1

b

(
a′ − a

ϕ′

ϕ

)
f , (4.22)

where b = 2
3

[
ϕ′
ϕ

− 2(α1 + α2)
]

�≡ 0. Otherwise, e2(α1+α2)z = Cϕ ∈ S( f ), then

α1 + α2 = 0, a contradiction. Substituting b2 − 8a ≡ 0 into (4.22) yields

f ′′ = 1

3

(
ϕ′

ϕ
+ α1 + α2

)
f ′ − 1

6

[(
ϕ′

ϕ

)′
− 1

2

(
ϕ′

ϕ

)2

+ (α1 + α2)
ϕ′

ϕ

]
f . (4.23)

It follows from (4.12) and (4.23) that

α

ϕ
= −1

2

[(
ϕ′

ϕ

)′
− 1

2

(
ϕ′

ϕ

)2

+ (α1 + α2)
ϕ′

ϕ

]
. (4.24)

We deduce that ϕ′ �≡ 0. Otherwise, we assume that ϕ′ ≡ 0, then α
ϕ

≡ 0. Substituting

this into b2 − 8a ≡ 0 yields

2

(
α1

α2

)2

− 5
α1

α2
+ 2 = 0,

which implies that α1
α2

= 2 or α1
α2

= 1
2 . By substituting ϕ′ ≡ 0 into (4.23), we obtain

f ′′ = 1

3
(α1 + α2) f

′,
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then

f = 3C1

α1 + α2
e
1
3 (α1+α2)z + C2,

where C1,C2 ∈ C\{0}. Without loss of generality, when α1
α2

= 2, then

f = C1

α2
eα2z + C2.

Substituting this into (1.4) and using Lemma 2.3, we can obtain a contradiction.
Differentiating (4.24) gives

(
α

ϕ

)′
= −1

2

[(
ϕ′

ϕ

)′′
−

(
ϕ′

ϕ

)′
ϕ′

ϕ
+ (α1 + α2)

(
ϕ′

ϕ

)′]
.

It follows from b2 − 8a ≡ 0 that bb′ = 4a′, that is

(
α

ϕ

)′
= 1

6

(
ϕ′

ϕ

)′ [
ϕ′

ϕ
− 2(α1 + α2)

]
.

Putting γ := ϕ′
ϕ
and combining the above two equality yields

(α1 + α2)γ
′ = 2γ γ ′ − 3γ ′′. (4.25)

If γ ′ ≡ 0, then ϕ = C3eC4z, C3,C4 ∈ C. It follows from ϕ′ �≡ 0 that C3,C4 �= 0,
which implies that ϕ /∈ S( f ), a contradiction. If γ ′ �≡ 0, it follows from (4.25) that

e(α1+α2)z = C5ϕ
2

((
ϕ′

ϕ

)′)−3

, C5 ∈ C\{0},

which implies that e(α1+α2)z ∈ S( f ), then α1 + α2 = 0, a contradiction.
This completes the proof of Theorem 1.2.

5 Proof of Theorem 1.3

Suppose that f is a transcendental entire solution of finite order of Eq. (1.7). In what
follows, we consider three cases.

Case 1 If ρ( f ) < 1, using Lemma 2.5, from (1.7) we have

T (r , eQ(z)) = m(r , eQ(z)) = m

(
p1eλz + p2e−λz − f n(z)

q(z) f (z + c)

)
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≤ m

(
r ,

1

q(z) f (z + c)

)
+ m(r , p1e

λz + p2e
−λz)

+m(r , f n(z)) + O(1)

≤ m

(
r ,

f (z)

q(z) f (z + c)

)
+ m

(
r ,

1

f (z)

)
+ nT (r , f )

+2T (r , eλz) + S(r , eλz)

≤ 2T (r , eλz) + S(r , eλz) + (n + 1)T (r , f ) + S(r , f )

≤ 2T (r , eλz) + S(r , eλz),

then deg Q ≤ 1, note that deg Q ≥ 1, therefore deg Q = 1. Denote Q(z) = az +
b, a ∈ C\{0}, b ∈ C. Rewriting (1.7) in the following form:

f n(z) + q(z)eaz+b f (z + c) = p1e
λz + p2e

−λz (5.1)

and differentiating (5.1) we get

n f n−1 f ′ + A(z)eaz+b = λ(p1e
λz − p2e

−λz), (5.2)

where

A(z) = q ′(z) f (z + c) + aq(z) f (z + c) + q(z) f ′(z + c).

Eliminating eλz and e−λz from (5.1) and (5.2) yields

B(z)e2(az+b) + C(z)eaz+b + D(z) ≡ 0, (5.3)

where

⎧⎨
⎩

B(z) = λ2q2(z) f 2(z + c) − A2(z);
C(z) = 2λ2q(z) f n(z) f (z + c) − 2nA(z) f n−1(z) f ′(z);
D(z) = λ2 f 2n(z) − n2 f 2(n−1)(z)( f ′(z))2 − 4λ2 p1 p2.

(5.4)

Thus, from Lemma 2.3, we have

B(z) ≡ C(z) ≡ D(z) ≡ 0.

It follows from D(z) ≡ 0 that

f 2(n−1)(z)(λ2 f 2(z) − n2( f ′(z))2) ≡ 4λ2 p1 p2, n ≥ 3.

Using Lemma 2.1, we have

m(r , λ2 f 2(z) − n2( f ′(z))2) = S(r , f )
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and

m(r , f (z)(λ2 f 2(z) − n2( f ′(z))2)) = S(r , f ).

We deduce that λ2 f 2(z)−n2( f ′(z))2 �≡ 0. Otherwise, 4λ2 p1 p2 = 0, a contradiction.
Since f is entire,

T (r , f ) = m(r , f ) ≤ m(r , f (z)(λ2 f 2(z) − n2( f ′(z))2))

+m

(
r ,

1

λ2 f 2(z) − n2( f ′(z))2

)

≤ T (r , λ2 f 2(z) − n2( f ′(z))2) + S(r , f ) = S(r , f ),

a contradiction.
Case 2 If ρ( f ) > 1. Denote P(z) = p1eλz + p2e−λz , H(z) = q(z) f (z + c). It is

clear that ρ(P) = 1, then T (r , P) = S(r , f ). Equation (1.7) can be written as:

f n(z) + H(z)eQ(z) = P(z). (5.5)

Differentiating (5.5) yields

n f n−1(z) f ′(z) + L(z)eQ(z) = P ′(z), (5.6)

where L(z) = H ′(z) + Q′(z)H(z). Eliminating eQ(z) from (5.5) and (5.6), we have

f n−1(z)(L(z) f (z) − nH(z) f ′(z)) = P(z)L(z) − P ′(z)H(z). (5.7)

Note that n−1 ≥ 2 and P(z)L(z)− P ′(z)H(z) is a differential-difference polynomial
in f and the total degree is at most 1. By Lemma 2.2 and Remark 2.1, we obtain

m(r , L(z) f (z) − nH(z) f ′(z)) = S(r , f )

and

m(r , f (z)(L(z) f (z) − nH(z) f ′(z))) = S(r , f ).

If L(z) f (z) − nH(z) f ′(z) �≡ 0, then

T (r , f ) = m(r , f ) ≤ m(r , f (z)(L(z) f (z) − nH(z) f ′(z)))

+m

(
r ,

1

L(z) f (z) − nH(z) f ′(z)

)

≤ T (r , L(z) f (z) − nH(z) f ′(z)) + S(r , f ) = S(r , f ),

which yields a contradiction. If L(z) f (z) − nH(z) f ′(z) ≡ 0, then

q ′(z)
q(z)

+ Q′(z) + f ′(z + c)

f (z + c)
= n

f ′(z)
f (z)

.
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By integration, we see that there exists a C ∈ C\{0} such that

q(z) f (z + c)eQ(z) = C f n(z), C ∈ C\{0}. (5.8)

Substituting (5.8) into (1.7) gives

(1 + C) f n(z) = P.

If 1 + C �= 0, we have T (r , f ) = m(r , f ) = S(r , f ), a contradiction. If 1 + C = 0,
then P(z) = p1eλz + p2e−λz ≡ 0, a contradiction.

Case 3 If ρ( f ) = 1, by applying Lemma 2.5, from (1.7) we obtain

T (r , eQ(z)) = m(r , eQ(z)) = m

(
p1eλz + p2e−λz − f n(z)

q(z) f (z + c)

)

≤ m

(
r ,

1

q(z) f (z + c)

)
+ m(r , p1e

λz + p2e
−λz) + m(r , f n(z)) + O(1)

≤ m

(
r ,

f (z)

q(z) f (z + c)

)
+ m

(
r ,

1

f (z)

)
+ nT (r , f )

+2T (r , eλz) + S(r , eλz)

≤ (n + 1)T (r , f ) + S(r , f ) + 2T (r , eλz) + S(r , eλz).

Note that deg Q ≥ 1, then 1 ≤ deg Q = σ(eQ(z)) ≤ max{ρ(eλz), ρ( f )} = 1, that is
ρ( f ) = deg Q = 1.

If f belongs to 
0, and noting that ρ( f ) = deg Q = 1, we define f = eAz+B

and Q(z) = az + b, where a, A ∈ C\{0} and b, B ∈ C. Substituting these into (1.7)
yields

enBe(nA+λ)z + eAc+b+Bq(z)e(A+a+λ)z − p1e
2λz − p2 = 0. (5.9)

We distinguish four cases below.
Case 1 If nA + λ = 0 and A + a + λ = 0. By Lemma 2.3 and (5.9), we obtain

p1 = 0, a contradiction.
Case 2 If nA+λ = 0 and A+a+λ �= 0. If A+a+λ �= 2λ, by Lemma 2.3 and (5.9),

we have p1 = q(z) ≡ 0, a contradiction. If A+a+λ = 2λ, then A = −λ
n , a = n+1

n λ,
substituting these into (5.9) yields

(
q(z)eAc+b+B − p1

)
e2λz = p2 − enB,

by Lemma 2.3, we have p2 − enB ≡ q(z)eAc+b+B − p1 ≡ 0, then q(z) reduces to a

non-zero constant, and f (z) = e− λ
n z+B, Q(z) = n+1

n λz + b.
Case 3 If nA + λ �= 0 and A + a + λ = 0. If nA + λ �= 2λ, it follows from

Lemma 2.3 that p1 = 0, a contradiction. If nA + λ = 2λ, then A = λ
n , a = − n+1

n λ.
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Substituting these into (5.9) yields

(enB − p1)e
2λz = p2 − q(z)eAc+b+B,

by Lemma 2.3, we have enB − p1 ≡ p2 − q(z)eAc+b+B ≡ 0, then q(z) reduces to a

non-zero constant, and f (z) = e
λ
n z+B, Q(z) = − n+1

n λz + b.
Case 4 If nA+λ �= 0 and A+a+λ �= 0. If nA+λ, A+a+λ and 2λ are pairwise

distinct from each other, by Lemma 2.3 and (5.9), we have p1 = p2 ≡ q(z) ≡ 0,
a contradiction. If only two of nA + λ, A + a + λ and 2λ coincide, without loss of
generality, suppose that nA + λ = A + a + λ �= 2λ, then (5.9) can be written as:

(
enB + eAc+b+Bq(z)

)
e(nA+λ)z − p1e

2λz − p2 = 0.

From the above equality and using Lemma 2.3, we have p1 = p2 = 0, which implies
a contradiction. If nA + λ = A + a + λ = 2λ, then we write (5.9) as:

(
enB + eAc+b+Bq(z) − p1

)
e2λz − p2 = 0.

It follows from Lemma 2.3 that p2 = 0, a contradiction.
This completes the proof of Theorem 1.3.
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