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Abstract
In this paper, we study the existence of entire solutions of finite-order of non-linear
difference equations of the form

'@+ q@Af(2) = p1e®'* + pre®t, n>2
and
1@ +q@e?@fz+c) = pie" + pre™™, n=>3

where ¢, Q are non-zero polynomials, c, A, p;, «; (i = 1, 2) are non-zero constants
such that oy # ap and A; f(z) = f(z+c¢) — f(2) # 0. Our results are improvements
and complements of Wen et al. (Acta Math Sin 28:1295-1306, 2012), Yang and Laine
(Proc Jpn Acad Ser A Math Sci 86:10-14, 2010) and Zinelaabidine (Mediterr ] Math
14:1-16, 2017).
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1 Introduction and Main Results

In this paper, we assume that the reader is familiar with the fundamental results and
standard notation of Nevanlinna theory [5,7,14]. In addition, we use p(f) to denote
the order of growth of f and A(f) to denote the exponent of convergence of zeros
sequence of f. For simplicity, we denote by S(r, f) any quantify satisfying S(r, f) =
o(T(r, f)), as r — 00, outside of a possible exceptional set of finite logarithmic
measure, we use S(f) to denote the family of all small functions with respect to f.

Recently, many scholars have investigated solvability and existence of solutions of
non-linear differential equations or difference equations, see [3,4,8-12,16].

Exponential polynomials are important in complex analysis as they have many
interesting properties as mentioned, for example, in the paper [13] due to Wen, Heit-
tokangas and Laine. In this paper, we mainly give exact expressions of exponential
polynomial solutions of certain class of non-linear difference equations.

In [16], Yang and Laine proved the following result:

Theorem A A non-linear difference equation
@ +q@f@z+1) =esinbz, (1.1)

where q is a non-constant polynomial and b, c are non-zero complex constants,
Eq. (1.1) does not admit entire solutions of finite order. If q is a non-zero constant,
then Eq. (1.1) possesses three district entire solutions of finite order, provided b = 3mn
and ¢® = (—1)"*! %cz for a non-zero integer n.

Given Theorem A, it is natural to ask about the solutions of the following more
general form

"2+ q@AS (D) = pre® + pre 3, (1.2)

where ¢ is a non-zero polynomial, ¢, A, p; (i = 1, 2) are non-zero constants such that
Acf(z) = f(z+c¢) — f(z) #0and n > 2 is an integer.
In this paper, we study this problem and obtain the following result.

Theorem 1.1 Let n > 2 be an integer, g be a non-zero polynomial, c, ), p1, p2 be
non-zero constants. If there exists some entire solution f of finite order to Eq. (1.2),
such that A, f(z) = f(z+c¢) — f(z) # 0, then q is a constant, and n = 2 orn = 3.
When n = 2, then

A s
f(@) =q+cie?® + e 27,

where q4 =4p1pa, c% = pi1, c% = pa2, A\c = 2kmi, k € Z and k is an odd.
When n = 3, then

A A
f(2) =c1e3* + cpe™ 3%,
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Entire Solutions of Certain Type of Non-Linear Difference Equations 19

where ¢° = 2%plpz, c? = p1, cg = p2, Ac = 3kmi, k € Z and k is an odd.
More recently, Zinelaabidine showed in [17]:

Theorem B Let g be a polynomial, p;,a;(i = 1,2) be non-zero constants such that
a1 £ ap # 0. If f is an entire solution of finite order of equation

@+ q@Af(z) = pre®® + pre®, (1.3)

suchthat A f(z) = f(z+1)— f(z) # 0, then q is a constant, and one of the following
relations holds:

[!1 (xl
l. f@) =cie3%andci(e3 — 1)g = p2, a1 = 3a2,
/) @
2. f(2) = cxe3and c2(ed — 1)g = p1, ap = 3ay, where c1, ¢y are non-zero
constants satisfying c% =P, cg = po.

The aim of this paper is to study the difference equation

2@ 4+ @A f(2) = pre®? + pre®, (1.4)

where ¢ is a non-zero polynomial, ¢, p;, «; (i = 1, 2) are non-zero constants such that
a1 ax #0and A . f(z) = f(z4+¢) — f(z) # 0. In fact, we prove the following
result.

Theorem 1.2 Let g be anon-zero polynomial, c, p;, o (i = 1, 2) be non-zero constants
such that ay = ay # 0. If f is an entire solution of finite order of Eq. (1.4), such that
Acf(2) = f(z+c¢)— f(z) # 0, then q is a constant, p(f) = 1 and one of the
following conclusions holds:

@ o
L. f(z) =cie2% andci(e2“ — 1)q = pa, a1 = 2a;
%} [
2. f(z) = e?% and cp(e2€ — 1)g = p1, ay = 2ay, where ¢y, ca are non-zero
g D 2 .
constants satisfying c{ = p1, ¢5 = pa;
3.

Tr,o)+ S, f)=«T(, f), 0<k <1, and
N(r,%)—i—S(r,f):LT(r,f), 1—%95 1,

where ¢ = araa f2 — 2(a + ) ff' +2(f)* + 2 ff".

Wen, Heittokangas and Laine [13] studied and classified the finite order entire
solutions f of equation

") +q(2elP f(z+¢) = P(2), (1.5)

where g, Q, P are polynomials, n > 2 is an integer and ¢ € C\{0}, and obtained the
following Theorem C.
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20 M. Chen et al.

Recall that a function f of the form
f(@) = Pi(2)e2'@ + ... + P (2)e% @, (1.6)

where Pjs and Q';s are polynomials in z is called an exponential polynomial. Fur-
thermore, let '

' = {€*@ 4+ d : d € C and « is a non-constant polynomial},

Iy = {€*@ : « is a non-constant polynomial}.

Theorem C (See [13]) Let n > 2 be an integer, let ¢ € C\{0}, and let q, Q, P be
polynomials such that Q is not a constant and q # 0. Then, we identify the finite order
entire solutions f of equation (1.5) as follows:

(a) Every solution f satisfies p(f) = deg Q and is of mean type.

(b) Every solution f satisfies A(f) = p(f) if and only if P # Q.

(c) A solution belongs to T'g if and only if P = 0. In particular, this is the case if
n > 3.

(d) If a solution f belongs to I'g and if g is any other finite-order entire solution to
(1.5), then f = ng, where n"~! = 1.

(e) If f isan exponential polynomial solution of the form (1.6), then f € I'1. Moreover,
if f € 'i\Do, then p(f) = 1.

A natural question to ask is about P (z) = pi1e**+pre *?in(1.5), where A, p1, p> €
C\{0} are constants. We consider this question and obtain the following result.

Theorem 1.3 Let n > 3 be an integer, let ¢, A, p1, p2» € C\{0} be constants and let
q, Q be polynomials such that Q is not a constant and q # 0. If f is an entire solution
of finite order of the equation

1(2) + q(2e2@ f(z + ¢) = pr1e*? + pre ™%, (1.7)

then the following conclusions hold.

1. Every solution f satisfies p(f) =deg Q = 1.
2. If a solution f belongs to Ty, then f(z) = entB, 0(z) = _”ni])\z +bor
A
f@)=e "8, 0(z) = "T'HAZ + b, where b, B € C.
Remark 1.1 We conjecture that if n = 2, the conclusions of Theorem 1.3 are still valid,

although we have not found a suitable method of proof yet. For example, f(z) = e®
is an entire solution of finite order of the difference equation

fZ(Z) + Ze_SZf(z —log2) = e ye X,
and f(z) = e® + e * is an entire solution of finite order of the difference equation

F2(2) + 265 f(z + mi) = —eX + e 2,
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Entire Solutions of Certain Type of Non-Linear Difference Equations 21

The following example shows that our estimates in Theorem 1.3 are accurate.

Example 1.1 1f f(z) = e®is an entire solution of finite order of the difference equation
1
o+ Ee_4zf(z +1log2) =e¥ 4737,

where A =3, n =3, b=B =0, then f(z) =er*tB =¢%, Q(z) = — 2oz 4+ b =
—4zand p(f) =degQ = 1.

2 Some Lemmas

Lemma 2.1 (Clunie's Lemma) (See [1], [7, Lem. 2.4.2]) Let f be a transcendental
meromorphic solution of

["@P G, )= 0@, f).

where P(z, f)and Q(z, f) are polynomialsin f and its derivatives with meromorphic
coefficients, say {a,|» € I}, such that m(r,a;) = S(r, f) for all A € I. If the total
degree of Q(z, f) as a polynomial in f and its derivatives is at most n, then

m(r, P(z, f)) = S(r, f). 2.1

Lemma 2.2 (See [6, Cor. 3.3]) Let f be a non-constant finite order meromorphic
solution of

f"@Pz, )= 0@ f),

where P(z, f) and Q(z, f) are difference polynomials in f with small meromorphic
coefficients, and let c € C, § < 1. If the total degree of Q(z, f) as a polynomial in f
and its shifts at most n, then

m(r, PGz, f)) =0 (T(r+r—8lc|f>>

+o(T(r, ) 2.2)

for all r outside of a possible exceptional set with finite logarithmic measure.

Remark 2.1 In Lemma 2.2, if f is a transcendental meromorphic function with finite
order p, and P(z, f), Q(z, f) are differential-difference polynomials in f, then by
the same reasoning as in the proof of Lemma 2.1, we also obtain the conclusion (2.2).
Furthermore, if the coefficients of P(z, f) and Q(z, f) are polynomials A;, j =

1,...,n, foreach ¢ > 0, then (2.2) can be written as:
n
m(r, P(z, ) = 00" ")+ 0 | Y m(r. A | (2.3)
j=1

where r is sufficiently large.
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22 M. Chen et al.

Lemma 2.3 (See [15, Thm. 1.51]) Suppose that fi, fa,..., fu(n > 2) are mero-
morphic functions and g1, g2, ..., gn are entire functions satisfying the following
conditions:

n
1Y fies =0.
j=1

2. gj — gy are not constants for 1 < j <k <n.
3.For1 <j<n,1<h<k=<n,

T(r, fj)=o(T(r,e5" 8)) (r - oo,r ¢ E),

where E C [1, 00) is finite linear measure or finite logarithmic measure.
Then f;=0(j=1,...,n).

Lemma 2.4 (See [11, Lem. 6]) Suppose that f is a transcendental meromorphic
function, a, b, c, d are small functions with respect to f and acd # 0. If

af?> +bff +c(f)* =d, (2.4)

then

d/
c(b? — 4ac)g +b(b* — dac) — c(b® — 4ac) + b* —dac)d’ =0.  (2.5)

Lemma 2.5 (See [2, Cor. 2.6]) Let n1, n2 be two complex numbers such that n1 # n»
and let f be a finite order meromorphic function. Let p be the order of f. Then for
each ¢ > 0, we have

J@HnD)\ e
(- Ferm) — o e

Using an argument similar to that used in [3, Lem. 2.3], we get the following result.

Lemma 2.6 Let n > 1 be an integer, A be a non-zero constant and H be a non-zero
polynomial. Then, the differential equation

A f—n’f"=H .7

has a special solution coy which is a non-zero polynomial.

3 Proof of Theorem 1.1

Denote P = g A, f. Suppose that f is a transcendental entire solution of finite order
of Eq. (1.2). Differentiating (1.2), we have

nf" U+ P = a(pre? — preH). (3.1)
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Entire Solutions of Certain Type of Non-Linear Difference Equations 23

Differentiating (3.1) yields
n(n = D2 AT P =03 (e 4 peT) (B2)
It follows from (1.2) and (3.1) that

)\'2on _ n2f2(n—l)(f/)2
+222Pf" — 2P L A2P? — (P2 —4X2pipr=0.  (3.3)

It follows from (1.2) and (3.2) that
A —nn =D =+ 2P — P =0, (3.4)
Eliminating (f "2 from (3.3) and (3.4) yields
e =06 . (3.5)
where
o =2f —n?f" (3.6)
and

0z ) = [(n —2)A2P +nP"1f" —2n(n — HP' "L f/
+(n = DA2P? — (P))* — 422 p1 pal, (3.7)

0(z, f) is a differential-difference polynomial in f and the total degree is at most
n + 1. Note that when n > 2, then 2n — 1 > n + 1, by Lemma 2.2 and Remark 2.1,
we have m(r, ¢) = S(r, f); therefore, T (r, ¢) = S(r, f). We distinguish two cases
below:

CaselIfg = 0,i.e. A2 f —n? f” = 0. Every entire solution f (3 0) of this equation
can be expressed as:

P _k,
f@) =cren® +cre” n”, (3.8)
where c1, ¢ are non-zero constants. Otherwise, if one of c1, ¢ is equal to zero, sub-

stituting (3.8) into (1.2) and using Lemma 2.3, we obtain a contradiction.
When n = 3, then f(z) = cle-%z + cze_%z, substituting this into (1.2) yields

(] = P + (¢ = pe ™t et [4(2) (3~ 1) + Berea | e

te [q(z) (e—%c - 1) n 3(:1@] e 37 =0 3.9)
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24 M. Chen et al.

It follows from (3.9) and Lemma 2.3 that

¢} =p1.c3 = p;
c1lq(2) (e?c - l) + 3C1C2] =0;

2 |gq(2) (67%0 — ) + 3C1€2] =0.

Note that c1, ¢z € C\{0}. then g (2) (e3¢ — 1) = g(2)(e™3¢ — 1) = —3c1cy # 0.4(2)
reduces to a constant ¢ and Ac = 3kmi, k € Z\{0} and k is an odd, ¢° = %plpz.

When n =2I[(l > 1) iseven, f(z) = credit + cze_%z. Substituting this into (1.2)
yields

21—1
21 Az Az 20—k k2= 21()»1
(cf = pe* + (3 — pre ™ + E (21> che 7

+eig@)Eed — Ded + g () (e‘f — 1) e 7 =0. (3.10)

Itk =1 then Y g ' (5)c}™ kcke® 2% must have a constant term. That is (3)cheh =
@n!
T

When n = 21 + 1(I > 2) is odd, f(z) = c1eTT% 4 coe” 771%, Substituting this
into (1.2) yields

w1, I N .
Z C%I—H kclz(e e c14(2) (em - 1) et
= 2141

Ac A
+¢2q(2) (e_m - 1) e~ = prett 4 pre ™,

(clcz)’ . By Lemma 2.3, we obtain c¢jc; = 0, a contradiction.

i.e.
A+ Az 241 —z 21+1 k k22,
[ 4 Aol () +Z 21+1 e
k;él 1+1
AC l AZ 311
+ [c1q(z) (em — 1) + <21 N 1>c11+1c12] eZ+T ©-11)
c [+1
+ [czq(z) (e_%% — 1) + (2[:_ > c) 12“:| e 7T = 0.
Since [ > 2, then Z (2lﬁ_1) 2+1- kclz‘ez[;rlhrl2 2 contains at least two terms.
k;éll
By Lemma 2.3, we have (21{11)0%1“ kclzC =0,k #1,1l+1, k=1,...,2l. Then,

cico = 0, a contradiction.
Case 2 As in the beginning of the proof of Theorem 1.2 below, we obtain p(f) = 1.
If ¢ #£ 0, since f is a transcendental entire function with order p(f) = 1, we see that
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Entire Solutions of Certain Type of Non-Linear Difference Equations 25

(3.5) satisfies the conditions of Lemma 2.2 and Remark 2.1. Thus, we have
m(r, 22 f —n?f") = S(r, f) + On(r, q)) = O(logr),
which implies that A2 f — n? f” is a polynomial. Denote
A f—n’f'=H, (3.12)

where H is a non-zero polynomial. By Lemma 2.6, we see that (3.12) must have a
non-zero polynomial solution, say, co(z). Since the differential equation

)sz—nzf”zo,
has two fundamental solutions
Ly p
fi@) =en®, faz) =e %,

the general entire solution f( 0) of (3.12) can be expressed as:

A _x
f(@) =co(z) + cren® + cpe™ n%, (3.13)

where c1, ¢ are non-zero constants, co(z) is a non-zero polynomial. Otherwise, if one
of c1, 2 is equal to zero, substituting (3.13) into (1.2) and using Lemma 2.3, we obtain
a contradiction.

When n = 2, then f(z) = co(z) + cle:%Z + cze_%z. Substituting this into (1.2)
yields

(c% — p])e’xZ + (c% — pz)e_’\Z + c%(z) 4+ q(2)[co(z + ¢) — co(z)] + 2c12
talg@E® = 1) +200@e2 + e g (7% = 1) + 2000 |75 =0,
(3.14)

It follows from (3.14) and Lemma 2.3 that

C% = PI’C% = D2;

3@ +q@)lco(z + ) — co(2)] + 2c1c2 = 0;
cilg() s — 1) +2¢0(2)] = 0;
alg(@) e % = 1) +2¢0(2)] = 0.

Note that ¢1, ¢2 € C\{0}, then ¢(z)(e* — 1) = g(z)(e~ 3 — 1) = —2¢o(z) # 0, that
is ¢(z) = co(z) and Ac = 2kmi, k € Z\{0} and k is odd. Substituting g(z) = c(2)
into ¢3(2) + q(2)[co(z + ¢) — co(z)] + 2c1c2 = 0 yields co(z + ¢)cp(2) + 2c1c2 = 0.
Then, c¢(z) must be a non-zero constant. Therefore, cg = q4 = 4c%c% =4p1p>.
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26 M. Chen et al.

Whenn > 3, then 2n —2 > n+ 1, it follows from (3.5) that f2"~2(f¢) = Q(z, f).
By Lemma 2.2 and Remark 2.1, we have m(r, f¢) = S(r, f). Therefore, T (r, fo) =

S(r. f).Since ¢ £ 0,then T(r, ) =m(r, f) <m(r, f@)+m (r. ) < T, 0) +
S(@r, f) = S(r, f), which gives a contradiction.
This completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Clearly, p(p1e“? + pre®??) = 1, where o & oy # 0. From (1.4) and Lemma 2.5,
we have

T(r, p1e™* + p2e®) = T(r, f*(2) + ¢(D) Ac £ (2))
S T(r, f2) +m (r’ q(Z)ACf(Z)

7 >+M(r,f)+0(1)
< 3T, f)+ S, f),

and

T(r, f2(2) + @@ AN @) > T(r, ) —T(r, g2 A f(2) + O(1)

> 2T, f) — [m (r, Mff@) +mr, f)} + o)

>2T(r, f) =T, )+ S, f)=T@, f)+ S0, 1),
i.e.
T(r, )+ S, f) < T(r, p1e”* + p2e®®) <3T(r, )+ S(r, f),

thus, p(f) = 1. Denote P = g A f. Suppose that f is a transcendental entire solution
of finite order of equation (1.4). By differentiating (1.4), we have

2ff 4+ P' = aipie®? + oz pre®. .1
Eliminating e*?* from (1.4) and (4.1), we have
arf? = 2ff +arP — P' = (ay — a1) pre®’*. 4.2)
Differentiating (4.2) yields
20 ff' =200 =2ff" + P’ = P' =o1(@2 —ap)pre® . (43)
It follows from (4.2) and (4.3) that

¢(2) = Q(, f), 4.4

@ Springer



Entire Solutions of Certain Type of Non-Linear Difference Equations 27

where

() = i f7 = 2(a1 + @) ff' + 20 + 21" 4.5)
and
0(z, ) = —ajaaP + (a1 + o) P’ — P". (4.6)
We distinguish two cases below:
Case11If ¢ = 0, then Q(z, f) = 0. Since a1 # ap, we see that ¢; P — P’ = 0 and

ap P — P’ = 0 cannot hold simultaneously. Suppose that oy P — P’ # 0. By (4.6), we
have

ar P — P/ = Ae”?, 4.7
where A is a non-zero constant. Substituting (4.7) into (4.2), we have

(@ —e)pi = Aley [, (@2 —a)pr— A

P 4.8
" " (4.8)

flaf —2f) ="

Since the right-hand side of (4.8) is a differential-difference polynomial in f of degree
at most 1, by Lemma 2.2 and Remark 2.1, we have

m(rsa2f_2f/)=S(rsf)-

Denote ¥ = ap f — 2 f'. We consider two subcases as follows.
Subcase 1.1 If ¥ = 0, thatis an f — 2f = 0, then f2 = pre®?, p, € C\{0}.
Substituting this and (4.7) into (1.4) yields

—A
(1 - Q) =t Plp
123 A A
If po # p»2, by Lemma 2.2 and Remark 2.1, we have T'(r, ) = m(r, f) = S(r, f),
a contradiction. Therefore, pp = ps, f(z) = czeTzz, cz(eTZC - g = pi, c% =
P2, a2 =20y ,
Subca/se 121f ¢ # 0, then ' = o f' = 2f", f' = Ff — % = oszf —
“j‘—zlﬂ — "’7 Note that ¢ = 0 and substitute this into (4.5) gives

Since ¢ # 0, then (al — “72) ¥ —¢’ # 0.From the above equality, we have T'(r, f) =
S(r, f), which implies a contradiction.

Similarly, if a1 P — P’ # 0, then we obtain f(z) = cie 2%, c1(e 2¢ — 1)g = pa,
c% = p1, a1 = 207.
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28 M. Chen et al.

Case 2 If ¢ # 0, by applying the lemma of logarithmic derivative and Lemma 2.2,
from (4.4)—(4.6), we have

m (r, ?) =m (r, %) =S8, f) and m (r, %) =S, f).

2m<r l):m(r i><m<r i)—i—m(r l)
'F p2) =g "o
<T@, o+ S8, f)=TF, 0)+ S, f)

<m <r, %) +m(r, )+ S, f)
< T(r. )+ S, f).

Then

4.9)

Suppose that there exist «, ¢ > 0 such that

T(r,o)+ S, f)=«T@, f), N <r, %) + S, f) =T, f),

where 0 < «, ¢ < 1. It follows from (4.9) that

2m (r, %) <Tr,o)+ S, f)=«T(r, f)
and
T(r f)>N(r l)—i—O(l)—T(r l)—m(r l>—|—0(1)
T f a f f
=T )= 570 )+ 0 = (1-3)T¢. )+ 0,

then we have 1 — % <i<land0<«k <1.
Next, we deduce that « # 0.
Ifk =0,then T(r, p) = S(r, f). It follows from (4.9) that

m <r, %) =S, f), T(r,f)=N (r, %) + S, ).

By (4.5), if zg is a multiple zero of f, then zo must be a zero of ¢. Hence, N, (r, %) =
S(r, f). Differentiating (4.5) gives

o' =2a100 ff' —2(a1 + @) ff" — 201 +a2)(f)? +6f f 4+ 2ff". (4.10)
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If zo is a simple zero of f, it follows from (4.5) and (4.10) that zo is a zero of
3pf" —[¢'+ (a1 +a2)¢] f'. Define

v 3pf" — ¢+ (a1 + a2)el f’

, 4.1D)
f
then we have T'(r, @) = S(r, f). It follows that
" 1 (p/ / o
=z (E+atm)f+f (“.12)
3\ 3¢
Substituting (4.12) into (4.5) yields
af> +bff +2() = ¢, (4.13)
where a = ajar + %—g, b= % [% —2(a; + az)]. By Lemma 2.4, we have
/
2% — 8a) L = 20> — 8a) — b(b? — 8a). 4.14)
@
Now, we distinguish two subcases below.
Subcase 2.1 Suppose that b> — 8a = 0. It follows from (4.14) that
(p/ (b2 _ 861)/
4— =2(a1 + o) +3—5———. 4.15)
© b* — 8a
By integration, we see that there exists a B € C\{0} such that
e2@te — put(p? — 8q) 73, (4.16)
which implies e2ltm)z ¢ g (f), then @1 + ap = 0, a contradiction.
Subcase 2.2 Suppose that b> — 8a = 0. Differentiating (4.13) yields
¢ =d f2+ Qa+b) [ + b +bff" + 45 f". 4.17)

Suppose zg is a simple zero of f which is not the zero of a, b. It follows from (4.13)
and (4.17) that zg is a zero of 2¢ f” — (¢’ — %go) f'. Putting

= , 4.18
B 7 (4.18)
we have T'(r, B) = S(r, f). It follows that
o (LN B
= (2 o 4> [+ 2<pf' (4.19)
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Substituting (4.19) into (4.17) yields

¢ =cf2+dff +22 (f "2, (4.20)
bB , _ 2,3 2
where c = a’ +5 30 ,d=2a+b + Z T . Eliminating ( f’)* from (4.13) and
(4.20), we have
A(2) f(2) + B(2) f'(2) =0, (4.21)
where
/ b /
AR =c—a’ =a’+—ﬁ—a£,
@ 2¢ @
! b > 2
B(z)=d—b% =2a+b — g——+—’3.
@ 29 4 9

Note that A(z) and B(z) are small functions of f. If z¢ is a simple zero of f and not
the zero of B(z), it follows from (4.21) that A(z) = B(z) = 0. By (4.19), we have

w_(Le b\ L, ¢
f_(2¢ 4)f (a aw)f’ ¢-22)

where b = %[— —2a +a2)] £ 0. Otherwise, e2@1 4@ = Cg € S(f), then
o1 + az = 0, a contradiction. Substituting b? — 8a = Ointo (4.22) yields

/ N/ N\ 2 /
f”=1<ﬁ+m+az) - <ﬂ> —1@) @+ |f @23
3\o 6(\g 2\p ¥

It follows from (4.12) and (4.23) that

1 N/ 7\ 2 ’
«_ ! ("L> ! (3> +@tan?|. (4.24)
7 2 1) 2\ (2

We deduce that ¢" # 0. Otherwise, we assume that ¢’ = 0, then % = 0. Substituting

this into b> — 8a = 0 yields
2
1 o]
2(_) —5% 4o,
2 2%)

which implies that §+ =2 or ¢l = % By substituting ¢’ = 0 into (4.23), we obtain

]

)

1
= 5(061 +a2) f',
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then

3Cy

1
— e3(atan)z Cs,
o] + o

where Cy, C; € C\{0}. Without loss of generality, when % = 2, then

C
f= _leazz + Cy.
o

Substituting this into (1.4) and using Lemma 2.3, we can obtain a contradiction.
Differentiating (4.24) gives

()30 () 5 e (5]

It follows from b% — 8a = 0 that bb’ = 4d’, that is

(5) =5(5) |5 —2even]
@ 6\ ®

Putting y := % and combining the above two equality yields

(a1 + o)y’ =2yy" = 3y". (4.25)

If y/ = 0, then ¢ = C3¢%4%, C3, C4 € C. It follows from ¢’ # 0 that C3, C4 # 0,
which implies that ¢ ¢ S(f), a contradiction. If y” # 0, it follows from (4.25) that

N\ -3
elntanz _ C5§02 ((gi) ) , Cs € C\{0},
®

which implies that (17922 ¢ §(f), then a; 4+ a» = 0, a contradiction.
This completes the proof of Theorem 1.2.

5 Proof of Theorem 1.3

Suppose that f is a transcendental entire solution of finite order of Eq. (1.7). In what
follows, we consider three cases.
Case 1If p(f) < 1, using Lemma 2.5, from (1.7) we have

Az =iz _ fn
T(r, e2®) = m(r, e2@) = m (me + pae f @)

q@) f(z+c)
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1 Az —Az
= <r’ PEIIE +c)> +mlr, pet 4 pre )

+m(r, "(2)) + O(1)

f(@ 1
= <r’ Y c)> o <r’ %) +rl(r 1)

+2T (r, ") + S(r, ")

<2T(r, &) + S, e+ + DT, f)+ S, f)

< 2T(r,e") + S(r,e*),

then deg Q < 1, note that deg O > 1, therefore deg Q = 1. Denote Q(z) = az +

b, a € C\{0}, b € C. Rewriting (1.7) in the following form:

F'@) + 4@ [z +€) = pre?t + preH
and differentiating (5.1) we get

nf" N+ AR = M1t — pre),
where

A@) =4 @f+ ) +ag@) fz+0)+q@) f'(z+0).
Eliminating e** and e ™ from (5.1) and (5.2) yields
B(2)e” ™t + C(2)e* ™" + D(2) = 0,

where

B(z) = ¥*¢*(2) f2(z 4+ ¢) — A%(2);

C(z) =222q(2) f"(2) f (2 + ©) = 2nAQR) "' () f(2):

D(z) = A2 f2"(2) — n? f2" D (2) (f'(2))* — 442 p1 p2.
Thus, from Lemma 2.3, we have

B(z) =C(x) = D(z) = 0.

It follows from D(z) = 0 that

L@ @) = nP(f1(2)7) =402 pipa. n = 3.
Using Lemma 2.1, we have

m(r, A f2(2) — n*(f'(2)*) = S@r, f)
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and

m(r, f(2)O2f2@) —n*(f'@)D) = S, f).

We deduce that A% f2(z) —n?(f'(z))? # 0. Otherwise, 4A% p; p> = 0, a contradiction.
Since f is entire,

T(r, f) =m(r, f) <m(r, fQA 2 (2) —n*(f' @))

1
o (r’ 2720 - n2(f/(z))2>
STE 2 2@ —n(f @)) + S, f) = S(r. f).
a contradiction.
Case 2 If p(f) > 1. Denote P(z) = p1e** + pre ™, H(z) = q(2) f(z +¢). Itis
clear that p(P) = 1, then T(r, P) = S(r, f). Equation (1.7) can be written as:
(@) + H(2)e?® = P(z). (5.5)
Differentiating (5.5) yields
nf" '@ f'@) + L(2)e?® = P'(2), (5.6)
where L(z) = H'(z) + Q'(z) H(z). Eliminating ¢2® from (5.5) and (5.6), we have
"ML f@) —nHE@) f'(2) = P(LE) — P () H(2). (5.7

Note thatn —1 > 2 and P(z)L(z) — P’(z) H (z) is a differential-difference polynomial
in f and the total degree is at most 1. By Lemma 2.2 and Remark 2.1, we obtain

m(r, L(2) f(z) —nH () f'(2)) = S(r, f)
and
m(r, f()(L(2) f(z) —nH () f'(2) = S(r, f).
If L(z) f(z) —nH(2) f'(z) # 0, then

T(r, f)=m(r, f) <m(r, f()(LE)f(2) —nH@) f(2)

o (n tra o)
L(z)f(z) —nH(2)f'(2)
<T@, L) f(z) —nH@) f' () + S, )=S0, f),

which yields a contradiction. If L(z) f(z) — nH (z) f'(z) = 0, then

9@ [+  f@
0@ O T
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By integration, we see that there exists a C € C\{0} such that
q(2) f(z+)e2@ = Cf"(z), C € C\{0}. (5.8)
Substituting (5.8) into (1.7) gives
(1+O) f"(2) = P.
If1+C #0,wehave T(r, f) =m(r, f) = S(r, f), acontradiction. If 1 + C =0,

then P(z) = p1e? + pre % = 0, a contradiction.
Case 3 If p(f) = 1, by applying Lemma 2.5, from (1.7) we obtain

Az —Az _ fn
T, e29)y =m@r,e€@)y =m (Ple + pae f (Z))

q()fz+0)

; rZ —AZ n
<m (r, EYTE +C)) +m(r, pie™ + pre™ ™) +m(r, f"(z)) + O(1)

f(@ 1
=" (r’ ETIE +c>) o (r’ %) e )
+27(r, e*) + S(r, e*%)

<m+ DT, )+ Sk, f)+2T(, ™) + S(r, ).

Note that deg Q > 1, then 1 < deg O = 0 (e2@) < max{p(e*), p(f)} = 1, that is
p(f) =degQ =1.

If f belongs to Iy, and noting that p(f) = deg Q@ = 1, we define f = e4?t8
and Q(z) = az + b, where a, A € C\{0} and b, B € C. Substituting these into (1.7)
yields

NBe(nA+IT | Actb+B Atathz _ 022 po ) (5.9)

q(2)e
We distinguish four cases below.
Case1IfnA+ A =0and A +a+ X2 = 0. By Lemma 2.3 and (5.9), we obtain
p1 = 0, a contradiction.
Case2IfnA+X1 =0and A4+a+A # 0.If A+a+A # 2A, by Lemma2.3 and (5.9),
we have p; = ¢(z) = 0, acontradiction. If A+a+A = 2A,then A = —%, a = "nil)x,
substituting these into (5.9) yields

(q(Z)eAc+b+B _ Pl) e = py — "B,

by Lemma 2.3, we have p, — ¢"8 = q(z)ectttB _ 1 =0, then ¢(z) reduces to a

non-zero constant, and f(z) = e_%”B, 0@k = ”nil)»z +b.
Case3IfnA+ X1 #0and A+a+ A = 0.If nA + 1 # 24, it follows from
Lemma 2.3 that p; = 0, a contradiction. If nA + A = 2A, then A = %, a= "ty

n
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Substituting these into (5.9) yields

"8 — pe* = py — q(z)et B,

by Lemma 2.3, we have "8 — p; = pr — g(2)eA“t?+8 = 0, then ¢(z) reduces to a

non-zero constant, and f(z) = e%”B, 0() = —”nil)q + b.

Cased4IfnA+Xr #0and A+a+ X #0.IfnA+A, A+a+ X and 2A are pairwise
distinct from each other, by Lemma 2.3 and (5.9), we have p; = p» = ¢(z) =0,
a contradiction. If only two of nA + A, A + a + A and 2 coincide, without loss of
generality, suppose that nA + 1 = A + a + A # 2A, then (5.9) can be written as:

<enB + eAc+b+Bq(Z)) e(MA+Mz _ ple%z — p2 =0.

From the above equality and using Lemma 2.3, we have p; = p> = 0, which implies
a contradiction. If nA + A = A 4+ a + A = 2, then we write (5.9) as:

(enB teActbrB () Pl) e _ py = 0.

It follows from Lemma 2.3 that p, = 0, a contradiction.
This completes the proof of Theorem 1.3.
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