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Abstract We discuss approximation of extremal functions by polynomials in the
weighted Bergman spaces Ap

α where −1 < α < min(0, p − 2). We obtain bounds on
how close the approximation is to the true extremal function in the Ap

α and uniform
norms. We also prove several results on the relation between the Bergman modulus of
continuity of a function and how quickly its best polynomial approximants converge
to it.
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1 Introduction

In this article we discuss uniform approximation of extremal functions in weighted
Bergman spaces. In general, we approximate these functions by solutions to extremal
problems restricted to spaces of polynomials.
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440 T. Ferguson

Definition 1.1 For 1 < p < ∞ and −1 < α < ∞ we define the weighted Bergman
space Ap

α to be the space of all analytic functions in D such that

‖ f ‖p,α =
(∫

D

| f (z)|pd Aα(z)

)1/p

< ∞,

where d Aα = (α + 1)π−1(1 − |z|2)α d A(z) and d A is the Lebesgue area measure.

For 1 < p < ∞, it is known that the dual of Ap
α is isomorphic to Aq

α , where
1/p + 1/q = 1. Also, if φ ∈ (Ap

α)∗ and k ∈ Aq
α correspond to each other, then

‖φ‖(Ap
α )∗ ≤ ‖k‖q,α ≤ C‖φ‖(Ap

α )∗ , where C is some constant depending of p and α.

Definition 1.2 Let k ∈ Aq
α be given, where 1 < q < ∞ and k is not identically 0.

Let F ∈ Ap
α be such that ‖F‖ = 1 and Re

∫
D
Fk d Aα is as large as possible, where

1/p + 1/q = 1. There is always a unique function F with this property. We say that
F is the extremal function for the integral kernel k, and also that F is the extremal
function for the functional φ defined by φ( f ) = ∫

D
f k d Aα .

We do not usually study the case p = 2 because in this case F is a scalar multiple of
k.

It is known (see [4]) that the spaces Ap
α , since they are subspaces of L p spaces,

are uniformly convex. In [7], general results are proven about approximating extremal
functions in uniformly convex spaces, and a proof is given there of the well-known
fact that extremal functions are unique in uniformly convex spaces. See [2,3] for
more information on extremal problems in spaces of analytic functions. See also
[8,10,12,14] for more information on regularity questions related to the extremal
problems we discuss.

Definition 1.3 Let f ∈ Ap
α . Suppose

‖ f (eit ·) + f (e−i t ·) − 2 f (·)‖p,α ≤ C |t |β

for some constants C > 0 and 0 < β ≤ 2. We then say that f ∈ �∗
β,Ap

α
. Further-

more, we define ‖ f ‖�∗,β,Ap
α
to be the infimum of the constants C such that the above

inequality holds.

We refer to functions in the�∗ classes as being (mean) Bergman-Hölder continuous
(see [8]). We prove several estimates that relate the mean Bergman-Hölder continuity
of Ap

α functions to the minimum error in approximating these functions with poly-
nomials of fixed degree. We apply these results to obtain estimates for how close the
solution of an extremal problem is to the solution to the problem with the same linear
functional posed over the space of polynomials of degree at most n. By using inequali-
ties related to uniform convexity due to Clarkson [4] and Ball, Carlen and Lieb [1], we
are able to obtain quantitative estimates for the distance from approximate extremal
functions to the true extremal functions.

The estimates just mentioned are all in the Ap
α norm. However, our goal is to

approximate (in certain cases) extremal functions in the uniform norm (i.e. the L∞
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Approximation of Extremal Functions 441

norm). To do so, we use results from [8] to obtain bounds on the Cβ norm of the
extremal functions and the functions approximating them for certain β, as long as the
integral kernels are sufficiently regular. We also use Theorem 4.2, which allows us to
conclude that two functions that are each not too large in theCβ norm and that are close
in the Ap

α norm must actually be close in the uniform norm. In stating the theorems,
we do not aim for the most general estimates possible; however, the estimates we state
do apply to the case where k is a polynomial, or even in C2(D).

We note that in [11], Khavinson and Stessin derive Hölder regularity results for
extremal problems in unweighted Bergman spaces. However, they do not state explicit
bounds on the exponent β or on the Cβ norm of the extremal function, so we cannot
use their result to get explicit bounds on extremal functions.

The following lemma about the uniform convexity of L p will be needed. The
inequality for 1 < p ≤ 2 can be proved from [1, Thm. 1]. The other inequality
follows from Eq. (3) in [4, Thm. 2].

Lemma 1.1 Let ‖ f ‖p = ‖g‖p = 1 and (1/2)‖ f + g‖p > 1− δ. Let ‖ f − g‖p = ε.

If 1 < p ≤ 2 then ε <
√

8
p−1δ

1/2. If p ≥ 2 then ε < 2p1/pδ1/p.

2 Mean Holder Continuity and Best Polynomial Approximation

In this section we prove several results relating mean Hölder continuity of functions
to their distance from the space of polynomials of degree at most n. Some of these
results are used in the rest of the paper. The proofs of these results are similar to the
proofs for similar results about classical Hölder continuity that can be found in [15,
Vol, 1, p. 115 ff.].

Definition 2.1 Let f ∈ Ap
α . We define

E p,α
n ( f ) = min{‖ f − P‖p,α : P is a polynomial of degree at most n}.

Theorem 2.1 Let 0 < β < 1. Suppose that ‖ f ‖�∗,β,Ap
α

< ∞. Let

Aβ = 21+β

π

∫ ∞

0
| cos(t) − cos(2t)|tβ−2 dt.

Then

E p,α
n ≤ Aβn

−β‖ f ‖�∗,β,Ap
α
.

Proof Let f|r represent the function f restricted to the circle of radius r . Let Tn be
the best polynomial approximant of f , let Rn = f − Tn be the remainder and let
ρk be the kth Cesàro sum of the remainder. Let Km be the Fejér kernel for the mth

Cesàro sum. Then Km has L1 norm of 1, and Young’s inequality for convolutions
shows that Mp(r, ρk) = ‖Rn|r ∗ Kk‖p ≤ Mp(r, Rn)‖Kk‖1 = Mp(r, Rn). Let σk be
the kth Cesàro sum of f . From [15, Vol. 1, p. 115, eq. (13.4)] we see that
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(
1 + n

h

)
σn+h−1 − n

h
σn−1 = Tn +

(
1 + n

h

)
ρn+h−1 − n

h
ρn−1.

Using this equation with h = n, subtracting f from both sides and using the fact
that Mp(r, ρk) ≤ Mp(r, Rn) shows that Mp

[
r, (2σ2n−1 − σn−1) − f

] ≤ 4Mp(r, Rn).
Multiply by (α + 1)2r(1 − r2)α and integrate r from 0 to 1 to see that

‖(2σ2n−1 − σn−1) − f ‖p,α ≤ 4‖Rn‖p,α.

Let τn = 2σ2n−1 − σn−1. Now

τm(reix ) − f (reix )= 2

π

∫ ∞

0

[
f (rei[x+(t/m)])+ f (rei[x−(t/m)])−2 f (reix )

] h(t)

t2
dt

(2.1)

where h(t) = (cos(t) − cos(2t))/2. Let M = ‖ f ‖�∗,β,Ap
α
. Apply Minkowski’s

inequality to see that

E p,α
2m−1 ≤ ‖τm(reix ) − f (reix )‖p,α ≤ 2

π

∫ ∞

0
tβMm−β |h(t)|

t2
dt = AβM(2m)−β.

Since E p,α
2m ≤ E p,α

2m−1, the theorem follows. �	

We can also prove the following theorem. The symbol Dn
θ stands for dn

dθn
:

Theorem 2.2 Let K ≥ 0 be an integer. Suppose that ‖DK
θ f (reiθ )‖p,α ≤ M. Let

C j = 4

π

∫ ∞

0
|Hj (t)| dt

where

h(t) = (cos(t) − cos(2t))/2, H0(t) = h(t)/t2, Hj (t) =
∫ ∞

t
H j−1(x) dx .

Then E p,α
n ≤ 2KCK Mn−K .

Proof Let f (n,θ)(reiθ ) = ∂n

∂θn
f (reiθ ). Then integrating by parts in Eq. (2.1) shows

that

τ(reix ) − f (reix )

= 2

πmK

∫ ∞

0

[
f (K ,θ)(rei[x+(t/m)]) + (−1)K f (K ,θ)(rei[x−(t/m)])

]
HK (t) dt
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Applying Minkowski’s inequality shows that

‖τm(x) − f (x)‖p,α ≤ CKm
−K ‖Dm

θ f ‖p,α.

As above, this implies that E p,α
n ≤ CK 2K Mn−K . �	

Define the Ap
α modulus of continuity for f by

ωp,α(δ, f ) = sup
t≤δ

‖ f (eit z) − f (z)‖p,α.

Theorem 2.3 Let K ≥ 0 be an integer. Suppose DK
θ f has modulus of continuity

ωp,α(δ). Then

E p,α
n ( f ) ≤ BKωp,α

(
2π

n

)
n−K ,

where BK = 2KCK+1/π + 2KCK .

Let fδ(z) = 1
2δ

∫ δ

−δ
f (eit z) dt . Note that Dθ fδ = (Dθ f )δ . Minkowski’s inequality

shows that ‖ fδ − f ‖p,α ≤ ωp,α(δ, f ). Let f = fδ + g. Then using the fundamental
theorem of calculus, we see that

‖DK+1
θ fδ‖p,α = ‖DK

θ f (zeiδ) − DK
θ f (ze−iδ)‖p,α

2δ
≤ 2δ−1ωp,α(2δ; DK

θ f )

Also ‖DK
θ g‖p,α ≤ ωp,α(δ, DK

θ f ).
Thus by Theorem 2.2,

E p,α
n ( f ) ≤ 2K+1CK+1n

−(K+1)(2δ)−1ωp,α(2δ, DK
θ f ) + 2KCKn

−Kω(δ; DK
θ f ).

Taking the supremum over |t | < δ in the inequality

‖ f (·) − f (e−2i t ·)‖p,α ≤ ‖ f (·) − f (e−i t ·)‖p,α + ‖ f (e−i t ·) − f (e−2i t ·)‖p,α

shows that ωp,α(2δ, f ) ≤ 2ωp,α(δ, f ). Thus

E p,α
n ( f ) ≤ 2K+1CK+1n

−(K+1)δ−1ωp,α(δ, DK
θ f ) + 2KCKn

−Kω(δ; DK
θ f ).

Now choose δ = 2π/n to see that

E p,α
n ( f ) ≤ BKωp,α

(
2π

n

)
n−K

where BK = 2KCK+1/π + 2KCK .
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444 T. Ferguson

From this it follows that if f ∈ �∗
β,Ap

α
for 0 < β < 1, then

E p,α
n ( f ) ≤ (2π)βB0‖ f ‖�∗,β,Ap

α
n−β.

Theorem 2.4 Suppose that f (θ,K ) ∈ �∗
1,Ap

α
and that ‖ f (θ,K )‖�∗,1,Ap

α
= M. Then

E p,α
n ( f ) ≤ B̃K Mn−K−1 where

B̃K = 2K (CK+2/π + πCK ).

Proof Write f = fδδ + g where fδδ = ( fδ)δ . Then

∂K+2
t fδδ(re

it ) = f (θ,K )(rei(t+2δ)) + f (θ,K )(rei(t−2δ)) − 2 f (θ,K )(reit )

4δ2

as in the last equation on [15, Vol. 1, p. 117]. Thus

‖∂K+2
t fδδ‖p,α ≤ M

2δ
.

Following the first and second equations on [15, Vol. 1, p. 118] shows that

‖g(θ,K )(z)‖p,α

= 1

4δ2

∥∥∥∥
∫ 2δ

0
f (θ,K )(zeit ) + f (θ,K )(ze−i t ) − 2 f (θ,K )(z)(2δ − t) dt

∥∥∥∥
p,α

,

which shows that ‖g(θ,K )(z)‖p,α ≤ (1/2)Mδ. Applying Theorem 2.2 to g and fδδ
and setting δ = 2π/n now yields the result. �	

3 Approximation of Extremal Functions by Polynomials in the Bergman
Norm

We now discuss extremal problems restricted to the space of polynomials of degree
n. Let Fn denote the extremal polynomial of degree n, for the extremal problem of
maximizing Re φ( f ) where f ranges over all polynomials of degree at most n with
norm 1. We will need the following theorem from [8]:

Theorem 3.1 Suppose that k ∈ �∗
β,Aq

α
, and let F be the extremal function for k. Then

if 2 ≤ p < ∞ we have F ∈ �∗
β/p,Ap

α
while if 1 < p ≤ 2 we have F ∈ �∗

β/2,Ap
α
.

Furthermore, suppose that
∫
D
Fk d Aα = 1 and ‖k(eit ·) + k(e−i t ·) − 2k(·)‖q,α ≤

B|t |β . If p ≥ 2 then ‖F‖�∗,β/p,Ap
α

≤ 2p1/p(B/2)1/p ≤ 2e1/e(B/2)1/p, whereas if

1 < p < 2 then ‖F‖�∗,β/2,Ap
α

≤ 2(p − 1)−1/2B1/2.

The space of polynomials of degree n is isomorphic with R
2n+2. The set of all

x ∈ R
2n+2 for which the corresponding polynomial has norm of at most 1 is a convex
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set. Thus, the extremal problem for finding Fn can be thought of as a problem of
maximizing a (real) linear functional over a convex set in R

2n+2. This is a convex
optimization problem, andmany algorithms for approximating the solution are known.

We first introduce a bound on the rate of convergence of Fn to F in the Bergman
space norm.

Theorem 3.2 Let F be the extremal function for φ and let Fn be the extremal polyno-
mial of degree n, when the problem is posed over polynomials of degree n. Suppose
k ∈ �∗

β,Aq
α
. Then for 1 < p < 2 we have ‖F − Fn‖p,α = O(n−β/4). Similarly if

2 < p < ∞ we have ‖F − Fn‖p,α = O(n−β/p2).
More precisely, for 1 < p < 2 and 0 < β < 2,

‖F − Fn‖p,α ≤ 4(p − 1)−3/4A1/2
β/2‖k‖1/4�∗,β,Aq

α
n−β/4;

for 1 < p < 2 and β = 2,

‖F − Fn‖p,α ≤ 4(p − 1)−3/4 B̃0
1/2‖k‖1/4

�∗,β,Aq
α
n−β/4;

for 2 < p < ∞ and 0 < β ≤ 2,

‖F − Fn‖p,α ≤ 21+1/p−1/p2 p1/p+1/p2 A1/p
β/p‖k‖1/p�∗,β,Aq

α
n−β/p2 .

Proof Let ‖φ‖ denote ‖φ‖(Ap
α )∗ . The argument in [7, Thm. 4.1] shows that, if Tn is

the best approximate of F of degree n and E p,α
n < δ and T̃n = Tn/‖Tn‖p,α , then

Re φ(T̃n) ≥ 1−δ
1+δ

‖φ‖. This also shows that Re φ(Fn) ≥ 1−δ
1+δ

‖φ‖. Thus

φ((Fn + F)/2) ≥ ‖φ‖
(
1

2
+ 1 − δ

2(1 + δ)

)
.

Therefore, (1/2)‖Fn + F‖ ≥ 1
2 + 1−δ

2(1+δ)
≥ 1 − δ. This shows that ‖Fn − F‖ ≤√

8
p−1δ

1/2 for p < 2 and ‖Fn − F‖ ≤ 2p1/pδ1/p for p > 2. �	

The convergence rate in the previous theorem may be slow, especially for large p.
However, a given Fn may be more accurate than this predicts. The following theorem
gives a way to bound the distance of a given function g from F in terms of the distance
from Pα(|F |p/F) to Pα(|g|p/g). An advantage of the theorem is that it applies to
any Ap

α function g, so we can directly apply it to an approximation of Fn , and not
just Fn itself. In the theorem statement, Pα denotes the Bergman projection for Ap

α ,
which is the orthogonal projection from L2

α onto A2
α . Also |F |p/F = F p/2F (p/2)−1 =

|F |p−1 sgn F should be interpreted to equal 0 when F has a zero. It is known that Pα

is bounded from L p
α to Ap

α for 1 < p < ∞ (see [9]).
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446 T. Ferguson

Lemma 3.1 Suppose that F1 and F2 are the Ap
α extremal functions for φ1 and φ2,

respectively. Suppose that ‖φ1‖ = ‖φ2‖ = 1 and ‖φ1−φ2‖ < δ. Then for 2 < p < ∞

‖F1 − F2‖ < 21−(1/p) p1/pδ1/p;

for 1 < p < 2

‖F1 − F2‖ < 2(p − 1)−1/2δ1/2.

Proof Note that

|φ1(F1) + φ1(F2)| ≥ |φ1(F1) + φ2(F2)| + |(φ1 − φ2)(F2)| = ‖φ1‖ + ‖φ2‖ − δ

≥ 2 − δ.

Since φ1 has norm 1, this implies that

∥∥∥∥ F1 + F2
2

∥∥∥∥ > 1 − δ

2
.

The result now follows by Lemma 1.1. �	
It is known that if k is a positive scalar multiple of Pα(|F |p/F), where F has unit

norm, then F is the extremal function for k. It is also known that any function k̃ which
also has F for its extremal function must be a positive scalar multiple of k (see [7]).

Since
∫
D
FPα(|F |p/F) d A = ∫

D
F |F |p/F dA = 1, we see that if k is scaled so that∫

D
Fk d Aα = 1, then k = Pα(|F |p/F).

Theorem 3.3 Let k ∈ Aq
α , and let F be the extremal function for k. Let k̂ be any

positive scalar multiple of k (so that k̂ also has F as extremal function.) Let G ∈ Ap
α

and suppose that for some δ such that 0 < δ < 1 the inequality

‖Pα(|G|p/G) − k̂)‖q,α < δ

is satisfied. Then for 2 < p < ∞,

‖F − G‖ < 2p1/pδ1/p

and for 1 < p < 2

‖F − G‖ < 2
√
2(p − 1)−1/2δ1/2.

Proof Letψ be the functional of unit norm for whichG is the extremal function. Then
ψ has kernel Pα(|G|p/G) and ‖ψ‖ = 1. Let φ be the functional with kernel k̂. We
then have

‖φ − ψ‖(Ap
α )∗ ≤ ‖Pα(|G|p/G) − k̂)‖q,α < δ.
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This implies that 1− δ < ‖φ‖ < 1+ δ. Let φ̃ = φ/‖φ‖. Then ‖φ − φ̃‖ < δ and thus
‖φ̃ − ψ‖ < 2δ. The conclusion now follows from the previous lemma. �	

4 Approximation of Extremal Functions by Polynomials in the
Supremum Norm

We now show how to use the results in the previous section to bound the distance
from a given function to F in the supremum norm. We will use the following theorem
found in [8, Cor. 4.3]. The proof of this theorem shows that the same results hold if F
is replaced by Fn . However, we may need to multiply k by a positive scalar constant
greater than 1 so that the condition

∫
D
Fnk d Aα ≥ 1 holds.

Theorem 4.1 Let 1 < p < ∞ and let p and q be conjugate exponents. Suppose
k ∈ �∗

2,Aq
α
and that

∫
D
Fk d Aα ≥ 1. If 1 < p < ∞ and −1 < α < min(0, p − 2),

then F has Hölder continuous boundary values.
Let B = ‖k‖�∗,2,Ap

α
. For p > 2, the Hölder exponent can be taken to be −α/p.

The Hölder constant is bounded above by

1532(pB/2)1/p
(
1 − 2

p

)−1 (
�(q − 1)

�(q/2)2

)1/q (
1 − 2p

α

)
.

For p < 2, if we let η be any number greater than 0, then the Hölder exponent can
be taken to be 1 − 2/p − α/p − η (if the indicated exponent is positive). The Hölder
constant is bounded above by

768

(
B

p − 1

)1/2 (
1 − 2

p

)−1 (
�(q − 1)

�(q/2)2

)1/q (
1 − 2

1 − 2/p − α/p − η

)
.

For ease of notation,wewill call theHölder exponentβ(p, α) for p > 2 andβ(p, α, η)

for p < 2.We will denote the constant byC(B, p, α) andC(B, p, α, η), respectively.
For p > 2, if we refer to β(p, α, η) and C(p, α, η), we mean β(p, α) and C(p, α),

respectively.
Since ‖F‖p,α = 1, it follows that |F(0)| < 1. Thus the preceding estimate can be

used to bound ‖F‖∞. However, the estimates do not allow one to conclude directly that
‖F − Fn‖∞ must be small for large n. The following theorem remedies this situation.
It says that if a function is Hölder continuous (with control on the exponent and size
of the constant) and the function has small L p

α norm, then its uniform norm cannot be
too large.

Theorem 4.2 Let ε > 0 and 0 < β ≤ 1 be given. Suppose that f ∈ L p
α(D) and that

for some C > 0 we have | f (z) − f (w)| ≤ C |z − w|β for every z, w ∈ D. Then there
exists a δ > 0 such that if ‖ f ‖p,α < δ, then ‖ f ‖∞ < ε. In fact, we may take δ to
be
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448 T. Ferguson

(
(α + 1)π

4

)1/p

B(2/β, p + 1)1/pC−2/(βp)ε1+2/(βp) (4.1)

as long as ε < 2β/2C. Here B(x, y) is the Beta function.

For ease of notation we will denote the δ in the theorem by δ(ε;C, β, p, α). We let
ε(δ;C, β, p, α) denote the inverse function of δ(ε) = δ(ε;C, β, p, α), so

ε(δ;C, β, p, α) = δ1/[1+2/(βp)]
[(

(α+1)π
4

)1/p
B(2/β, p + 1)1/pC−2/(βp)

]1/[1+2/(βp)] (4.2)

as long as ε < 2β/2C .

Proof Suppose that | f (z0)| > b > 0. Then | f (z)| > b−C |z−z0|β for 0 ≤ |z−z0| ≤
r0, where r0 = (b/C)1/β . So

‖ f ‖p
p > (α + 1)

∫
z∈D|z−z0|<r0

(b − C |z − z0|β)p (1 − |z|2)α d A(z).

Now for fixed b, the quantity on the right is a continuous function of z0 for z0 ∈ D,
and thus has a minimum; call the minimum δ(b)p. Then if | f (z0)| ≥ b we have
‖ f ‖p ≥ δ(b). So if ‖ f ‖p < δ(ε) we have ‖ f ‖∞ < ε.

We may estimate δ(ε) for r0 <
√
2 by noting that in this case the region D ∩ {z :

|z − z0| < r0} contains at least a quarter sector of the disc {z : |z − z0| < r0}, so

δ(b)p ≥ α+1

4

∫ r0

0

∫ π/2

0
(b − Crβ)p2r dr = (α+1)π

4
bp+(2/β)C−2/βB(2/β, p+1)

where B(x, y) is the beta function. �	
We may also prove the following theorem. It will not be used in the sequel, but we

include it for completeness:

Theorem 4.3 Let ε > 0 and 0 < γ < β ≤ 1 be given. Suppose that f ∈ L p(D) and
that for some C > 0 we have | f (z) − f (w)| ≤ C |z − w|β for every z, w ∈ D. Then
there exists a δ > 0 such that if ‖ f ‖p < δ then | f (z) − f (w)| < ε|z − w|γ .
Proof Suppose | f (z)− f (w)| ≥ ε|z−w|γ for some z andw. Since | f (z)− f (w)| <

C |z − w|β we have |z − w|β−γ > ε/C . Thus |z − w|γ > (ε/C)γ /(β−γ ), and so
| f (z) − f (w)| > εβ/(β−γ )C−γ /(β−γ ). But this contradicts the previous theorem if δ

is small enough. �	
Theorem 4.4 Let 1 < p < ∞ and let p and q be conjugate exponents. Suppose
k ∈ �∗

2,Aq
α
, that −1 < α < min(0, p − 2) and that

∫
D
Fk d Aα ≥ 1. Then if ‖F −

Fn‖p,α < δ then ‖F − Fn‖∞ < ε (δ;C, β, p, α), where β = β(p, α, η) and

C = C(‖k‖�∗,2,Aq
α
, p, α, η) + C((1 − δ)−1‖k‖�∗,2,Aq

α
, p, α, η).
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Here η is any number greater than 0 such that 1 − 2/p − α/p − η > 0 and the
functions C(B, p, α, η) and β(p, α, η) are as defined in Theorem 4.1 and the function
ε(δ;C, β, p, α) is as defined immediately prior to Eq. (4.2).

Proof This follows from Theorems 4.1 and 4.2. We use the fact that Theorem 4.1
applies to Fn if k is first multiplied by 1/(1 − δ), which ensures that the condition∫
D
Fnk d Aα ≥ 1 holds, and we apply Theorem 4.1 to the function F − Fn . �	
In practice, we are unlikely to know the function Fn explicitly. Thus, the following

theoremmaybemore useful. The proof is similar to the proof of the preceding theorem.

Theorem 4.5 Let 1 < p < ∞ and let p and q be conjugate exponents. Suppose
k ∈ �∗

2,Aq
α
, that −1 < α < min(0, p − 2) and that

∫
D
Fk d Aα ≥ 1. Let η be any

number greater than 0 such that 1 − 2/p − α/p − η > 0 and let the constants
C(B, p, α, η) and β = β(p, α, η) be as defined in Theorem 4.1. Let ε(δ;C, β, p, α)

be as defined immediately prior to Eq. (4.2).
Let G ∈ Ap

α with M = ‖G‖�∗,β,Ap
α

< ∞. If ‖F − G‖p,α < δ then ‖F − G‖∞ <

ε (δ;C, β, p, α), where

C = C(‖k‖�∗,2,Aq
α
, p, α, η) + ‖G‖�∗,β,Ap

α
.

5 Approximation of Extremal Functions for Even p

We will give an example of approximating an extremal function. The case where p
is even is in some ways easier than other cases since then we can explicitly compute

P(| f |p/ f ) = P( f p/2 f
p/2−1

) when f is a polynomial, due to the fact that f p/2 and
f p/2−1 are polynomials, so our example will involve this case.
Define

γ (n, α) = ‖zn‖22,α = (α + 1)B(n + 1, α + 1) = �(α + 2)�(n + 1)

�(n + α + 2)
.

Then

Pα(zmzn) =
{

γ (m,α)
γ (m−n,α)

zm−n if m ≥ n

0 if m < n
(5.1)

(see [9, Sec. 1.1]).

Example 5.1 Let us approximate the solution to the problem of maximizing the (real
part of) the functional f �→ a0+a1+a2, where the an are the Taylor series coefficients
of f about 0, and where p = 4 and α = −1/2 (and where f has unit norm). Then
k = 1 + z/γ (1,−1/2) + z2/γ (2,−1/2) = 1 + (3/2)z + (15/8)z2.

This problem is made simpler because the uniqueness of F implies that it must
have real coefficients. Let us take the approximation of degree N = 35. We thus seek
to maximize a0 + a1 + a2 subject to the constraint ‖ f ‖44,−1/2 = ‖ f 2‖22,−1/2 ≤ 1, i.e.
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2N∑
n=0

(
n∑

m=0

aman−m

)2

γ (n,−1/2) ≤ 1.

Here we let an = 0 for n > N . This is a convex optimization problem, and we are
aided by the fact that any local maximummust be a global maximum, since if F is any
local maximum (necessarily of norm 1) then a variational argument similar to the one
in the proof of [6, Cha. 5, Lem. 2] shows that the Pα,35(|F |p/F) is a scalar multiple
of k, and thus F is the extremal function (see [13, p. 55]). Here we letPα,35 denote the
orthogonal projection from L p

α(D) onto the subspace of Ap
α consisting of polynomials

of degree at most 35.
When looking at the approximate solution the computer gave for this problem, we

noticed that the first term of F35 appears to be positive (unless our approximation
is very inaccurate). If we assume this is the case, then an equivalent problem is to
maximize

(1 + a1 + a2)

⎛
⎝ 70∑

n=0

(
n∑

m=0

aman−m

)2

γ (n,−1/2)

⎞
⎠

−1/4

,

where we let a0 = 1 and an = 0 for n > 35. This seemed to be solvedmore quickly by
the computer, so this is the problem we solved to find a non-normalized form of F̂ . An
important point is that it does not matter for our computation of error bounds whether
our approximation for F̂ is close to the true F35, sincewewill compute our error bounds
using Theorems 3.3 and 4.5. In particular, we do not require the first coefficient of F35
to be positive for these error bounds to be accurate. (Our computations do eventually
prove that the first coefficient of F at least is positive, since E2 defined below is larger
than the first coefficient of F̂ .)

Using Sage (for example) to approximate a solution yields a maximum functional
value of approximately 1.78785 and

F̂ = 0.431458 + 0.496143x + 0.860246x2 − 0.341597x3 − 0.0225994x4

+ 0.110914x5 − 0.052023x6 − 0.00952824x7 + 0.0235905x8 + · · · +
+ 3.15 · 10−8x35

Here, F̂ is our approximation of F35. We have normalized F̂ so its norm is very
close to 1. (In fact, the fourth power of its norm is less than 1 by about 3 · 10−15,
since due to rounding error we cannot guarantee that ‖F̂‖4,−1/2 = 1. The fact that
‖F̂‖4,−1/2 ≤ 1 will be important later.) To save space, not all decimals and terms are
shown. All of the omitted terms have coefficients of absolute value less than 1/100.
Also, note that to avoid loss of precision, once F̂ was calculated, we stored it as a
polynomial with rational coefficients (we checked that its norm was still smaller than
1 after approximating its coefficients by rational numbers).

If we compute k̃ = Pα(|F̂ |4/F̂), we find that it is approximately

.559332 + 0.838998z + 1.04875z2 + · · · + 4.28 · 10−9z40.
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All of the omitted terms have coefficients of absolute value at most 2 · 10−8. We must
now find a multiple of k close to k̃. We could find the closest one as an optimization
problem, butwewill choose k̂ = k/(a0+a1+a2),where thea j are the coefficients of F̃ .

Since we have used rational number arithmetic, this guarantees that
∫
D
F̂ k̂ d Aα = 1,

so
∫
D
Fk̂ d Aα > 1, where F is the true extremal function. (It is here that we require

that ‖F̂‖4,−1/2 ≤ 1).
It seems difficult to compute ‖̃k − k̂‖4/3,−1/2, with numerical integration and to

guarantee the level of accuracyof the computation.However, since k̃−k̂ is a polynomial
we can bound its norm by using the triangle inequality and the fact that ‖zn‖4/3,−1/2 =
‖z2n/3‖3/22,−1/2 = γ (2n/3,−1/2)3/2. This shows that ‖̃k − k̂‖4/3,−1/2 is at most E1 ≈
3.3406 · 10−8. Using Theorem 3.3 shows that ‖F − F̂‖4,−1/2 is less than E2 which
is approximately .0383. In applying the theorem, we take δ = E1/‖F̂‖34,−1/2, since

F̂/‖F̂‖4,−1/2 has norm 1 and k̂/‖F̂‖34,−1/2 is a scalar multiple of k. (Recall that

‖F̂‖4,−1/2 is nearly equal to 1, but we made it slightly less.)
The second θ derivative of k̂ is at most the absolute value of the z coefficient of k̂

plus 4 times its z2 coefficient. This may be computed exactly since the coefficients of
k̂ are rational. Call it K (it equals approximately 5.034). Thus ‖̂k‖

�∗,2,A4/3
−1/2

is at most

K . A bound on the first θ derivative of F̂ may be computed in a similar way: call this
bound M . It is approximately 1.3824. Now, for any two points reiθ1 and reiθ2 we may
choose |θ1 − θ2| ≤ π , and thus |θ1 − θ2| ≤ π7/8|θ1 − θ2|1/8. Thus

|F̂(reiθ1) − F̂(reiθ2)| ≤ M |θ1 − θ2| ≤ Mπ7/8|θ1 − θ2|1/8.

Thus ‖F̂‖�∗,β,A4−1/2
≤ Mπ7/8.Wenow apply Theorem 4.5. To do so, we first compute

β(4,−1/2) = 1/8 and C(B, 4,−1/2) from the statement of Theorem 4.1 using
B = K . We then add the value Mπ7/8 to C(K , 4,−1/2) to obtain the value of C in
Theorem4.5. (The valuewe obtain is approximately 123821).We now compute ε from
Eq. (4.2) usingβ = −(−1/2)/4 = 1/8 and δ = E2 andC ≈ 123821 from above. This
shows that ‖F− F̂‖∞ < 11363.28. This calculation is valid since 11363.28 < 2β/2C .
I suspect the true error is much smaller. For example, if F̂40 is the approximation to
F40 found using a similar method to the above, then ‖F̂40 − F̂‖∞ < 8 · 10−9, and the
true error may be this order of magnitude.

It would be interesting to see if the estimates in this paper can be improved in order
to yield better estimates on the approximation of extremal functions in the uniform
norm. The example above shows that the estimates in the paper are likely too large by a
substantialmargin. However, the estimates in this paper are the only ones known (as far
as I know) that allow approximation of these extremal functions in the uniform norm,
and they have the advantage of being explicitly computable without great difficulty.

6 Non-zero Extremal Functions

The preceding results can be used to find explicit conditions on k that guarantee that
F is non-zero. In Theorem 6.2 we give one such result.
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Theorem 6.1 Let 0 < θ < 2π and θ < 2π(p − 1). Suppose that k ∈ Aq
α has range

that is a subset of the sector −θ/2 < arg z < θ/2, and that ‖k‖q,α = 1. Let F be the
extremal function for k and let

Cθ = 2Cp,α

∣∣∣∣sin
(

(p − 2)θ

4(p − 1)

)∣∣∣∣ ,

where Cp,α is the norm of the Bergman projection from L p
α onto Ap

α . Then if 2 <

p < ∞ we have ‖F − k1/(p−1)‖p,α ≤ 2p1/pC1/p
θ and if 1 < p < 2 we have

‖F − k1/(p−1)‖p,α ≤ 2
√
2(p − 1)−1/2C1/2

θ .

Proof Note that G = k1/(p−1) is well defined, where we take the branch with
11/(p−1) = 1. Notice that |G|p−1 sgnG = |k|ei arg(k)/(p−1). Thus

|k − |G|p−1 sgnG| = |k|
∣∣∣ei arg(k) − ei arg(k)/(p−1)

∣∣∣ ≤ 2|k|
∣∣∣∣sin

(
(p − 2)θ

2(p − 1)

)∣∣∣∣
and, therefore,

‖k − |G|p−1 sgnG‖p,α ≤ 2‖k‖p,α

∣∣∣∣sin
(

(p − 2)θ

2(p − 1)

)∣∣∣∣ .

Let Cp,α be the bound for the Bergman projection from L p
α onto Ap

α . Then

‖k − Pα(|G|p−1 sgnG)‖q,α ≤ 2Cp,α

∣∣∣∣sin
(

(p − 2)θ

4(p − 1)

)∣∣∣∣ ‖k‖q,α.

since Pα(k) = k. The result now follows from Theorem 3.3. �	
Theorem 6.2 Let 0 < d < 1 and 1 < p < ∞ and −1 < α < min(0, p − 2). Let
‖k‖q,α = 1 and suppose that ‖k‖�∗,2,Ap

α
< B. Then there exists a θ > 0 depending

only on d, B, p, and α such that if the range of k is a subset of {z : −θ/2 < arg z <

θ/2 and |z| > d} then F is non-zero.

Proof Let θ > 0 be given. This θ will make the conclusion of the theorem true if the
assumptions show that ‖F − k1/(p−1)‖∞ < d1/(p−1). Let λ = d1/(p−1). For p < 2
choose 0 < η < 1 − 2/p − α/p and let β = β(p, α, η); otherwise, let β = β(p, α).

Note that by [8, Thm. 3.1, Thm. 1.2] and [5, Thm.-5.9, Thm. 5.1], we have k ∈
C2−2/p−α/p ⊂ Cβ with Hölder constant depending only on B, p, and α. Since k
is bounded away from 0, we also have that k1/(p−1) ∈ Cβ with constant depending
only on B, d, p, and α. Let D be the smallest constant such that |k(z)1/(p−1) −
k(w)1/(p−1)| ≤ D|z − w|β .

By Theorem 4.2 we will be done if we can show that

‖F − k1/(p−1)‖p,α < δ,

where δ = δ(λ,C + D, β, p, α), where C = C(B, p, α, η). But by the previous
theorem, this is true if θ is small enough. �	

123



Approximation of Extremal Functions 453

Notice that, given B, d, ε, p and α, we could if we wish calculate an explicit value for
θ .
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