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Abstract In the present paper, a formula for the fourth coefficient of Carathéodory
functions was computed.

Keywords Carathéodory functions - Coefficient functionals - Fourth coefficient -
Fekete-Szego problem - Hankel determinants

Mathematics Subject Classification Primary 30C45

1 Introduction

Let H be the class of analytic functions in D := {z € C: |z| < 1} and let A be its
subclass of functions f normalized by f(0) := 0, f/(0) := 1, i.e., of the form

f(Z):Zanva ay:=1, zeD. (1.1)

n=1
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The class of Carathéodory functions P consists of the functions p € H of the form

o
pix)=1+ chz", zeD, (1.2)

n=1

having positive real partin D. If the members of a subclass F of A have a representation
involving the Carathéodory class P, the coefficients of the corresponding functions
in F can be expressed using the coefficients of functions in P. Starlike and convex
univalent functions in F [6, pp. 41-45] form classical examples of classes having
an analytic description in terms of by the class P. Therefore coefficient formulas for
functions in P are a basic tool for the examination of coefficient functionals in the
corresponding classes F.

In the study of extremal problems related to early coefficients, the known formula
for ¢; (e.g., [15, p.166]) and the formula for c¢3 found by Libera and Zlotkiewicz
[12,13], both cited here in Lemma 2.2, are particularly efficient. Because of this, the
two formulas were often used by various authors to study the Fekete-Szego functional,
Hankel determinants (e.g., [1-4,7,11,14,16,17]), coefficients of inverse functions
(e.g., [12,13]), and many others issues.

According to the authors’ knowledge, formulas for the coefficients ¢, for n > 4
analogous to the formulas (2.2) and (2.3) where not yet published. In this paper, we
provide a formula for c4 and this is a new result. We think that the formula (2.10) for
c4 can be applied to different extremal coefficient problems in a similar way as the
formulas for ¢ and c3 given in Lemma 2.2 have been used in the past. This was done
in the forthcoming papers [9, 10], where, for instance, the Hankel determinants of the
third kind for starlike and convex functions have been estimated.

2 Main Results
The following two lemmas for functions in the class P are well known:

Lemma 2.1 ([8], Carathéodory) The power series for a function p given by (1.2)
converges in D to a function in P if and only if the Toeplitz determinants

2 c1 o Cn
C1 2 c1 Cn_1

D, = . , neN,
En En—l E11—2 t 2

are non-negative. They are strictly positive except for

m
p(2) = Zpkpo(e”"Z), zeD, 2.1
k=1
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where m € N and

I+z
pO(Z) =, Z EID)v
1—-z

px > 0, ZZ’II ok =1, 1 € [0,27) and 1y, # tj for k # j; in this case D, > 0 for
n<m—1and D, =0 forn > m.

The following lemma contains the well-known formula for ¢; (e.g., [15, p.166])
and the formula for c3 found by Libera and Zlotkiewicz [12,13].

Lemma 2.2 If p € P is of the form (1.2) with c; > 0, then
2er = ¢f + (4 — )¢ 2.2)

and
dez=ci+ @ —cDert@ - +2(4 —cH( —1¢1Hm (2.3)

forsome,neD:={zeC:l|z| <1).

We now complete the formula (2.2) in case { € T := 0D and ¢; € [0, 2). When
c1 = 2, then D1 = 0, and by Lemma 2.1 the function p is of the form (2.1) with
m=1,p;=1andt; =0,1ie., p = po.

Lemma 2.3 The formula (2.2) with ¢y € [0, 2) and ¢ € T holds only for the functions

It + 0z +¢2?
-t =0z -2

p(2) e D, (2.4)

where T € [0, 1).

Proof Let p € P be of the form (1.2) with ¢; € [0, 2) and such that (2.2) holds for
some ¢ € T. Clearly, (2.2) is equivalent to

e =} =4-ch 2.5)
Define @1 ]
_ p@- 1

0@ = L S 2€D\0) ()= gen 2.6)

Thus ¢ € H and (2.5) can be rewritten as
19" (0)] =1 — |p(0)[*. (2.7)

Since D > z — zg(z) is a Schwarz function, i.e., a self-map of D keeping the origin
fixed, by the maximum principle for analytic functions, the function ¢ is a self-map

@ Springer



310 0. S. Kwon et al.

of D. By the Schwarz-Pick Lemma (e.g., [5, p. 5]) it follows that (2.7) holds if and
only if ¢ is an automorphism of D, i.e.,

7% eD, 2.8)

0(2) = )Ll
—wz

for some A € T and o € D. Since ¢ € [0, 2), by (2.8) and (2.6) we have —p(0) =
la € (—1,0]. Thus A = —|«|, so that « = —7A, where t := || € [0, 1). Hence,
by (2.6), and (2.8) it follows that (2.5) holds if and only if

Cl4z9() 1+t + Nz 447?

PO =~ T——ne—n2” *P @9
Since ¢; = 27 and ¢ = 2(A — A2 + 12), we have
_ 2C2—C% _ 4h — rt2 4 12) — 472 _
4—c2 4 — 472 '
This together with (2.9) shows that p is as in (2.4) and completes the proof. O

We will now prove the main result of this paper, i.e., the formula (2.10) for the
coefficient c4. The proof of (2.10) is elementary, but requires tedious algebraic com-
putations. In particular, the proof of equality (2.16), which is the key in Lemma 2.4,
requires long arduous algebraic transformations and appropriate grouping of expres-
sions.

Lemma 2.4 If p € P is of the form (1.2) with ¢y > 0, then
8cs = cf + (4= D [ 6?36 +3) +4¢ ] — 44— D1 — )
x[e1@ = n+2nt = (1= 1) ] (2.10)
for some ¢, n, & € D.
Proof By Lemma 2.1, we have
Dy =2M; — ci1M> + cyM3 — caMy + caMs > 0, (2.11)

where M; (i =1, 2, 3, 4,5) is the determinant of the minor matrix of the ith entry in
the first row in D4. Then inequality (2.11) is equivalent to

— 6154M§ + C254M§t — C3E4M;Lt — C1C41V[51 +5264M52 — 53641‘453 + |C4|2Mg
—2M; + C%le — lezMzz + ClE3M23 — 61C2M3] + |C2|2M§ — C253M§
+ cre3My — Gae3Mi + |e3* M3 < 0,
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where Mij (i=1,2,3,4,5,j=1,2,3,4)is the determinant of the minor matrix of

the jth entry in the first column in M;. Since Ml = M;, M52 = Mg and M3 = m,
the latter inequality is equivalent to

_ _ _ —4  _ =4 _ =4
— 01C4M§L + 62C4M§‘ — C3C4Mf —cic4My + crcaMy — c3e4M 4 + |C4|2M§1
— 2M\ + cIMj — cieaM3 + c163M5 — creaMy + |c2|* M3 — ee3 M3
+ c1e3Mj — eacs M3 + |e3* M < 0.

Multiplying both sides of the above inequality by Mg1 = D, > 0, we equivalently
obtain

2 2
C4M§ — C]Mét + C2M§ — C3M2’ — ‘—ClME1r +C2M§ - CgMj'

< m? (2M1 — M)+ 6 MR — &3 M3 + creaM) — e PM2 + e M3

—cre3M) + T3 M2 — |C3|2M2) . 2.12)
Let
A= eI MS — caM3 + 3 M} (2.13)
and
4 4 ne
By = |—e1M + eMf — 3|
+ M <2M1 — EM) 4 e ME — e M3 + creaM) — |eaPME + cyes M3
1, = 2 2143
—c1e3M} + Te3M2 — |c3| M4). (2.14)
Since
c1 ¢ c3
M; =12 crc| = c% +c1(—4 + cr)ep +4e3 — C%C3,
C1l 2 C1l
2 ¢
M;‘ =|crcr | = 20% + 2cic3 + |cz|2cz —ci1c2c3 —4cy) — c%cz
c2 2 ¢
and
2 c1c3
Mff =|c12 | =4c + c%03 + cl|cz|2 — 2¢rc3 — 2c1cp — c%,
Cy C1 €l
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we get from (2.13)

A= c‘l‘ + 4c% — 2C?C3 —4c1(cr —2)c3

+ct (<62 +23 +3) = (3 - 20106 +23) @ (219)

Computing the determinant M7, each of the determinants Ml.] (i=12,3,4,5j=
1,2, 3,4), and performing further elementary but tedious transformations show that
the following identity holds:

B; = B?, (2.16)

where

B =16 — 120% + c‘l1 + 4c%cz — C%C3 + (—20%(6’2 —2)—8c + 4clc3) Ca

+ (Cg - CIC3) o — (C? +ci(ca —der + ez — C%C3> 3. (2.17)
Using (2.2) and (2.3) in (2.15) and (2.17) we respectively obtain
1 22 2
A:_1_6(4_C1) (1 —=1¢1"C, (2.18)

where

Ci=cl(=14¢) = 160> = 4cic(3 = 40 + ¢%) + 16¢1 (=1 + O)n — 4c} (=1 + O)n
44+ D [(ea(=1+ ¢ = En+167Tn’]
and
1

B=g¢wﬁa—mW0—m% (2.19)

Taking into account (2.13), (2.14) and (2.16) the inequality (2.12) can be written as
4 2 2
‘MS cq4 — A‘ < B~,

i.e., using the fact that B > 0, as

Micy = A + BE, (2.20)
for some & € D. Since by (2.2),
2 ¢y 1
ME=|c1 2 c1| =842t Re(c2) — 2|ea|* — 4t = 5(4 —cHr -1,
crc1 2
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it follows from (2.18) and (2.19) that (2.20) takes the form
1 1 1
5(4—c%)2(1—|;|2)c4 = —E(4—6f)2(1—Ié“Iz)C+1(4—6%)3(1—I§I2)2(1—Inlz)é,
or, equivalently,
(4= 20— [ [Seq + € — 44 = DA — e D)1 = Iy ] = 0

with ¢, , & € D. Thus (2.10) holds in the cases c; #2and || # 1.

As previously noted, if ¢; = 2, then p = pg. Thus ¢4 = 2 and (2.10) becomes
obvious.

Assume now that c; € [0, 2) and ¢ € T. Due to Lemma 2.3 it remains to consider
functions of the form (2.4) for which

c1 =21, ca=2024601> =8t + 2032 2t —6ctt + 602t — 2030
(2.21)

Therefore it is sufficient to show that (2.10) with ¢ € T holds for such functions, i.e.,
that

Scs =} + (4 - D [ =30 +3) +4¢]

is true for c1 and c4 given by (2.21). Since this can be easily confirmed the proof of
the lemma is complete. O

Remark 2.5 Let us announce that in the forthcoming papers [9, 10], by using Lem-
mas 2.2 and 2.4, it is shown that for starlike and convex functions f of the form (1.1)
(see, e.g., [6, pp. 40-42]) the Hankel determinant

ay az as

H;31(f) :=|az a3 a4
az ag as

is bounded by 8/9 and by 4/135, respectively. In the convex case the result is sharp.

References

1. Babalola K.O.: On H3(1) Hankel determinants for some classes of univalent functions. In: Y.J. Cho
(Eds.) Inequality Theory and Applications, vol. 6, pp. 1-7. Nova Science Publishers, New York (2010)

2. Bansal, D.,Maharana, S., Prajapat, J.K.: Third order Hankel determinant for certain univalent functions.
J. Korean Math. Soc. 52(6), 1139-1148 (2015)

3. Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: The bounds of some determinants for
starlike functions of order alpha. Bull. Malay. Math. Sci. Soc. https://doi.org/10.1007/s40840-017-
0476-x (accepted)

4. Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: The bound of the Hankel determinant
for strongly starlike functions of order alpha. J. Math. Ineq. 11(2), 429-439 (2017)

@ Springer


https://doi.org/10.1007/s40840-017-0476-x
https://doi.org/10.1007/s40840-017-0476-x

314 0. S. Kwon et al.
5. Dineen, S.: The Schwarz Lemma. Clarendon Press, Oxford (1989)
6. Duren, P.T.: Univalent Functions. Springer, New York Inc., New York (1983)
7. Janteng, A., Halim, S.A., Darus, M.: Coefficient inequality for a function whose derivative has a

10.

11.

12.

14.

15.
16.

positive real part. J. Inequal. Pure Appl. Math. 7(2) Art. 50, 1-5 (2006)

. Grenander, U., Szegd, G.: Toeplitz Forms and Their Applications. Univ. of California Press, Berkeley

(1958)

. Kowalczyk, B., Lecko, A., Sim, Y.J.: The sharp bound of the Hankel determinant of the third kind for

convex functions. Bull. Austr. Math. Soc. (accepted)

Kwon, O.S., Lecko, A., Sim, Y.J.: The bound of the Hankel determinant of the third kind for starlike
functions (submitted)

Lee, S.K., Ravichandran, V., Supramanian, S.: Bound for the second Hankel determinant of certain
univalent functions. J. Inequal. Appl. 2013(281), 1-17 (2013)

Libera, R.J., Zlotkiewicz, E.J.: Early coefficients of the inverse of a regular convex function. Proc. Am.
Math. Soc. 85(2), 225-230 (1982)

. Libera, R.J., Zlotkiewicz, E.J.: Coefficient bounds for the inverse of a function with derivatives in P.

Proc. Am. Math. Soc. 87(2), 251-257 (1983)

Mishra, A.K., Gochhayat, P.: Second Hankel determinant for a class of analytic functions defined by
fractional derivative. Int. J. Math. Math. Sci. 2008, Article ID 153280, 1-10 (2008)

Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Gottingen (1975)

Shanmugam, G., Stephen, B.A., Babalola, K.O.: Third Hankel determinant for a-starlike functions.
Gulf J. Math. 2(2), 107-113 (2014)

. Sudharsan, T.V., Vijayalaksmi, S.P., Stephen, B.A.: Third Hankel determinant for a subclass of analytic

functions. Malaya J. Math. 2(4), 438444 (2014)

@ Springer



	On the Fourth Coefficient of Functions  in the Carathéodory Class
	Abstract
	1 Introduction
	2 Main Results
	References




