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Abstract We determine the Bohr radius for the class of odd functions f satisfying
| f (z)| ≤ 1 for all |z| < 1, solving the recent problem of Ali et al. (J Math Anal Appl
449(1):154–167, 2017). In fact, we solve this problem in a more general setting. Then
we discuss Bohr’s radius for the class of analytic functions g, when g is subordinate
to a member of the class of odd univalent functions.
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1 Preliminaries and Main Results

LetA denote the space of all functions analytic in the unit diskD := {z ∈ C : |z| < 1}
equipped with the topology of uniform convergence on compact subsets of D. Then
the classical Bohr’s inequality [14] states that if a power series f (z) = ∑∞

n=0 anz
n

belongs to A and | f (z)| < 1 for all z ∈ D, then M f (r) := ∑∞
n=0 |an|rn ≤ 1 for
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all |z| = r ≤ 1/3 and the constant 1/3 cannot be improved. The constant r0 =
1/3 is known as Bohr’s radius. Bohr actually obtained the inequality for r ≤ 1/6,
but subsequently later, Wiener, Riesz and Schur, independently established the sharp
inequality for |z| ≤ 1/3. For a detailed account of the development, we refer to the
recent survey article on this topic [8] and the references therein.

A variety of results related to Bohr’s theorem in several complex variables have
appeared recently. See [19] and the references there. For example, Boas andKhavinson
[13] obtained some multidimensional generalizations of Bohr’s theorem and Aizen-
berg [4,5] extended it for further studies on the topic. Using Bohr’s inequality, Dixon
[15] constructed an example of a Banach algebra that satisfies vonNeumann’s inequal-
ity but is not isomorphic to the algebra of bounded operators on a Hilbert space. There
has been considerable interest after the appearance of the work of Dixon. Paulsen
and Singh extended Bohr’s inequality to Banach algebras in [18]. In [12], the Bohr
phenomenon for functions in Hardy spaces is discussed. In [11], Balasubramanian et
al. extended the Bohr inequality to the setting of Dirichlet series. For certain other
results on the Bohr phenomenon, we refer to [1–3,6,7].

The present investigation is motivated by the following problem of Ali, Barnard
and Solynin [9].

Problem 1 [9] Find the Bohr radius for the class of odd functions f satisfying
| f (z)| ≤ 1 for all z ∈ D.

In [9, Lem. 2.2], it was shown that for odd f , M f (r) ≤ 1 for all |z| = r ≤ r∗,
where r∗ is a solution of the equation

5r4 + 4r3 − 2r2 − 4r + 1 = 0,

which is unique in the interval 1/
√
3 < r < 1. The value of r∗ can be calculated in

terms of radicals and it is equal to 0.7313 . . ..
Moreover, in [9], an example of the form f (z) = z(z2−a)/(1−az2)was also given

to conclude that the Bohr radius for the class of odd functions satisfies the inequalities
r∗ ≤ r ≤ r∗ ≈ 0.789991, where

r∗ = 1

4

√
B − 2

6
+ 1

2

√

3

√
6

B − 2
− B

24
− 1

6
, (1)

with

B = (3601 − 192
√
327)

1
3 + (3601 + 192

√
327)

1
3 .

One of the aims of this article is to solve this problem in a more general form. Namely,
we are going to solve an analogous problem for p-symmetric functions of the form
f (z) = z

∑∞
k=0 apk+1z pk . We should remark that the p-symmetric property in the

case p > 1 brings serious difficulties because if we use the sharp inequalities |an| ≤
1−|a0|2 (n ≥ 1) simultaneously (as in the classical case) we will not obtain the sharp
result due to the fact that in the extremal case we have |a0| < 1. Also it is important
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Bohr Inequality for Odd Analytic Functions 681

to note that in the classical case there is no extremal function while in our case there
is. We now state our main results and their corollaries. The proofs will be presented
in Sect. 2.

Theorem 1 Let p ∈ N, f (z) be analytic and p-symmetric in D such that | f (z)| ≤ 1
in D. Then

M f (r) ≤ 1 for r ≤ rp,

where rp is the maximal positive root of the equation

−6r p−1 + r2(p−1) + 8r2p + 1 = 0

in (0, 1). The extremal function has the form z(z p − a)/(1 − az p), where

a =
⎛

⎝1 −
√
1 − rp2p√

2

⎞

⎠ 1

rp p
.

The result for p = 1 is well known with r1 = 1/
√
2.

The case p = 2 has a special interest since it provides a solution to Problem 1.

Corollary 1 If f (z) is odd analytic in D and | f (z)| ≤ 1 in D, then

M f (r) ≤ 1 for r ≤ r2 = 0.789991 . . . ,

where r2 = r∗ is given by (1). The extremal function has the form z(z2−a)/(1−az2).

Thus, it turns out that the upper bound r∗ found in [9] is sharp and provides the
exact value for the Bohr radius for the class of odd functions. In addition, it is worth
pointing out that for the case p = 3 in Theorem 1, r∗

3 gives the value (
√
7 + √

17)/4.
To state our next result, we need to introduce the notion of subordination. Let

f, g ∈ A. Then g is subordinate to f , written g ≺ f or g(z) ≺ f (z), if there exists a
w ∈ A satisfying w(0) = 0, |w(z)| < 1 and g(z) = f (w(z)) for z ∈ D. In the case
when f is univalent in D, g ≺ f if and only if g(0) = f (0) and g(D) ⊂ f (D) (see
[10, Ch. 2] and [16, p. 190, p. 253]). By the Schwarz lemma, it follows that

|g′(0)| = | f ′(w(0))w′(0)| ≤ | f ′(0)|.

For important discussions on the Schwarz lemma and its various consequences, we
refer to [10].

Now for a given f , let S( f ) = {g : g ≺ f }. In [1, Thm. 1], it was shown that if
f, g ∈ A such that f is univalent in D and g ∈ S( f ), then the inequality Mg(r) ≤ 1
holds with r f = 3 − 2

√
2 ≈ 0.17157. The sharpness of r f is shown by the Koebe

function f (z) = z/(1 − z)2. Our next result concerns Bohr’s radius for the space of
subordinations when the subordinating function is odd and univalent inD. In this case,
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the Bohr radius is much larger and the proof in this case is completely different. Unlike
the earlier case [1, Thm. 1] where the proof requires coefficient estimation, for the
odd univalent function f (z) = ∑∞

k=1 a2k−1z2k−1, the sharp bound for a2k−1 is still
unknown. Even if we use the known coefficient bound for odd univalent functions, we
do not get a better bound for the Bohr radius.

Theorem 2 If f, g are analytic in D such that f (z) = z + ∑∞
k=2 a2k−1z2k−1 is odd

univalent in D and g(z) = ∑∞
n=1 bnz

n ∈ S( f ), then Mg(r) ≤ 1 holds for r ≤ r∗,
where r∗ = 0.554958... is the minimal positive root of the equation

x2 = (1 − x)2(1 + x).

If g in Theorem 2 is also odd analytic, then one can easily obtain the sharp value
of the Bohr radius in Theorem 2 (see Remark 2). We conclude the section with the
following problem.

Problem 2 Find the Bohr radius for the class of odd functions f satisfying 0 <

| f (z)| ≤ 1 for all 0 < |z| < 1.

2 Proofs of Theorems 1 and 2, and Remarks

For the proof of Theorem 1, we need the following lemmas.

Lemma 1 If rp is the maximal positive root of the equation

8r2p + r2(p−1) − 6r p−1 + 1 = 0,

then 2rp p+1 ≤ 1.

Proof Let y = r p+1
p . Then we have a quadratic equation:

(
8 + 1/r2p

)
y2 − 6y + r2p = 0

which has two solutions

y =
3 ± 2

√
2
√
1 − r2p

8 + 1/r2p
≤

3 + 2
√
2
√
1 − r2p

8 + 1/r2p
.

Consequently,

2r p+1
p = 2y ≤

6 + 4
√
2
√
1 − r2p

8 + 1/r2p
≤ sup

r∈(0,1]
6 + 4

√
2
√
1 − r2

8 + 1/r2
= 1,

which completes the proof of Lemma 1. �
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Lemma 2 Let |b0| < 1 and 0 < R ≤ 1. If g(z) = ∑∞
k=0 bkz

k is analytic and satisfies
the inequality |g(z)| ≤ 1 in D, then the following sharp inequality holds:

∞∑

k=1

|bk |2Rpk ≤ Rp

(
1 − |b0|2

)2

1 − |b0|2Rp
. (2)

Proof Let b0 = a. Then, it is easy to see that the condition on g can be rewritten in
terms of subordination as

g(z) =
∞∑

k=0

bkz
k ≺ φ(z), (3)

where

φ(z) = a − z

1 − az
= a − (1 − |a|2)

∞∑

k=1

(a)k−1zk, z ∈ D.

Note that φ is analytic in D and |φ(z)| ≤ 1 for z ∈ D. The subordination relation (3)
gives (see for example Goluzin [17, p. 370–371] and [16, p. 193])

∞∑

k=1

|bk |2R2k ≤ (1 − |a|2)2
∞∑

k=1

|a|2(k−1)R2k = R2 (1 − |a|2)2
1 − |a|2R2

from which we arrive at the inequality (2). �


Proof of Theorem 1 Let r = rp and f (z) = ∑∞
k=0 apk+1z pk+1, where | f (z)| ≤ 1 for

z ∈ D. First, we remark that the function f can be represented as f (z) = zg(z p),
where |g(z)| ≤ 1 in D and g(z) = ∑∞

k=0 bkz
k is analytic in D with bk = apk+1. Let

|b0| = a. Choose any ρ > 1 such that ρr ≤ 1. Then it follows that

∞∑

k=1

|apk+1|r pk =
∞∑

k=1

|bk |r pk

≤
√
√
√
√

∞∑

k=1

|bk |2ρ pkr pk

√
√
√
√

∞∑

k=1

ρ−pkr pk

≤
√

r pρ p (1 − a2)2

1 − a2r pρ p

√
ρ−pr p

1 − ρ−pr p

= r p(1 − a2)
√
1 − a2r pρ p

1
√
1 − ρ−pr p

.
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In the second and the third steps above we have used the classical Cauchy–Schwarz
inequality and (2) with R = ρr , respectively. Hence,

∞∑

k=1

|apk+1|r pk ≤ r p(1 − a2)
√
1 − a2r pρ p

1
√
1 − ρ−pr p

. (4)

We need to consider the cases a ≥ r p and a < r p separately.
Case 1 a ≥ r p. In this case set ρ = 1/ p

√
a and obtain

∞∑

k=0

|apk+1|r pk+1 ≤ r

(

a + r p
(1 − a2)

1 − r pa

)

. (5)

For convenience, we may let α = r p and consider

ψ(x) = x + α
(1 − x2)

1 − αx
, x ∈ [0, 1].

Finally, we just need to maximize ψ(x) over the interval [0, 1]. We see that ψ has two
critical points and find that the maximum occurs when

x1 =
(

1 −
√
1 − α2
√
2

)
1

α
, α ≥ 1

3
,

and thus, ψ(x) ≤ ψ(x1). Consequently, by (5), we find for the r = rp defined in
Theorem 1 that

∞∑

k=0

|apk+1|r pk+1 ≤ 1

r p−1

(
3 − 2

√
2
√
1 − r2p

)
= 1. (6)

Case 2 a < r p. In this case we set ρ = 1/r and apply (4). As a result we get

∞∑

k=0

|apk+1|r pk+1 ≤ r
(
a + r p

√
1 − a2/

√
1 − r2p

)
≤ 2r p+1 ≤ 1. (7)

Here we omitted the critical point a = √
1 − r2p because it is less than or equal to r p

only in the case r2p > 1/2 which contradicts Lemma 1.
The last inequality in (7) follows from Lemma 1.
Now, (6) and (7) complete the proof of the first part of Theorem 1. Now we need to

say a few words about the extremal cases. We set f (z) = z(z p − a)/(1 − az p) with

a = (1 −
√
1−r2p√

2
)/r p and then calculate the Bohr radius for it. It coincides with r .

Certainly, an extremal function is unique up to a rotation of a. To see this we just
trace our inequalities and see that equality holds only when |b0| = a. �
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Proof of Theorem 2 Let g ≺ f , where g(z) = ∑∞
n=1 bnz

n , and f (z) = ∑∞
k=1

a2k−1z2k−1 is an odd univalent in D. Here a1 = 1 and thus, by the definition of
the subordination, |b1| ≤ 1. First we show that

∞∑

k=1

|a2k−1|r2k−1 ≤ r

1 − r2
for |z| = r < 1. (8)

To prove this, we use Robertson’s inequality for odd univalent functions f (see, for
instance, [10, Sec. 2.2]),

n∑

k=1

|a2k−1|2 ≤ n.

Using this, we derive that

Sn =
n∑

k=1

|a2k−1| ≤ √
n

√
√
√
√

n∑

k=1

|a2k−1|2 ≤ n. (9)

It follows from (9) that

∞∑

k=1

|a2k−1|r2k−1 = |a1|(r − r3) +
∞∑

k=2

Sk(r
2k−1 − r2k+1)

≤ r − r3 +
∞∑

k=2

k(r2k−1 − r2k+1) = r

1 − r2

which proves (8).
Next, as g ≺ f , we have by (8) that

∞∑

k=1

|bk |2r2k ≤
∞∑

k=1

|a2k−1|2r2(2k−1) ≤ r2

1 − r4

which gives
∞∑

k=1

|bk |2rk ≤ r

1 − r2
. (10)

Consequently, by the classical Cauchy–Schwarz inequality, we obtain

∞∑

k=1

|bk |rk ≤
√
√
√
√

∞∑

k=1

|bk |2rk
√
√
√
√

∞∑

k=1

rk ≤
√

r

1 − r2
r

1 − r
= r

(1 − r)
√
1 + r

which is less than or equal to 1 if r3 − 2r2 − r + 1 ≥ 0. �
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Remark 1 Now we show a possibility to slightly improve the Bohr inequality in The-
orem 2. We see that

∞∑

k=1

|bk |2rk = |b1|r + |b2|r2 +
∞∑

k=3

|bk |rk

≤ |b1|r + |b2|r2 +
√
√
√
√

∞∑

k=3

|bk |2rk
√
√
√
√

∞∑

k=3

rk

≤ ψ(|b1|, |b2|),

where we have used (10) and the function

ψ(x, y) = r x + r2y + r2√
1 − r

√
1

1 − r2
− x2 − r y2 (11)

with x = |b1| and y = |b2|. Therefore, we have to find

max{ψ(x, y) : 0 ≤ x ≤ 1, x2 + y ≤ 1}.

First let us consider the case y < 1 − x2. In this case

∂

∂y
ψ(x, y) = 0 or y = 0.

If y = 0, then max{ψ(x, 0) : 0 ≤ x ≤ 1} = 1121
√
7/53/410 < 1 for r = 0.59

which is too big. Now consider the case

∂

∂y
ψ(x, y) = r2 −

√
1/(1 − r)r3y

√
1/(1 − r2) − x2 − r y2

= 0

so that

y =
√
1 − x2 + r2x2√

r + r2
> 1 − x2 for r ≤ 0.6.

Therefore, we may assume that y = 1 − x2. In this case we have to verify that

max{ψ(x, 1 − x2) : 0 ≤ x ≤ 1} ≤ 1,

where ψ(x, 1 − x2) is obtained from (11) by letting y = 1 − x2. Straightforward
and routine computations show that r = 0.564 . . . which is slightly better than the
estimate presented in Theorem 2.

We conclude that the Bohr radius in this case cannot be greater than (
√
5− 1)/2 =

0.618034 . . .. This upper bound can be easily obtained from the example f (z) =
z/(1 − z2).
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Remark 2 If g ≺ f , where g(z) = ∑∞
k=1 b2k−1z2k−1 is also odd, and f (z) =∑∞

k=1 a2k−1z2k−1 is an odd univalent in D (with a1 = 1), then by Rogosinski’s
theorem [20] and then Robertson’s inequality, we obtain that

n∑

k=1

|b2k−1|2 ≤
n∑

k=1

|a2k−1|2 ≤ n

which, as in the proof of Theorem 2, implies that

∞∑

k=1

|b2k−1|r2k−1 ≤ r

1 − r2
.

Note that r
1−r2

= 1 gives r = (
√
5 − 1)/2 and thus, in this case, we have the sharp

Bohr radius and the extremal function is f (z) = z/(1 − z2).

While determining the Bohr radius in the case of functions f analytic in the unit
disk, one often requires sharp estimates on the Taylor coefficients of f . In the class of
odd univalent functions, the sharp coefficient estimate is still unknown, unlike for the
class of all univalent analytic functions solved by deBranges. In spite of this drawback,
it is interesting to state the following sharp result as a corollary of the relation (8).

Corollary 2 If f (z) = ∑∞
k=0 a2k+1z2k+1 is analytic in D and univalent in D, where

0 < α = |a1| ≤ 1, then

∞∑

k=0

|a2k+1|r2k+1 ≤ 1 for r ≤ rα = −α + √
4 + α2

2
.

The extremal function has the form αz/(1 − z2).

Proof By hypothesis, the relation (8) implies that for |z| = r < 1,

∞∑

k=0

|a2k+1|r2k+1 ≤ αr

1 − r2

which is less than or equal to 1 for r ≤ rα . Observe that in the normalized case (i.e.
a1 = 1), the radius rα takes the value (

√
5 − 1)/2 = 0.618034 . . .. �
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