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1 Introduction

Let D be the open unit disk in the complex plane C and H (D) be the class of functions
analytic in D. Let N denote the set of all non-negative integers. Let o, be the Mobius
transformation on ID defined by o,(z) = 1“_}2. For z, w € D, the pseudo-hyperbolic
distance between z and w is given by

—w

p(z, w) = [ow(2)] =

1 —wzl|

It is well known that p(z, w) < 1.

Let ¢ be an analytic self-map of D). The self-map ¢ induces a linear operator
C, which is defined on H(D) by Cy(f)(2) = f(p(z)), z € D. Cy is called the
composition operator. The compactness and essential norm of composition operator
on the Bloch space were studied by many authors (see, e.g., [3,8,13,14,17]). Here,
the Bloch space, denoted by B = B(ID), is defined as follows.

B={feHMD:|fls=IfO)]+sup(l—[z])|f )] < o0}.

zeD

In particular, Wulan et al. [14] proved that C, : B — B is compact if and only if
lim [l¢/ 5 = 0.
Jj—>00

Let ¢ be an analytic self-map of D and u € H(D). The weighted composition
operator, denoted by uCy, is defined as follows.

WCy [)(2) =u(2) f(p(2), zeD.

Let0 < @ < 00. An f € H(D) is said to belong to the weighted-type space,
denoted by Hy°, if

I fllHge = Su]g(l — 121 £ @) < oo

Itis well known that H;° is a Banach space under the norm || - || geo. For all z, w € D,
we define

ba(z,w) = sup (1 —[zHf(2) — (A — [w|H)* f(w)].

Hf HHgO <1
Let ¢ and ¢ be analytic self-maps of D, u, v € H (D). For simplicity, we denote

(1= z»%u(z) (1= 1zHP()

Dy o(2) = . Dyyla) = .
@ = TP vO =TT one
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Recently, many researchers have studied the differences of composition operators,
as well as the differences of weighted composition operators on some analytic function
spaces. The purpose of the study of the differences of composition operators is to
understand the topological structure of the set of composition operators acting on a
given function space. This line of research was first started in the setting of Hardy
spaces by Berkson and Shapiro and Sundberg (see [1,10]). After that, such related
problems have been studied on several analytic function spaces like H°, the Bloch
space, HZ° and its generalizations (see, e.g., [2,4-7,9,11,12,15,16]).

In [9], Nieminen obtained a characterization of the compactness of differences of
weighted composition operators on weighted-type spaces. Among others, he proved
the following result.

Theorem A Let 0 < o, B < 00, u,v € H(D). Let ¢ and v be analytic self-maps
of D. Suppose that uCy : H® — Hgo and vCy : H® — Hgo are bounded. Then,
uCy —vCy : H® — Hgo is compact if and only if

I(p(lzl)IIn—>1 Dup(2)p(@(2), ¥ (2)) = \1//(111?\1—>1 Do,y ()09 (2), ¥ (2))

= lim |Du,<p(Z) - Dv,l//(z)| =0. (1)
lp2)|—1
¥ (2)|—1

Motivated by the results in [14] and Theorem A, we will give a new characterization
for the boundedness, compactness and essential norm of the operator uCy — vCy :
Hg® — Hg°. More precisely, we show that uCy, — vCy : Hg® — Hg® is bounded
g 0"l

B3

o
(respectively, compact) if and only if the sequence ( ) 0 is bounded
n=

(respectively, convergent to 0 as n — 00).
For two quantities A and B which may depend on ¢ and v/, we use the abbreviation

A < B whenever there is a positive constant ¢ (independent of ¢ and /) such that
A <cB.Wewrite A~ B,if A < B < A.

2 Boundedness of uCy — vCy : Hy® — Hg°

In this section, we characterize the bounded differences of weighted composition
operators from H° to H /‘3’0 For any a € D, we define the following two families of
test functions:

A—lafye (A —la)? a-z
(I—age 897 G —ap® T-az

fa(@) = z € D.

Itis easy to see that [|g4[lue < || falluge = 1.

To prove the result in this section, we need the following lemmas.
Lemma 2.1 Let 0 < o, B < 00, u,v € H(D). Let ¢ and  be analytic self-maps of
D. Then the following inequalities hold:
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()
sup [ Dy, (2)10(9(2), ¥(2)) S sup [[(uCy — vCy) fallmge
zeD aeD
+ sup [[(uCy — vCy)8allpze-
acD
(ii)
sup [ Dy, (2)0(9(2), ¥ (2)) S sup [[(uCyp = vCy) fallgge
zeD aeD
+ sup [|[(uCy —vCy)8all e
aeD
(iii)
sup [Dy,p(2) — Dy,y (2)| S sup [(uCy — vCy) fallmge
zeD aeD
+ sup [[(Cyp — vCy)gall e
aeD

Proof (1) For any z € D, we have

I (ucga - vCl//)flﬂ(Z) I HE"

> |u(2) fp() (@(2)) = V(@) foy (W (@] — |21%)P
(1 = lp@) (1 — [Y(2)]*)*

- Du, ( )_ — Dv, ( )
e (1~ g¥ ()™ v
(1= lp@ )% = [¥ (@)™
> | Duyp(2)] — = 1Dy.y (2)]
v 11— @y @ v
and
1uCy — vCy)gp(o) llaze
> |u(2)80(2) (9(2)) — V(D) &px) (W () |(1 — |2[HP
(1 = lp@) (1 = [P (2)]*)*
= — 1Dy ()10 (9(2), ¥(2)).
- e@y ()P v@lolp@. v
Hence,

[Dup (2P (@(2), ¥(2))

= ||(uc<p - UCW)f(p(z)”Hgop(‘P(Z): ¥ (z) + ||(MC¢ - UCW)gga(z)”Hgo

< l(uCy — vCl//)f(p(Z)”HEO + [(uCy — vi/f)gmz)lngO-
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Similarly,

D,y ()10 (@(2), ¥(2)) = 1Cy —vCy) fy ) e
+ |uCy — va)gw(z)IIHgo'

Therefore,

sup | Dy 4 (2)|p(¢(2), ¥ (2))
zeD

3

< sup [|[(uCy — vi//)fw(z)lngo + su]g l(uCy — vip)gmz)lngo
ze

zeD
=< sup |(uCy —vCy) falluge + sup [(uCy — vCy)gall rpe-
aeD aeD

(i) The proof is similar to (i). From (3) we get the desired result.
(iii) By [9, Lem. 2.3],

I1uCy = vCy) fip(o g2
(1 = lp@) (1 = [Y()]*)* ‘
— Dy.y (2)
(1 — g(¥ ()™ v
(1= p@) P (1 = ¥ @)

> |Dyp(2) — Dyy (D) — |1 — —

Pup@ = Duy (1 - eQ@¥ ()™

= Dup(2) — Doy (D] — |1 = [9@))* for) (9(2))

— (1= 1Y @D foey (W (@) || Do,y (2)]

> |Dy.p(2) — Doy (2)] — o (@(2), ¥ (2))| Dy (2)]

> Dy (@) = Dyy ()| = Dy y ()| 0 (9(2), ¥ (2)).

> Du,w(z) -

Thus, by (2) we obtain

|Du.y(2) — Dy y (2|
S IwCy —=vCy) fo g +1Dv.y (D)10(9(2), ¥(2))
S €y — vCy) fo lage + 1 Cy —vCy) fy ) e
+ 1@Cy = vCy)gy ) lluge-

Therefore,

sup |Dy 4 (2) — Dy,y (2)| < sup |(uCy — vCy) falluge
zeD achD

+ sup | (uCy — vCy)gall e
acD

The proof of the lemma is completed.

Do,y (2)]

“)
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Lemma 2.2 Let0 < o, B < oo, u,v € H(D). Let ¢ and  be analytic self-maps of
D. Then the following inequalities hold:

(i)
e vl lug” — vy o
sup ||[(uCy — v g Ssup ———
i S A TPy P
(ii)

™ = vl g3
sup [|(Cy — vCy)gall = S sup

aeD neN 2" | e

Proof (1) When a = 0, we see that f,;(z) = 1. Itis clear that

lug"™ — vy || g
3

l@Cy —vCy) fallgge = llu = vllpge < sup n
neN 12" || e

For any a € D with a # 0, note that

_ U —la)® e TR+ 20)
Ja@ = e = |a|>§k,m) ., zeD.

After a simple calculation, we see that n®||z" || gee ~ 1. By the following well-
known formulas,

'k
M,@k“_l,k—)oo, and E k¥~ l|a| la] — 1,
k! k=1 (1 —Jah* | e’

we have
”(MC(/J - UCgb)fa”Hgo

oo
'k +2a)
< (U= 1aP)* " — s lal*lug® — vyt e
k

|
= k'T Qo)
F(k+2a)
o _ N LW kya _ .
-ty Faa ¢tk gt — vyt
k=0
- Tk + 2a)
< (1 - 2\a T e k o n_ n o
< (1 —laP ZO TGy * el supn®llug” — vyl
00 n n
Tk +2 lug™ — vl e
~ (1= fapye S B2 gy 7 T I
“~ kII'(a) neN 12" || e
lug" — vyl e
< sup ®)
neN ”Zn”Hé>O

@ Springer



A New Characterization of Differences 309

By the arbitrariness of a, we see that (i) holds.

(ii)) When a = 0, we see that g,(z) = —z. Itis clear that

llug™ — v gz
[wCy —vCy)8gallpe = llug — vwllﬂoo Sup —————
neN ”Z ”Ho?o

Similarly, for any a € D with a # 0,

(I—la»H* a-z
(l—az)z"‘ 1—az

I'tk+2
= (1= lal)® (Z G ")(a ~ (= Jal >Zak k“)

k=0

'k +2
= afa(z) — (1 —|a|?)*™! (Z k('F—(l_Za(:) =k k)(z ak k+1)

oo fk—1

rd+2
=afa(x) — (1 —lal>)*™ D Z l(,rga‘;‘)) A

k=1 \I=l

8a(2) =

By Stirling’s formula, we have
< I +20)

k—1
~ E Pl k%) k- oo,
I Qa)

=0

Therefore,

I@Cp = vCy)galluge < 1wCy —vCy) fullme + (1 —la?)**!
o0
PU+20)N, 1y k
x Z(Z—)| M lug® — vy | e
k=1 *1=0 I'F(Z) !
S I@Cy —vCy) fullmge + (1 —la?)**!

oo
1
x D 2kl supn® ug” — vy e
k=1 nz2

llug™ — vy || e
X Cyp —vCy) fallage + sup ——————
neN 2" || Hgo

" — vy | e
S sup —————
neN llz ||H§°

By the arbitrariness of a, we see that (ii) holds. The proof of the lemma is completed.
O
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Theorem 2.1 Let 0 < o, B < 00, u,v € H(D). Let ¢ and  be analytic self-maps
of D. Then uCy, — vCy : H;® — Hgo is bounded if and only if

lug" — vy || g
3

sup (6)

neN 12" | o

Proof First, we assume that uCy, —vCy : H® — H go is bounded. For any n € N, let
fu(@) = 2" /112" | zge. Then || fu || mee = 1. Thus, by the boundedness of uC, — vCy,
we get

lug" — vy || g
B

12" || e

)

00 > [[uCy — UCw||HgO—>Hg° > [(uCy — va)anHgo =

as desired.
Conversely, assume that (6) holds. For any f € HZ° with | fllgee < 1, by [9,
Lem. 2.3], we have

1uCy = vCy) f I mge
= sup [u(z) f(9(2)) — v(@) fF W (@)1 — |z[H)P

zeD

<sup | f (@)1 = lp@P)* = FW @)1 = [ @)1 Dup()

zeD

+ sup | £ (Y @)1 = [¥(D)1)*|Duy (2) — Dy (2)]

zeD
< sup bo (¢(2), ¥ (2))|Du,p ()| + | [l Hgo suﬂg |Du.p(2) — Dy,y (2|

zeD

S Sup Dy, (z) — Dy, y (2)| + sup [ Dy, (2) | p(@(2), ¥ (2)).
zeD zeD

Hence, by Lemmas 2.1 and 2.2 we have

luCy — UCt/f||H§°—>H§°
S sup Dy, (2) — Dy,y (2)| + sup [ Dy (2) | p(9(2), ¥(2))
zeD

zeD
S sup [[(uCy — vCy) fallge + sup [(Cy —vCy)8all e
acD aecD
" — vy e
Ssup —————————
neN 1z | e

Therefore, uC, — vCy : H®* — H ﬂoo is bounded. This completes the proof of the
theorem. O
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3 Essential norm estimates

In this section, we give an estimate for the essential norm of uCy, — vCy from HZ° to
H /‘3’0 For this purpose, we need some auxiliary results as follows.

Lemma 3.1 Let 0 < «, B < 0o, u, v € H(D). Let ¢ and ¥ be analytic self-maps of
. Then the following inequalities hold:

i)
lim sup Dy, (2)]p(¢(2), ¥(2)) S limsup [[uCyp — vCy) fall gz
5= Lig(z)|>s lal—1
+ limsup [|(uCy — vC,/,)gallHoo.
la]—1
(ii)
lim sup [Dy .y (2)lp(@), ¥(2)) < limsup|[(uCy — vCy) fallmze
=Ly @))>s la|—1
+ limsup [|(uCy — UCw)ga”Hoo.
la]—1
(iii)
lim  sup |Dy,y(2) — Dy,y ()] S limsup ||(wCy — vCy) fallrge
51 @) >s lal—1
[ (2)|>s

+ limsup ||(uCy — vcw)gaHHOC

lal—1

Proof For any z € D, from the Proof of Lemma 2.1, we have

[Du,p(2)p(0(2), ¥ (2)) < [[(uCy — vCy) follage + 1 Cyp —vCy) 8ol Hge
[Dy,y (D)o (p(2), ¥ (2) < [[(uCy — UCI//)fl//(z)||H§° + [(uCy — va)gx//(z)IIHgo

and

Dy, (z) — Doy ()| S 1Cyp — vCy) foollmge
+ [(uCy — va)fw(z)IIch + [[(uCy — va)gw(z)llﬂgo~

From the above inequalities, the assertion follows easily. The proof is completed. O
Lemma 3.2 Let0 < o, B < oo, u,v € H(D). Let ¢ and  be analytic self-maps of

D. Suppose that uCy, —vCy, : H® — Hgo is bounded, then the following inequalities
hold:
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®

lug" — vy | e
lim sup ||(uCy — va)faHHoo <limsup ————

la|—1 n—00 ||Zn||HO?°
(i)

g — v | e
limsup [|(uCy — vCy)ga ||Hoo <limsup ———

la]—1 n—00 ||Zn||HO?°

Proof For each N and any a € D with a # 0, from the Proof of Lemma 2.2, we have

I@Cy —vCy) fall e

N
Ik +2a) _
S A —laP)* D" — ok al K lugt — vyt e

|
= k'T 2a)
o0
+ (U —la)* D kal* sup n®llug” — vy g )
k=N-+1 n>N+1

From the boundedness of uC, — vCy we see that sup, .y n%||ug" — vyf" ||H§° < oo.
Let |a] — 1 in (7). We obtain

limsup [(uCy —vCy) fallgze < sup n®llug" — vy |l yee

lal—>1 n>N+1
lug™ — vl e
R T —
n>N+1 1z | o

for any positive integer N. Hence,

lug" — vy | g3
limsup || (uCy — UCw)fa”Hoo <limsup ———

la|—1 n— 00 ||Z"||H§°

Also for each N and any a € D with a # 0, from the Proof of Lemma 2.2,
lwCy = vCy)gall e

N
SA—1aPF Y kal " sup nllug” — vy
k=1 1<n<N+1

+ (1= la]?)**! Z kal*=t sup nllug” — vy ||

k=N+1 nzN+1
+ [[(uCy — va)falngo~ ()
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Let |a] — 11in (8). We get

lim sup || (uCyp — vCy)gallmg

lal—1
Slimsup | (uCy —vCy) fullge + sup n®llug” — v | e
lal—1 n>N-+1

| g™ — v e
~ lim sup ||[(uCy — vCy) fa ||H§° + sup —————
la|—1 n>N+1 12" | o

for any positive integer N. Thus, by (i) we obtain

. ) lug" — UW"HH/;’C
lim sup ||(uCy — vCy)ga ||Hg° <limsup ———

lal—1 n—00 ”Zn”HD‘fc
The proof is completed. O

Theorem 3.1 Let0 < o, B < 00, u, v € H(D). Let ¢ and v be analytic self-maps of

D. Suppose that uCy : H;® — Hg® and vCy : Hg® — Hg® are bounded, then

" — oy
[uCy = vCylle, nge— mge A lim sUp ——————"
n—00 llz ”Ho?c

Proof Forr € [0, 1), set K, : H(D) — H(D) by

(Kr ) = fr(2) = f(rz), feHD).

It is clear that f, — f uniformly on compact subsets of D as r — 1. Moreover, K,
is compact on H;® and || Ky || gge— ge < 1. Let {r;} C (0, 1) be a sequence such that
rj = las j — oo. Then for all positive integers j, the operator (uCy — vCy) K}, :
HX - H g" is compact. Hence,

luCy — vCl//||e,Hg°—>Hg°
<limsup [uCy — vCy — (uCy — vCy)Ky, ||H§°—>H/§>C

j—o00
= limsup [[(uCy —vCy)(I — Kyl g g

j—o00
=limsup sup [[(uCy —vCy)I — Kr_,-)f”Hgo

j=00 Iflge<l
=limsup sup supQ{(Z),

j=>00 11/ lyge=1zeD

where
Qf(2) = u@(f = £)(@@) —v@(f — )W @)1 = 2P,
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For any r € (0, 1), define

Dy={zeD:|p@| <r|Yv@|I<r}, Dr:={zeD:lp@|=r¥@]|>r}
Dy:={zeD:lp@|>rv@|<r}, Diy:={zeD:lp&)|>r|¥@)]|>r}

Then,
limsup sup sup Qf = max limsup sup sup Q{
j=>00 IIfllggeo<1zeD ISI=4 jooo |fllpgo<tzeD;

= max [lim sup J1, lim sup J, lim sup J3, lim sup J4] ,

where J; = supy ¢y . <1 SUPcp; Q{ Since uCy : Hy® — Hg® and vCy : H° —
HﬁOO are bounded and we see that u, v € HEO. Since f — f;; — 0 is uniformly on
compact subsets of D as j — oo, we have

limsup J; = limsup sup sup Qf
j—o00 Jj—=00 | fllpge=<lzeD,

<limsup sup  sup |u(x)(f — fr)(@@)I(1 = [z]*)

j=00 I fllgge=<llp@l<r

+ limsup sup  sup [u(@)(f — £ @) = [z)P

J=00 N fllgge=11¥@)I=r

=0.
In addition, we have

/@) < 1(f = f)@@)( — 9@ D = (f = f)W @)1 — ¥ @]

Dy @I+ 1(f = fr) W@ = [¥(2)])* Dy (2) — Doy (2)]
< ba (¢(2), ¥(2))| Dy, (2)]

+ 1 = F)@ A = [¥ @) Dug(z) = Doy (2)]
S 1Duyp (1o (9(2), ¥(2)

+ 1 = F)@ A = ¥ @) Dug () = Doy (2.

Similarly,

Q/(2) £ 1Dy @1p(e@). ¥(2))
H(f = F) @@ = 9@ Dip(2) = Doy (2)].

Then, we obtain

limsup /o S limsup  sup  sup (|Dy,y (2)|p(9(2), ¥(2))

Jj—00 Jj=00 | flpge=<lzeb,

+ 1 = £ @I = 9@ Duyp(2) — Dy y (2)])
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<limsup sup  sup |(f — f;))(@@)I(1 = o))"

j=00 Iflgge<tle()]=<r
X |Duy(2) = Doy ()4 sup  [Dyy(2)lp(@(2), ¥(2))
Y @I>r

= sup Dy y(2)lp(p(2), ¥(2)),
W @I>r

where we used the fact that sup_p [Dy,¢(z) — Dy,y (2)| < 00, since uCy — vCy is
bounded (see the proof of Theorem 2.1), and f — f-;, — 0 uniformly on compact
subset of D as j — oo again in the last inequality. Since r is arbitrary, we have

limsup o < lim  sup  |Dyy (2)|p(@(2), ¥ (2)).

j—00 =1y @)l>r

Similarly,

limsup J3 < lim  sup |Dy 4 (2)|p(0(2), ¥ (2)).

j—o00 " he@)>r

Next we consider limsup;_, ., J4. We have

limsup Jy < limsup sup  sup (I(f — /) (@)1 — lp(2)[H)*

j—00 J=00 [ fligge=1z€Dy

X |Du,p(2) = Dy y ()| + Do,y (D0 (9(2), ¥(2)))
< limsup  sup sup I f = fr; 12 |Du,p(2) — Dy y (2)]

J=00 [Ifllgge<l lp@)|>r

W @I>r
+ sup Dy (2)1p(p(2), ¥ (2))
W @I>r

S osup [Dyp(z) =Dy y @+ sup Dy y(@)ple(2), ¥(2)),
lp(@)|>r Y (@)|>r
Y (2)|>r

where we used the fact thatlimsup;_, o, | /' — fr; [lnge < 2 inthe lastinequality. Thus,

limsup Js S lim  sup Dy (2) — Dy y (2)]
j—oo "= 1e@)|>r
¥ @)|>r
+1lim  sup Dy y(@)|p(p), ¥(2).
Ty (o)|>r

Therefore, we have

limsup sup sup ij (2)

J=00 N fllgge<1zeD

j—o00 j—o00 j—o00 Jj—o00

= max {lim sup J1, lim sup J2, lim sup J3, lim sup 14}
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< limll ?I;F Dy, (2)p(@(2), ¥(2)) + 11m W?u);‘) IDy,y (2)|p(p(2), ¥(2))
= Uo(z)|>r 2)|>r

+ lim sup |Du,(p(z) _DU,W(Z)|'
"> p@)>r

[V (2)>r

Combining this with Lemmas 3.1 and 3.2, we have

luCy — vCyll, H— HE®
S lim sup Dy (2)]p(p(2), ¥(2) + lim sup Dy y (2)]p(p(2), ¥(2)
~r=1 l@(2)|>r W’(Z)br
+ lim sup |Du,(p(z) —Dv,w(zﬂ

"1 p()[>r

[V (@)|>r
S limsup | (uCy = vCy) full e + limsup [ Cy = vCy)gal
la|—1 lal—
. lug™ — vy [ 170
<limsup ———. ©)
n—00 2" | g

Next, we prove that

e — vy
luCyp — vCy lle.pyze— sz 2 limsup —————"-
p n—00 llz ||HD?c

Let n be any non-negative integer. Let f,(z) = z"/[|z" |- Then, f, € HZ° with
[ falluge = 1 and f, — O uniformly on compact subsets of . If K is any compact
operator from HZ° to HZ®, then lim,,_, o || K f7 || HP = 0. Hence,

[uCy —vCy — K|l = limsup [|(uCy — vCy — K)f,,||Hoo

n—oo

> limsup ||(uCy — va)fn||H°°

n—oo

Thus,

luCyp = vCylle rgo— mge = limsup |(uCy —vCy) full e

n— 00
g — oy

— limsup ————F (10)
n—00 ||Zn||H§°

Combining (9) with (10), we immediately get the desired result. The proof of this
theorem is complete. O

From Theorem 3.1, we immediately get the following corollary.

Corollary 3.1 Let 0 < o, B < oo, u,v € H(D). Let ¢ and  be analytic self-maps

of D. Suppose that uCy : H;® — H/‘B>Q and vCy : H® — Hgo are bounded, then
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uCy —vCy : H® — Hgo is compact if and only if

g — vy
limsuyp —— =
n—00 ||Zn||H§°

Assume that w is a continuous, strictly positive and bounded function on . The
weight w is called radial if w(z) = w(|z|) for all z € D. The weighted space, denoted
by H,°, consists of all f € H (D) such that

I fllage = supw(2)| f(z)| < o0.

S
H_Z? is a Banach space with the norm || - || gee.

Remark Let wy and wy be radial, non-increasing weights tending to zero at the bound-
ary of D. Let u, v € H(ID), ¢ and ¢ be analytic self-maps of ID. We conjecture that
the following statements hold:

(@) uCy —vCy : Hj? — Hp? is bounded if and only if

2

lug™ = v¥" Il Hge
sup ———————— < 00,
neN 2" e

wy

with the norm comparable to the above supremum.

(b) Suppose uCy : Hy; — H,> and vCy : H;)7 — H,> are bounded. Then,

1Cy — vCy | T
u —v JHX »Hoo = limsup —————————
4 Y lle, HS — HYS n_)oop ||Zn||Hu°f1’

We are not able, at the moment, to prove this conjecture. Hence, we leave the
problem to the readers interested in this research area.
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