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Abstract The Poisson summation formula for Hardy spaces H p (T�) in tubes T� ⊂
C
n for p ∈ (0, 1] is obtained. Unlike the case of L p (Rn) spaces, the formula holds

everywhere in T� without any additional assumptions. To the best of our knowledge,
the result is new even for the univariate case—Hardy spaces in the upper half-plane.
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1 Introduction

The Poisson summation formula is one of the famous results of the Fourier analysis.
The classical one (see, e.g., [19, Chapter VII, Section 2, Theorem 2.4]) says that if
f ∈ L1 (Rn), then the series

∑
m∈� f (x + m) converges in the norm of L1 (Tn) and

the resulting function in L1 (Tn) has the Fourier expansion

∑

m∈�

f̂ (m) e2π i(x,m).
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Here, and throughout the article, � denotes the unit lattice, i.e., the additive group of
points in R

n having integral coordinates; (·, ·) is the inner product in Rn .
In other words, the Poisson summation formula states that two approaches to peri-

odization of a function f give the same result. This immediately leads to the question
when actually equality

∑

m∈�

f (x + m) =
∑

m∈�

f̂ (m) e2π i(x,m) (1)

holds. For example, if we have the inversion formula for f , that is:

f (x) =
∫

Rn
f̂ (t) e2π i(x,t) dt,

with | f (x)| ≤ A (1 + |x |)−n−δ and
∣
∣ f̂ (t)

∣
∣ ≤ A (1 + |t |)−n−δ , δ > 0, then (1)

holds for any x ∈ R
n (see [19, Chapter VII, Section 2, Corollary 2.6]). There are

other results stating that (1) in the univariate case holds under relaxed requirements
(see, e.g., [6,10]). Note that having just f, f̂ ∈ L1 (R) is not enough. For example,
Katznelson [11] proved that there exists a function f , such that f ∈ L1 (R) ∩C0 (R)

and f̂ ∈ L1 (R), but f (0) = 1, f (n) = 0, n ∈ Z\{0}, f̂ (n) = 0, n ∈ Z.
There are several generalizations of the Poisson summation formula. It has many

interesting applications, such as periodization and sampling operators [1], uncertainty
principle [6], problems of number theory (see, e.g., [14,15]), and many applications
in Physics, Signal Processing, Communications, Electromagnetics, etc. (see [8,16],
and references therein). In particular, the Poisson summation formula is a useful tool
for dealing with various Dyadic Green Functions. There is even its generalization for
manifolds with boundary [7]. New results, generalizations, and applications of the
formula are still appearing (see, e.g., [3,4,9,12]).

It is interesting that Riemann used the Poisson summation formula to prove one of
his results on zeta-function [17]. We refer the reader to the work of Miller and Schmid
[14] for an excellent review of related problems.

The Poisson summation formula itself has been obtained for several functional
spaces. However, the results usually state (1) almost everywhere only.

For functions of bounded variation on R, the Poisson summation formula valid
pointwise is obtained by Trigub [20, Lemma 2] (see also [21, Section 3.1.11]). For
functions of bounded variation onRd , a generalization of Trigub’s result was recently
obtained by Liflyand and Stadtmüller [13]. It is interesting that the formula holds
under mild restrictions, sharpness of which is also discussed in [13].

Recent work of Butzer et al. [2] is devoted to obtaining generalizations of several
classical formulas and inequalities in various function spaces. The Poisson summation
formula was among them. The idea is that the classical formulas and inequalities
usually become invalid in not-so-perfect spaces. To get their analogues, the authors
developed a sophisticated and promising technique of the so-called unified distance
concept.

We claim that for Hardy spaces H p (T�), p ∈ (0, 1], the classical formula (1) holds
everywhere. No additional assumptions are needed. Moreover, the periodization of f
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is analytic in T� . The exact statement is Theorem 1 below. This answers a question
asked by Roald M. Trigub (Donetsk National University, Ukraine) several years ago.
In his opinion, the inversion formula for the Fourier transform obtained in [22] should
result in something like the Poisson summation formula.

2 Definitions and Main Results

Let us recall some notation related to Hardy spaces in tubes, which are a natural
multivariate generalization of the upper half-plane in C.

Let B be an open set in Rn , n ∈ N. Following [19, Chapter III], the tube with base
B is

TB = {z ∈ C
n, z = x + iy : x ∈ R

n, y ∈ B
}
.

The Hardy space H p (TB), p ∈ (0,∞], consists of functions f holomorphic in
TB , such that

‖ f ‖H p := ‖ f ‖H p(TB ) :=

⎧
⎪⎨

⎪⎩

sup
y∈B
(∫

Rn | f (x + iy)|p dx
)1/p

, p ∈ (0,∞) ,

sup
z∈TB

| f (z)| , p = ∞

is finite. We will also use the following notation:

fδ (·) := f (· + iδ) , δ ∈ B.

This notation is convenient to use in both contexts: fδ(z) = f (z + iδ), z ∈ C
n , and

f (z) = f (x + iy) = fy(x), x ∈ R
n . Thus, ‖ f ‖H p(TB ) = supy∈B ‖ fy‖p, where ‖ · ‖p

is a standard norm (or pre-norm) in L p(Rn).
Since the case of an arbitrary tube TB is too complicated, the attention is usually

restricted to the case, where B is chosen to be an open cone.
A non-empty open set � ⊂ R

n is called an open cone if 0 /∈ � and whenever
x, y ∈ � and α, β > 0, the linear combination αx + βy ∈ �. In particular, � is a
convex set. The closure of an open cone is called a closed cone.

For any open cone �, the set

�∗ = {x ∈ R
n : (x, t) ≥ 0, ∀t ∈ �

}

is closed. If�∗ has non-empty interior, then it is a closed cone, and� is called a regular
cone. The closed cone �∗ is called the cone dual to �.

Let us start with an easy but very useful observation, which follows from the proof
of [19, Chapter III, Section 2, Lemma 2.12].
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Lemma 1 ([22, Lemma 1])Let� be an open cone inRn, p ∈ (0,∞], and q ∈ [p,∞].
If f ∈ H p (T�), then for any δ ∈ �, we have fδ ∈ Hq (T�) and

‖ fδ‖Hq ≤
(

�n

�2n

) 1
p − 1

q

D
−n
(
1
p − 1

q

)

δ,� ‖ f ‖H p ,

where �m is the volume of the unit ball in Rm, i.e., �m = πm/2/� (m/2 + 1), and
Dδ,� = dist (δ,Rn\�).

The Fourier transform of a function f ∈ L1 (Rn) is defined by

f̂ (ξ) =
∫

Rn
f (t) e−2π i(ξ,t) dt, ξ ∈ R

n .

It is extended to the case of a function from L2 (Rn) in the usual way.
Lemma 1 and [22, Theorem1] justify the following definition of the Fourier trans-

form of a function from H p (T�) and p ∈ (0, 1].

Definition 1 The Fourier transform of a function f ∈ H p (T�), p ∈ (0, 1], is defined
by

f̂ (ξ) = e2π(ξ,δ) f̂δ (ξ) , ξ ∈ R
n (δ ∈ � − arbitrary). (2)

It is easy to see that the right-hand side of (2) is independent of δ. Let us also
note that for p = 1, our f̂ coincides with the classical Fourier transform of the limit
function F (x) := limζ→0, ζ∈� fζ (x), x ∈ R

n .
Furthermore, if f ∈ H p (T�) for some p ∈ (0, 1], then the following inversion

formula holds true (see [22])

f (z) =
∫

�∗
f̂ (t) e2π i(z,t) dt, z ∈ T�. (3)

Therefore, for any p ∈ (0, 1], the space f ∈ H p (T�) contains non-zero functions if
and only if the cone � is regular (in fact, this is true for p ∈ (0,∞), since f ∈ H p

implies ( f )[p]+1 ∈ Hs with s = p/ ([p] + 1) ∈ (0, 1], where [p] denotes the integral
part of p). This is why we investigate only the case of a regular cone.

The existence of the inversion formula (3) suggested that the Poisson summation
formula should hold in H p (T�) and p ∈ (0, 1], without any additional assumptions.
Indeed, the following result holds.

Theorem 1 Let � be a regular cone in R
n, n ∈ N, and let f ∈ H p (T�) for some

p ∈ (0, 1]. Then

∑

m∈�

f (z + m) =
∑

m∈�

f̂ (m) e2π i(z,m)

=
∑

m∈�∩�∗
f̂ (m) e2π i(z,m), ∀z ∈ T�. (4)

Moreover, both the sides of (4) are holomorphic in T� .
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Note that Theorem 1 holds not just because of the inversion formula for the Fourier
transform. The most important part is that the Fourier transform defined by (2) has a
well-controlled growth (see estimate (13) below), which implies absolute and uniform
convergence of the series in the right-hand side of (4). This growth estimate and the
inversion formula (3) make H p (T�) spaces so special when p ∈ (0, 1], and allows
us to obtain various inequalities, convenient conditions for Fourier multipliers, etc.
(see [18,22,23]).

3 Proof

To prove Theorem 1, we need the following lemma, which could be of independent
interest.

Lemma 2 Let � be a regular cone in R
n, n ∈ N, and let f ∈ H p (T�) for some

p ∈ (0, 1]. Then, for any δ ∈ �, the series

∑

m∈�

f (x + m + iδ)

converges absolutely and uniformly on x ∈ Qn, where Qn = [− 1
2 ,

1
2

)n
—the funda-

mental cube. Moreover, for any x ∈ Qn, we have

∑

m∈�

| f (x + m + iδ)| ≤ 3nD
−n
(
1
p−1

)

δ,�

(
min

{
Dδ,�, 1

})−n
(

�n

�2n

) 1
p ‖ f ‖H p

≤ 3n
(
min

{
Dδ,�, 1

})− n
p

(
�n

�2n

) 1
p ‖ f ‖H p , (5)

where Dδ,� = dist (δ,Rn\�),�m = πm/2/�(m/2 + 1)

Proof Take an arbitrary α ∈ (0, 1), such that the closure of the (n-dimensional) ball
centered at δ and of radius α, BRn (δ, α) ⊂ �. Since f is analytic in T� , | f | is
subharmonic there. Therefore, taking arbitrary m = (m1, . . . ,mn) ∈ � and x ∈ Qn

and considering that the closure of the (2n-dimesional) ball BCn (x + m + iδ, α) ⊂
T� , we arrive at

| f (x + m + iδ)| ≤ 1

μ (BCn (x + m + iδ, α))

∫

BCn (x+m+iδ,α)

| f (z)| dμ (z)

= 1

�2nα2n

∫

BCn (x+m+iδ,α)

| f (z)| dμ (z) ,

where μ is the Lebesgue (volume) measure in Cn treated as R2n .
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Since α ∈ (0, 1), it is easy to see that BCn (x + m + iδ, α) ⊂ Em,δ,α , where

Em,δ,α :=
⎧
⎨

⎩
x + iy ∈ C

n : x ∈
n∏

j=1

[

m j − 3

2
,m j + 3

2

]

, y ∈ BRn (δ, α)

⎫
⎬

⎭
.

Now, the last estimate implies

| f (x + m + iδ)| ≤ 1

�2nα2n

∫

Em,δ,α

| f (z)| dμ (z) . (6)

Furthermore,

∫

Em,δ,α

| f (z)| dμ (z) =
∫

BRn (δ,α)

(∫

∏n
j=1[m j−3/2,m j+3/2]

| f (t + iy)| dt
)

dy. (7)

Since

∑

m∈�

∫

∏n
j=1
[
m j−3/2,m j+3/2

]

| f (t + iy)| dt = 3n
∑

m∈�

∫

∏n
j=1
[
m j−1/2,m j+1/2

]

| f (t + iy)| dt

= 3n
∥
∥ fy
∥
∥
L1(Rn)

≤ 3n ‖ f ‖H1

≤ 3n
(

�n

�2n

) 1
p −1

D
−n
(
1
p −1

)

δ,�
‖ f ‖H p . (8)

Note that the last inequality follows from Lemma 1.
Thus, from (6), (7), and (8), we easily conclude that any partial sum of the series∑
m∈� | f (x + m + iδ)| is bounded above by

1

�2nα2n 3
n
(

�n

�2n

) 1
p −1

D
−n
(
1
p −1

)

δ,� ‖ f ‖H p

∫

BRn (δ,α)

dy

= 3n

αn

(
�n

�2n

) 1
p

D
−n
(
1
p −1

)

δ,� ‖ f ‖H p .

Hence, the series
∑

m∈� f (x + m + iδ) converges absolutely for any x ∈ Qn and

∑

m∈�

| f (x + m + iδ)| ≤ 3n

αn

(
�n

�2n

) 1
p

D
−n
(
1
p −1

)

δ,� ‖ f ‖H p .

Finally, if we pass to the limit as α → min
{
Dδ,�, 1

}− (from the left), we get (5).
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To prove that the series
∑

m∈� | f (x + m + iδ)| converges uniformly on x ∈ Qn ,
let us estimate its remainder. For N ∈ N, from (6) and (7), we have

sup
x∈Qn

∑

|m|≥N

| f (x + m + iδ)|

≤ 1

�2nα2n

∑

|m|≥N

∫

BRn (δ,α)

(∫

∏n
j=1[m j−3/2,m j+3/2]

| f (t + iy)| dt
)

dy

= 1

�2nα2n

∫

BRn (δ,α)

∑

|m|≥N

(∫

∏n
j=1[m j−3/2,m j+3/2]

| f (t + iy)| dt
)

dy. (9)

The last equality follows from the Tonelli’s theorem (with summation treated as inte-
gration with respect to the discrete measure).

Estimate (8) justifies the application of the Lebesgue dominated convergence the-
orem:

lim
N→∞

1

�2nα2n

∫

BRn (δ,α)

∑

|m|≥N

⎛

⎜
⎜
⎝

∫

∏n
j=1[m j−3/2,m j+3/2]

| f (t + iy)| dt

⎞

⎟
⎟
⎠ dy

= 1

�2nα2n

∫

BRn (δ,α)

lim
N→∞

∑

|m|≥N

⎛

⎜
⎜
⎝

∫

∏n
j=1[m j−3/2,m j+3/2]

| f (t + iy)| dt

⎞

⎟
⎟
⎠ dy

= 0. (10)

Taking lim supN→∞ in (9) and considering (10), we conclude that

lim
N→∞ sup

x∈Qn

∑

|m|≥N

| f (x + m + iδ)| = 0.

Thus, the series
∑

m∈� | f (x + m + iδ)| converges uniformly on x ∈ Qn , whence the
series

∑
m∈� f (x + m + iδ) also converges uniformly on x ∈ Qn . �


Proof of Theorem 1 In our standard notation, z = x + iy, x ∈ R
n , y ∈ �, and

f̂ (t) = f̂ y (t) e2π(y,t). Therefore, (4) can be rewritten in the following form:

∑

m∈�

fy (x + m) =
∑

m∈�

f̂ y (m) e2π i(x,m), x ∈ R
n, y ∈ �. (11)

Considering the periodicity of both the sides of (11), it is sufficient to prove this
formula for x ∈ Qn .

Let us fix an arbitrary y ∈ �. As we already know, fy ∈ L1 (Rn). Hence, [19, Chap-
ter VII, Section 2, Theorem 2.4] implies that the series

∑
m∈� fy (x + m) converges
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in L1 (Qn) = L1 (Tn). Its sum has the Fourier series:

∑

m∈�

f̂ y (m) e2π i(x,m). (12)

Since f̂ y (m) = e−2π(y,m) f̂ (m), supp f̂ ⊂ �∗, and

∣
∣ f̂ (t)

∣
∣ ≤ A (n, p, �) ‖ f ‖H p |t |n

(
1
p −1

)

, t ∈ �∗ (13)

(see [22, Section 1] and [5, Lemma 4]), we obtain that for any x ∈ R
n , m ∈ �∗,

∣
∣
∣ f̂ y (m) e2π i(x,m)

∣
∣
∣ =

∣
∣
∣ f̂ (m) e−2π(y,m)

∣
∣
∣ ≤ A (n, p, �) ‖ f ‖H p |m|n

(
1
p −1

)

e−2π(y,m).

Since clearly

∑

m∈�∩�∗
|m|n

(
1
p −1

)

e−2π(y,m) < ∞,

we conclude that the series (12) converges uniformly and absolutely on x ∈ Qn . Thus,
the function

∑
m∈� f̂ y (m) e2π i(x,m) is continuous on x ∈ Qn (or Tn).

Applying [19,ChapterVII, Section 1,Corollary 1.8] to F (x) =∑m∈� fy (x + m),
we obtain that

∑

m∈�

fy (x + m) =
∑

m∈�

f̂ y (m) e2π i(x,m), for a.e. x ∈ Qn . (14)

As we already noticed, the right-hand side of (14) is continuous on Qn . The left-hand
side is continuous in view of Lemma 2. Hence, (14) holds for every x ∈ Qn , which
completes the proof of (4).

Finally, using estimate (13) and the fact that supp f̂ ⊂ �∗, it is easy to see that the
series in the right-hand side of (4) converges locally uniformly in T� . This implies
that both the sides of (4) are holomorphic in T� functions. �
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