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Abstract In this work we study solutions of the equation z p R(zk) = α with non-zero
complexα, integer p, k and R(z) generating a (possibly doubly infinite) totally positive
sequence. It is shown that the zeros of z p R(zk) − α are simple (or at most double
in the case Im αk = 0) and split evenly among the sectors { j

k π � Arg z � j+1
k π},

j = 0, . . . , 2k−1. Our approach rests on the fact that z(ln z p/k R(z))′ is anR-function
(i.e. maps the upper half of the complex plane into itself). This result guarantees the
same localization to zeros of entire functions

f (zk) + z pg(zk) and g(zk) + z p f (zk)

provided that f (z) and g(−z) have genus 0 and only negative zeros. As an application,
we deduce that functions of the form

∑∞
n=0(±i)n(n−1)/2anzn have simple zeros distinct

in absolute value under a certain condition on the coefficients an � 0. This includes
the “disturbed exponential” function corresponding to an = qn(n−1)/2/n! when 0 <

q � 1, as well as the partial theta function corresponding to an = qn(n−1)/2 when
0 < q � q∗ ≈ 0.7457224107.
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1 Introduction

The present paper studies quite a general equation of the form z p R(zk) = α; however
the simple case k = 2 considered in Sects. 8 and 9 has the most interesting appli-
cations. In particular, Corollary 34 introduces sufficient conditions on a function of

the form
∑∞

n=0 i
± n(n−1)

2 fnzn , where f0 �= 0 and fn � 0 for all n, which assure the
simplicity of its zeros. It turns out that zeros of such functions as

F(z;±iq) =
∞∑

n=0

1

n! (±iq)
n(n−1)

2 zn when 0 < q � 1 and

�0(z;±iq) =
∞∑

n=0

(±iq)
n(n−1)

2 zn when 0 < q � q∗ ≈ 0.7457224107

are simple and distinct in absolute value. What is more, the inequality 0 < q � q∗
does not seem to be necessary: computer simulations show that the constant q∗ can be
replaced with a noticeably greater number so that all zeros of �0(z;±iq) still keep
their simplicity and distinctness in absolute value. The former function F(z; q) gives
a solution to the functional-differential problem

F ′(z) = F(qz), F(0) = 1,

while the latter is the partial theta function satisfying

�0(z; q) = 1 + z�0(zq; q).

The partial theta function participates in a number of beautiful Ramanujan-type rela-
tions ([3, Chapter 6], [29])and is related to q-series and some types of modular forms.
Both F and �0 appear in problems of statistics and combinatorics (see e.g. [25,26])
and their zeros are the subjects of conjectures by Alan Sokal. The details can be found
in Sect. 9.

Nevertheless, general statements offer a better insight into the problem, given an
opportunity to determine factors on which the result depends and to find possible
generalizations. Their main drawback is an excessive amount of specific cases in
Sects. 4–6. To give a survey of our results, we briefly introduce two special classes of
functions and definitions of α-sets and α-points.

Definitions. A doubly infinite sequence
(
ρn
)∞
n=−∞ is called totally positive if all of

the minors of the (four-way infinite) Toeplitz matrix
(
ρn− j

)∞
n, j=−∞ are non-negative
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(i.e. the matrix is totally non-negative). Unless we have ρn = ρ1−n
0 ρn

1 for every n, the
correspondent power series

∑∞
n=−∞ ρnzn converges in some annulus to a function of

the following form:

CzpeAz+
A0
z ·

∏
ν>0

(
1 + z

aν

)

∏
μ>0

(
1 − z

bμ

) ·
∏

ν>0

(
1 + z−1

cν

)

∏
μ>0

(
1 − z−1

dμ

) (1)

with absolutely convergent products, integer p and coefficients satisfying
A, A0,C � 0, aν, bμ, cν, dμ > 0 for all ν, μ. The converse is also true: every func-
tion with the representation (1) generates (i.e. its Laurent coefficients form) a doubly
infinite totally positive sequence. Both these facts are first proved in the paper [10].

In the case of · · · = ρ j−2 = ρ j−1 = 0 �= ρ j , we assume the sequence to be
terminating on the left of ρ j and call it totally positive. A totally positive sequence
can be infinite when it contains no zeros to the right of ρ j or finite otherwise. These
sequences were studied earlier than doubly infinite ones in [1]. They are generated by
functions of the form (1), where the products in the last fraction are empty and A0 = 0.
Note that the term Pólya frequency sequence is often used as a synonym for totally
positive sequence.

Herein, it is convenient to use the notion of α-point. Given a complex number α, the
α-set of a function f (z) is the set {z ∈ C : f (z) = α} and points of this set are called
α-points. A non-constant meromorphic function can clearly have only isolated α-
points. We say that an α-point z∗ of a function f has multiplicity n ∈ Z>0 whenever
f ′(z∗) = · · · = f (n−1)(z∗) = 0 �= f (n)(z∗). The α-point is simple if its multiplicity
equals one.

The present work aims at describing the behaviour of α-points of functions which
can be represented1 as z p R(zk), where p is an integer, k is a positive integer and R(z)
is not constant and generates a (possibly doubly infinite) totally positive sequence.
We confine ourselves to the case when gcd(|p|, k) = 1: other cases can be treated
by introducing the variable η := zgcd(|p|,k). As a main tool, we use a relation of
such functions to the so-called R-functions (also known as the Pick or Nevanlinna
functions).

By definition,R-functions are real (i.e. real at every real point of continuity) func-
tions mapping the upper half of the complex plane into itself. They are characterized
by the integral representation (see e.g. [16, Expression (S1.1.1)], [7, p. 201] or [19,
p.311]; it is usually attributed to Rolf Nevanlinna)

C1 + C2z +
∫ ∞

−∞
1 + λz

λ − z
dς(λ), (2)

1 Functions of this form are the kth root transforms of z p Rk (z). In the particular case when R(z) and R′(z)
are holomorphic and non-zero at z = 0, the function zRk (z) is univalent in some disk centred at the origin.
Then, zR(zk ) will be a univalent function with k-fold symmetry in this disk in the sense that the image
of zR(zk ) will be k-fold rotationally symmetric (see e.g. [8, Sect. 2.1] for the details). The term “functions
with k-fold symmetry” could be good under the narrower conditions imposed; however, we study a more
general case assuming no such regularity at the origin and allowing any integer p satisfying gcd(|p|, k) = 1.
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where C2 � 0 and C1 are real constants and ς(λ) is a non-decreasing function of
bounded variation. It is quite common to extend R-functions into the lower half of
the complex plane by complex conjugation, thus keeping the expression (2). Basic
properties of R-functions are summarized in [16].

Results. Our first goal is to describe the α-set of the expression zB R(z) in the closed
upper half of the complex planeC+ := {z ∈ C : Im z � 0}, where R(z) is as above, B
is real and α ∈ C\{0}. This is done in Theorem 11: if the equation zB R(z) = α

has solutions in C+, then the α-points are simple and distinct in absolute value. The
α-points on the real line (excepting the origin) may be either simple or double. For
real constants a and b1 �= b2 Theorem 13 shows that solutions to zB R(z) = aeib1

and to zB R(z) = aeib2 alternate when ordered in absolute value (under the additional
condition that none of them fall onto the real line). The corresponding properties of
α-points in the whole complex plane are described in Theorem 15 and Remark 16.
Our approach is based on Lemma 1: a function ψ(z) is univalent in the upper half
of the complex plane provided that zψ ′(z) is an R-function. In fact, this lemma is
an “appropriate” reformulation of classical results; however, we need a construction
from its proof. Section 3 then considers the properties of ψ(z) on the real line under
the additional assumption that ψ(z) is meromorphic in C+\{0}. It is interesting to
note that Theorem 11 can be interpreted as a wide generalisation of the main theorem
in [5].

The second goal of the present work—to study α-points of z p R(zk)—is presented
in Theorems 20, 22–25. To derive these theorems we track the solutions to

z p/k R(z) = α · exp
(

i
2πn

k

)

and z p/k R(z) = α · exp
(

i
2πn

k

)

, n ∈ Z,

under the change of variable z �→ zk . If we split the complex plane into 2k sectors

Q j =
{
n

k
π < Arg z <

n + 1

k
π

}

, j = 0, . . . , 2k − 1,

then Theorem 20 states that for Imαk �= 0 all α-points are inner points of the sectors,
simple, and those in distinct sectors strictly interlace with respect to their absolute
value. In other words, if α-points of z p R(zk) are denoted by zi so that · · · � |z−1| �
|z0| � |z1| � · · · , then · · · < |z−1| < |z0| < |z1| < · · · and zi ∈ Qn implies that
zi+1, . . . , zi+2k−1 /∈ Qn and2 that zi+2k ∈ Qn . In fact, there is a formula for m such
that zi+1 ∈ Qm , which is trivial for p = ±1 or k = 2. Theorem 22 provides analogous
properties in the case Imαk = 0. In particular, it asserts that there are at most two
α-points sharing the same absolute value, which are simple unless they occur at a
sector boundary where they may collapse into a double α-point.

In turn, Theorems 23, 24 and 25 answer the question about which sector contains
the α-point that is minimal in absolute value for a meromorphic function R(z). This

2 As soon as the α-set of the function z p R(zk ) actually contains the point zi+2k : Theorem 20 asserts
nothing about existence of α-points, nor does Theorem 22.
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automatically extends to the α-point that is maximal in absolute value when R
(
1
z

)
is

meromorphic.
Theorems 20 and 22–25 describe zeros of entire functions of the form

f (zk) + z j g(zk) or g(zk) + z j f (zk), j, k ∈ Z>0, (3)

where (complex) entire functions f (z) and g(−z) are of genus3 0 and have only
negative zeros. Since f (zk)/ f (0) and g(zk)/g(0) become real functions, the corre-
spondence is provided by

f (zk) + z−pg(zk) = z−p
(
g(zk) + z p f (zk)

)
= 0 ⇐⇒ z p

f (zk)/ f (0)

g(zk)/g(0)
= − g(0)

f (0)

on setting p := ± j . We can allow f (z) and g(−z) to be any functions generating
totally positive sequences up to constant complex factors. Then the functions of the
form (3) can be identified by the condition on their Maclaurin or Laurent coefficients.
See Sect. 7 for further details.

Our third goal is attained in the last two sections. Therewe apply the above results in
the setting k = 2; the results are summarized in Theorems 29 and 30. For a (complex)
entire function H of the complex variable z consider its decomposition into odd and
even parts such that H(z) = f (z2) + zg(z2). Theorem 29 from Sect. 8 answers the
following question: how are the zeros of the function H(z) distributed if the ratio f (z)

g(z)

has only negative zeros and positive poles? The case when the ratio f (z)
g(z) has only

negative poles and positive zeros is treated by Theorem 30. The question appears to
be connected to the Hermite-Biehler theorem. This is a well-known fact asserting that
if the function H(z) is a real polynomial, then its stability4 is equivalent to the fact
that f (z) and g(z) only have simple negative interlacing5 zeros and f (0) · g(0) > 0.
This correspondence expressed as conditions on the Hurwitz matrix is at the heart of
the Routh-Hurwitz theory (see e.g. [4,7,12,24,27]). With a proper extension of the
notion of stability, this criterion extends to entire (see [7,19,24]), rational (see [4]) and
further towards meromorphic functions. Furthermore, if H(z) is a polynomial and we
additionally allow the ratio f (z)

g(z) to have positive zeros and poles, then we will obtain
the “generalized Hurwitz” polynomials as introduced in [27]. In the same paper [27,
Sect. 4.6], its author describes “strange” polynomials (related to stable polynomials)
with interesting behaviour. Item (2) of our Theorem 29 and Item (5) of our Theorem 30
explain the nature of their “strangeness”.

There are related questions which are not considered in the current work and can
become the subject of forthcoming studies. One of them is to obtain more precise

3 The definition of genus can be found in e.g. [7, p. 92] or [19, p. 9]. These books also introduce further
basic notions of the theory of entire functions.
4 The polynomial is called (Hurwitz) stable if all of its roots have negative real parts.
5 The zeros of two functions are called interlacing if between each two consecutive zeros of the first function
there is exactly one zero of the second function and vice versa. The Hermite-Biehler theorem assumes the
interlacing property to be strict, which means that the functions have no common zeros.
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estimates on arguments and absolute values of solutions to z p R(zk) = α when R(z)
belongs to specific subclasses of functions generating totally positive sequences. In
this way, we can find such estimates for α-points lying close to the origin, which are
not covered by the standard theory of value distribution. Another question (possibly
related to the first one) is to make further progress toward proving the conjectures
stated in Sect. 9.

2 Connection between R-functions and univalent functions

Let us use the notation “arg” for the multivalued argument function and “Arg” for the
principal branch of argument,−π < Arg z � π for any z. We start from the following
useful observation:6

Lemma 1 Let φ be a function holomorphic in C+ := {z ∈ C : Im z > 0} with values
in C+ and let ψ be a fixed holomorphic branch of

∫
φ(z)
z dz. Then the function ψ is

univalent in C+. Moreover, if for some z1, z2 ∈ C+ we have

a := Reψ(z1) = Reψ(z2) and Imψ(z1) < Imψ(z2), (4)

then |z1| < |z2|.
Proof First let us approximate the upper half-plane C+ by the set

Cδ := {
z ∈ C : δ < Arg z < π − δ, |z| > δ

}
, δ > 0.

For z = reiθ we have
∂z

∂r
= z

|z| and
∂z

∂θ
= i z, so

r
∂

∂r
Imψ(z) = Im

( zr

r
ψ ′(z)

)
= Imφ(z) = − ∂

∂θ
Reψ(z),

which is the Cauchy-Riemann equation. By hypothesis Imφ(z) > 0 for z ∈ Cδ

therefore,

∂

∂r
Imψ(z) > 0 and (5)

∂

∂θ
Reψ(z) < 0. (6)

The latter inequality implies that for each r > 0 there can be at most one value of θ ∈
[δ, π − δ] such that Reψ(reiθ ) = a. Moreover, the set �δ := {

z ∈ Cδ : Reψ(z) = a
}

only consists of analytic arcs because Reψ is a function harmonic in Cδ . In other
words, we obtain the following:

6 Many similar facts are well known. For example, considering functions �(ζ) := φ(e−ζ ) gives the
problem from [31] but in a strip. However, we place this lemma here since we need the relation between |z1|
and |z2| satisfying (4) rather than the univalence itself.
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(a) For each r > 0 there is at most one point z ∈ �δ satisfying |z| = r . That is, every
arc of � in polar coordinates (r, θ) can be set by a function θ(r).
Furthermore, for every R > δ the domain D := {z ∈ Cδ : |z| < R} contains
at most a finite number of the arcs. Suppose that it contains an infinite number
of them, then the ray {reiθ : r > 0} for an appropriate fixed θ ∈ [δ, π − δ]
meets �δ at an infinite number of points of D (since each arc has two ends on
the boundary of D). The function Reψ(reiθ ) is analytic in r > 0 as a function of
two variables θ and r with θ fixed. Consequently, Reψ(reiθ ) must be constant on
that ray, because it attains the same value in points of a sequence converging to an
internal point of its domain of analyticity. So, we have a contradiction unless �δ

is equal to {reiθ : r > 0}. However, in the case �δ = {reiθ : r > 0} the curve �δ

contains only one arc.
Denote by γ1, γ2,… the connected components of�δ according to their distance to
the origin so that7 dist(0, γ1) � dist(0, γ2) � . . .. To count all arcs in this manner
is possible because D contains only a finite number of them for any R > δ. It
is enough to justify two additional statements, which together with (a) imply the
lemma.

(b) On each arc γi , i = 1, 2, . . ., the value of Imψ increases (strictly) for increas-
ing |z|.

(c) If we pass from γi to γi+1 (due to (a) it corresponds to the grow of |z|), then Imψ

cannot decrease (in fact, we will show that these arcs can be connected by a line
segment of ∂Cδ where Imψ increases).

Towit, the assertions (a)–(c) provide that any distinct points ofCδ giving the sameReψ
give distinct Imψ such that the conditions (4) imply |z1| < |z2|. In particular, this yields
the univalence of ψ in Cδ . Furthermore, since δ is an arbitrary positive number, the
lemma will hold in the whole open half-plane C+.

For the arc γi , i = 1, 2, . . ., consider its natural parameter τ . Orienting the arc
according to the growth of r , we obtain ∂τ

∂r > 0. In addition, let us consider a coordi-
nate ν changing in a direction orthogonal to τ , i.e. such that (τ, ν) form an orthogonal
coordinate system. Then, with the help of inequality (5) and one of the Cauchy-
Riemann equations, we deduce that8

0 <
∂Imψ(z)

∂r
= ∂Imψ(z)

∂τ

∂τ

∂r
+ ∂Imψ(z)

∂ν

∂ν

∂r

= ∂Imψ(z)

∂τ

∂τ

∂r
± ∂Reψ(z)

∂τ

∂ν

∂r
= ∂Imψ(z)

∂τ

∂τ

∂r

for z ∈ �δ . Therefore, it is true that z1, z2 ∈ γi and |z1| < |z2| imply Imψ(z1) <

Imψ(z2), which is equivalent to (b).

7 Here dist(0, γi ) := infz∈γi |z| is the distance between the origin and the component γi , i = 1, 2, . . ..
8 In fact we have more: ∂Imψ(z)/∂ν = 0 implies that the gradient of Imψ on γi is tangential to γi .
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Now, given two consecutive arcs γi and γi+1 consider the arguments θ1 and θ2 of
their adjacent points, i.e.

θ1 := lim|z|→r1
z∈γi

Arg z and θ2 := lim|z|→r2
z∈γi+1

Arg z, where r1 = sup
z∈γi

|z|, r2 = inf
z∈γi+1

|z|.

The arguments can be either π −δ or δ, because the arcs are regular and hence can only
end at the boundary of Cδ . Observe that θ1 = θ2. Indeed, let for example θ1 = π − δ.
Then (6) yields Reψ(z) > a as |z| = r1, z ∈ Cδ . However, θ2 = δ in its turn would
imply Reψ(z) < a when |z| = r2. So, in the “semi-annulus” {z ∈ Cδ : r1 < |z| < r2}
there would be such z that Reψ(z) = a, i.e. z ∈ �δ which contradicts the fact that γi
and γi+1 are consecutive arcs of �δ .

Since θ1 = θ2, the ray � := {
reiθ1 , r > δ

}
meets both arcs γi and γi+1 in

the limiting points r1eiθ1 and r2eiθ1 , respectively. As a consequence, we obtain that
Imψ(r1eiθ1) < Imψ(r2eiθ1) since Imψ grows everywhere on � by the condition (5).
Then (b) implies that supz∈γi

Imψ(z) � inf z∈γi+1 Imψ(z). Thus, the condition (c) is
satisfied as well. �

3 Properties of α-points on the real line

Lemma 2 Under the conditions of Lemma 1, let the function φ admit an analytic
continuation through the interval (x1, x2) ⊂ R\{0}. Then the function ψ defined as
in Lemma 1 has no α-points with multiplicity more than two in (x1, x2).

Proof The assertion of this lemma is exactly that φ(z) = zψ ′(z) has no multiple zeros
in (x1, x2). However, if φ could have a double zero x0, then Imφ(z) in the semi-disk
{z ∈ C+ : |z − x0| < ε � 1} must have values of both signs (since φ(z) is close to
(z − x0)2 for such z). In its turn, this contradicts φ(C+) ⊂ C+. �

Further in this section, we restrict the R-functions φ1, φ2 to be meromorphic in C

and real on the real line (where finite), i.e. to have the (absolutely convergent) Mittag-
Lefler representation

B + Az − A0

z
−
∑

ν �=0

zAν/aν

z − aν

, (7)

where B, aν ∈ R; aν �= 0; A, A0 � 0 and Aν > 0 for all ν �= 0, such that φ1, φ2 �≡
const. Non-constant real meromorphic functions of this form (and only of this form)
mapC+ intoC+, see [7, Theorem 1 of Chapter V, Sect. 1], [30, II.8] or [19, Theorem 2
of Chapter VII, Sect. 1].

A non-constant function φ(z) is supposed to have the more general representa-
tion φ1(z) − φ2(1/z), where φ1(z) and φ2(z) are as given by (7). Note that both
mappings z �→ 1

z and z �→ −z are real and map the upper half of the complex
plane C+ into the lower half-plane, so φ(z) is necessarily anR-function.
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Remark 3 If zψ ′(z) has the form (7), then ψ(z) can be represented as

ψ(z) =
∫

zψ ′(z)
z

dz = C + B ln z + Az + A0

z
−
∑

ν

Aν

aν

ln

(

1 − z

aν

)

for some complex constant C . This implies the equality

Reψ(z) = ReC + B ln |z| +
(

A + A0

|z|2
)

Re z −
∑

ν

Aν

aν

ln

∣
∣
∣
∣1 − z

aν

∣
∣
∣
∣ . (8)

Remark 4 If zψ ′(z) = φ(z) = φ1(z) − φ2(1/z), then we introduce two auxiliary
functions ψ1 and ψ2 (single-valued in C+ where regular) so that zψ ′

1(z) =: φ1(z) and

ψ(z) − ψ1(z) =: ψ2(z). These settings then imply zψ ′
2(z) = −φ2(

1
z ) = z2

(
1
z

)′ ·
φ2

(
1
z

)
, that is ψ2

(
1
z

)
= ∫

φ2(z)
z dz. Both φ1(z) and φ2(z) satisfy (7); therefore

Reψ(z) = Reψ1(z) + Reψ2(z),

where both Reψ1(z) and Reψ2(1/z) have the form (8). In particular, the function ψ

has a logarithmic singularity in each pole x∗ �= 0 of φ, and Reψ(z) → +∞ · x∗
when z → x∗. The notation +∞· x∗ stands for +∞ if x∗ > 0, and for −∞ if x∗ < 0.

Lemma 5 If xψ ′(x) = φ(x) = φ1(x) − φ2(1/x), where x ∈ R and φ1(x), φ2(x)
have the form (7), then the following assertions are true:

(a) The function Imψ(x) can change its value only at the origin and in poles of φ.
(b) Between every two consecutive negative poles x2 < x1 of φ, there is exactly one

local maximum of Reψ .
(c) Between every two consecutive positive poles x1 < x2 of φ, there is exactly one

local minimum of Reψ .
(d) In (b) and (c), x1 can be set to zero provided that φ is regular between 0 and x2,

and limt→0+
∣
∣φ(t x2)

∣
∣ = ∞. In this case we have Reψ(t x2) → +∞ · x2 as t →

0+.

Proof Take a real x �= 0 such that both functions φ1(x) and −φ2(1/x) are regular.
Since their values are real on the real line, the condition

x
∂Imψ(x)

∂x
= r

∂Imψ(x)

∂r
= Imφ(x) = Imφ1(x) − Imφ2(1/x) = 0

is satisfied. So the assertion (a) is true.
The function x ∂Reψ(x)

∂x = Reφ(x) = φ1(x) − φ2(1/x) strictly increases from −∞
to +∞ between the points x1 and x2, and hence it changes its sign exactly once in the
interval (min(x1, x2),max(x1, x2)). That is, signx ·Reψ(x) changes from decreasing
to increasing on this interval, which is giving us the assertions (b) and (c) for both
zero and non-zero x1.
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Suppose that the function φ is regular between 0 and x2 and limt→0+ |φ(t x2)| is
infinite. Then φ increases in this interval, so limt→0+ φ(t x2) = −∞ · x2. Therefore,
−ψ ′(t x2) = −φ(t x2)

t x2
> 1

t for small enough t > 0 and

Reψ(t x2) = Reψ
( 1
2 x2

)+
∫ t x2

1
2 x2

φ(x)

x
dx

= Reψ
( 1
2 x2

)+ x2

∫ 1
2

t

(

−φ(sx2)

sx2

)

ds → +∞ · x2 as t → 0+,

which is (d). �
Lemma 6 In addition to the conditions of Lemma 5, suppose that φ is a regular
function in the interval I = (min{0, x2},max{0, x2}) ⊂ R, x2 is a pole of φ and the
limitB := limt→0+ φ(t x2) is finite.9

(a) IfBx2 > 0, then Reψ(x) is an increasing function in I such that Reψ(I) = R,
and furthermore, Reψ(z) �= Reψ(x) on condition that |z| � |x | with x ∈ I
and z ∈ C+\{x}.

(b) IfBx2 < 0, thenReψ(x) has exactly one local extremum inI and tends to+∞·x2
as x approaches 0 or x2.

(c) IfB = 0, thenReψ(x) is an increasing function inI and the inequalityReψ(z) �=
Reψ(x) holds provided that |z| � |x | with z ∈ C+\{x}, x ∈ I. Moreover,
limt→0+ φ(t x2)

t x2
is positive or+∞. If additionally Reψ(t x2) is unbounded as t →

0+, then Reψ(I) = R.

Proof In the interval I, the function x ∂Reψ(x)
∂x = φ(x) strictly increases, and hence

changes its sign at most once. Therefore, Reψ(x) has at most one local extremum:
maximum for x2 < 0 and minimum for x2 > 0. Suppose that 0 < |B| < ∞. Then
the equality x ∂Reψ(x)

∂x = φ(x) yields the following relation:

Reψ(t x2) = Reψ
( 1
2 x2

)+
∫ t x2

1
2 x2

φ(x) − B

x
dx+B ln

t x2
1
2 x2

∼ B ln t
t→0+−−−−→ −∞ · B.

On account of Reψ(x) → +∞· x2 when x → x2 (see Remark 4) this relation implies
the assertion (b) and that Reψ increases in I from−∞ to+∞ ifBx2 > 0. Therefore,
to obtain (a) it is enough to use the inequality

Reψ(−|z|) < Reψ(z) < Reψ(|z|), where Im z > 0, (9)

which is a consequence of (6). Indeed, if for example x2 < 0, then we have Reψ(x) �
Reψ(−|z|) < Reψ(z) for each x ∈ I satisfying |x | � |z|.

Since φ(x) is increasing, the condition B = 0 implies φ(x)
x > 0 in the inter-

val I, i.e. that Reψ is growing independently of the sign of x2. The inequality

9 This limit exists since the function φ increases in I.
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limt→0+ φ(t x2)
t x2

�= 0 follows from the fact that R-functions cannot vanish faster

then linearly.10 Furthermore, Reψ runs through the whole R on condition that it is
unbounded near the origin, as asserted in (c). If |z| � |x | with z ∈ C+\{x} and x ∈ I,
then the inequality (9) provides Reψ(z) �= Reψ(x). �
Remark 7 In Lemmas 5 and 6, the value of x2 can be taken equal to+∞ or−∞ at the
cost of some of the conclusions.With such a choice, the condition Reψ(x) → +∞·x2
as x → x2 may be violated. This, in turn, implies that the function Reψ(x) in (b),
(c) and (d) of Lemma 5 and (b) of Lemma 6 may lose the extremum and become
monotonic. In cases (a) and (c) of Lemma 6, Reψ(I) becomes only a semi-infinite
interval of the real line, instead of the equality Imψ(I) = R.

4 Location of α-points in the closed upper half-plane

Lemma 8 Let functions φ1(z), φ2(z) be of the form (7) and letψ(z) be a holomorphic

branch of
∫ (

φ1
(
z
) − φ2

( 1
z

)) dz
z . If two points z1, z2 ∈ C+ that are regular for ψ

satisfy |z1| < |z2| and a := Reψ(z1) = Reψ(z2), then

(a) Imψ(z1) � Imψ(z2);
(b) For each � ∈ (Imψ(z1), Imψ(z2)) there exists z ∈ C+ such that |z1| < |z| < |z2|

and ψ(z) = a + i�;
(c) z1 and z2 can be connected by a piecewise analytic curve of a finite length, on

which ψ is smooth and Imψ(z) is a non-decreasing function of |z|; the curve is
a subinterval of R if and only if equality holds in (a);

(d) Furthermore, equality holds in (a) if and only if z1, z2 ∈ R, z1 · z2 > 0 and
ψ(z) �= a for all z ∈ C+ such that |z1| < |z| < |z2|.

Proof Recall that the function φ(z) = φ1(z)−φ2(1/z) maps C+ → C+, i.e. satisfies
Lemma 1. Thus if z3, z4 ∈ C+ and Re z3 = Re z4, then the condition Imψ(z3) >

Imψ(z4) induces |z3| > |z4|, and Imψ(z3) < Imψ(z4) induces |z3| < |z4|. As a
consequence, the assertion (a) holds provided that both z1, z2 are not real.

The real part of ψ goes to ±∞ on approaching a (non-zero) pole of φ, as stated in
Remark 4. Consequently, it is impossible for a pole of φ to be a limiting point of the
set

� := {
z ∈ C+ : Reψ(z) = a, |z1| < |z| < |z2|

}
,

so the function ψ is regular in a neighbourhood of �. (Recall that z1 = 0 is allowed
by the hypothesis of the lemma only if ψ is regular at the origin.)

Analogously to �δ from the proof of Lemma 1, points of � form an analytic curve
possibly containing multiple disconnected components—analytic arcs. Due to (6), for
each r > 0 there exist at most one value of θ ∈ (0, π) such that reiθ ∈ �. That is, if

10 This fact follows from the integral representation (2). It can be also deduced from the expression (7)
whenR-functions have the form considered in this lemma.
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540 A. Dyachenko

some z3, z4 satisfy |z3| < |z4|, z3 ∈ γ1 and z4 ∈ γ2, where γ1 and γ2 are arbitrary
distinct arcs of �, then necessarily supz∈γ1

|z| =: r1 � r2 := inf z∈γ2 |z|.
Suppose that the arcs γ1 and γ2 are consecutive, i.e. that�∩{z : r1 < |z| < r2} = ∅.

Within this setting, the limits

ζ1 := lim|z|→r1
z∈γ1

z and ζ2 := lim|z|→r2
z∈γ2

z

exist and are real. Moreover, they have the same sign: for example, ζ1 < 0 < ζ2
implies that Reψ(ir2) < Reψ(ζ2) = a = Reψ(ζ1) < Reψ(ir1) according to (6) and
hence Reψ(ir∗) = a for some r∗ ∈ (r1, r2) by continuity, which contradicts � ∩{z ∈
C+ : r1 < |z| < r2} = ∅. The supposition ζ2 < 0 < ζ1 implies a contradiction
in a similar way. Consequently, one (and only one) of the inequalities Reψ(z) <

a and Reψ(z) > a holds for all z ∈ C+ satisfying r1 < |z| < r2; the former
inequality Reψ(z) < a corresponds to the positive sign of ζ1, ζ2, while the latter
corresponds to the negative sign.

Now, each non-zero singularity x∗ of ψ(z) is a pole of φ(z), and Lemma 5 states
that Reψ(x∗) → +∞ · x∗. In other words, for any z ∈ C+ close enough to x∗
we have Reψ(z) > a when x∗ > 0 and Reψ(z) < a when x∗ < 0. At the same
time, we have seen that Reψ(z) < a if 0 < ζ1 � |z| � ζ2 and z ∈ C+, so
the condition 0 < ζ1 < x∗ < ζ2 cannot be satisfied. Analogously, the inequal-
ity Reψ(z) > a holds provided that ζ2 � −|z| � ζ1 < 0 and z ∈ C+, so the
condition ζ2 < x∗ < ζ1 < 0 cannot be satisfied. As a consequence, the φ(z) is regular
in the interval I := [

min{ζ1, ζ2},max{ζ1, ζ2}
]
. The function Reψ is non-constant and

has at most one extremum inside I by Lemma 5, satisfies Reψ(ζ1) = Reψ(ζ2) = a,
so the equality Reψ(z) = a is impossible in I\{ζ1, ζ2}. As a summary, we obtain
that one of the inequalities Reψ(z) < a or Reψ(z) > a hold for all z ∈ C+ such
that r1 < |z| < r2.

By Lemma 5, Imψ(z) is constant in I (this fact implies the equality in (a)
for z1 = ζ1 �= 0 and z2 = ζ2). We obtain that, on γ1 ∪ I ∪ γ2, the function ψ(z)
is regular and Imψ(z) is continuous and non-decreasing as |z| grows. In particular,
Imψ(z) attains all intermediate values. This reasoning is applicable for each pair
of consecutive arcs constituting the set �. That is, any two points z1, z2 ∈ C+\{0}
with Re (z1) = Re (z2) can be connected by a piecewise analytic curve contain-
ing intervals of the real line and all arcs of �. The case when z1 = 0 remains to
be checked. In this case, ψ(z) is regular at the origin, and thus it is strictly increas-
ing in some real interval enclosing z1 (due to B = limz→0 z(ψ(z))′ = 0, see the
assertion (c) of Lemma 6). Then (9) shows that z1 is the end of some arc from �.
Choosing this arc as γ1 allows us to apply the previous part of the proof. In particu-
lar Imψ(z1) < Imψ(z2).

Note that, on the one hand, poles of φ(z) = φ1(z) − φ2(1/z) can concentrate
only at the origin since both φ1(z) and φ2(z) are meromorphic. On the other hand,
each interval between poles contains at most two ends of arcs from �. Therefore,
the number of arcs in � ∩ {z : |z1| < |z| < |z2|} is finite. Each of the arcs has a
finite length since ψ is smooth in a neighbourhood of �, so the length of the curve
connecting z1 with z2 is finite. This implies the assertions (b) and (c) of the lemma.
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Furthermore, we necessarily have Imψ(z1) < Imψ(z2) unless this piecewise analytic
curve is a segment of the real line. That is, the assertions (a) and (d) are proved.

�
Lemma 9 Suppose that f (z) is holomorphic at z0, g(z) is holomorphic at f0 = f (z0)
such that g′( f0) �= 0 and that n is a positive integer number. Then f ′(z0) = f ′′(z0) =
· · · = f (n)(z0) = 0 if and only if

dg( f (z))

dz

∣
∣
∣
z=z0

= d2g( f (z))

dz2

∣
∣
∣
z=z0

= · · · = dng( f (z))

dzn

∣
∣
∣
z=z0

= 0. (10)

Analogously, if a function f (z) is holomorphic at z0 such that f ′(z0) �= 0 and g(z)
is holomorphic at f0 = f (z0), then the condition (10) is equivalent to g′( f0) =
g′′( f0) = · · · = g(n)( f0) = 0.

Proof Both facts follow from solving equations provided by the chain rule sequen-
tially:

dg( f (z))

dz

∣
∣
∣
z=z0

= g′( f0) f ′(z0),

d2g( f (z))

dz2

∣
∣
∣
z=z0

= g′′( f0)( f ′(z0))2 + g′( f0) f ′′(z0),

· · ·
dng( f (z))

dzn

∣
∣
∣
z=z0

= g(n)( f0)( f
′(z0))n + · · · + g′( f0) f (n)(z0).

�
The machinery presented in the previous sections is suitable for studying functions

of the form

V (z) = eAz+C+ A0
z zB

∏
ν>0

(
1 + z

aν

)κν

∏
μ>0

(
1 − z

bμ

)λμ
(a branch regular in C+), (11)

where C ∈ C, B ∈ R, A, A0 � 0, and aν, κν, bμ, λμ are positive reals for all ν, μ.
Along with functions as in (11), we study functions of the more general form

W (z) = eAz+C+ A0
z zB

∏
ν>0

(
1 + z

aν

)κν

∏
μ>0

(
1 − z

bμ

)λμ

∏
ν>0

(
1 + 1

zcν

)κ̃ν

∏
μ>0

(
1 − 1

zdμ

)̃λμ

= V1(z) V2

(
1

z

)

,

(12)

where both V1 and V2 admit the representation (11).

Remark 10 Let V (z), V1(z) and V2(z) be as in (11) and W (z) = V1(z) V2
(
1
z

)
.

Clearly both V and W are regular and non-zero outside the real line. Moreover,
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542 A. Dyachenko

the expression z(ln V (z))′ is a meromorphic function of the form (7); the func-

tion z(lnW (z))′ = z(ln V1)′(z) − 1
z · (ln V2)′

(
1
z

)
is meromorphic for z �= 0 and

maps C+ → C+. Consequently, they have an analytic continuation in a neighbour-
hood of each real α-point (excluding the origin) for α �= 0. This allows us to determine
the multiplicity of such α-points.

Theorem 11 If a function W defined inC+ has the form (12) such that W (z) �≡ eC zB,
then for any α ∈ C\{0} the α-points of W (z) lying in C+ (if they exist) are at most
double and distinct in absolute value from other solutions to

∣
∣W (z)

∣
∣ = |α|. The α-

points inside C+ must be simple.

Remark 12 If W (z) is regular and non-zero for z = 0, then it has the form (11)
with A0 = B = 0. Therefore, the equality W (0) = α �= 0 implies that lnW (z) is
regular at the origin and

(lnW )′(0) = A +
∑

ν>0

κν

aν

+
∑

μ>0

λμ

bμ

> 0,

so the α-point z = 0 can only be simple (sinceB = limz→0 z(lnW (z))′ = 0, applying
Lemma 6 (c) also yields the simplicity of z = 0).

Proof of Theorem 11 Letψ(z)be abranchof lnW (z) continuous inC+; then zψ ′(z) =
φ1(z) − φ2(1/z) with φ1(z) and φ2(z) of the form (7) (cf. Remark 10). The func-
tion zψ ′(z) is a non-constant R-function, so Im z ψ ′(z) > 0 for every z ∈ C+. In
particular, W ′(z)

W (z) = ψ ′(z) �= 0, that is W ′(z) �= 0 and thus all non-real α-points
of W (z) are simple.

The inequality (6) for r > 0 implies Reψ
(
reiθ1

)
> Reψ

(
reiθ2

)
, that is

∣
∣W (reiθ1)

∣
∣ >

∣
∣W (reiθ2)

∣
∣ on condition that 0 � θ1 < θ2 � π. (13)

Consequently, if W (z) = α, then
∣
∣W (|z|eiθ )∣∣ �= ∣

∣W (z)
∣
∣ = |α| for all θ ∈

[0, π ]\{Arg z}.
Each α-point ofW is an (Lnα+2iπn)-point ofψ , where Lnα denotes the principal

value of ln α and n is some integer dependent on the α-point. Moreover, each α-point
ofW has the samemultiplicity as the coinciding (Lnα+2iπn)-point ofψ byLemma9.
The multiplicities of real (Lnα + 2iπn)-points of ψ are at most 2 by Lemma 2. So all
α-points of W on the real line are at most double. �
Theorem 13 Under the assumptions of Theorem 11, if |z1| < |z2|, W (z1) = α

and W (z2) = αeiθ with a real θ > 0, then for every � ∈ (0, θ) there exists z∗ ∈
C12 := {z ∈ C+ : |z1| < |z| < |z2|} such that W (z∗) = αei�, unless simultane-
ously θ = 0(mod2πk), both z1 and z2 are real of the same sign, W (z) is regular
in (min{z1, z2},max{z1, z2}) and |W (z)| �= |α| in the semi-annulus C12.

Proof This is a straightforward corollary of Lemma 8 for ψ(z) being a branch
of lnW (z). Just as in the proof of Theorem 11, we only need to observe that the
exponential function maps α + 2iπn for all integers n to the same point eα . �

123
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If the α-set of W is not empty, then α-points of W are assumed to be enumerated
according to the growth of their absolute values, i.e. · · · � |z0| � |z1| � |z2| � · · ·
and W (z) = α ⇐⇒ z ∈ ⋃

k zk . Here, we count only once each multiple α-point.

Theorem 14 For an α-point zi ∈ R of the function W, only the following possibilities
exist:

(a) The point zi belongs to an interval between two consecutive positive poles or
negative zeros of W. If zi is double, then the interval contains no other α-points
of W . If zi is simple, then the interval contains exactly one another α-point:
either zi−1 or zi+1.

(b) The point zi belongs to an interval between the origin and the maximal nega-
tive zero, or between the origin and the minimal positive pole. Then exactly one
another α-point (if zi is simple) or no other α-points (if zi is double) lie on the
same interval provided that A0 > 0 or Bzi < 0 in (12). If A0 = 0 and Bzi � 0,
then zi is the α-point minimal in absolute value (moreover, it is the minimal
solution to

∣
∣W (z)

∣
∣ = |α|) and the same interval contains no other α-points.

(c) The point zi lies on a ray of the real line, in which W has no poles or zeros. Then
this ray contains at most one another α-point of W . If A0 = 0, Bzi � 0 and one
end of this ray is the origin, then zi is the only α-point on the ray and its absolute
value is minimal among all solutions to

∣
∣W (z)

∣
∣ = |α|.

In the cases (a)–(c), the number and multiplicities of α-points of W in the correspond-
ing interval are equal to the number and multiplicities of |α|-points of |W |.
Proof Let us denote byψ(z) some branch of the function lnW (z)which is continuous
in C+; then zψ ′(z) = φ(z) := φ1(z)−φ2(1/z) with φ1(z) and φ2(z) of the form (7):

φ(z) = B + Az −
∑

ν>0

−zκν

z + aν

−
∑

μ>0

zλμ

z − bμ

− A0

z
−
∑

ν>0

κ̃ν

zcν + 1
−
∑

μ>0

λ̃μ

zdμ − 1

(cf. Remark 10). Consequently, in each continuous interval I of {z ∈ R : z �=
0, W (z) �= 0, W (z) �= ∞}, the function Imψ(z) is constant [Lemma 5(a)]. Further-
more, Reψ(z) has exactly one extremum between each pair of consecutive positive
poles or negative zeros of W (z) by Lemma 5(b, c), that is no, or one double, or
two simple (ln |α|)-points. Each α-point of W (z) is a (Lnα + 2iπn)-point of ψ(z)
with some integer n, and their multiplicities are the same by Lemma 9. The equality
(Imψ(z))′ = 0 for z ∈ I then implies that all (Lnα + 2iπn)-points of ψ(z) with the
above-mentioned n and (ln |α|)-points of Reψ(z) coincide with multiplicities in I. As
a summary, we obtain (a). Moreover, the number of α-points of W and their multi-
plicities in I is, therefore, equal to the number and multiplicities of |α|-points of |W |.

The assertion (b) follows from Lemma 5(d) and from Lemma 6. Indeed, if x2
denotes the maximal negative zero or the minimal positive pole, then signzi = signx2
and the limit determining the properties of zi is

B = lim
t→0+ φ(t x2) =

{
− limt→0+ A0

t x2
= −∞ · x2, if A0 > 0

B, otherwise.

Similarly, the assertion (c) is a corollary of Remark 7. �
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In the followingwe consider only the case ofC = 0; otherwise, the equalityW (z) =
α can be replaced with W (z)e−C = αe−C .

Theorem 15 Let W (z) be a function of the form (12) distinct from zB, such that κν ,
κ̃ν , λμ, λ̃μ are positive integers and C = 0. Choose the branch of zB which is holo-
morphic in C\(−∞, 0] and positive for z > 0. Given a complex number α /∈ R

such that αe±i Bπ /∈ R, each α-point of W (z) in C\R is simple and distinct in
absolute value from other α-points. If zi , zi+1 are two consecutive points of the α-set,
then Im zi · Im zi+1 < 0.

Moreover, the equations W (x) = α and W±(−x) := limy→±0 W (−x + iy) = α

have no solution for x > 0.

Note that in the case of integer B, the conditions αe±i Bπ /∈ R and α /∈ R of this
theorem are equivalent; furthermore, the functionW (x) is defined for x < 0 and equal
to W−(x) = W+(x).

Proof On theonehand, for x>0 the functionsW (x), e−i BπW+(−x) and ei BπW−(−x)
are real. On the other hand, both α and αe±i Bπ are non-real. Therefore, there is no
solution to W (x) = α and to W±(−x) = α when x > 0. Since W (z) = W (z), we
can find the solutions to W (z) = α in the rest of the complex plane C\R from the
equations W (z) = α and W (z) = α in the upper half-plane.

Now assume that z varies in C+. Theorem 11 implies that all α-points (as well
as all α-points) of the function W (z) are simple and distinct in absolute value. Fur-
thermore, according to the remark following (13) absolute values of α-points and
of α-points cannot coincide (due to α �= α). On account of α = αe−2i argα , if we
have two solutions zi , zi+k to W (z) = α where k is some positive integer, then there
exists a solution z∗ to W (z) = α = αe−2i argα such that |zi | < |z∗| < |zi+k | by
Theorem 13 with the setting θ = 2π . Conversely, between each pair of α-points there
is an α-point by the same theorem. That is, the absolute values of α- and α-points
in C+ interlace with each other. This fact provides the theorem, because W (z) = α is
equivalent to W (z) = α. �
Remark 16 If in Theorem 15 we take the number α �= 0 real, then the equa-
tions W (z) = α and W (z) = α are satisfied simultaneously. As a result, each α-point
ofW (z) inC\R is simple and there is a uniqueα-pointwith thematching absolute value
(which is the complex conjugate). For an α-point zi on the real line (such points are
positive unless zB is real for z < 0, i.e. unless B is integer) there are only the possibil-
ities (a)–(c) of Theorem 14. The α-set ofW for αe±i Bπ ∈ R and B /∈ Z can be studied
similarly; the main distinction is that W is not continuous on the negative semi-axis,
so the corresponding result will be concerned with the limiting values W+ or W−.

Remark 17 Functions of the form (11) generate totally positive sequences exactly
when the exponents κν , λμ are positive integers, B ∈ Z�0, C ∈ R and A0 = 0. The
expression (12) determines a generating function of a doubly infinite totally positive
sequencewhenever κν, λμ, κ̃ν, λ̃μ ∈ Z>0 and B ∈ Z. See the subsection “Definitions”
of Sect. 1 for further details.

Hereinafter we concentrate on the case B = p
k of (12) with positive integers

κν , κ̃ν , λμ, λ̃μ, integer k � 2 and p �= 0. We assume that gcd(|p|, k) = 1, i.e.
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the fraction p
k is irreducible. The kth root is a k-valued holomorphic function in the

punctured plane C\{0}. So, let k
√ · denote its branch that is holomorphic in C+\{0}

and maps the positive semi-axis into itself. Then

R(w) = (
k
√

w
)p

eAw+A0w
−1

∏
ν>0

(
1 + w

aν

)

∏
μ>0

(
1 − w

bμ

)

∏
ν>0

(
1 + 1

wcν

)

∏
μ>0

(
1 − 1

wdμ

) , (14)

where the coefficients satisfy A, A0 � 0 and aν, bμ, cν, dμ > 0 for all ν, μ is a
single-valued meromorphic function in C+\{0} regular for Imw �= 0.

5 Composition with kth power function

In the current section we assume that a function G �≡ z p has the representation

G(z) := eAz
k+A0z−k

z p

∏
ν>0

(
1 + zk

aν

)

∏
μ>0

(
1 − zk

bμ

)

∏
ν>0

(
1 + z−k

cν

)

∏
μ>0

(
1 − z−k

dμ

) (15)

for some integers k � 2 and p, gcd(|p|, k) = 1, in which the coefficients satisfy
A, A0 � 0 and aν, bμ, cν, dμ > 0 for all ν, μ. As we noted above, the case when |p|
and k are not coprime does not need any additional study: it can be treated by introduc-
ing the new variable η := z1/ gcd(|p|,k). Furthermore, the location of zeros and poles
of G(z) is clear from the expression (15), so we concentrate on the equationG(z) = α

where α ∈ C\{0}.
For the sake of brevity denote em := exp

(
i mk π

)
. The condition gcd(|p|, k) = 1

implies that

• (emp)
k−1
m=−k is a cyclic group of order 2k generated by ep when p is odd (thus

emp = en for n ∈ Z if and only if mp ≡ n (mod 2k));
• (emp)

k−1
m=0 and (emp+1)

k−1
m=0 are two disjoint cyclic groups of order k generated

by ep when p is even (the former group contains e0 = 1 and the latter one
contains ek = −1).

Denote the sectors of the complex plane with the central angle π
k by

Qs := {
z ∈ C\{0} : 0 < Arg ze−s < π

k

}
and

Q̃s := {
z ∈ C\{0} : 0 � Arg ze−s < π

k

}
,

where s ∈ Z, so that they are numbered in an anticlockwise direction and Qs = Q2k+s ,
Q̃s = Q̃2k+s .

The substitution z �→ z̃e2m turns G(z) = α with a fixed α into the equivalent
equation G (̃ze2m) = G (̃z)e2pm = α where m ∈ Z, which gives us the following
remark (note that we suppress the trivial case G(z) identically equal to z p with no
special attention):
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Remark 18 Let G(z) and R(w) be as in (15) and (14), respectively, α �= 0 and w ∈
C+ ∪ (0,+∞). Substituting z = k

√
we2m into (15) shows that if

R(w) = αe−2pm, where m = 0, . . . , k − 1, (16)

then z = k
√

we2m ∈ Q̃2m solves the equation G(z) = α. Analogously, if the equality

R(w) = αe2pm, where m = 0, . . . , k − 1, (17)

holds for some m, then z = k
√

we2m ∈ Q̃2m−1 solves G(z) = α. Conversely, for each
solution ofG(z) = α there exists an integerm (unique under the condition 0 � m < k)
such that R(zk) = αe−2pm provided that zk ∈ C+ ∪ (0,+∞), or such that R(zk) =
αe2pm provided that zk /∈ C+ ∪ [0,+∞). In this sense, the equation G(z) = α can be
replaced with the relation

R(w) ∈ �, where � := {
αe−2pm

}k−1
m=0 ∪ {

αe2pm
}k−1
m=0 (18)

for w ∈ C+, and then all α-points of G(z) can be determined from the solutions
to (18).

Remark 19 The relation (18) shows that the equation G(z) = α has different proper-
ties depending whether Imαk is zero or not. The case of α ∈ {αe−2pm}k−1

m=0 coincides
11

with Imαeps = 0 for some s = 0, . . . , k − 1, and thus to Imαk = 0. If it occurs,
then the equivalent equation G(ζe−s)eps = αeps in ζ ∈ C has real coefficients and,
hence, solutions symmetric with respect to the real line. Consequently, each solution
to G(z) = α has the reflected point ze−2s with the same absolute value as a pair such
that G(ze−2s) = G(z) = α (unless ze−2s = z). In the case of α /∈ {αe−2pm}k−1

m=0,
which is equivalent to Imαk �= 0, the relation (18) has no real solutions, and solutions
to (16) and (17) have distinct absolute values, as is shown in Theorem 11. Accordingly,
then all solutions of G(z) = α are distinct in absolute value.

We examine these cases in detail in Theorem 22 and Theorem 20, respectively.

Definition Denote by� the set of absolute values of all solutions toG(z) = α withG
of the form (15), that is

� := {
ξ > 0 : ∃θ ∈ (−π, π ] such that G(ξeiθ ) = α

}
.

Let · · · < ξi < ξi+1 < · · · be the entries of �, such that � = {
ξn
}
n∈I , and

let . . . , zi , zi+1, . . . be the corresponding α-points or, more precisely, |zi | = ξi
and G(zi ) = α for all i ∈ I (that is, zi stands for any of the α-points which cor-
respond to the value of ξi ). The corresponding index set I = {n ∈ Z : ω1 < n < ω2}
is a finite or infinite interval of integers, −∞ � ω1 < ω2 � +∞.

11 On the one hand, the condition that α = αe−2 p̃s for some integer s̃ = 0, . . . , k − 1 coin-
cides with αe− p̃s = αe− p̃s and therefore to Imαe− p̃s = 0. On the other hand, changing the order

gives α ∈ {
αe−2pm

}k−1
m=0 = {

αe2p(k−m)

}k−1
m=0 = {

αe2pm
}k−1
m=0, which is α = αe2ps for some inte-

ger s = 0, . . . , k − 1; the last expression can be written as αeps = αeps , or equivalently Imαeps = 0.

123



One helpful property of functions generating… 547

For brevity’s sake, we omit the index set I and write |zi | ∈ � to specify that the
integer i ∈ I and thus zi is an actual α-point of G. Accordingly, |zi | /∈ � means
that i /∈ I , which implies that I � Z and � = {|zn|

}
n∈I is not a doubly infinite

sequence. If ω1 > −∞ then it is convenient to put ω1 = −1, so that z0 becomes one
of the α-points of G minimal in absolute value.

Theorem 20 If Imαk �= 0 and G(z) has the form (15), then the α-set of G(z) satisfies
the following two properties:

(a) Each α-point zi is simple, satisfies Im zki �= 0 and is distinct in absolute value
from other α-points of G (i.e. G(z) = α and |z| = |zi | �⇒ z = zi ).

(b) For each two consecutive α-points zi , zi+1, the inclusions α ∈ Q2q−� and zi ∈
Q2m−σ with q,m ∈ Z and �, σ ∈ {0, 1} imply that zi+1 ∈ Q2l−1+σ , where l is
an integer solution of p(l + m) ≡ 2q + 1 − � − σ (mod k).

Proof Note that each element of � raised to the kth power equals αk or αk . The
expression (14) yields that ImRk(w) = 0 �= Imαk and, hence, R(w) /∈ � provided
thatw ∈ R. Consequently, all solutions to (18) lie in the openupper half-planeC+. That
isG(z) �= α for Im zk = 0. The function R(w) satisfies the conditions of Theorem 11;
thus solutions to R(w) ∈ � in C+ are simple and (since the equality |R(w)| = |α|
is necessary for R(w) ∈ �) distinct in absolute value. Therefore, all α-points of G
are simple by Lemma 9 and distinct in absolute value: if G(z) = α and |z| = |zi | for
some integer i , then z = zi .

Now let |zi |, |zi+1| ∈ �. There exist integers q,m, l and �, σ, τ ∈ {0, 1} such
that α ∈ Q2q−� , zi ∈ Q2m−σ and zi+1 ∈ Q2l−τ . Without loss of generality we
assume 0 � q,m, l � k − 1. Note that zi corresponds to a solution wi of (16)
or (17) when σ = 0 or σ = 1, respectively. Analogously, zi+1 corresponds to a
solutionwi+1 of (16) or (17) depending onwhether τ is zero or not. Figure 1 illustrates
the correspondence between α-points of G(z) and solutions of (16)–(18).

First, suppose that Imαk > 0, i.e. � = 0 and α ∈ Q2q . Then the points αe−2pm ∈
Q2q−2pm of the set � occur exactly once in each sector Q j with the even indices j =
0, 2, . . . , 2k − 2 when m runs over the integers 0, . . . , k − 1. Analogously, the points
αe2pm ∈ Q−2q−1+2pm of the set � occur exactly once in each sector Q j with the odd
indices j = 1, 3, . . . , 2k − 1 when m = 0, . . . , k − 1. Consequently, σ = 0 induces
the equation R(wi ) = αe−2pm ∈ Q2q−2pm , while σ = 1 induces R(wi ) = αe−2pm ∈
Q−2q−1+2pm . Combining these equalities together gives

R(wi ) ∈ � ∩ Q(−1)σ ((2q+σ)−2pm). (19)

The same reasoning for wi+1 provides us with the condition

R(wi+1) ∈ � ∩ Q(−1)τ ((2q+τ)−2pl). (20)

Since R(wi+1) = R(wi )eiθ with an appropriate real θ , for each ρ ∈ (0, θ) there
exists w∗ satisfying |wi | < |w∗| < |wi+1| and R(w∗) = R(wi )ei� by Theorem 13.
However, zi and zi+1 are consecutive α-points, so R(w∗) cannot belong to � for
any ρ ∈ (0, θ). At the same time,� has exactly one point in each sector of the complex
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plane, and we necessarily have R(wi+1) ∈ � ∩ Q(−1)σ ((2q+σ)−2pm)+1 from (19).
Thus, (−1)τ

(
(2q + τ)− 2pl

) ≡ (−1)σ
(
(2q +σ)− 2pm

)+ 1 (mod 2k) on account
of the relation (20). Checking the parity immediately gives τ = 1 − σ . As a result,

σ = 0 �⇒ (2q+1)−2pl ≡ −(2q − 2pm + 1) = 2q + 1 − 2(1 + 2q − pm) and

σ = 1 �⇒ 2q − 2pl ≡ −(2q + 1 − 2pm) + 1 = 2q − 2(2q − pm)

modulo 2k. These two relations imply that 2pl ≡ 2((1 − σ) + 2q − pm) (mod 2k),
or equivalently p(l + m) ≡ 2q + 1 − σ (mod k).

Now let Imαk < 0, that is to say � = 1 and α ∈ Q2q−1, so consequently αe−2pm ∈
Q2q−1−2pm and αe2pm ∈ Q−2q+2pm . It implies that

R(wi ) ∈ � ∩ Q(−1)σ (2q−(1−σ)−2pm) and

R(wi+1) ∈ � ∩ Q(−1)τ (2q−(1−τ)−2pl) = � ∩ Q(−1)σ (2q−(1−σ)−2pm)+1

analogously to the case of positive Imαk . Due to the parity, we have τ = 1− σ ; thus

σ = 0 �⇒ −(2q − 2pl) ≡ 2q − 1 − 2pm + 1 = 2q − 2pm (mod 2k)

and σ = 1 �⇒ 2q−1−2pl ≡ −(2q − 2pm)+1=−2q + 2pm + 1 (mod 2k).

The last two equations are equivalent to 2pl ≡ 4q − 2σ − 2pm (mod 2k), which
coincides with p(l + m) ≡ 2q − σ (mod k). �
Remark 21 The rays of the line {z ∈ C : Im zes = 0}, which is given by z = ze−2s ,
can be expressed via the sectors Qi of the complex plane by the following formula:

Q2m ∩ Q−2s−2m−1\{0} =

⎧
⎪⎨

⎪⎩

{z ∈ C : zes > 0}, if m ≡ − ⌈ s
2

⌉
(mod k),

{z ∈ C : zes < 0}, if m ≡ −⌈ s−k
2

⌉
(mod k),

∅ otherwise;
(21)

the notation �a� stands for the minimal integer which is greater or equal to a real
number a.

Theorem 22 Let Imαk = 0, α �= 0 and the integers s, l,m be such that Imαeps = 0
and p(m − l) ≡ 1 (mod k); then

(a) point z satisfies the conditions G(z) = α and |z| = |zi | if and only if z ∈ {zi , z∗i },
where z∗i := zi e−2s .

(b) The inclusion zi ∈ Q2m ∪ Q−2s−2m−1 for some integer m implies that both
z∗i �= zi are simple α-points and zi+1 ∈ Q2l ∪ Q−2s−2l−1 (when |zi+1| ∈ �).

(c) The conditions z∗i = zi and arg zi = arg zi+1 imply that both zi , zi+1 are
simple, arg zi �= arg zi−1 provided that |zi−1| ∈ � and arg zi+1 �= arg zi+2
provided that |zi+2| ∈ �.

(d) If z∗i = zi and arg zi �= arg zi+1, then zi is simple or double (which corresponds to,
respectively, arg zi = arg zi−1 or arg zi �= arg zi−1 on condition that |zi−1| ∈ �).
Furthermore, zi ∈ Q2m ∩ Q−2s−2m−1 with m given by (21) implies zi+1 ∈
Q2l ∪ Q−2s−2l−1.
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Fig. 1 Illustration to Theorems 20, 22–25
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(e) If z∗i = zi and |zi+1| /∈ �, then the multiplicity of zi is at most 2.

In other words, if Im zi es �= 0, then zi is simple, Im zki �= 0 and the reflected
point z∗i = zi e−2s also solves G(z) = α; no other α-points share the same absolute
value. Furthermore, zi ∈ Q2m and z∗i ∈ Q−2s−2m−1 for some integer m (probably
after exchanging zi ↔ z∗i ).

If Im zi es = 0 i.e. zi ∈ Q2m ∩ Q−2s−2m−1 for some m satisfying (21), then Theo-
rem 22 asserts that zi is simple or double, and there are no other solutions ofG(z) = α

sharing the same absolute value. If zi is not the first or the last α-point (with respect to
the absolute value), then either zi is double or exactly one other α-point adjacent to zi
has the same argument (in fact, it belongs to the same interval between two consecutive
singularities of lnG).

Proof The equality G(zi ) = α is equivalent to G(zi e−2s) = α since

G(zi e−2s) = G(zi e2s) = αe2ps = αepse−ps = αepse−ps = α.

Consequently, G(zi ) = α if and only if G(z∗i ) = α, where z∗i = zi e−2s . The points zi
and z∗i coincide exactly when zi es is a real number (cf. Remark 19).

Choose the integer m satisfying zi ∈ Q̃2m ∪ Q̃−2m−2s−1, which implies the
same inclusion for z∗i . We constrain ourselves to the case zi ∈ Q2m and thus z∗i ∈
Q−2m−2s−1: this causes no loss of generality since zi and z

∗
i are interchangeable with

each other. The closed sector Q2m replaces Q̃2m due to the possibility zi = z∗i ∈
Q2m ∩ Q−2m−2s−1 (cf. Remark 21). Note that the point wi := zki = (zi e−2m)k ∈ C+
satisfies

R(wi ) = R
(
(zi e−2m)k

)
= G(zi e−2m) = αe−2pm, (22)

where the second equality is valid since zi e−2m ∈ Q0 and thus k
√

(zi e−2m)k =
zi e−2m (cf. Remark 18). Conversely, if R(wi ) = αe−2pm , then both zi = k

√
wi e2m

and z∗i = k
√

wi e−2m−2s are α-points of G.
The function R(w) has the form (14) and hence satisfies the conditions of The-

orem 11. Therefore, solutions of R(w) ∈ � in the closed upper half-plane C+ are
distinct in absolute value; those inC+ are additionally simple, and those on the real line
are simple or double. In particular, if R(w) ∈ � and |w| = |wi |, then w = wi which
implies the assertion (a). Moreover, by Lemma 9 the multiplicities of zi , z∗i are equal
to one in the assertion (b) and are at most two in the assertions (c)–(e). The assertion (e)
is, therefore, proved because it only states that the multiplicity does not exceed two.

Now let |zi+1| ∈ �, which means that there is at least one α-point, zi+1, with
absolute value greater than |zi |. Then, by analogy with zi , the points zi+1 and zi+1e−2s
are the only solutions of the equation G(z) = α which satisfy |z| = |zi+1|. Further-
more, we can assume that zi+1 ∈ Q2l for some integer l without loss of generality.
Then wi+1 := zki+1 ∈ C+ implies zi+1 = k

√
wi+1e2l and, similarly to (22), the

equality R(wi+1) = αe−2pl .
Observe that the points wi , wi+1 ∈ C+ satisfy the conditions |wi | < |wi+1|,

R(wi ) = αe−2pm and R(wi+1) = αe−2pl = αe−2pm+2δ for an appropriate integer δ.
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Moreover, the quantity αe2pmei� cannot belong to � for all � ∈ (
0, 2δπ

k

)
; otherwise,

there exists w∗ satisfying |wi | < |w∗| < |wi+1| and R(w∗) ∈ � by Theorem 13,
which contradicts the fact that zi and zi+1 are two consecutive α-points. As stated in
Theorem 13, this is only possible in two cases: if δ = 1 or if simultaneously: δ = 0,
Argwi = Argwi+1 ∈ {0, π} and |R(w)| �= |α| provided that |wi | < |w| < |wi+1|. In
the former case, we necessarily obtain the equation −2pl ≡ −2pm + 2δ (mod 2k)
with respect to the unknown l, that is p(m − l) ≡ δ = 1 (mod k). This proves the
assertion (b) because in the corresponding case zi ∈ Q2m ∪ Q−2s−2m−1 we have
that Argwi /∈ {0, π}, and the simplicity of zi , z∗i is shown above.

To obtain the remaining assertions (c)–(d), we assume that z∗i = zi and thuswi ∈ R.
Let I ⊂ {w ∈ R : w �= 0, R(w) �= 0, R(w) �= ∞} be the maximal continuous
subinterval containing wi . Theorem 14 applied to R(w) yields that

– The condition that wi is double implies I � wi−1, wi+1;
– If wi is simple and I � wi+1, then I � wi−1;
– If wi is simple and I � wi+1, then I � wi−1 unless k

√|wi−1| /∈ �.

Let us show that wi ∈ I � wi+1 and wi · wi+1 > 0 together imply δ = 1, and, there-
fore, arg zi �= arg zi+1. Indeed, since I � wi+1 the function R(w) has a singularity in
the interval betweenwi andwi+1, so Theorem 13 gives δ = 1. Accordingly, zi ∈ Q2m ,
zi+1 ∈ Q2l with l �≡ m (mod k) and hence arg zi �= arg zi+1. In other words,
we obtained that if arg zi = arg zi+1, then necessarily wi , wi+1 ∈ I, and further-
more zi and zi+1 are simple α-points by Lemma 9. The equality arg zi+1 = arg zi+2
(or arg zi = arg zi−1) analogously yields that both zi+1, zi+2 (or zi , zi−1) are sim-
ple and both wi+1, wi+2 (or wi , wi−1, respectively) belong to the same subinterval
of {w ∈ R : w �= 0, R(w) �= 0, R(w) �= ∞}. Consequently, the assertion (c) is true
since at most two of the points wi−1, wi , wi+1, wi+2 can lie in I. Recall that if wi is
double, then I � wi−1, wi+1; this fact implies the assertion (d) using Lemma 9 with
the above proof of (c). �

6 Location of the α-point that is minimal or maximal in absolute value

Let a function F have the form

F(z) := z peAz
k

∏
1�ν�ω1

(
1 + zk

aν

)

∏
1�μ�ω2

(
1 − zk

bμ

) , F(z) �≡ z p, (23)

where k and p are integer such that k � 2 and gcd(|p|, k) = 1, 0 � ω1, ω2 � +∞,
A � 0 and aν, bμ > 0 for all ν, μ. Such functions are the particular case of (15)
and, therefore, satisfy conditions of Theorems 20 and 22. The next two theorems
reveal another property of the α-set of F . Assuming that the α-set is non-empty, they
determine which of the sectors contains the α-point (or α-points) of the function F
that is minimal in absolute value.

Theorem 23 Consider a complex number α �= 0 and a function F of the form (23)
with p > 0. Let q = 0, . . . , k − 1 and � = 0, 1 be chosen so that α ∈ Q̃2q−� , and
the integer m be such that pm ≡ q (mod k).
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If αk �< 0, then the α-point z0 of F(z) closest to the origin is simple and differs
in argument and absolute value from the succeeding α-point (or points). Moreover,
α ∈ Q2q−� implies z0 ∈ Q2m−� . If αe−2q > 0, then z0e−2m > 0.

If αk < 0, that is αe−2q+1 > 0, then the two zeros of F(z) − α closest to the
origin (counting double zeros as two) are equal in absolute value or in argument. In
the latter case, both zeros belong to the ray {ze−2m+1 > 0}. In the former case, one of
them belongs to Q2m−1 and another belongs to Q2m̃ = Q−2m−2s where m̃ satisfies
pm̃ ≡ q − 1 (mod k) and s is introduced in Remark 19.

Proof Let z0 denote the solution of the equation F(z) = α that is minimal in absolute
value. Consider the corresponding pointw0 ∈ C+ determined byw0 = zk0 if Im zk0 � 0
and by w0 = zk0 if Im zk0 � 0. Recall that (see Remark 18) the equality F(z0) = α is
equivalent to R(w0) ∈ �, where

� = {
αe−2pm

}k−1
m=0 ∪ {

αe2pm
}k−1
m=0 = {

αe2m
}k−1
m=0 ∪ {

αe2m
}k−1
m=0

and the function R(w) = F
(

k
√

w
)
is defined in C+\{0} by the equality (14), or more

specifically,

R(w) = (
k
√

w
)p

eAw

∏
1�ν�ω1

(
1 + w

aν

)

∏
1�μ�ω2

(
1 − w

bμ

) . (24)

Denote byw∗ the point of the set
{
w ∈ C+ : |R(w)| = |α|}which is the closest to the

origin. The assertions (b) and (c) of Theorem 14 imply the inequality 0 < w∗ < b1
since B = p

k > 0 (moreover, the point w∗ necessarily exists when F(z) has poles).
The function R(w) has the form (24), that is R(w∗) > 0 and hence R(w∗) = |α|.
Putting z∗ := k

√
w∗e2m we obtain F(z∗) = |α|e2pm . As suggested by the statement

of the theorem, the integer m satisfies pm ≡ q (mod k). Consequently, if αe−2q =
|α| > 0, then the point z0 := z∗ satisfying the inequality z0e−2m > 0 is the zero
of F(z) − α that we are looking for; it is simple by Lemma 9 (the example is given in
Fig. 3a, α = ei2π/3).

Recall that the α-point z0 is minimal in absolute value; therefore R(w) /∈ � on
condition that |w| < |w0|. Put

θ :=
{
Arg R(w0) if Arg R(w0) � 0,

Arg R(w0) + 2π otherwise,

so that Arg R(w∗) = Arg |α| = 0 � θ < 2π ; then for each � ∈ (0, θ) there
exists w̃ ∈ C+ by Theorem 13 such that |w∗| < |w̃| < |w0| and R(w̃) = |α|ei�.
Consequently, for each � ∈ (0, θ) the condition |α|ei� /∈ � holds true when θ > 0.

Suppose now that α ∈ Q2q , which is equivalent to 0 < Arg (αe−2q) < π
k . Since

the set � contains no other points of Q2q , the inequality in the expression R(w0) =
|α|eiθ �= αe−2q implies π

k < θ < 2π , leading us to the contradiction |α|ei� ∈ �

with � = Arg (αe−2q) ∈ (0, θ). Therefore, the equality R(w0) = αe−2q must be true.
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In other words, we have R(w0) = αe−2pm , and hence z0 = k
√

w0e2m ∈ Q2m is the
required α-point.

Analogously, suppose that α ∈ Q2q−1, that is α ∈ Q−2q and 0 < Arg (αe2q) <
π
k . Then the equality R(w0) = |α|eiθ = αe2q is satisfied, because the opposite
condition |α|eiθ �= αe2q implies Arg (αe2q) < π

k < θ < 2π , which is impossible
by Theorem 13. Consequently, we obtain R(w0) = αe2q = αe2pm and, as stated in
Remark 18, z0 = k

√
w0e2m ∈ Q2m−1 (for the illustration see Fig. 3a with α = eiπ/2).

Combining the two last cases gives the implication α ∈ Q2q−� �⇒ z0 ∈ Q2m−� ,
while the simplicity of z0 follows from Theorem 20.

The last case isαe−2q+1 > 0, or equivalently12 Arg (αe2q) = π
k = Arg (αe2q+2ps).

Just as in the previous case, we have R(w0) = αe2q = αe2pm , and, therefore, the
equality z0 = k

√
w0e2m ∈ Q̃2m−1 determines the α-point with the smallest absolute

value. Unless z0e−2m+1 > 0, Theorem 22 yields that there exists exactly one other α-
point of F with the same absolute value, namely z∗0 := z0e−2s ∈ Q̃−2m−2s and that
both z0, z∗0 are simple. This situation appears in Fig. 2, α = i

5 , and Fig. 3a, α = eiπ/3.
The case of z0e−2m+1 > 0, that is w0 < 0, needs a special attention. Let −a1

be the maximal negative zero of R(w). The interval (−a1, 0) contains one double
(namely w0) or two simple (w0 and w1) solutions to R(w) ∈ � as provided by (b)
of Theorem 14. In the latter case, R(w) /∈ � for all w satisfying |w0| < |w| < |w1|,
which is given by Theorem 13. Lemma 9 then implies that these solutions determine
the corresponding properties of the double α-point z0 or, respectively, of the simple
pair z0, z1 with z1e−2m+1 > 0 (as it is shown in Fig. 2 for α = i). When R(w) has no
zeros, the result is the same provided that F has at least two (or one double) α-points:
see Theorem 14(c) and Remark 7. �
Theorem 24 Let αk < 0 under the conditions of Theorem 23, and let the two zeros
of F(z)−α closest to the origin (counting double zeros as two) be equal in argument.
Then p = 1.

Proof The case α = i in Fig. 2 illustrates that these conditions are consistent. In the
proofwe use the notation used in the proof of Theorem23. The assertion of Theorem24
can be stated as z0e−2m+1 > 0 �⇒ p = 1 because all other situations are impossible
(see the statement of Theorem 23).

Let z0e−2m+1 > 0, which induces the inequality w0 < 0. On the one hand,
in this case R(w0) = |α|ei π

k and R(w∗) = |α| (see the proof of Theorem 23).
Denote by ψ(w) a branch of ln R(w) which is continuous in C+ and real at w∗;
then Imψ(w∗) = 0 and Imψ(w0) = π

k + 2πn for some integer n. Item (b) of
Lemma 8 yields that n = 0 since R(w) /∈ � for all13 w∗ < |w| < −w0. That is to
say,

π

k
= Imψ(w0) − Imψ(w∗) = Im

∫ w0

w∗

R′(w)

R(w)
dw, (25)

12 The right-hand side follows from αe2q+2ps = αeps · e2q+ps = αeps · e−2q−ps = αe−2q = αe2q .
13 If R(w) ∈ � for some w ∈ C+ satisfying |w| < |w0|, then z0 cannot be the α-point of F(z) minimal
in absolute value; see the proof of Theorem 23 for the details.
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Fig. 2 The solutions to z f (z2)
g(z2)

= α, where f (z) = z + 3, g(z) = (z − 1)(z − 5) and α is equal to i or i
5

where the integration is over any contour wholly lying in C+.
On the other hand, the function

Rk(w) = w peAkw

∏ω1
ν=1

(
1 + w

aν

)k

∏ω2
μ=1

(
1 − w

bμ

)k

is meromorphic in C. The domain D = {
w ∈ C : |w| < |w0|, |Rk(w)| < |α|k}

is not empty since p > 0. Its boundary D\D is the analytic curve
{
w ∈ C : |w| �

|w0|, |Rk(w)| = |α|k} because
∣
∣R
(|w0|ei�

)∣
∣ > |R(w0)| = |α| for any real � ∈

(−π, π) due to R(w) = R(w) and (13); this curve is closed but not necessarily
connected. By definition, the closure of D cannot contain any pole of Rk(w), so this
function is holomorphic in D. Cauchy’s argument principle states that

�
D\D

R′(w)

R(w)
dw = 1

k

�
D\D

(
Rk(w)

)′

Rk(w)
dw = 2i

Z

k
π, (26)

where Z is the number of zeros of Rk(w) inside D counting multiplicities.
Since R(w) = R(w), the contour D\D is symmetric with respect to the real line.
Consequently, the left-hand side of (26) can be modified in the following way:

�
D\D

R′(w)

R(w)
dw =

∫

γ

R′(w)

R(w)
dw −

∫

γ

R′(w)

R(w)
dw = 2

∫

γ

R′(w)

R(w)
dw,
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(a)

(b)

Fig. 3 The solutions to F(z) = α with k = 3, p = ±1 for different values of α (the isoline |F(z)| = 1
and zeros of the numerator and denominator of F have the same marks as in Fig. 2)
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where the contour γ can be any contour lying wholly in C+, which starts at w∗ and
ends at w0. On account of (26), we, therefore, have the following expression:

Im
∫

γ

R′(w)

R(w)
dw = Z

k
π

contradicting (25) unless Z = 1. However, p is the multiplicity of the zero of Rk(w)

at the origin, so 1 = Z � p � 1. �
Observe that the change of variable z �→ ζe−1 implies zk �→ −ζ k . Hence, the function

F̃(ζ ) := e−p

F(ζe−1)
= ζ−peAζ k

∏ω2
μ=1

(
1 + ζ k

bμ

)

∏ω1
ν=1

(
1 − ζ k

aν

)

has the form (23) with a positive power of ζ as the first factor provided that p < 0.
Moreover,

F(z) = α ⇐⇒ F̃(ζ ) = e−p

α
=: α̃,

α ∈ Q2q−� ⇐⇒ α̃ ∈ Q−2q+�−p−1 and (27)

αe−2q+� > 0 ⇐⇒ α̃e2q−�+p > 0.

In this way the case of p < 0 can be reduced to the situation studied in the last two
theorems. Unfortunately, the notation convenient in Theorem 23 does not suit this case
well as it induces more complicated relations.

Theorem 25 Suppose that all conditions of Theorem 23 hold except that p < 0.
If α ∈ Q2q−� , then the α-point z0 of F(z) closest to the origin is simple and

differs in argument and absolute value from the succeeding α-point. Furthermore,
z0 ∈ Q2m−σ where σ := � for even p, σ := 1 − � for odd p, and the integer m
satisfies14 pm ≡ q − (−1)σ

⌈ p
2

⌉
(mod k).

If αe−2q+� > 0, where p and � have the same parity, then the α-point z0 of F(z)
closest to the origin is simple and differs in argument and absolute value from the

succeeding α-point (or points). Moreover, z0e−2m+1 > 0 for pm ≡ q +
⌈

p−1
2

⌉

(mod k).
If αe−2q+� > 0, where p and � have distinct parity, then the two zeros of F(z)−α

closest to the origin (counting double zeros as two) are equal in absolute value or
in argument. In the latter case, which is only possible when p = −1, both the zeros
belong to the ray {ze−2m > 0}. In the former case, one of them belongs to Q2m and

another belongs to Q−2s−2m−1. Here m solves pm ≡ q −
⌈

p+1
2

⌉
(mod k) and s is

as in Remark 19.

14 Recall that
⌈ p
2
⌉
stands for theminimal integer greater than or equal to p

2 .Here
∣
∣
⌈ p
2
⌉∣
∣ �

∣
∣ p
2

∣
∣ since p < 0.
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Proof With the notation

q̃ := −q +
⌈

� − p − 1

2

⌉

and �̃ := 2q̃ + 2q − � + p + 1, (28)

the relations (27) immediately yield

α ∈ Q2q−� ⇐⇒ α̃ ∈ Q2q̃−�̃
Theorem 23�������⇒ ζ0 ∈ Q2m̃−�̃ ⇐⇒ z0 ∈ Q2m̃−�̃−1,

where m̃ satisfies (−p) · m̃ ≡ q̃ (mod k) and ζ0 is the solution to F̃(ζ ) = α̃ minimal
in absolute value. That is, modulo k we have

pm̃ ≡ q −
⌈

� − p − 1

2

⌉

=
{
q + p

2 , if p is even,

q + p+1
2 − �, if p is odd.

(29)

Letm denote an integer such that z0 ∈ Q2m−σ for some σ ∈ {0, 1}. Then necessar-
ily 2m−σ ≡ 2m̃− �̃ −1 (mod 2k), which is satisfied bym = m̃− �̃ and σ = 1− �̃.
Therefore, the second of the expressions (28) yields �̃ = 1−� if p is even and �̃ = �

if p is odd. The relation (29) within these settings becomes

pm ≡
{
q + p

2 − p�̃, if p is even;

q + p+1
2 − �̃(p + 1), if p is odd

=
{
q + (−1)�̃ p

2 , if p is even;

q + (−1)�̃ p+1
2 , if p is odd

modulo k. Since p < 0, the last equality implies

pm ≡ q + (−1)�̃
⌈ p

2

⌉
= q − (−1)σ

⌈ p

2

⌉
(mod k).

However, this relation coincides with the relation for m suggested by the statement of
the theorem. For the corresponding illustration, see Fig. 3b, α = eiπ/2.

When α̃ satisfies α̃e−2q̃ > 0, from the relation (27) we have −2q̃ ≡ 2q − � + p
(mod 2k), which determines the pair q, � satisfying the inequality αe−2q+� > 0
instead of (28). In particular, p and � have the same parity. So, z0e−2m+1 = ζ0e−2m >

0 for

pm = −(−p) · m ≡ −q̃ ≡ q + p − �

2
= q +

⌈
p − 1

2

⌉

(mod k).

The corresponding plot can be found in Fig. 3b, α = eiπ/3.
When α̃e−2q̃+1 > 0, the relation−2q̃+1 ≡ 2q−�+ p (mod 2k) provides another

pair q, � making the inequality αe−2q+� > 0 true. This gives us that z0 ∈ Q2m̃−2
or z0e−2m̃+2 > 0 (the latter is only possible for p = −1 by Theorem 24) whenever

pm̃ ≡ −q̃ ≡ q + p − 1 − �

2
(mod k).
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The change m := m̃ − 1 gives z0 ∈ Q2m or z0e−2m > 0 whenever

pm ≡ q − p + p − 1 − �

2
= q − p + 1 + �

2
= q −

⌈
p + 1

2

⌉

(mod k).

For z0 ∈ Q2m , the integer s defined as in Remark 19 provides the expression z0e−2s
for the α-point of F(z) which is equidistant with z0 from the origin. See the relevant
example in Fig. 3b, α = ei2π/3. �
Remark 26 Suppose that a function H(z) has the form (23). Then the last three
theorems give a straightforward conclusion concerning the solution of the equa-
tion H(1/z) = α with the maximal absolute value. It is of special interest when H(z)
is rational: then both H(z) and H(1/z) can be represented as in (23).

7 Zeros of entire functions

Let the positive integers j and k be coprime and k � 2. Theorems 20, 22–25 admit a
transition to describing the zeros of functions of the forms

H1(z) := f (zk) + z j g(zk) and H2(z) := g(zk) + z j f (zk),

where the functions f (z) and g(−z) are entire, have genus 0 and only negative zeros.
At least one of the functions f and g needs to be non-constant to exclude the trivial
case. Note that both functions f (zk)/ f (0) and g(zk)/g(0) must be real. They have
no common zeros; therefore f (zk) �= 0, g(zk) �= 0 and z �= 0 when H1(z) = 0
or H2(z) = 0.

To adapt the facts stated in Sects. 5 and 6 for studying zeros of the functions H1
and H2, put

F1(z) := z− j f (z
k)/ f (0)

g(zk)/g(0)
, F2(z) := z j

f (zk)/ f (0)

g(zk)/g(0)
and α := − g(0)

f (0)
. (30)

Then the following identities hold:

H1(z) =
(

1 − F1(z)

α

)

z j g(zk) and H2(z) =
(

1 − F2(z)

α

)

g(zk). (31)

Recall that z j g(zk) and Hi (z) have no common zeros for i = 1, 2. Therefore, the
equalities (31) imply that

F1(z) = α ⇐⇒ H1(z) = 0 and F2(z) = α ⇐⇒ H2(z) = 0.

That is, the zero set of Hi (z) coincides with the α-set of Fi (z) for i = 1, 2. Moreover,
the equalities (31) give that each α-point z∗ of the function Fi (z) is the zero of Hi (z)
with the same multiplicity.
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Since the functions Fi (z) have the form (23), the zeros of Hi (z) for i = 1, 2 are
located as is asserted about α-points of Fi (z) by Theorems 20, 22–25 with α = − g(0)

f (0)

and p = (−1)i · j .
Remark 27 Some extensions of the fact proposed in the current section are possible.
Here we give two examples. However, it is unclear whether studying such functions
is well-motivated.

1. Assume that f (z) and g(z) are functions regular and non-zero at the origin and
that f (z)

g(−z) does not coincide with z p up to a constant (to suppress the trivial
case). From the comparison of the formulae (30) with (15) and (23) it is seen
that f (z)/ f (0) and g(−z)/g(0) can be allowed to have the form

eAz ·
∏

ν>0

(
1 + z

aν

)

∏
μ>0

(
1 − z

bμ

) , where A � 0 and aν, bμ > 0 for all μ, ν. (32)

In other words, if f (0), g(0) ∈ C\{0} then f (z)/ f (0) and g(−z)/g(0) can gen-
erate any totally positive sequences (see the subsection “Definitions” of Sect. 1)
which start with 1. Indeed, after multiplying Hi by the denominators of f (zk)
and g(zk) we obtain the entire function H̃i with the same zeros as Hi . Then
it is enough to note that the exponential factor originating from those of f (zk)
and g(zk) is allowed in the representation (23). So, the result of the current section
extends to such functions without any changes.

2. Let f (z) and g(−z) be non-trivial functions generating doubly infinite totally
positive sequences up to complex constant factors, i.e. let them be of the form (1),
where the constant C is an arbitrary number in C\{0}. In addition let f (z) �≡
const · z pg(−z). With the help of analogous manipulations we still can obtain a
transition of Theorems 20 and 22; it is enough additionally to factor some power
of z out of Hi (this cannot change the zero set excepting the origin).

Remark 28 Allowing f (z) and g(−z) to be arbitrary functions of the forms (32) or (1)
with C ∈ C\{0} can be useful in the following sense. Consider the power series

f (z) =
∞∑

n=−∞
fnz

n and g(z) =
∞∑

n=−∞
gnz

n

such that fn �= f 1−n
0 f n1 and gm �= g1−m

0 gm1 for some n,m ∈ Z. Then (see the
explanation on Page 2) the series converge and the functions f (z)/ f0 and g(−z)/g0
generate totally positive sequences (possibly doubly infinite) if and only if the Toeplitz
matrices

(
fn−i/ f0

)∞
i,n=−∞ and

(
(−1)n−i gn−i/g0

)∞
i,n=−∞ have all their minors non-

negative. However, then

H1(z) =
∞∑

n=−∞

(
fn + z j gn

)
zkn and H2(z) =

∞∑

n=−∞

(
gn + z j fn

)
zkn
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are the Laurent series. This gives us the conditions in terms of the Laurent coefficients
of H1(z) and H2(z)which show that the zeros of H1(z) and H2(z) are located according
to Theorems 20 and 22 (and to Theorems 23–25 when the series f (z), g(z) are not
doubly infinite, that is the limiting functions are meromorphic).

8 Conclusions for the case k = 2

Note that in the particular case of p = ±1 the relations modulo k from Theo-
rems 20, 22–25 have obvious solutions. The setting k = 2 (implying that p is odd)
also provides us with simple (and very useful) solutions. Let us restate the facts of
Sects. 5 and 6 for this particular situation.

Denote p = 2 j + 1. The congruence modulo k (a linear Diophantine equation)
from Theorem 20 becomes l ≡ 1 + � + σ + m (mod 2). If α ∈ R (or iα ∈ R),
then the constant s in Theorems 22–25 equals 0 (or 1, respectively). The congruence
from Theorem 22 turns into l = 1 + m (mod 2). The equation from Theorem 23
becomes m = q (mod 2), and those from Theorem 25 become

m ≡
{
q + j + 1 (mod 2), if α ∈ Q2q−� or αe−2q > 0;
q + j (mod 2), if αe−2q+1 > 0.

Let N = (zn)ωn=1 be the set of all α-points of F(z), where |zn−1| � |zn| for all n and
each α-point counted according to its multiplicity. Then we have the following two
theorems as a summary:

Theorem 29 (cf. [9]) Let a function F(z) have the form (23), p = 2 j + 1, j < 0 and
k = 2; then the α-points N = (zn)ωn=1 of F(z) for α �= 0 are distributed as follows:

(1) If Im α2 �= 0, then all α-points are simple and satisfying 0 < |z1| < |z2| <

· · · , Im z2n �= 0 for every integer n > 0, and zn ∈ Ql implies that zn+1 ∈
Ql+sign(Im α2). Moreover, (−1) j Im αIm z1 > 0 and Im α2Re z1Im z1 < 0.

(2) If Im α = 0, then α-points lie outside the imaginary axis and satisfy 0 < |z1| �
|z2| < |z3| � |z4| < |z5| � . . . ; they are simple except real α-points which
can be simple or double. Moreover, for each positive integer n the following five
conditions hold:

|z2n−1| = |z2n| �⇒ z2n−1 = z2n,

|z2n−1| < |z2n| �⇒ Arg z2n−1 = Arg z2n ∈ {0, π},
|z1| < |z2| �⇒ j = −1,

Re z2nRe z2n+1 < 0 and (−1) jαRe z1 < 0.

(3) If Re α = 0, then α-points lie outside the real axis and satisfy 0 < |z1| < |z2| �
|z3| < |z4| � |z5| < . . . ; they are simple except purely imaginary α-points which
can be simple or double. Moreover, for each positive integer n the following five
conditions hold:

|z2n| = |z2n+1| �⇒ z2n = −z2n+1,
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|z2n| < |z2n+1| �⇒ Arg z2n = Arg z2n+1 ∈ {−π
2 , π

2

}
,

Im z2n−1Im z2n < 0, (−1) j Im αIm z1 > 0 and Re z1 = 0.

Theorem 30 Let a function F(z) have the form (23), p = 2 j + 1, j � 0 and k = 2.
Then the α-points N = (zn)ωn=1 of F(z) for α �= 0 are distributed as follows:

(4) If Im α2 �= 0, then all α-points are simple and satisfying 0 < |z1| < |z2| < . . . ,
Im z2n �= 0 for every integer n > 0, and zn ∈ Ql implies that zn+1 ∈ Ql+sign(Imα2).
Moreover, Im αIm z1 > 0 and Re αRe z1 > 0.

(5) If Im α = 0, then α-points lie outside the imaginary axis and satisfy 0 < |z1| <

|z2| � |z3| < |z4| � |z5| < . . . ; they are simple except real α-points which
can be simple or double. Moreover, for each positive integer n the following five
conditions hold:

|z2n| = |z2n+1| �⇒ z2n = z2n+1,

|z2n| < |z2n+1| �⇒ Arg z2n = Arg z2n+1 ∈ {0, π},
Re z2n−1Re z2n < 0, Re z1 = 0 and αz1 > 0.

(6) If Re α = 0, then α-points lie outside the real axis and satisfy 0 < |z1| � |z2| <

|z3| � |z4| < |z5| � . . . ; they are simple except purely imaginary α-points which
can be simple or double. Moreover, for each positive integer n the following five
conditions hold:

|z2n−1| = |z2n| �⇒ z2n−1 = −z2n,

|z2n−1| < |z2n| �⇒ Arg z2n−1 = Arg z2n ∈ {−π
2 , π

2

}
,

|z1| < |z2| �⇒ j = 0,

Im z2nIm z2n+1 < 0 and Im αIm z1 > 0.

Remark 31 The two last theorems have analogous statements if, instead of F(z) sat-
isfying (23), we take a function G(z) of the more general form (15). Then, generally
speaking, we cannot assert where the α-point of smallest absolute value occurs (it may
not even exist).

Remark 32 Note that in all cases (1)–(6) the α-point split evenly among the quadrants
of complex plane. That is, if the α-set of a function satisfies (1) or (4), then for any
r > 0 the number of α-points in the finite sector {z ∈ Qn : |z| < r} can differ from
the number of α-points in {z ∈ Q j : |z| < r} at most by 1 (here n, j = 1, . . . , 4). The
cases appearing in (2), (3), (5) and (6) are the “degenerated” ones of (1) and (4) with
possible ingress of some α-points into the real or imaginary axes.

Let us turn to zeros of entire functions by applying the idea of Sect. 7. An entire
functionH(z) = ∑∞

n=0 fnzn , f0 �= 0, splits up into the even andoddparts according to

H(z) = f (z2) + zg(−z2), where (33)

f (z) =
∞∑
n=0

f2nzn and g(z) =
∞∑
n=0

f2n+1zn . (34)
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Since

H(z) = 0 ⇐⇒ f (z2)/ f0
zg(−z2)/ f1

= − f1
f0

,

zeros of H(z) are distributed as stated in Theorem 29 if both f (z)/ f0 and g(z)/ f1
have only negative zeros and the genus equal to 0 up to factors of the form ecz , c � 0.
Similarly, zeros of H(z) are distributed as stated in Theorem 30 provided that both
f (z)/ f0 and g(z)/ f1 have only positive zeros and the genus equal to 0 up to factors
of the form e−cz , where c � 0.

Definition (cf. [24, p. 129]) A real entire function H̃(z) = f (z2)+ zg(z2) is strongly
stable if f (z2) + (1 + η)zg(z2) has no zeros in the closed right half of the complex
plane for all complex η which are small enough. This is the “proper” extension to
entire functions of the polynomial stability, and all stable polynomials are strongly
stable. The strong stability can be understood as the “infinitesimal” robust stability; the
robustnessmeans a certain reserve against somekind of perturbations. Recall that H̃ (z)
is strongly stable whenever H̃(i z) belongs to the classHB, which is introduced in [7,
Chapter IV, Sect. 6] and in [19, p. 307].

Remark 33 If H̃(z) = f (z2)+ zg(z2) is a strongly stable function of genus at most 1,
then zeros of the function H(z), which is defined by (33), are distributed as stated in
Theorem 29. Indeed, the Hermite-Biehler theorem then implies that f (g) and g(z)
have genus 0 and their zeros are negative, simple and interlacing. In that case, the
interlacing property of f (z) and g(z) remains redundant.

Observe that if a complex number μ satisfies μ4 = −1 (i.e. μ is a primitive 8th
root of unity), then we have the identity

∞∑

n=0

fnμ
n(n−1)(μ−1z)n =

∞∑

n=0

fnμ
n(n−2)zn

=
∞∑

n=0

f2nμ
4n(n−1)z2n +

∞∑

l=0

f2l+1μ
4l2−1z2l+1

=
∞∑

n=0

f2n1
n(n−1)

2 z2n +
∞∑

l=0

f2l+1(−1)l
2
μ−1z2l+1

=
∞∑

n=0

f2nz
2n + μ

∞∑

l=0

(−1)l f2l+1z
2l+1.

Consequently, the following fact is true:

Corollary 34 Consider the functions

h(z) =
∞∑

n=0

i
n(n−1)

2 fnz
n and h(z) =

∞∑

n=0

i−
n(n−1)

2 fnz
n,
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where f (z) = ∑∞
n=0 f2nzn and g(z) = ∑∞

n=0 f2n+1zn are entire functions of genus 0
and have only negative zeros. Forμ =√

i , zeros of the function h(μz) are distributed as
claimed in Theorem 29 for α = μ f1/ f0 and zeros of the function h(μz) are distributed
as claimed in Theorem 29 for α = μ f1/ f0.

9 Two problems by A. Sokal

“Disturbed exponential” function. Sokal [25] put forward the hypothesis that

Conjecture 1 The entire function

F(z; q) =
∞∑

n=0

q
n(n−1)

2 zn

n! , (35)

where q is a complex number, 0 < |q| ≤ 1, can have only simple zeros.

The function F is the unique solution to the Cauchy problem

F ′(z) = F(qz), F(0) = 1,

which can be checked by substitution. Moreover, when |q| = 1 this function has the
exponential type 1, for q lower in absolute value the function F is of zero genus. The
stronger version of the conjecture claims that

Conjecture 2 The function F(z; q) for q ∈ C, 0 < |q| ≤ 1, can have only simple
zeros with distinct absolute values.

The case of positive q was studied extensively. It is known that all zeros of F
are negative (see [17, pp. 35, 177], [23, pp. 90, 104] and [21]), simple and satisfy
Conjecture 2 as well as certain further conditions [18,20]. Conjecture 2 holds true
for negative q as well, see e.g. [9, pp. 11–12, 17–18]. The properties of F(z; q) for
complex q were studied in [2,11,28]. According to [25], Conjecture 2 is true if |q| < 1
and the zeros of F(z; q) are big enough in absolute value (Eremenko) as well as for
small |q|.

Let us prove that Conjecture 2 also holds true for purely imaginary values of the
parameter. As we pointed out, for positive q � 1 the function F(z; q) = f (z2) +
zg(z2) has only negative zeros. In particular, it is stable. The Hermite-Biehler theorem
(e.g. [7,19,24]) implies that the zeros of f (z) and g(z) are negative and interlacing.
Therefore, by Corollary 34 the zeros of F(z;±iq) with 0 < q � 1 are simple and
their absolute values are distinct. �

The family of polynomials

PN (z; q) =
N∑

n=0

(
N

n

)

znq
n(n−1)

2
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is relevant to the function F(z; q) and approximates this function in the sense that

PN
(
zN−1; q

)
=

N∑

n=0

q
n(n−1)

2 zn

n!
(

1− 1

N

)

·
(

1− 2

N

)

· · ·
(

1− n−1

N

)
N→∞−−−−→ F(z; q).

The polynomial version of the conjecture has the following form:

Conjecture 3 For all N > 0 the polynomial PN (z; q) where |q| < 1 can have only
simple roots, separated in absolute value by at least the factor |q|.

The original statement (which is equivalent to the one given here) is concerned
with the family of polynomials

{
PN

(
zwN−1;w−2

)}
N∈Z>0

, where w−2 = q. Observe
that Conjecture 3 �⇒ Conjecture 2 �⇒ Conjecture 1. The approach for F(z; q)

extends to the polynomials PN (z; q) without changes. Their zeros are negative for
positive q provided that the polynomials coincide with the action of the multiplier
sequence15

(
qn(n−1)/2

)∞
n=0 on the polynomial (z + 1)N . This justifies the assertion

of Conjecture 3 for purely imaginary q without bounds on the ratio of subsequent (by
the absolute value) roots.
Partial theta function An analogous problem by Sokal appears in [15]. The partial
theta function

�0(z; q) =
∞∑

n=0

q
n(n−1)

2 zn

has only negative zeros whenever 0 < q � q̃ ≈ 0.3092493386, which is shown
in [15] (see also [14]). Splitting it into the even part f (z2) and the odd part zg(z2)
gives

�0(z; q) = f (z2) + zg(z2),

f (z) =
∞∑

n=0

qn(2n−1)zn =
∞∑

n=0

qn(2n−2)(qz)n =
∞∑

n=0

(
q4
) n(n−1)

2
(qz)n =�0(qz; q4)

and

g(z) =
∞∑

n=0

qn(2n+1)zn =
∞∑

n=0

qn(2n−2)
(
q3z

)n = �0

(
q3z; q4

)
.

Thus, both f (z) and g(z) have only negative zeros whenever 0 < q4 � q̃ . Therefore,
by Corollary 34 all zeros of �0(z; iq) are simple and distinct in absolute value if 0 <

q4 � q̃ , that is if 0 < q � q∗ ≈ 0.7457224107. This is a partial positive answer to
the following question:

15 The definition and properties of multiplier sequences can be found in e.g. [23], [22, Chapter II] and [19,
Chapter VIII, Sect. 3]. The fact that

(
qn(n−1)/2)∞

n=0 is amultiplier sequence (of the first kind) for 0 < q � 1
was first shown by Laguerre [17, p. 35]. Themoremodern proof follows fromSatz 10.1 of [22, p. 42] applied
to the function �(z) := exp

( 1
2 z(z − 1) · ln q).
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Problem 4 (see [15, p. 832]) Is it true that all zeros of �0(z; q) remain simple within
the open disk |q| < q̃?

With the help of exactly the samemanipulations we could deduce that, for example,
the (Jacobi) theta function

�(z; iq) =
∞∑

n=−∞
(iq)

n(n−1)
2 zn, 0 < q < 1,

also has its zeros simple, distinct in absolute value and residing in the quadrants of
the complex plane rotated by π/4 (according to the Remark 31). However, this is
redundant (although yet instructive) because the exact information is provided by the
Jacobi triple product formula (see e.g. [13, Theorem 352]) which is valid for any
complex z �= 0 and |q| < 1:

∞∑

n=−∞
q

n(n−1)
2 zn =

∞∏

j=1

(1 − q j )
(
1 + zq j−1

)(

1 + q j

z

)

.
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