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Abstract We provide few results on the connections between the boundary regularity
of an analytic self-map of the unit disk, and the boundary limits of its hyperbolic
distortion. We give a characterization of finite Blaschke products via the boundary
behaviour of a weighted local hyperbolic distortion of an analytic self-map of the unit
disk.
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1 Introduction

Let D denote the open unit disk in the complex plane and let H(D) be the space of
all functions analytic on D. For a non-constant function φ in H(D) that maps the unit
disk into itself and for α > 0, let

τφ,α(z) = (1 − |z|2)α|φ′(z)|
(1 − |φ(z)|2)α .
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278 N. Zorboska

We call τφ,α(z) the local α-hyperbolic distortion of φ at z. The motivation comes from
the classical hyperbolic case with α = 1.

Recall that for z ∈ D, λ(z) = 1
1−|z|2 is the density of the hyperbolic metric on D,

and that for an analytic, non-constant map φ : D → D, the pull-back of the hyperbolic
metric is defined by φ(λ)∗(z) = |φ′(z)

1−|φ(z)|2 . Thus,

τφ(z) = τφ,1(z) = (1 − |z|2)|φ′(z)|
(1 − |φ(z)|2) = φ(λ)∗(z)

λ(z)

is the usual local hyperbolic distortion of φ at z (see, for example, [2] for further details
on these and other related basic notions, results and references).

The local distortion, same as the absolute value of the usual derivative, provides a
good measurement of the local geometric behaviour of an analytic function. One can
also describe the boundary behaviour of an analytic self-map of the unit disc by taking
limits of the local distortion, and that is precisely the direction that we will take in
what follows.

Twoother important notionswhichwewill be using below are the notions of angular
limit and angular derivative.

Note first that since an analytic self-map φ of the unit disk is in H∞(D), it has
radial (and angular) limits almost everywhere on the unit circle. We will denote the
radial extension function with the same symbol φ.

For ζ ∈ ∂D and γ > 1, the angular (or non-tangential) region 	γ (ζ ) inD is defined
by

	γ (ζ ) = {z ∈ D : |ζ − z| ≤ γ (1 − |z|2)}.

If z → ζ through the angular region 	γ (ζ ), we say that the corresponding limit is an
angular limit. We denote this type of limit by � limz→ζ .

When φ maps the unit disk into itself, φ has an angular derivative at ζ ∈ ∂D if
there exists ξ ∈ ∂D such that the angular limit

� lim
z→ζ

φ(z) − ξ

z − ζ

exists. In this case we say that the value of the limit is the angular derivative of φ at ζ ,
and we denote it by φ′(ζ ).

By the Julia–Carathéodory theorem [14, p. 57], the existence of the angular deriv-
ative at ζ is equivalent to

� lim
z→ζ

φ(z) = ξ and � lim
z→ζ

φ′(z) = ζ̄ ξ |φ′(ζ )|,

which is further more equivalent to

0 < lim inf
z→ζ

1 − |φ(z)|
1 − |z| = |φ′(ζ )| < ∞.
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Hyperbolic Distortion 279

Moreover, the limit infimum is attained in an angular approach to ζ . Hence, note that
if φ has an angular derivative at ζ ∈ ∂D, then

� lim
z→ζ

τφ(z) = 1.

The angular derivative is closely related to the geometry of the map close to the
boundary and is a powerful tool that is used extensively in geometric function theory
and elsewhere.

Let us also mention here, before we proceed any further, that there is a deep con-
nection between the above-mentioned notions and ideas, and some other seemingly
different mathematical areas. In particular, our motivation to look at the α- hyperbolic
distortion comes originally from problems related to composition operators on the
Bloch-type spaces. For more information on these topics and their relations, see for
example [3,10,11,15].

2 Classical Hyperbolic Distortion

By the classical Schwarz–Pick lemma, τφ(z) ≤ 1 for all z ∈ D. If the equality holds
for one z ∈ D then φ is a disk automorphism, and so the equality must hold for
every z ∈ D. These type of boundedness and maximality results give a nice geometric
view of the hyperbolic distortion of self-maps of the unit disk: the distortion is always
bounded by 1, i.e. every self-map of the unit disk is a hyperbolic contraction; and
the maximal possible distortion is attained in the disk only when the map is a disk
automorphism.

The following result, obtained by Heins in 1986, shows that the asymptotic max-
imality of the hyperbolic distortion τφ , as one approaches the boundary, also gives
specific regularity restrictions on the map φ.

Theorem 2.1 [6] Let φ be an analytic self-map of D. Then φ is a finite Blaschke
product if and only if lim|z|→1 τφ(z) = 1.

Amore recent result of Kraus, Roth and Rucheweyh generalizes Heins’s result to a
characterization of local boundary behaviour of self-maps of D on subarcs of the unit
circle. Thus, one can consider Heins’s result as a special case of the following more
general theorem.

Theorem 2.2 [8] Let φ be an analytic self-map of D and let 	 be an open subarc of
∂D. Then the following are equivalent:

(a) For every ζ ∈ 	, lim inf z→ζ τφ(z) > 0.
(b) For every ζ ∈ 	, limz→ζ τφ(z) = 1.
(c) φ has an analytic extension across 	 and φ(	) ⊂ ∂D.

Using the previous subarc condition equivalences, one can push the argument further
to the casewhen the arc	 is reduced to a point. Thus, one gets the following connection
between the boundary pointwise regularity of the map and the asymptotic boundary
maximality of its hyperbolic distortion.
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280 N. Zorboska

Proposition 2.1 Let φ be an analytic self-map of D, and let ζ ∈ ∂D. Then, the
following are equivalent:

(a) lim inf z→ζ τφ(z) > 0.
(b) limz→ζ τφ(z) = 1.
(c) φ has an analytic extension at ζ and there exists an open arc 	 of ∂D containing

ζ such that φ(	) ⊂ ∂D.

Proof The inclusions (c)⇒(b)⇒(a) are trivial, and so we will be done with the proof
if we show that (a) ⇒ (c).

Let lim inf z→ζ τφ(z) = c > 0, and let 0 < ε < c. Then ∃δ > 0 such that
τφ(z) > c − ε whenever z ∈ B(ζ, δ) ∩ D. Let 	δ = B(ζ, δ) ∩ ∂D. Then ∀ξ ∈ 	δ we
have that

lim inf
z→ξ

τφ(z) ≥ c − ε > 0.

Using the equivalence of parts (a) and (c) from 2.2, we conclude that φ has an
analytic extension across 	δ with φ(	δ) ⊂ ∂D. Hence, the claim (c) follows. ��

Observe that if the value lim inf z→ζ τφ(z) is to be considered as the “boundary
hyperbolic distortion” of φ at ζ when φ(ζ ) ∈ ∂D, the above result shows that its only
possible values are: either 1, whenever φ has an analytic extension at ζ and maps an
arc in ∂D containing ζ into ∂D, or the “value of the boundary distortion” is 0 for all
other cases. Thus, measuring the boundary distortion by lim inf z→ζ τφ(z) gives results
which are very rigid.

A similar argument as in the proof of the previous proposition leads to yet another
interesting observation, and gives further confirmation of the rigidity of the boundary
limits of the hyperbolic distortion.

Proposition 2.2 Let φ be an analytic self-map of D, and let ζ ∈ ∂D be such that
limz→ζ τφ(z) = 0. Then there exists 	, an open subarc of ∂D containing the point ζ ,
such that the only possible subsets of 	 mapped by φ into ∂D are sets of measure zero.

Proof Since limz→ζ τφ(z) = 0, for any 0 < ε < 1, ∃δ > 0 such that τφ(z) < ε

whenever z ∈ B(ζ, δ) ∩ D. Let 	δ = B(ζ, δ) ∩ ∂D. Then ∀ξ ∈ 	δ we have that

� lim
z→ξ

τφ(z) ≤ ε < 1,

and so φ cannot have an angular derivative at any ξ ∈ 	δ .
Let E ⊂ 	δ be such that φ(E) ⊂ ∂D.
If E is of positive measure, then the angular limit of φ′ is infinite on a set of positive

measure. But that is not possible, by the Privalov’s uniqueness theorem [12, p. 126]
and so it must be that the measure of E is zero. ��

The following simple example provides some motivation for a possible further
direction of exploration.
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Hyperbolic Distortion 281

Example 2.1 The map

φ(z) = 1 + z

2

is an entire map which maps D onto the disk |z − 1
2 | = 1

2 . It follows from Proposition
2.1 that

lim inf
z→1

τφ(z) = 0.

Note that here, it is also easy to calculate this directly by looking at the sequence
zn = rneiθn , with rn = 1 − 1

n and 1 − rn cos θn = 1√
n
.

It is also easy to see that for 0 < r < 1,

τφ(r) = 1 + r

1 + φ(r)
→ 1

as r → 1. Of course, since φ is analytic at 1 and φ(1) = 1, by the Julia–Carathéodory
Theorem, even more is true: φ has an angular derivative at 1, and so it must be that
� limz→1 τφ(z) = 1.

Thus, a natural question to ask is if we can still guarantee some boundary regularity
or rigidity of an analytic self-map of D, if in the previous results we replace the
boundary limits of the local hyperbolic distortion with angular boundary limits.

A result obtained by Kraus [7, Lem. 2.9, part (1)], says that if φ is a self-map of
D, I is a subset of ∂D and � limz→ζ τφ(z) = 1 for every ζ in I , then φ has a finite
angular derivative at almost every ζ ∈ I . A special corollary of this results is stated
as Theorem 2.3 below.

On the other hand, the existence of the angular limit of τφ at a single point does
not imply that φ must have either an analytic extension, or even an angular derivative
at that point. The following example from [13] shows that it is possible to have a
map φ, self-map of D, with φ(1) = 1, � limz→1 τφ(z) = 1, and such that φ has no
angular derivative at 1. We are grateful to Oliver Roth for his permission to include
the example with few of its details.

Example 2.2 [13] Let G = {z ∈ D : �z > 0} and let h be the univalent map from
G onto D, such that h(0) = 1 and h is conformal at 0. Note that such a map can be
obtained by a suitable composition of Cayley’s map, its inverse, a branch of the root
function and a rotation.

Let c > 0 be small enough so that g(z) = −cz log z maps G into G and let

φ = h ◦ g ◦ h−1.

Then φ : D → D, and if for z ∈ D we denote w = h−1(z) = reiθ then, as z → 1, we
have that w → 0, i.e. r → 0. Since then also

1 − |φ(z)|
1 − |z| ≈ c log

1

r
+ cθ tan θ,
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we get that

lim inf
z→1

1 − |φ(z)|
1 − |z| = ∞,

and so φ has no angular derivative at 1.
On the other hand, as z → 1 in an angular region, w is also in an angular region,

and so |θ | ≤ γ < π
2 , for some γ > 0. A calculation shows that then (for such θ ),

� lim
z→1

τφ(z) = lim
r→0

√
log(r + 1)2 + θ2

θ tan θ − log r
= 1.

Note also that from Proposition 2.1, it must be that lim inf z→ζ τφ(z) = 0.

Observe also that if we request a slightly less restrictive condition, namely that
� limz→1 τφ(z) > 0, then there is a class of quite simple counterexamples of a sim-
ilar type: the maps φ(z) = 1 − (1 − z)c, 0 < c < 1 are such that φ(1) = 1,
� limz→1 τφ(z) = c > 0, and each φ does not have an angular derivative at 1. These
maps where also used in [10] in order to provide examples of non-compact composi-
tion operators on the Bloch space, for which the inducing map touches the unit circle
at one point, and does not have an angular derivative at that point.

Note that the examples above show that we cannot replace the limit conditions in
Proposition 2.1 with angular limits.

Other types of boundary limits of the hyperbolic distortion, such as limits along
certain simple curves 	 contained in a non-tangential region, were explored byMartin
in [9]. The main result of the paper provides a concrete calculation of the value of the
boundary limit of τφ for a univalent φ, such that the boundary of φ(D) has a corner at
a point on the unit circle. The limit depends on the geometry of the corner and on the
angle under which the curve 	 touches the unit circle.

Let us also mention here that there is no hope of characterizing the class of finite
Blaschke products using angular derivatives in either Theorems 2.1 or 2.2, since it is
known that there exist infinite Blaschke products with angular limits of modulus one
everywhere on ∂D, as was already observed in [8] (see [8] also for a concrete example
of one such infinite Blaschke product).

The following result from [7] specifies the class of functions characterized by the
existence of (non-zero) angular boundary limits of their hyperbolic distortion a.e. on
the unit circle.

Note that the condition � limz→ζ τφ(z) = 1 in the theorem below can be replaced
with a (seemingly) more general sufficient condition � limz→ζ τφ(z) > 0.

Theorem 2.3 [7] Let φ be an analytic self-map of D. Then

� lim
z→ζ

τφ(z) = 1

for almost every ζ ∈ ∂D if and only if φ is an inner function with finite angular
derivatives at almost every point in ∂D.
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As wewill see in the next section, similar conditions on the angular boundary limits
of a weighted hyperbolic distortion provide a characterization of a special subclass of
inner functions, namely the class of finite Blaschke products.

3 Weighted Hyperbolic Distortion

In this section, we will expand our scope of investigation by considering the weighted
hyperbolic local distortion τφ,α of an analytic self-map φ of the unit disk. Recall that
for α > 0 and z ∈ D,

τφ,α(z) = (1 − |z|2)α|φ′(z)|
(1 − |φ(z)|2)α .

It follows from the Schwarz lemma that

1 − |φ(0)|
1 + |φ(0)| ≤ 1 − |φ(z)|2

1 − |z|2 ,

for all z ∈ D. Thus, using also the Schwarz–Pick lemma, one can easily see that for
any analytic self-map φ of D and α ≥ 1, the local α-hyperbolic distortion τφ,α is
bounded on D, since

τφ,α(z) ≤
(
1 + |φ(0)|
1 − |φ(0)|

)α−1

,∀z ∈ D.

This is not anymore the case for 0 < α < 1, as the following example shows.

Example 3.1 Let φ be the singular inner function

φ(z) = exp

(
−1 + z

1 − z

)
,

and let 0 < α < 1. Then it is easy to see that as z → 1 along the orocycle

Cl =
{
z : 1 − |z|2

|1 − z|2 = l

}
,

with l > 1, the local α-hyperbolic distortion
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τφ,α(z) = 2le−l

(1 − e−2l)α

1

(1 − |z|2)1−α
,

goes to infinity as z → 1.

Next, we provide a characterization of finite Blaschke products in the spirit of the
previously mentioned results, while using only angular boundary limits of a distortion.
Clearly, as Theorem 2.3 shows, one cannot use the classical hyperbolic distortion τφ in
order to achieve this. Aswe showbelow, using instead the localα-hyperbolic distortion
τφ,α with α > 1 will do.

Theorem 3.1 Let φ be a non-constant self-map of D. Then φ is a finite Blaschke
product if and only if there exist α > 1, c > 0 such that for almost every ζ ∈ ∂D

� lim
z→ζ

τφ,α(z) ≥ c.

Proof If φ is a finite Blaschke product, then φ has an analytic extension across the
unit circle. Since also |φ(ζ )| = 1 for all ζ ∈ ∂D, φ has an angular derivative equal
to the regular derivative of φ at ζ . Hence, using the Julia–Caratheodory theorem
characterization of the angular derivative and using that φ′ is continuos onD, one gets
that for any α > 1

� lim
z→ζ

τφ,α(z) = |φ′(ζ )|1−α ≥ ||φ′||1−α∞ .

For the other direction, let α > 1, c > 0 be such that for almost every ζ ∈ ∂D

� lim
z→ζ

τφ,α(z) = � lim
z→ζ

(
1 − |z|2

1 − |φ(z)|2
)α−1

τφ(z) ≥ c.

Since by the Schwarz–Pick Lemma τφ(z) ≤ 1 for every z ∈ D, and since α − 1 > 0,
we have that

� lim inf
z→ζ

1 − |z|2
1 − |φ(z)|2 ≥ c

1
α−1 .

Thus, for almost every ζ in ∂D

� lim sup
z→ζ

1 − |φ(z)|2
1 − |z|2 ≤

(
1

c

) 1
α−1

,

and so, for almost every ζ in ∂D it must be that

|φ′(ζ )| = lim inf
z→ζ

1 − |φ(z)|
1 − |z| ≤ 2

(
1

c

) 1
α−1

< ∞.
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But then by the Julia–Carathéodory theorem φ has an angular limit of modulus 1
almost everywhere on ∂D, and so φ is inner. By a result of Ahern and Clark (see [1]),
for an inner function φ we have that |φ′| is in L p(∂D), 0 < p ≤ ∞ if and only if φ′ is
in H p(D). Furthermore, if φ′ ∈ H

1
2 (D), then φ must be a Blaschke product, and any

Blaschke product with a derivative in H1(D) must be a finite Blaschke product. Since

in our case |φ′| is almost everywhere bounded by 2
( 1
c

) 1
α−1 on ∂D, by [1] we have that

φ′ belongs to H∞(D), and so φ must be a finite Blaschke product. ��
Note that when 0 < α < 1 the distortion τφ,α behaves very differently and might

not even be bounded, as shown in Example 3.1. There is a more general reason why
this example works: if 0 < α < 1 and φ is an inner function with bounded local
α-hyperbolic distortion, then φ must be a finite Blaschke product. This can be seen,
for example, by using the fact that the small α-Bloch-type spaces are Lipschitz spaces
of order 1 − α see [4, p. 74]. We provide yet another proof of this result, that is more
in line with the ideas already used above.

Proposition 3.1 Let φ be an inner function and let 0 < α < 1. Then τφ,α is bounded
if and only if φ is a finite Blaschke product.

Proof If φ is a finite Blaschke product, then φ has an analytic extension across the
unit circle, and so φ′ is bounded on D. Using the Schwarz Lemma, we also have that
1−|z|2

1−|φ(z)|2 ≤ 1+|φ(0)|
1−|φ(0) , and so τφ,α(z) is bounded on D.

For the converse, we will show first that if φ is inner and τφ,α is bounded, then the
angular derivative of φ must exist and be bounded almost everywhere on ∂D. Thus, by
the results from [1], similar as in the proof of Theorem 3.1, φ must be a finite Blaschke
product.

Let M > 0 be such that τφ,α(z) ≤ M,∀z ∈ D and suppose that there is ζ ∈ ∂D

such that the radial limit value φ(ζ ) exists, is of modulus one, but φ has no angular
derivative at ζ , i.e.

lim
z→ζ

1 − |φ(z)|2
1 − |z|2 = ∞.

But then, since

τφ,α(z) =
(
1 − |φ(z)|2
1 − |(z)|2

)1−α

τφ(z) ≤ M,

it must be that limz→ζ τφ(z) = 0.
By Proposition 2.2, there exists an arc 	 in ∂D, containing the point ζ and such

that the only possible subsets of 	 mapped by φ into ∂D are sets of measure zero. But
then φ(	) ⊂ D a.e., which contradicts the fact that φ is inner. Hence, φ has an angular
derivative at every point at which the radial limit of φ exists (and is of modulus one),
which is almost everywhere on ∂D. Also, since

1 − |φ(z)|2
1 − |z|2 ≤

(
M

τφ(z)

)1/1−α

,
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and � limz→ζ τφ(z) = 1 whenever φ has an angular derivative at ζ , we get that
|φ′(ζ )| ≤ M1/1−α almost everywhere on ∂D. As mentioned before, this implies that
φ must be a finite Blaschke product. ��

4 Further Remarks

As we have mentioned in the introduction, the α-hyperbolic local distortion plays an
important role in determining the properties of composition operators on the Bloch-
type spacesBα . Without going into too many details, let us mention only that the types
of results that we have dealt with here are closely related to the boundedness from
below, which is further equivalent to semi-Fredholmness, of the composition operators
on these spaces. This is why it is in some way natural to view all of the given boundary
limit restrictions of τφ,α as “boundedness from below” close to the boundary or, as far
as geometric function theory goes, as reverse Schwarz–Pick type inequalities.

There is a recent paper ofDyakonov [5],with exactly this title, andwith some related
results. For example, there is an interesting characterization of disk automorphisms by
using “boundedness from below” of, on one hand, a slightly more general function,
but on the other, with the inequality satisfied everywhere on D.

Theorem 4.1 [5] Let φ be an inner function with φ′ in the Nevanlinna class N .
Then φ is a disk automorphism if and only if there exists a non-decreasing function
η : (0,∞) → (0,∞) such that for all z ∈ D

η

(
1 − |φ(z)|2
1 − |z|2

)
≤ |φ′(z)|.

Note that for α > 0, c > 0, the function η(t) = ctα is non-decreasing on (0,∞), and

that in this case the condition η
(
1−|φ(z)|2
1−|z|2

)
≤ |φ′(z)| is nothing else than τφ,α(z) ≥ c.

Thus, as a corollary to Theorem 4.1, forφ inner withφ′ ∈ N ,φ is a disk automorphism
if and only if there exist α > 0, c > 0 such that τφ,α(z) ≥ c,∀z ∈ D.

Also, recall that Theorem 2.1 says that φ is a finite Blaschke product if and only if
there exist c > 0, 0 ≤ r < 1 such that τφ(z) ≥ c for all |z| > r , i.e.

c
1 − |φ(z)|2
1 − |z|2 ≤ |φ′(z)|

on the open annulus centred at 0 andwith radii r and 1. Thus, one direction of Theorem
4.1 can be viewed as a special case of Theorem 2.1 with η(t) = ct and r = 0, when
furthermore one gets that φ must be a Blaschke product of degree one, even without
the assumption that φ is inner.

The angular boundary limits characterization of finite Blaschke products from The-
orem 3.1 can be viewed as a similar type of a result. In this case though, one requires
that τφ,α be bounded from below not on an annulus, but on a certain cone domain.

One interesting question thus is what is the smallest set on which the boundedness
from below of (a bounded) τφ,α, 0 < α < 1, determines that φ must be a finite
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Blaschke product. More concretely, here is a question motivated by some operator
theoretic results from [15].

Question 1 Let 0 < α < 1 and let φ be an analytic self-map of D such that τφ,α is
bounded. Is it true that if for some c > 0 the set �c = {z ∈ D : τφ,α ≥ c} is such that
∂D ⊂ φ(�c), then φ must be a finite Blaschke product?

Another slightly more vague question motivated by the Dyakonov’s results is:

Question 2 What are the conditions (if any) on the function η as in Theorem 4.1, such

that if there exists a specific (smallest) proper subset �(η) of D with η
(
1−|φ(z)|2
1−|z|2

)
≤

|φ′(z)|, for all z ∈ �(η), then φ must be a finite Blaschke product?
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