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Abstract We prove a kind of “reverse Schwarz–Pick lemma” for holomorphic self-
maps of the disk. The result becomes especially clear-cut for inner functions and casts
new light on their derivatives.

Keywords Schwarz–Pick lemma · Outer function · Inner function ·
Nevanlinna class

Mathematics Subject Classification (2000) 30D50 · 30D55 · 46J15

1 Introduction and Main Result

We write D for the disk {z ∈ C : |z| < 1}, T for its boundary, and m for the normalized
arclength measure on T; thus dm(ζ ) = (2π)−1|dζ |. Further, H∞ will denote the
algebra of bounded holomorphic functions on D, equipped with the usual supremum
norm ‖ · ‖∞.

The classical Schwarz lemma and its invariant version, known as the Schwarz–Pick
lemma (see [7, Ch. I]), lie at the heart of function theory on the disk. The Schwarz–Pick
lemma tells us, in particular, that every function ϕ ∈ H∞ with ‖ϕ‖∞ ≤ 1 satisfies
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450 K. M. Dyakonov

|ϕ′(z)| ≤ 1 − |ϕ(z)|2
1 − |z|2 , z ∈ D. (1.1)

Moreover, equality holds at some—or each—point of D if and only if ϕ is either a
Möbius transformation (i.e., has the form

z �→ λ
z − a

1 − az

for some λ ∈ T and a ∈ D) or a constant of modulus 1. It seems natural to ask how
large the gap between the two quantities in (1.1) may be in general. To be more precise,
we would like to know whether some sort of reverse estimate has a chance to hold,
i.e., whether the quotient

1 − |ϕ(z)|2
1 − |z|2 =: Qϕ(z)

admits an upper bound in terms of ϕ′. And if it does, what is the appropriate ϕ′-related
majorant for that quantity?

Of course, there are limits to what can be expected. Assume, from now on, that ϕ

is a non-constant H∞-function of norm at most 1. First of all, while ϕ′ may happen
to vanish or become arbitrarily small at certain points of D, it follows from Schwarz’s
lemma that Qϕ is always bounded away from zero; in fact,

Qϕ(z) ≥ 1 − |ϕ(0)|
1 + |ϕ(0)| , z ∈ D. (1.2)

As another example, consider the case where ϕ is analytic in a neighborhood of
some closed arc γ ⊂ T and satisfies supζ∈γ |ϕ(ζ )| < 1. In this case, too, the two sides
of (1.1) exhibit different types of behavior as z approaches γ . Indeed, |ϕ′(z)| is then
well-behaved, whereas Qϕ(z) blows up like a constant times (1 − |z|)−1. Thus, the
ratio Qϕ(z)/|ϕ′(z)| is sometimes huge.

On the other hand, suppose that ϕ has an angular derivative (in the sense of
Carathéodory) at a point ζ ∈ T. This means, by definition, that ϕ and ϕ′ both have
non-tangential limits at ζ and, once we agree to denote the two limits by ϕ(ζ ) and
ϕ′(ζ ), the former of these satisfies |ϕ(ζ )| = 1. The classical Julia–Carathéodory the-
orem (see [3, Ch. VI], [4, Ch. I] or [10, Ch. VI]) asserts that this happens if and only
if

lim inf
z→ζ

1 − |ϕ(z)|
1 − |z| < ∞,

a condition that can be further rewritten as

lim inf
z→ζ

Qϕ(z) < ∞. (1.3)
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And if any of these holds, the theorem tells us also that ϕ′(ζ ) coincides with the limit
of the difference quotient

ϕ(z) − ϕ(ζ )

z − ζ

as z → ζ non-tangentially, while the non-tangential limit of Qϕ(z) equals |ϕ′(ζ )|. In
addition, this last number agrees with the value of the (unrestricted) lim inf in (1.3).

Consequently, if ϕ happens to possess an angular derivative ϕ′(ζ ) at every point ζ of
a set E ⊂ T, then the two sides of (1.1) have the same boundary values on E . We may
therefore expect the two quantities to be reasonably close near E , so a certain “reverse
Schwarz–Pick type estimate” is likely to hold on a suitable region of D adjacent to E .
And the more massive E is, the stronger should our reverse inequality become. Our
main result, Theorem 1.1 below, provides such an estimate under the hypotheses that
the “good” set E is (Lebesgue) measurable and the function log |ϕ′| is integrable on
E ; of course, only the case m(E) > 0 is of interest.

Before stating the result, let us recall that the harmonic measure ωz associated with
a point z ∈ D is given by

dωz(ζ ) = 1 − |z|2
|ζ − z|2 dm(ζ ), ζ ∈ T.

For a measurable set E ⊂ T, the quantity ωz(E) = ∫
E dωz is, thus, the value at z of

the harmonic extension (into D) of the characteristic function χE ; this quantity can be
roughly thought of as the normalized angle at which E is seen from z. We also recall
that if h is a non-negative function on T with log h ∈ L1(T), then

Oh(z) := exp

⎛

⎝
∫

T

ζ + z

ζ − z
log h(ζ ) dm(ζ )

⎞

⎠ , z ∈ D,

is a holomorphic function on D whose modulus has non-tangential boundary values
h almost everywhere on T. In fact,

|Oh(z)| = exp

⎛

⎝
∫

T

log h dωz

⎞

⎠ ,

whence the preceding statement follows. This function Oh is known as the outer
function with modulus h. Functions of the form λOh , with λ ∈ T and h as above, will
also be referred to as outer; see [7, Ch. II] for a further discussion of outer functions
and their properties.

Theorem 1.1 Let ϕ ∈ H∞ be a non-constant function with ‖ϕ‖∞ = 1, and let E be
a measurable subset of T such that ϕ has an angular derivative almost everywhere
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on E . Assume that log |ϕ′| ∈ L1(E) and write O for the outer function with modulus
|ϕ′|χE + χT\E . Then

Qϕ(z) ≤ |O(z)|
(

1

1 − ωz(E)
· 1 + |z|

1 − |z|
)1−ωz(E)

(1.4)

for all z ∈ D.

The first factor on the right being

|O(z)| = exp

⎛

⎝
∫

E
log |ϕ′| dωz

⎞

⎠ ,

we may indeed view (1.4) as a reverse Schwarz–Pick inequality, since it provides
us with an upper bound for Qϕ in terms of |ϕ′|. If, in addition, |ϕ′| happens to be
essentially bounded on E , then we clearly have

|O(z)| ≤ ∥
∥ϕ′∥∥ωz(E)

∞,E , (1.5)

where ‖ · ‖∞,E = ‖ · ‖L∞(E). Combining (1.4) with (1.5) and with the elementary fact
that

sup
{
t−t : 0 < t < 1

} = e1/e

leads to the weaker, but perhaps simpler, estimate

Qϕ(z) ≤ e1/e
∥
∥ϕ′∥∥ωz(E)

∞,E

(
1 + |z|
1 − |z|

)1−ωz(E)

, z ∈ D. (1.6)

Both (1.4) and (1.6) reflect the influence of the “good” set E and of the “bad” set
T \ E , depending on the location of z, in the spirit of Nevanlinna’s Zweikonstanten-
satz (the two constants theorem). The latter supplies a sharp bound on | f (z)| for an
H∞-function f whose modulus is bounded by two given constants on two mutually
complementary subsets of the boundary; see, e.g., [6, Ch. VIII].

The next section contains some applications of Theorem 1.1 to inner functions,
while the proof of the theorem is given in Sect. 3.

2 Inner Functions and Their Derivatives

We recall that a function θ ∈ H∞ is said to be inner if limr→1− |θ(rζ )| = 1 for almost
all ζ ∈ T. Also involved in what follows is the Nevanlinna class N , defined as the set
of all holomorphic functions f on D that satisfy

sup
0<r<1

∫

T

log+ | f (rζ )| dm(ζ ) < ∞.
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Equivalently, N is formed by the ratios u/v with u, v ∈ H∞ and with v zero-free on
D; see [7, Ch. II]. Imposing the additional restriction that v be outer, one arrives at the
definition (or a characterization) of the Smirnov class N+.

Now, if θ is an inner function with θ ′ ∈ N , then θ has an angular derivative a. e.
on T and log |θ ′| ∈ L1(T). Therefore, when applying Theorem 1.1 to ϕ = θ , we may
take E = T. This yields the following result.

Corollary 2.1 Let θ be a non-constant inner function with θ ′ ∈ N , and let O = O|θ ′|
be the outer factor of θ ′ (i.e., the outer function with modulus |θ ′| on T). Then

Qθ (z) ≤ |O(z)|, z ∈ D. (2.1)

A similar estimate can be found in [5]. We also mention that there is an alternative
route to Corollary 2.1 via subharmonicity, which hinges on Lemma 1.1 from [8]; this
approach was kindly brought to my attention by Haakan Hedenmalm.

As a consequence of the preceding result, we now derive an amusing characteriza-
tion of Möbius transformations.

Corollary 2.2 Given a non-constant inner function θ with θ ′ ∈ N , the following are
equivalent.

(i) θ is a Möbius transformation.
(ii) θ ′ is an outer function.

(iii) There is a non-decreasing function η : (0,∞) → (0,∞) such that

η (Qθ (z)) ≤ |θ ′(z)|, z ∈ D. (2.2)

Before proving this, we recall that an inner function θ with θ ′ ∈ N will automati-
cally have θ ′ in N+, a fact established by Ahern and Clark in [1].

Proof of Corollary 2.2 The (i) �⇒ (ii) part is straightforward, while the converse
follows from (2.1). Indeed, if θ ′ is outer, then |O(z)| on the right-hand side of (2.1)
coincides with |θ ′(z)|. Combining this with the Schwarz–Pick inequality (1.1), where
we put ϕ = θ , gives

|θ ′(z)| = Qθ (z), z ∈ D. (2.3)

Thus, the current choice of ϕ ensures equality in (1.1), therefore θ must be a Möbius
transformation.

Now that (i) and (ii) are known to be equivalent, it suffices to show that (i) �⇒
(iii) �⇒ (ii). The first of these implications is obvious, since every Möbius transfor-
mation satisfies (2.3), so that (2.2) holds with η(t) = t . Finally, assuming (iii) and
using (1.2) with ϕ = θ , we deduce that |θ ′(z)| is bounded away from zero on D,
whence 1/θ ′ ∈ H∞. Because θ ′ ∈ N+, it follows that θ ′ is an outer function, and we
arrive at (ii). 
�

The (ii) �⇒ (i) part of Corollary 2.2 can be rephrased by saying that the derivative
θ ′ of a non-Möbius inner function θ is never outer, as long as it is in N . Some special
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cases of this statement have been known. In particular, it was proved by Ahern and
Clark (see [1, Corollary 4]) that, within the current class of θ ’s, the inner part of θ ′ will
be non-trivial provided that θ has a singular factor (because such factors are actually
inherited by θ ′). On the other hand, if θ is a finite Blaschke product with at least
two zeros, then θ ′ is known to have zeros in D (see [11] for more information on the
location of these), so it is clear, once again, that θ ′ is non-outer. The same conclusion
is obviously true for those inner functions θ which have multiple zeros in D.

The interesting case is, therefore, that of an infinite Blaschke product with simple
zeros. Note that if B is such a Blaschke product, then, unlike in the rational case, B ′
may well be zero-free on D. For instance, this happens for

Bα(z) := S(z) − α

1 − αS(z)
,

where S is the “atomic” singular inner function given by

S(z) := exp

(
z + 1

z − 1

)

and α is a point in D \ {0}. One easily verifies that Bα is indeed a Blaschke product,
while the inner factor of B ′

α is S.
We conclude this section with a question. Let I stand for the set of non-constant

inner functions. Which inner functions occur as inner factors (and/or divisors of such
factors) for functions in N ∩ {θ ′ : θ ∈ I} ? One immediate observation is that if I is
inner and I ′ ∈ N , then I divides the inner part of (I 2)′, and this last function is in N .

3 Proof of Theorem 1.1

For all z ∈ D and almost all ζ ∈ E , Julia’s lemma (see [7, p. 41]) yields

|ϕ(ζ ) − ϕ(z)|2
1 − |ϕ(z)|2 ≤ |ϕ′(ζ )| · |ζ − z|2

1 − |z|2 , (3.1)

or equivalently,

1 − |z|2
1 − |ϕ(z)|2 ·

∣
∣
∣
∣
∣
1 − ϕ(z)ϕ(ζ )

1 − zζ

∣
∣
∣
∣
∣

2

≤ |ϕ′(ζ )| (3.2)

(recall that |ϕ(ζ )| = 1 whenever ϕ has an angular derivative at ζ ). Keeping z ∈ D

fixed for the rest of the proof, we now introduce the H∞-function

Fz(w) := 1 − |z|2
1 − |ϕ(z)|2 ·

(
1 − ϕ(z)ϕ(w)

1 − zw

)2

(3.3)

and go on to rewrite (3.2) in the form
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|Fz(ζ )| ≤ |ϕ′(ζ )|, ζ ∈ E . (3.4)

Next, we define Gz to be the outer function with modulus

|Gz(ζ )| = |ϕ′(ζ )| · χE (ζ ) + |Fz(ζ )| · χẼ (ζ ), ζ ∈ T,

where Ẽ := T \ E , and note that

|Fz(ζ )| ≤ |Gz(ζ )|, ζ ∈ T. (3.5)

Indeed, for ζ ∈ E this last inequality coincides with (3.4), while for ζ ∈ Ẽ it reduces
to an obvious equality.

Since Gz is outer, (3.5) implies a similar estimate on D, that is,

|Fz(w)| ≤ |Gz(w)|, w ∈ D.

In particular, setting w = z, we obtain

|Fz(z)| ≤ |Gz(z)|. (3.6)

It is clear from (3.3) that

|Fz(z)| = Fz(z) = 1 − |ϕ(z)|2
1 − |z|2 = Qϕ(z), (3.7)

and we take further efforts to estimate |Gz(z)|.
We have

log |Gz(z)| =
∫

T

log |Gz(ζ )| dωz(ζ ) = I1(z) + I2(z), (3.8)

where

I1(z) :=
∫

E
log |ϕ′(ζ )| dωz(ζ ) = log |O(z)| (3.9)

and

I2(z) :=
∫

Ẽ

log |Fz(ζ )| dωz(ζ ). (3.10)

The function t �→ log t being concave for t > 0, we find that
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I2(z) = ωz(Ẽ) ·
∫

Ẽ

log |Fz(ζ )| dωz(ζ )

ωz(Ẽ)

≤ ωz(Ẽ) · log

⎛

⎜
⎝

1

ωz(Ẽ)

∫

Ẽ

|Fz(ζ )| dωz(ζ )

⎞

⎟
⎠ . (3.11)

We proceed by observing that

|Fz(ζ )| ≤ 1 + |z|
1 − |z| · |1 − ϕ(z)ϕ(ζ )|2

1 − |ϕ(z)|2 , ζ ∈ T. (3.12)

Furthermore,

∫

T

|1 − ϕ(z)ϕ(ζ )|2 dωz(ζ ) =
∫

T

[
1 − 2 Re

(
ϕ(z)ϕ(ζ )

)
+ |ϕ(z)|2|ϕ(ζ )|2

]
dωz(ζ )

≤
∫

T

[
1 − 2 Re

(
ϕ(z)ϕ(ζ )

)
+ |ϕ(z)|2

]
dωz(ζ )

= 1 − |ϕ(z)|2.

(Here, the last step consists in integrating a harmonic function against dωz , so that the
output is the function’s value at z). In conjunction with (3.12), this gives

∫

T

|Fz(ζ )| dωz(ζ ) ≤ 1 + |z|
1 − |z| ,

whence a fortiori

∫

Ẽ

|Fz(ζ )| dωz(ζ ) ≤ 1 + |z|
1 − |z| . (3.13)

Plugging (3.13) into (3.11), we now get

I2(z) ≤ ωz(Ẽ) log

(
1

ωz(Ẽ)
· 1 + |z|

1 − |z|
)

. (3.14)

Finally, we combine (3.8) with (3.9) and (3.14) to infer that

log |Gz(z)| ≤ log |O(z)| + ωz(Ẽ) log

(
1

ωz(Ẽ)
· 1 + |z|

1 − |z|
)

and hence
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|Gz(z)| ≤ |O(z)|
(

1

ωz(Ẽ)
· 1 + |z|

1 − |z|
)ωz(Ẽ)

. (3.15)

This done, a juxtaposition of (3.6), (3.7) and (3.15) yields the required estimate (1.4)
and completes the proof. 
�
Remark The function Fz , as defined by (3.3), can be written in the form

Fz(w) = k2
ϕ,z(w)

kϕ,z(z)
,

where

kϕ,z(w) := 1 − ϕ(z)ϕ(w)

1 − zw

is the reproducing kernel for the de Branges–Rovnyak space H(ϕ); see [10]. Even
though this space does not show up in our proof, the appearance of its kernel functions
may not be incidental. It should be mentioned that Hilbert space methods have been
previously employed, in the H(ϕ) setting, in connection with generalized Schwarz–
Pick inequalities [2] and with the Julia–Carathéodory theorem on angular derivatives
[9,10].
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