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Abstract

In this paper we consider single-machine scheduling problems with group technology, where
the group setup times are general linear functions of their starting times and the jobs in
the same group have general truncated learning effects. The objective is to minimize the
makespan and total completion time, respectively. We show that the makespan minimization
remains polynomially solvable. For the total completion time minimization, optimal proper-
ties are presented and then we introduce some heuristic algorithms and a branch-and-bound
algorithm.

Keywords Scheduling - Deteriorating job - Learning effect - Group technology -
Single-machine
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List of symbols
GT Group technology
m Number of groups (m > 2)
G; Groupi,i=1,2,...,m
n; Number of jobs belonging to G;, i =1,2,...,m
n Total number of jobs, i.e.,ny +ny+---+ny, =n
Jij JobjinGi,i=1,2,...,m,j=1,2,...,n,-
Dij Normal processing time of J;;, i = 1,2,...,m, j =
l, 2, RSN (%1
Dilj] Normal processing time of J;[ ;1 scheduled in the jth position
of G;j,i=1,2,....m,j=1,2,...,n;
a; Normal setup time of G;,i =1,2,...,m
b; Setup deterioration rate of G;,i = 1,2, ..., m
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ti Start setup time of G;,i =1,2,...,m

0; Truncation parameter of G;,i = 1,2,...,m

si"‘ST Actual setup time of G;,i =1,2,...,m

pi’} f r Actual processing time of job J;; scheduled in the rth position
of Gij,i=1,2,....m,j=1,2,....n;

o; (a1, @2, o3) Learning index of G;,i =1,2,...,m

Bi (Bi1, Bi2, Bi3) Learning index of G;,i =1,2,...,m

o: A job schedule of n jobs

Cij = Cij(m) Completion time for job J;; in 7

Cmax Makespan, ie., Cnax = max{C;jli = 1,2,...,m,j =

1,2, ... .n;}
Y3 Ci=Y, Zj‘: , Cij Total completion time of all jobs

1 Introduction

In classical scheduling theory, it is assumed that the job processing times fixed and constant
values. In practice, however, we often encounter settings in which job processing times may be
subject to change due to the phenomenon of deterioration and/or learning. Extensive surveys
of scheduling problems involving deteriorating jobs (time-dependent processing times) can be
found in Alidaee and Womer (1999), Cheng et al. (2004), Yin et al. (2015) and Gawiejnowicz
(2020a,b). More recently, Pei et al. (2019) considered the parallel-batching scheduling with
step-deteriorating jobs. For the objective of maximising the total net revenue, they proposed
some solution algorithms. Qian and Han (2022) (resp. Miao et al. 2023; Mao et al. 2023; Lu
et al. 2024) studied the due-date (resp. due-window) assignment scheduling with delivery
times and deterioration effects. Sun et al. (2023) considered the single-machine maintenance
activity scheduling with deterioration effects. Wang et al. (2023b) and Wang et al. (2024d)
addressed single-machine resource allocation scheduling with deterioration effects. Zhang
et al. (2023) and Li et al. (2024b) studied the single-machine two-agent scheduling with
resource allocations and deterioration effects. Lv and Wang (2024a) considered the no-idle
flow shop scheduling with deterioration effects. Under common due date, they proved that
some special cases are polynomially solvable. Lv et al. (2024) studied the single-machine
scheduling with ready times and deterioration effects. For the total weighted completion time
minimization, they proposed a branch-and-bound algorithm and some heuristic algorithms.
Mao et al. (2024) considered the single-machine delivery times scheduling with general
deterioration effects. They proved that the makespan minimization is polynomially solvable.
Zhang et al. (2024) studied the single-machine scheduling problems with deteriorating jobs.
For the slack due window, they proved that the minmax type problem is polynomially solvable.

In addition, extensive surveys of research related to scheduling with learning effects were
presented by Biskup (2008) and Azzouz et al. (2018). More recently, Qian and Zhan (2021)
and Wang et al. (2023a) studied the single-machine scheduling with delivery times and
truncated learning effect. Under the due date assignment, they proved that some problems
can be solved in polynomial time. Sun et al. (2021) (resp. Li et al. 2024c) considered the
flow shop scheduling with learning effects (resp. truncated learning effects). For the total
weighted completion time (resp. makespan) minimization, Sun et al. (2021) (resp. Li et al.
2024c) proposed some solution algorithms. Wang et al. (2021), Wang and Wang (2023) and
Qian et al. (2024) considered the single-machine resource allocation scheduling with learn-
ing effects. Zhao (2022) (resp. Wang et al. 2024b) studied the single-machine scheduling
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problems with truncated learning effects and setup (resp. delivery) times. Ma et al. (2023)
considered the single-machine online scheduling with learning effect. For the sum of com-
pletion times, they designed an optimal online algorithm. Lv and Wang (2024b) addressed
the two-machine flow shop scheduling with release dates and truncated learning effects. For
the total completion time minimization, they proposed a branch-and-bound algorithm and
some heuristic algorithms.

On the other hand, the production efficiency can be increased by grouping various parts
and products with similar designs and/or production processes, this phenomenon is known as
group technology. Group technology that groups similar products into families helps increase
the efficiency of operations and decrease the requirement of facilities (Potts and Van Wassen-
hove 1992; Kuo and Yang 2006; Wu and Lee 2008a; Wu et al. 2008b; Wang et al. 2008; Yan
et al. 2008; Wang et al. 2009 and Lee and Wu 2009). He and Sun (2015) considered single-
machine group scheduling problems with deterioration and learning effects. They showed
that the makespan and some special cases of total completion time minimizations remain
polynomially solvable. Huang (2019) and Liu et al. (2019) studied single-machine group
scheduling with deteriorating jobs. For the primary (resp. secondary) criterion of minimizing
the total weighted completion time (resp. maximum cost), they proved that the bicriterion
problem is polynomially solvable. Under ready times and makespan minimization, Liu et al.
(2019) proposed some solution algorithms. Miao (2019) studied parallel-batch makespan
minimization scheduling with deteriorating jobs. Under group technology, she proved that
two single-machine problems are polynomially solvable. Xu et al. (2021) investigated single-
machine group scheduling with deteriorating jobs and nonperiodical maintenance. He et al.
(2023) dealt with single-machine group scheduling with due-date assignment and resource
allocation. To solve the generalized case of minimizing earliness-tardiness cost, they proposed
a branch-and-bound and heuristic algorithms. Yan et al. (2023) and Qian (2023) considered
single-machine group scheduling problems with learning effects and resource allocation.
Li et al. (2024a) addressed single-machine group scheduling with convex resource alloca-
tion, learning effects and due date assignment. To solve the generalized case of minimizing
the weighted sum of earliness, tardiness, common due date, resource consumption, and
makespan, they proposed the heuristic and branch-and-bound algorithms. Liu and Wang
(2023) and Wang and Liu (2024) studied single-machine group scheduling with resource
allocation. Under the due date, they proved that some special cases of the problem are poly-
nomially solvable.

Recently, Sun and Ma (2020) considered single-machine group scheduling with learning
effects and deteriorating jobs. They proved that the makespan and the total completion time
(under some special cases) problems remain polynomially solvable. This paper extends the
results of Sun and Ma (2020), by focusing on group setup times are general linear functions of
their starting times and the jobs in the same group have general truncated learning effects. The
main contributions of this article are given as follows: i) Single-machine group scheduling
with general linear deterioration and truncated learning effects is modeled and studied; ii)
For the makespan minimization, we prove the problem is polynomially solvable; iii) For
general case of the total completion time minimization, we propose some heuristics and a
branch-and-bound algorithm. The remaining part of the paper is organized as follows. In the
next section, a precise formulation is given. The problem of minimizing the makespan (resp.
total completion time) is given in Sect. 3 (resp. Sect. 4). The last section contains conclusions.
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2 Problem formulation

In this section, we first define the notation that is used throughout this paper (see the symbols
before the Introduction), followed by the description of the problem.

There are n jobs grouped into m groups, and these n jobs are to be processed on a
single machine. A setup time is required if the machine switches from one group to another
and all setup times of groups for processing at time #y > 0. The machine can handle one
job at a time and job preemption is not allowed. Let n; be the number of jobs belonging
to group G;, thus, ny +ny + --- + n, = n. Let J;; denote the jth job in group G;,
i=12,...,m;j=1,2,...,n;. As in Browne and Yechiali (1990), the actual setup time
of G; is:

siASTzai—i-biti,iz1,2,-~-’ma M

where a; (resp. b;) is the normal setup time (resp. setup deterioration rate) of G; and #; denotes
the start setup time of G;. As in Zhao (2022), if job J;; in group G; is scheduled in the rth
position, then the actual job processing time of it is

r—1
pi'j-fT = Dij max{fi (Zhi(pi[”)> g,-(r),@,-} a=12,....omr,j=12,...,n

=1

(@)

where Pij is the normal (basic) processing time of job J;;, df’ W <, 4 i 0 >, & h ) <
0, g (r) is a non-increasing function with f;(0) = 1, 1; (0) = 0 gi()= 1 andO <6; < 1is
a truncation parameter of group G;, Z[:l hi(pin) == 0. Note that Yan et al. (2008), Yang
and Yang (2010) considered the following models: pi"}fr =pijir*i=12,....mr,j=

1,2,...,n,',andp$fT:pij (l—l—pi[l]+p,‘[2]+'~+pi[r71])a"2,i:1,2,...,m;r,j:

1,2,...,n;, where o;; < 0 (¢j2 < 0) is a constant learning index of group G;.
As in Wang and Xia (2005) and Cheng et al. (2009), the job processing time models
also are: pi‘j.fT = pij ( +1I1p, +lnp, +...+1I1p,'[r,1]) R pl/jfT p,’jﬂilr_l,

APT i _ . ; APT
P = pijﬂiz(p'[11+p’[21+ +pitr ”),z =L2...omr,j =12,....n; and pi;;" =

pl],313(111Pi[11+lnpi[21+-“+1ﬂ1’ilrfll), i =12,....myr,j = 1,2,...,n;, where ;3 < 0,
0 < Bi1, Bi2, Biz < 1 is a constant learning index of group G;.

For a given schedule g, let C;;(o) represent completion time of job J;; in group G;.
The objective is to find a schedule that minimizes the makespan Cpa,x = max{C;;|i =
1,2,..., f;j =1,2,...,n;} and total completion time Yy C;; = > i, Z;”:l Cij. By
using the three-field notation, the problems can be denoted by

r—1
s{ST = a +bitg, pfifT = pij max [fi (Z hi(Pi[l])) gi(r), 9i} ,GT

=1

1 Cmax  (3)

and

r—1
ListST = aj + biti, pfi" = pij max {ﬁ (Z hl-<p,-m)> gi(r). ef} .GT|) ) Ci.
=1
“
where GT denotes the group technology Sun and Ma (2020) considered the learning
effect model PiA}fT = pijF (Zl | XilPifn» r), where xi1 < xi2 < - < Xin>
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0<F (Z,r;f Xil Pill]» r) < 1 is a non-increasing function on er;ll xitpip and r, where
P}(Z? 1 Xitpitg» 1) = 1. Sun and Ma (2020) proved that l‘siAST = a; + b;t;, pf}fT
= pij F (Zz | XilPills T ),GT|CmIX and a special case of 1|s.AST = a; + b;t;, pf}fT =

pii F (Zz 1 XilPill]» ) GT| >~ C;; are polynomially solvable.

3 Makespan minimization

Lemma1 (Niuetal.2015) M (x) = LV +hiCDs; (H'l) SiV8i ") s 4 non-decreasing function
df; d>f; d?h;
) o, 20 5 g ‘)‘)<0g,

on x, where V. > 0, e
with h;(0) =0, gi(1) =1, and x > 0.

(r) is a non-increasing function

Theorem 1 For 1|57 =a; + byt;, pi’T = pij max {ﬁ (z;;f h,-(p,-m)) & (), el-} .GT
Cmax, the optimal job sequence in each group is obtained by the nondecreasing order of p;j,
ie.,

pl(]) Epi<2> E"'Epi<n,'>7i: 1727"'7m'

Proof For the group G;, let m; = [s1, J;j, Jik, 521, Jri’ = [s1, Jix» Jij, 2], where s and s are
partial schedules, p;; < pik, and there are » — 1 jobs in S;. Under 7r; and ni’ , we have

r—1
Cik(7r;) = W + pij max {ﬁ- (Z hi(p,-m)) gi(r), 9,»}

=1

r—1
+pik max {fi (Z hi(pin) + hi(l’ij)) gi(r+1), 9i} ; %)

I=1
and

r—1
Cij(w}) = W + pix max {fi (Z hi(Pi[lJ)) &i(r), 9i}

=1

r—1
+pij max [fi (Z hi(piny) + hi(Pik)) gi(r+1), 91'} : (6)

=1

where W is the completion time of the last job in sy.
From (5) and (6), we have

r—1
Cij(m)) — Cik (i) = (pix — pij) max {fi <Z hi(Pi[l])) gi(r), 9i]

=1

r—1
+pij max [fi (Z hi(piny) + hi(Pik)) gi(r+1), Qi}

=1

r—1
— pik max [ﬁ (Z hi (pitn) +h,-(p,-j)) gi(r+1), ei}. (7
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Case 1):If f; (er;ll h,-(p,-[l])> gi(r) < 6;, from (7), we have
Cij(n)) — Cik (i) = (pik — pij)bi + pijbi — pirbi = 0. ()

Case 2): If f; (er;ll hi(Pi[l])) gi(r) > 60; > f; (Z;;ll hi (piny) +hi(Pij)> gi(r+1),
from (7), we have

r—1
Cij(n)) — Cik (i) = (pik — pij) fi (Z hi(Pi[l])) &i(r) + pijbi — pikb;
=1
r—1
= (pik — pij) |:fi (Z hi(l’i[l])) gi(r)— 9i:|
=1
> 0. ®

Case3):1If f; (er:_ll hi (piuy) + hi(p,'j)> gi(r+1) > 0; > f; (er;1l hi(pip) + hi(Pik))
gi(r + 1), from (7), we have

Cij(m)) — Cik ()

r—1
= (pik — pij) fi (Z hi(Pi[l])) gi(r)
1=1

r—1

+ pijbi — pirfi (Z hi(pinn) + hi(Pij)) gr+1)

=1

r—1 r—1
> (pik — pij) fi (Z hi(Pi[l])) & (r) + pij fi (Z hi(piny) + hi(Pik)) gr+1)

=1 =1

r—1
— pirfi (Z hi(pinn) + h,~<p,;,->> gi(r+1)
=1
fi (er;]l hi (piyy) + hi(pik)) gi(r+1)—fi (Z[rz_ll hi(Pi[l])) gi(r)
Dik
fi (er;f hi (piny) + /’li(l’ij)) gir+1—f; (er;ll hi(Pi[l])) gi (r)}
Pij
fi(V+hi(pip) gi(r +1) — fi (V) gi(r)
Dik

i (V+hi(pip) gir +1) — fi (V)gi(")]

Pij '

= Pijpik[

= Pijpik[

(10)

where V = er;ll hi (i) From Lemma 1, if p;; < pix, Cij(w]) — Cir (i) = 0.
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Case ): 1f fi ()2 hi(piu) + hi(pia) ) g1 + 1) > 6, from (7), we have

r—1
Cij(rt)) — Cir(mi) = (pix — pij) fi (Z h,-<p,-m>> gi(r)
=1

r—1

+pij fi (Z hi(piny) + hi(Pik)) gi(r+1)

=1
r—1
—pixfi (Z hi(piny) + hi(pij)) gi(r+1).

=1

Similar to Case 3), we have C (') — Cy () > 0. O

i

Theorem2 For 1 ‘SAST =a; + bity, p;f'" = pij max {fi (er;f hi(Pi[l])) gi(r), 6 } : GT‘
Crmax, the optimal group schedule is arranged in non-decreasing order of

—i=12,...,m, (1)

where
nj z—1
Pi =" pi( max {ﬁ (Z hi(pia))) 8i(2). 9,-} : (12)
z=1 =1

Proof From Theorem 1, the optimal job sequence in each group is obtained by the nonde-
creasing order of p;;, ie., piqy < pip) < - < Pigi).1 = 1,2,...,m.. Let ¢ and o be
two group schedules where ¢ = [S1, G;, G, $21, o =[S, Gj,Gi, S2]and S and S are
partial sequences. Let ¢ be the completion time of the last job in Sy, for o, we have

Ciiy(@) =t +a; +bit + piqy = a; + (L +b;) + piqy,
Ci)(0) = Ciqty + piy max { f; (hi(pi(1)) & (2), 6;}
= a; + t(1 + b)) + piq1y + piy max { f; (hi(piq1))) 8i(2), 6;} .

n; z—1
Cin (@) = ai +1(1+b;) + Y pi() max {ﬁ (thpm)) 2i(2), 9,»} :
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Cim@ = Cipy(@) +a; +b;jCipw)

@ + pjq

=a;+ Cipny(@ A +bj)+pjm

=aj +a,-(1—|—bj)+t(1+
nj

+ +bj)ZPi(z) max
z=1

Cioy@) =a; +a;i(1+bj)+t(1+

n;
+ (1 + bj) Zpi(z) max

z=1

bi)(1+ bj)

z—1
fi (Z hi<pi<1)>) 8i(2),60;
=1

bi)(1+bj)

z—1
fi (Z hi(Pi(l))) 8i(2), 0;
=1

+ pjgy + pjeymax { fi (hj(pjny) g;(2), 6,1,

Cimpl@) =aj+ai(1+bj)+1(1+

ni h—1
+(1+b)) Y itz max {fi (Z hi(Pi(l))) 8i(2), 9;’}
I=1

z=1

bj)(1+bj)

nj z—1
+ ) Pj) max {fj (Z hj(Pj<1>)> 8j(2), Hj} .
z=1 =1

Similarly, for ¢/, we have

Citny (@) = ai +a;(1+ b)) +1(1 +by)(1 +by)

nj z—1
+(1+b) ) pjz) max {fj (Z h/(P/m)) 8j(2), 9/}

z=1

=1

n; h—1
+ Zpi(z) max {fi (Z hi(Pi([))) 8i(2), 9i} .
z=1 =1

From (13) and (14), we have

Cjny (@) = Cinyy (@)

ni h—1
=a;ibj +bj Y pi(; max {fi <Z hi(Pi([))) 8i(2), 9i}
=1

z=1

}'lj

—ajb,- — bl‘ Z Pjz) max
z=1

+ pjqy,

h—1
{ff (Z hj(pj<z>)) (@), 0]-}
=1

LB a4 P
1

bj
<0

if and only if
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where P; = Y pit) maX{fi (Zf;f hi(Pi(l))) gi(Z),Qi} and E = Z’zllzl Pjiz) max
{f, (le;]l h_,'(p‘,-<1>)) gj(2),0; } this completes the proof. o

From Theorems 1-2, l‘siAST =la; +b;t;, pf}f)T = pij max if,- (er;ll hi(pi[l])> gi(r), Qi},

GT ’Cmax can be solved by the following algorithm:

Algorithm 1.

Step 1. Jobs in each group are scheduled in non-decreasing order of p;;, i.e.,
Pi(l) S Pi2) = --- = Pigny) i =12,...,m.
Step 2. Calculate p(G;) = “F% i = 1,2,... m, where
1
P = ZZ’:I Pi[z] max {fz (le;ll hi(l’i[l])) 8i (Z),Gi} .
Step 3. Groups are scheduled in non-decreasing order of p(G;), i.e., p(G1) < p(Gp) < ... < p(Gp).

Theorem 3 The 1 |sAST =a; + byti, pfAf™ = pyymax | f; (42! hipinn)) &), 6, 6T |
Cmax can be solved by Algorithm 1 in O (nlogn) time.

Proof Obviously, the optimal schedule in a certain group G; can be obtained in O (n;logn;)
and the optimal group schedule can be obtained in O (mlogm). Obviously Y 7~ O (n;logn;) <
O (nlogn), hence, the total time for Algorithm 1 is O (nlogn). O
Example 1 There are n = 10 jobs, where m = 3, ny = np = 3,n3 = 4,1 = 0,

o
S (Siz mirin) = (1+X02 npin) (@ < 0, @) = 1O < B < D,

and the other coefficients of all jobs are given in Table 1.

Solution:

Step 1. By Theorem 1, the optimal internal job sequences are:
i iz = Jin — Ji2l,

7y [J3 = Jo — Joil,

72':;k Sz = J3p — J31 — J33).

Table 1 The values of Example 1

Gy Ga G3
a; 4 6 5
b; 6 10 2
o —-0.3 —0.32 —0.25
Bi 0.8 0.9 0.75
0; 0.5 0.6 0.5
Ji Ji2 Ji3 a1 Jn J23 J31 J32 J33 J34
pij 15 20 13 19 15 4 18 16 21 8
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Step 2. By Eqgs. (11) and (12), we have
p(G1) = 4P — 5865885,

by __
p(Ga) = & = 3.162026,
p(G3) = 45 =20.77932.

Step 3. By Theorem 2, it follows that the optimal group schedule is ¢* : [G2 — G| —
G3l.

4 Total completion time minimization

Theorem4 For 1[s/57 = a; + bitg. pAf™ = pyymax { i (X1Z hi (o) (). 6}
GT|> Y Cij, the optimal job sequence in each group is obtained by the nondecreasing
order of p;j, i.e.,

Pi(y < pi) <+ < pigmyy, i =1,2,...,m.

Proof Similar to Theorem 1. For the group G;, from schedules m; = [s1, Jij, Jik, 521, 71[.’ =
[s1, Jik, Jij, 2] and p;; < pik, we have

r—1
Cij(mw) = W + p;j max {fi (Z hi(Pi[l])) &i(r), 9i]

=1
r—1
< Cix(n}) = W + pj; max {fi (Z hi(Pi[l])) gi(r), 95}
I=1
and Cix (11;) < Cij(wr)), hence Cix(m;) 4+ Cij (i) < Cix(nt}) + Cij(m]), this completes the

proof. O

From Mosheiov (1991), the problem 1 lp‘;‘PT =1+ ﬁjtj‘ >~ C; is an open problem. In

order to determine the optimal group sequence, we have the following result:

Theorem 5 For

r—1
1 sl.AST =a; + bit;, P{}fT = pjj max {fi (Z hi(Pi[l])) gi(r), 9[} ,GT

=1

2.2 Cif

; b; bj aj+P; aj+P; : ; ;
i ooy = w0 = mb) = ek the optimal group schedule is arranged in

bi ai+P - _
a0 O mahy L= 1,2, ..., m, where

n; z—1
P = Z Pi(z) max {f,- (Z hi(Pi(l))) 8i(2), 9i}
z=1 =1

non-decreasing order of

and
nj z—1
]3; = ij(z) max {f/ (Zhj(pj(l))> gj(Z)’ Qj} :
z=1 =1
@ Springer f bMA
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Proof From Theorem 2, for ¢ and @', we have
Y G =) Cij@)
b,’ bj
=tnn;(1+b;))1+b; —
nﬂ’lj( + 1)( + j) (nz(1+bz) n](l—i-bj))

ai + Pi aj + P;
+ninj(1+bi)(1+bj)( R )

ni(l1+b;) nj(1+bj)

b; bj ai+P; a;+Pj . . ;
W i = wesy A iy = sy Wehave 223 Cij(o) = 223 Cij (@), this
completes the proof. O

4.1 Branch-and-bound algorithm

From Theorems 4-5, to solve

r—1

L(s/ST = a; + bty pfiFT = p;j max {fi (Zhi(l’i[l])> gi(r),ei} LGT|> > "¢y,

=1

an heuristic algorithm is proposed (i.e., an upper bound of branch-and-bound algorithm).

Algorithm 2.

Step 1. Jobs in each group are scheduled in non-decreasing order of p;;, i.e.,
Pi(ly S Pi@) < - = pign), i =1,2,...,m.
Step 2. Groups are scheduled in non-decreasing order of
p(Gi)=a;,i=12,....m.
Step 3. Groups are scheduled in non-decreasing order of
,O(G,‘) :b[,i = 1,2,...,m.
Step 4. Groups are scheduled in non-increasing order of
p(Gj)=n;ji=1,2,...,m.
Step 5. Groups are scheduled in non-decreasing order of

a; .
,O(Gi) = ”i(l""bii) Ji=1,2,...,m.
Step 6. Groups are scheduled in non-decreasing order of

b; .
p(G;) = 7n[_(1fkb[_),t =1,2,...,m.
Step 7. Groups are scheduled in non-decreasing order of

ai+35 ) pitn) maX[fi(Zf';l hi(Pi[l]))gi (h)ﬁi] .

p(Gi): n; (14b;) Jd=1,2,...,m.
Step 8. Choose the one with smaller ) 3 C;; as the solution by Step 2-7.

Lemma 2 (Gawiejnowicz 2020a) The term Y ;' xi [ [}y Y1 can be minimized by the

non-decreasing order of yﬁ'l .
1

Lemma3 The term Y -, xk ]_[;":",;:_] y; can be minimized by the non-decreasing order of
X
yi—1"
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Proof For § = [sy,1i, j,s2] and 8’ = [s1, j, i, s2], there is

m m+1 m m+1
Yoxi [T w@® =D x [ %) =xiyiGivaeyms1) + xjGiv2eYmt1)
k=1 I=k+1 k=1 I=k+1
=X Vi (Vig2--Ym+1) — Xi (Vi42--Ym+1)
= Yit2--Ym+Dxi(y; — 1D —x;(yi — D]
= (Vit2--Yym+D) (i — D(y; = 1)
8 ( Xi X )
yi—1 yj—1
<0,
-y 71 o
Lemma4 Theterm) ;- Xk Hl 1 Y1 can be minimized by the non-decreasing order of iz l.
Proof For 8 = [s1,1i, j,s»] and 8’ = [sy, j, i, s2], there is
m k m k
Soxi [ [w@® =Y w [ [0 = xiyiya..yi + xjy1y2.31y;
k=1 I=1 k=1 I=1
—(Xjy1y2...¥j + Xiy1Y2...Y; Vi)
= y1y2..-Yi—1lx;y; i = D) — xiyi(y; — D]
(yi -1y - 1)
= V1Y2.-Yi—1XiYiXjyj -
Xi Vi XjYVj
<0
; e vi—l yi—1
if and only if ST < TR O

From Theorem 4, the optimal job sequence within each group can be obtained, i.e., p;(1) <
pi2y < < Pimy.i =1,2,...,m..Let o = (xPP, x"*) be a group schedule, where x *?
(resp. x"*) is the scheduled (resp. unscheduled) part, and there are v groups in x 7, from
the proof of Theorem 2, we have

n;

ZZC 1(X7P) + Z Zc,m(x “)

i=1 j=I i=y+1 j=1
1// n; m i i
=Y > G+ Y | D aw ] A +bp
i=1 j=1 i=y+1 K=yt I=ktl

m k
+e| D mw [T a+bup

k=y+1  I=y+1

m—1 i+1
+ D miis Z w [ (+bm)
=yt k=gl I=k+1
i h—1
+ Z Y (i —h+1)p maX[f[l (Zh[z (prina )) g[i](h)ﬂ[i]},
i=y+1h=1 =1

(15)
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where ]_[f;k](l + b)) = 1 and ¢ is the completion time of the last job in x77,
ie. t = Cypu(x"P). From (15), Y0, YU Cipn(xPP) and t = Cypay ) (xPP) are
constants, >y, 1 apk] [ [j—p1 (1+bpp) (resp. 34—y 1 Pir ]_[;I,LH (14 byp)) can be min-
imized according to Lemma 2 (resp. Lemma 3) by non-decreasing of Z—i (resp. bﬂi"), and
D kg1 k] ]_[f‘zwﬂ(l + bp}) can be minimized by the non-decreasing order of ﬁ

according to Lemma 4 (i € x"“).
Let nmin = min{npy 413, npy+21, ---» Bm] ), hence, we have the following lower bound:

n;

LB = ZZC,,(XP”)—F Z Nmin Z ag) 1_[ (I+byy)

i=1 j=1 i=y+1 k=y+1 I1=k+1
m k
el D ny [T by
k=y+1 I=y+1
m—1 i il
+ D mmn | Y Pwo [[ (1 +ba)
i=y+1 k=y+1 I=k+1
m nii h—1
+ Z Z( —h+ 1) y max [f[z (Zh (p )g[i](h),e[i]} s
i=y+1h=1
(16)
where St < G S e S B SERR( by S FERH + buyea) <
= ’b’E (14 bygmy), and Z(:Zill; = Z(:ij == # (where ﬁ’ n ')>l(71(jr)>b<<i>>>’ and
P“) do not necessarily correspond to the same job, i = ¥ + 1, ¥ + 2, ..., m). For Gy;,

p[, 1y < priy2) < -+ =< Plij<ny;>» and the sequence of p(;);) involved in P(i) is the same
as that of Gy, thatis, piy1y < paiye) < -+ < Pa) (ngiy)» Where Jj=12,..,n3.

From the upper bound (i.e., Algorithm 2) and lower bound (see Eq. (16)), a branch-and-
bound algorithm (B&B) is established as follows:

Algorithm 3. (B&B)

Step 1). Use Algorithm 2 to obtain an initial group sequence.

Step 2). Calculate the lower bound (see equation (16)) for the node (group). If the lower bound for an
unfathomed partial group schedule is larger than or equal to the objective value of the initial solution
(see equation (15)), eliminate the node and all the nodes following it in the branch. Calculate the
objective value of the completed group schedule (see equation (15)). If it is less than the initial solution,
replace it as the new solution; otherwise, eliminate it.

Step 3). Continue until all nodes have been explored.

4.2 Other algorithms

As in Nawaz et al. (1983) and Paredes-Astudillo et al. (2024), the following heuristic algo-
rithm (HA) can be proposed.
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Algorithm 4: HA

Step 1). Let 0% be the group sequence obtained from Algorithm 2.

Step 2). Set A = 2. Select the first two groups from the sorted list and select the better of the two possible
sequences. Do not change the relative positions of these two jobs with respect to each other in the
remaining steps of the algorithm. Set A = 3.

Step 3). Pick the job in the Ath position of the list generated in Step 1) and find the best group sequence
by placing it at all possible A positions in the partial sequence found in the previous step,
without changing the relative positions to each other of the already assigned groups. The number of
enumerations at this step equals A.

Step 4). If A = m, STOP; otherwise, set A = A + 1 and go to Step 3).

AsinHeetal. (2023), a tabu search (TS) algorithm is a method for }_ Y C; j minimization.
The initial group sequence of the TS algorithm is decided by Algorithm 2, and the maximum
number of iterations for the TS algorithm is 1000 m.

Algorithm 5: TS

Step 1). Let the tabu list be empty and the iteration number be zero.

Step 2). Set the initial group sequence of the TS algorithm, calculate its objective cost (by equation (15)),
and set the current group sequence as the best solution QA*.

Step 3). Search the associated neighborhood of the current group sequence and resolve if there is a group
sequence QA** with the smallest objective cost in the associated neighborhood and it is not in the
tabu list.

Step 4). If 04** is better than p4*, then let p4* = oA**. Update the tabu list and the iteration number.

Step 5). If there is not a group sequence in the associated neighborhood but it is not in the tabu list or the
maximum number of iterations is reached (i.e., 1000 m), then output the final group sequence.
Otherwise, update the tabu list and go to Step 3).

As in Li et al. (2024a,b), simulated annealing (SA) is also a method for ) )" C;; mini-
mization.

Algorithm 6: SA

Step 1). Set the internal job sequence by the Second step of Algorithm 2.

Step 2). Use the pairwise interchange (PI) neighborhood generation method.

Step 3). Calculate the objective value of the original schedule oA,

Step 4). Calculate the objective value of the new schedule QA*. If the QA* is less than QA, it is accepted.
Nevertheless, if the QA* is higher, it might still be accepted with a decreasing probability as the process
proceeds. This acceptance probability is determined by the following exponential distribution function:
P(accept) = exp(—a x ATC), where « is a parameter and AT C is the change in the objective
function. In addition, the method is used to change « in the kth iteration as follows: « = % where § is a
constant. After preliminary trials, § = 1 is used.

Step 5). If QA* increases, the new sequence is accepted when P (accept) > 8, where B is randomly
sampled from the uniform distribution.

Step 6). The schedule is stable after 1000m iterations.
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4.3 Number study

The heuristic algorithms (i.e., HA, TS, and SA) and the B&B algorithm were programmed in
C++ (carried out on CPU Interl core i5-8250U 1.4GHz PC with 8.00GB RAM%Z where n =
100, 200, 300, 400; m= 8, 9, 10, 11; p/F" = p; max{(l +y) lnp,-[”) ’ﬁirfl,ei}
(i <0,0 < Bi <1)andn; > 1. The parameters setting is given as follows:

1) Real number: «; € [—0.5, —0.1]; B; € [0.4,0.9]; 6; € [0.3,0.6];

2) Integer number: ¢; € [3,50] and p;; € [3,50]; @; € [51, 100] and p;; € [51, 100];
a; €[3,100] and p;; € [3, 100];

3) b; € [0.01,0.05]; b; € [0.05,0.15]; b; € [0.15,0.3].

For simulation accuracy, each random instance was conducted 20 times. The error of
algorithm H is calculated as

> > Cij(H)
YXCh

where H € {HA, TS, SA}, >_ Y Cij(H) (tesp. ) > C;"j) is the objective value (see (15))
generated by algorithm H (resp. B&B). In addition, running time (i.e., millisecond (ms)) of
HA, TS, SA and B&B is defined. From Tables 2, 3 and 4, the maximum CPU time of B&B
is 2,815,317 ms (i.e., n x m = 400 x 11). For the CPU time of B&B, b; € [0.01, 0.05]
needs more time than b; € [0.05, 0.15], and b; € [0.05, 0.15] needs more time than b; €
[0.15, 0.3]. From Tables 5, 6 and 7, the maximum error of SA is less than HA and TS for
nxm < 400 x 11 and the results of b; € [0.01, 0.05] is more accurate than b; € [0.05, 0.15]
and b; € [0.15, 0.3].

To further compare the algorithms TS, SA and B&B, the parameters n = 300, m = 10,
b; € [0.01, 0.05], b; € [0.05, 0.15], and b; € [0.15, 0.3] were given. The algorithms TS, SA
and B&B were individually executed on the same instance. For each combination, 20 random
instances were performed. It is also assumed that the CPU time for TS, SA are all obtained
from B&B, that is, all three algorithms have the same CPU time. In order to calculate the error

% (H € {TS, SA}), the total completion time values of TS and SA are obtained
and corri/pared with the values obtained by B&B. From the data in Tables 8, 9 and 10, it can
be seen that SA is more accurate that TS, especially for n = 300, m = 10, b; € [0.01, 0.05]

YD Cij(SA)

(i.e., there were 16 instances =y = 1).

a7
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Table 5 Error bound for @; € [3, 50] and p;; € [3, 50]
X m b 22 Cij(HA) 22 Cij(TS) 22 Cij(SA)
: )3)I[a p3)a[a pIpI[a
Avg Max Avg Max Avg Max

100x8 b; €0.01, 0.05] 1.0008 1.0027 1.014 1.0416 1 1

b; €[0.05,0.15] 1.0028 1.0093 1.0281 1.0643 1.0011 1.0093

b; €0.15,0.3] 1.0168 1.0676 1.0652 1.1571 1.0027 1.0217
100x9 b; €[0.01, 0.05] 1.0004 1.0023 1.0405 1.0743 1.0002 1.0023

b; €0.05,0.15] 1.0012 1.0076 1.0432 1.0619 1 1

b; €10.15,0.3] 1.0094 1.0288 1.1114 1.1886 1.0012 1.0083
100x 10 b; €[0.01,0.05] 1.0003 1.0023 1.029 1.0713 1.0001 1.001

b; €[0.05,0.15] 1.0044 1.0109 1.0667 1.1036 1 1

b; €[0.15,0.3] 1.0096 1.0351 1.1218 1.2301 1 1
100x 11 b; €0.01, 0.05] 1.0004 1.0016 1.0461 1.0763 1 1

b; €0.05,0.15] 1.01 1.0257 1.0649 1.1163 1 1

b; €[0.15,0.3] 1.0199 1.0864 1.11585 1.1776 1.001 1.0106
200x8 b; €10.01,0.05] 1.0002 1.0028 1.0158 1.0354 1 1

b; €[0.05,0.15] 1.0061 1.0216 1.0335 1.0745 1.0033 1.0207

b; €[0.15,0.3] 1.02 1.0606 1.0664 1.1262 1.0138 1.0497
2009 b; €0.01, 0.05] 1.0005 1.0035 1.026 1.0487 1.0002 1.0021

b; €0.05,0.15] 1.0027 1.0166 1.0402 1.0634 1.0024 1.0166

b; €0.15,0.3] 1.0104 1.0288 1.0886 1.1711 1.0019 1.0108
200x 10 b; €[0.01,0.05] 1.0033 1.0154 1.0363 1.0607 1 1

b; €10.05,0.15] 1.0046 1.0197 1.0643 1.1122 1.0006 1.0065

b; €[0.15,0.3] 1.017 1.0531 1.1375 1.2105 1.0015 1.0072
200x 11 b; €0.01, 0.05] 1.003 1.0121 1.0326 1.0584 1.0002 1.0015

b; €0.05,0.15] 1.0151 1.0678 1.0688 1.1336 1.0004 1.004

b; €0.15,0.3] 1.0262 1.0545 1.15 1.245 1.0066 1.034
300x8 b; €0.01,0.05] 1.0009 1.0044 1.0153 1.0269 1.0008 1.0044

b; €[0.05,0.15] 1.0052 1.0196 1.0316 1.0557 1.0009 1.0094

b; €[0.15,0.3] 1.0122 1.043 1.0545 1.1167 1.0076 1.0284
3009 b; €0.01, 0.05] 1.0016 1.0057 1.0228 1.046 1.0016 1.0057

b; €[0.05,0.15] 1.0082 1.0365 1.0431 1.0685 1.0014 1.0104

b; €[0.15,0.3] 1.0145 1.0545 1.083 1.1423 1.0024 1.0209
30010 b; €0.01, 0.05] 1.0018 1.0068 1.0254 1.0512 1.0005 1.0036

b; €0.05,0.15] 1.0084 1.0253 1.0636 1.0967 1.0047 1.0236

b; €[0.15,0.3] 1.0256 1.0809 1.12 1.1879 1.0066 1.0572
300x 11 b; €[0.01, 0.05] 1.0029 1.0118 1.0319 1.0409 1.0013 1.0118

b; €[0.05,0.15] 1.0094 1.0322 1.0799 1.1105 1.0032 1.0232

b; €[0.15,0.3] 1.0335 1.0851 1.1347 1.2083 1.0071 1.0552
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Table 5 continued

nxm b; w w LU(*SA)
ZZCU ZZCI']' ZZCU
Avg Max Avg Max Avg Max

400x8 b; €[0.01,0.05] 1.0007 1.0029 1.0272 1.0523 1.0002 1.0029

b; €10.05,0.15] 1.0047 1.0191 1.0307 1.0596 1.0032 1.0186

b; €10.15,0.3] 1.0191 1.0542 1.0579 1.0962 1.0043 1.0333
4009 b; €[0.01,0.05] 1.0002 1.0011 1.0213 1.0448 1 1

b; €[0.05,0.15] 1.0012 1.0039 1.0421 1.0673 1 1

b; €[0.15,0.3] 1.0166 1.0537 1.0788 1.1452 1.003 1.0146
400x10 b; €[0.01,0.05] 1.0041 1.0172 1.0299 1.0544 1.0001 1.0014

b; €[0.05,0.15] 1.0113 1.0364 1.0585 1.0882 1.0065 1.0241

b; €10.15,0.3] 1.0278 1.0654 1.1086 1.1697 1.005 1.0319
400x11 b; €10.01, 0.05] 1.0024 1.0062 1.034 1.0583 1.0014 1.0062

b; €[0.05,0.15] 1.009 1.029 1.0675 1.1184 1.0031 1.0225

b; €[0.15,0.3] 1.0289 1.0695 1.1339 1.2166 1.0103 1.0329
Table 6 Error bound for a; € [51, 100] and pij € [51,100]
X om b 22 Cij(HA) 22 Ciy(TS) 22 Cij(SA)

i Ty Ty G Tysa

Avg Max Avg Max Avg Max

100x8 b; €[0.01, 0.05] 1.0002 1.0016 1.0172 1.0528 1 1

b; €[0.05,0.15] 1.0018 1.0132 1.0236 1.0545 1.0005 1.003

b; €[0.15,0.3] 1.0042 1.0154 1.0585 1.0894 1.0007 1.007
100x9 b; €[0.01, 0.05] 1.0002 1.0014 1.0232 1.0461 1.0001 1.0011

b; €[0.05,0.15] 1.0018 1.0137 1.0435 1.1028 1 1

b; €[0.15,0.3] 1.0153 1.0799 1.0749 1.1567 1.0052 1.0375
100x 10 b; €[0.01, 0.05] 1.0005 1.0025 1.0319 1.0563 1.0001 1.0008

b; €0.05,0.15] 1.0031 1.0098 1.0483 1.1069 1.0005 1.0057

b; €[0.15,0.3] 1.0083 1.0371 1.0986 1.1739 1.00130 1.0051
100x11 b; €[0.01, 0.05] 1.0006 1.0026 1.0411 1.0567 1 1

b; €[0.05,0.15] 1.0035 1.0114 1.0555 1.1032 1.0011 1.0114

b; €[0.15,0.3] 1.0057 1.0272 1.1157 1.2215 1.0001 1.0003
2008 b; €[0.01, 0.05] 1.0155 1.0506 1.0677 1.143 1.0064 1.032

b; €[0.05,0.15] 1.0046 1.0199 1.0409 1.0703 1.0031 1.0136

b; €[0.15,0.3] 1.0089 1.0232 1.0528 1.1422 1.0039 1.0161
200x9 b; €[0.01, 0.05] 1.0007 1.0029 1.0163 1.0259 1.0002 1.0023

b; €[0.05,0.15] 1.0078 1.0361 1.0366 1.0681 1.001 1.0091

b; €[0.15,0.3] 1.0185 1.0567 1.0994 1.1514 1.0024 1.0207
200x 10 b; €[0.01,0.05] 1.0017 1.005 1.0188 1.036 1.0005 1.005

b; €[0.05,0.15] 1.0051 1.0206 1.0555 1.0735 1.0019 1.0195

b; €[0.15,0.3] 1.0092 1.0579 1.0804 1.157 1.0007 1.0055
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Table 6 continued
nxm b; w w w
chij ZZC,‘]‘ ZZCI']'
Avg Max Avg Max Avg Max

200x 11 b; €10.01, 0.05] 1.0004 1.0013 1.0296 1.0505 1 1

b; €10.05,0.15] 1.0046 1.0111 1.0589 1.0881 1.0012 1.007

b; €10.15,0.3] 1.0152 1.0539 1.1205 1.2821 1.0007 1.0045
300x8 b; €[0.01,0.05] 1.0001 1.0008 1.01332 1.0203 1 1

b; €10.05,0.15] 1.0065 1.0226 1.0382 1.0816 1.0057 1.0226

b; €10.15,0.3] 1.01697 1.0827 1.0595 1.1118 1.0065 1.0202
3009 b; €10.01, 0.05] 1.0013 1.0079 1.023 1.062 1.0006 1.0068

b; €10.05,0.15] 1.0096 1.054 1.0347 1.0655 1.003 1.017

b; €10.15,0.3] 1.0224 1.1071 1.0507 1.1234 1.0015 1.0154
300x 10 b; €10.01, 0.05] 1.0018 1.0092 1.032 1.0681 1.0004 1.0037

b; €10.05,0.15] 1.0122 1.0419 1.0413 1.0784 1.0061 1.0322

b; €10.15,0.3] 1.0188 1.0688 1.1032 1.1939 1.0041 1.035
300x 11 b; €10.01, 0.05] 1.0018 1.0073 1.0258 1.0412 1 1

b; €10.05,0.15] 1.0009 1.0046 1.0605 1.1033 1 1

b; €10.15,0.3] 1.0329 1.0898 1.1138 1.1435 1.005 1.0273
400x8 b; €10.01, 0.05] 1.0006 1.0035 1.0173 1.0342 1 1

b; €[0.05,0.15] 1.0081 1.0211 1.0439 1.1106 1.0027 1.0086

b; €10.15,0.3] 1.021 1.0676 1.0727 1.1273 1.0071 1.0268
400x9 b; €10.01, 0.05] 1.0015 1.0132 1.022 1.0383 1.0007 1.007

b; €10.05,0.15] 1.0052 1.026 1.0405 1.1184 1.0011 1.008

b; €10.15,0.3] 1.0261 1.0653 1.0801 1.1293 1.0055 1.0284
400x10 b; €10.01, 0.05] 1.0031 1.0107 1.0232 1.0401 1.0017 1.0091

b; €10.05,0.15] 1.0098 1.0328 1.0567 1.1222 1.0013 1.0064

b; €[0.15,0.3] 1.027 1.0829 1.0881 1.1333 1.0071 1.0236
400x11 b; €10.01, 0.05] 1.0034 1.0076 1.04 1.0604 1.0006 1.0065

b; €10.05,0.15] 1.0082 1.0234 1.0786 1.116 1.0043 1.0153

b; €10.15,0.3] 1.025 1.0779 1.1205 1.2146 1.0105 1.0607
Table 7 Error bound for a; € [3, 100] and Pij € [3, 100]
nxm b; w w w

ZZCU ZZCU chij
Avg Max Avg Max Avg Max

100x8 b; €[0.01,0.05] 1.0001 1.001 1.022 1.0598 1.0001 1.001

b; €10.05,0.15] 1.0023 1.0124 1.0343 1.0608 1.0007 1.0075

b; €10.15,0.3] 1.0037 1.0239 1.0907 1.1733 1.003 1.0239
100x9 b; €[0.01,0.05] 1.0007 1.0035 1.0343 1.0698 1.0002 1.0022

b; €1[0.05,0.15] 1.002 1.017 1.0413 1.0896 1.0002 1.0021

b; €10.15,0.3] 1.0059 1.027 1.0988 1.153 1.0002 1.0017
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Table 7 continued

nxm b; w w w
chij ZZC,‘]‘ ZZCI']'
Avg Max Avg Max Avg Max
100x10 b; €[0.01,0.05] 1.0002 1.0015 1.0431 1.0872 1 1
b; €[0.05,0.15] 1.0022 1.0082 1.0582 1.1444 1 1
b; €[0.15,0.3] 1.0163 1.0495 1.1132 1.1664 1.0022 1.0116
100x 11 b; €[0.01,0.05] 1.001 1.0039 1.04 1.07278 1.0001 1.0002
b; €[0.05,0.15] 1.003 1.0096 1.1053 1.1827 1.0005 1.0051
b; €[0.15,0.3] 1.0146 1.044 1.1353 1.186 1.0004 1.0048
200x8 b; €[0.01,0.05] 1.0008 1.0032 1.0172 1.0367 1.0001 1.0016
b; €[0.05,0.15] 1.0055 1.0266 1.0352 1.1088 1.0031 1.0266
b; €[0.15,0.3] 1.01385 1.042 1.0775 1.1472 1.005 1.0249
200x9 b; €[0.01,0.05] 1.0012 1.0057 1.0312 1.0607 1.0004 1.002
b; €[0.05,0.15] 1.0037 1.0172 1.0568 1.0897 1.0003 1.0031
b; €[0.15,0.3] 1.008 1.0243 1.0843 1.1395 1.0006 1.0043
200x10 b; €[0.01,0.05] 1.002 1.0064 1.0333 1.0525 1.0003 1.003
b; €[0.05,0.15] 1.0022 1.0082 1.0582 1.1444 1 1
b; €[0.15,0.3] 1.0064 1.0216 1.1084 1.1817 1.0033 1.0216
200x11 b; €[0.01,0.05] 1.0013 1.0034 1.0325 1.0579 1 1
b; €10.05,0.15] 1.0097 1.0363 1.0815 1.1225 1.0045 1.0131
b; €[0.15,0.3] 1.0386 1.1701 1.1112 1.1967 1.0042 1.0183
300x8 b; €[0.01,0.05] 1.0005 1.0027 1.0221 1.0482 1.0002 1.0027
b; €[0.05,0.15] 1.0057 1.0282 1.037 1.094 1.0011 1.0071
b; €[0.15,0.3] 1.0182 1.081 1.0559 1.11 1.0053 1.0262
300x9 b; €[0.01,0.05] 1.0017 1.0101 1.02 1.0343 1.0008 1.0069
b; €[0.05,0.15] 1.007 1.0262 1.05 1.0897 1.0023 1.0203
b; €10.15,0.3] 1.0165 1.0423 1.0721 1.1077 1.0041 1.0174
300x10 b; €[0.01,0.05] 1.0014 1.0073 1.0312 1.061 1.0008 1.0073
b; €[0.05,0.15] 1.0127 1.0706 1.0604 1.08 1.0003 1.003
b; €[0.15,0.3] 1.0215 1.065 1.095 1.1401 1.0074 1.0348
300x11 b; €[0.01,0.05] 1.0025 1.0086 1.0363 1.092 1.0004 1.0045
b; €[0.05,0.15] 1.0169 1.0676 1.0637 1.1037 1.0011 1.0081
b; €[0.15,0.3] 1.032 1.1143 1.1419 1.2263 1.0051 1.0254
400x8 b; €[0.01,0.05] 1.0034 1.0129 1.0185 1.0392 1.0001 1.0004
b; €[0.05,0.15] 1.0056 1.0223 1.031 1.0468 1.0003 1.0034
b; €[0.15,0.3] 1.0131 1.0506 1.0642 1.1351 1.0055 1.0237
400x9 b; €[0.01,0.05] 1.0028 1.0129 1.0243 1.045 1.0014 1.0099
b; €[0.05,0.15] 1.0086 1.0407 1.0523 1.0712 1.0025 1.0132
b; €[0.15,0.3] 1.0104 1.0296 1.0824 1.1604 1.0043 1.0204
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Table 7 continued
nxm b; w w LU(*SA)
ZZCU ZZCI']' ZZCU
Avg Max Avg Max Avg Max
400x10 b; €10.01, 0.05] 1.0038 1.0108 1.0229 1.0426 1.0002 1.0015
b; €10.05,0.15] 1.0077 1.0361 1.0516 1.0879 1.0019 1.0195
b; €[0.15,0.3] 1.0362 1.1628 1.1113 1.195 1.0088 1.0396
400x 11 b; €[0.01,0.05] 1.0014 1.0101 1.0349 1.0636 1 1
b; €[0.05,0.15] 1.0076 1.0284 1.0708 1.1032 1.0022 1.0092
b; €[0.15,0.3] 1.0391 1.0728 1.1307 1.1687 1.0083 1.0323
Zailg(s)o,l{rzsilti(i f Algorithms of Instance CPU time (ms) > % ;”C(’*TS) Z% gjc(*s A
b; €[0.01,0.05] / Y
1 107,339 1.1441 1
2 164,432 1.1252 1
3 81,965 1.154 1.0027
4 167,851 1.0581 1
5 372,789 1.0618 1
6 60,311 1.0222 1
7 113,158 1.0356 1
8 182,675 1.0235 1
9 74,764 1.0546 1
10 163,167 1.0913 1
11 128,852 1.0301 1.0041
12 82,988 1.0825 1.005
13 190,792 1.0878 1
14 96,842 1.071 1
15 52,382 1.0507 1
16 86,546 1.0725 1
17 110,334 1.0092 1
18 96,888 1.0374 1
19 165,049 1.0556 1
20 114,608 1.0745 1.0004
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Zaile; 30}2rzsilti (if algorithms of Instance CPU time (ms) Z% g jg[:s) Z% g ,»C(:A)
b; €[0.05,0.15] / Y

1 64,590 1.2581 1

2 71,967 1.0807 1

3 67,577 1.169 1

4 52,815 1.19 1

5 65,175 1.0878 1.0045
6 102,639 1.2263 1.0071
7 95,399 1.189 1

8 85,117 1.1119 1.0027
9 27,313 1.1512 1

10 179,983 1.107 1.009
11 130,690 1.2035 1.0021
12 74,422 1.0647 1

13 61,280 1.1668 1

14 49,197 1.086 1.0028
15 132,698 1.0535 1

16 151,276 1.1472 1.0196
17 92,060 1.1496 1

18 84,679 1.0919 1.0092
19 73,203 1.1702 1.0021
20 57,456 1.0882 1
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Zefll:;k: gO(];e;izulis ;)&Algorlthms Instance CPU time (ms) Z%gjc(;s) Z%gfc(*s A
b; €0.15,0.3] / Y

1 17,176 1.1494 1.0016
2 23,535 1.2702 1

3 32,165 1.2369 1

4 15,839 1.2738 1

5 24,537 1.1608 1.0084
6 115,686 1.2718 1.0008
7 29,347 1.3257 1

8 55,542 1.1239 1.0039
9 21,313 1.2513 1.0017
10 21,294 1.1118 1.0019
11 10,969 1.1155 1.0212
12 62,743 1.201 1.0197
13 36,119 1.3594 1.011
14 18,132 1.176 1.0049
15 12,125 1.1377 1

16 24,867 1.1102 1.0032
17 31,678 1.3194 1.0225
18 30,478 1.1246 1

19 27,935 1.2001 1.0054
20 21,227 1.2653 1
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5 Conclusions

We discussed the single-machine group scheduling where group setup times are increasing
functions of their starting times and the jobs in the same group have general truncated
learning effects. We showed that the makespan minimization problem remains polynomially
solvable. For the total completion time minimization, we proposed heuristic algorithms and a
branch-and-bound algorithm. Experimental study showed that the B&B algorithm can solve
instances of 400 x 11 jobs in less than 2,815,317 ms, and the algorithms of SA are more
accurate than HA and TS. In future research, we expect to explore more general group models
with deteriorating jobs and/or learning effect, extend the problems to due date (window)
assignments (Geng et al. 2023; Wang et al. 2024a; Sun et al. 2024), or consider flow shop
scheduling (Yu et al. 2023; Wang et al. 2024¢) with group technology.
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