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Abstract

This paper aims to investigate the unconditionally optimal and superconvergent error esti-
mates of a mass- and energy-conserved finite element method for the Schrédinger—Poisson
equation. Firstly, a priori error bound of the numerical solutions in H !-norm is obtained by
the conserved property. Secondly, the unconditionally optimal error estimates in L2-norm
are derived without any timestep restriction in terms of the bound of the numerical solution.
Thirdly, the unconditionally superclose error estimates in H'-norm are got by treating the
coupled nonlinear term rigorously and skillfully. Furthermore, the unconditionally super-
convergent error estimates in H'-norm are acquired by the interpolation post-processing
approach. Finally, some numerical results are provided to verify the theoretical analysis.

Keywords Schrodinger—Poisson equation - Mass- and energy-conserved FEM -
Unconditionally optimal and superconvergent error estimates
1 Introduction

In this paper, we consider the following two dimensional Schrodinger—Poisson (SP) equation:

i, = —Au+ du, (x,1) € 2 x(0,T], (1.1)
—AD = plul’, (x,1) e x(0,T], (1.2)
u(x,0) =up(x), x e, (1.3)
u@x,n) =0, d@x,1)=0, (x,1)edx,T], (1.4)

where u = u(x, t) is a complex-valued function with respect to time ¢ and spatial variable
x = (x,y) € 2, which is a bounded rectangular domain in R2, u = =1 is a rescaled
physical constant, which signifies the property of the underlying forcing, repulsive if © > 0
and attractive if u < 0 (Yi and Liu 2022). i = +/—1 denotes the imaginary unit and 7 > 0
is the final time.
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The SP equation can be employed in many physical applications, including semiconduc-
tors (Ringhofer and Soler 2000; Markowich et al. 1990), plasma physics (Shukla and Eliasson
2011) and cosmology (Uhlemann et al. 2014). System (1.1)—(1.4) preserves both the mass
and the energy. It is an important and interesting thing to design numerical schemes that sat-
isfy discrete analogues of these laws, as typically this leads to good qualitative behaviour of
numerical solutions for longer computational times (Athanassoulisa et al. 2023). There exists
avery large literature on numerical methods and analysis for the SP equation. A conservative
discontinuous Galerkin scheme was developed in Yi and Liu (2022) for the SP equation
and the corresponding optimal L? error estimates were obtained. With the help of a Crank—
Nicolson temporal and finite difference spatial discretization, a predictor—corrector scheme
was studied in Ringhofer and Soler (2000). In Auzinger et al. (2017), a rigorous stability
and error analysis was presented in terms of the second-order Strang splitting finite element
discretization. The convergence rates were established for the periodic SP equation based on
a Galerkin approximation in Bohun et al. (1996). An error analysis of Strang-type splitting
integrators was discussed in detail for Schrodinger—Poisson and cubic nonlinear Schrodinger
equations in Lubich (2008). Moreover, a second order convergence of the Strang splitting
method was discussed in Auzinger et al. (2017) for Schrodinger—Poisson equation.

The objective of this work is to develop a structure-preserving fully-discrete Galerkin
scheme for the SP equation, which preserves both mass and energy at the discrete level.
In particular, for the spatial discretization, we adopt the standard conforming finite element
method, while for the temporal discretization, we use the Crank—Nicolson method. The main
advantage of the proposed scheme is that it avoids the grid ratio restrictions between temporal
step size and spatial step size, while some certain restriction required in the previous literature.
More precisely, a priori error bound in H !-norm rather than the L>°-norm is derived according
to the mass- and energy conserved properties. Then, by treating the nonlinear and coupled
term rigorously and skillfully, the unconditionally optimal error estimates in L2-norm and
the superconvergent error estimates in H '-norm are established.

The rest of this paper is organized as follows. In Sect. 2, we introduce some preliminaries
and lemmas, which are needed in the error analysis. In Sect. 3, the unconditionally optimal
error estimates in L2-norm are presented for the conserved Crank—Nicolson fully-discrete
finite element scheme. In Sect. 4, the unconditionally superconvergent error estimates in
L?-norm are studied. In Sect. 5, some numerical experiments are carried out to confirm the
theoretical analysis.

2 Some preliminaries and lemmas

Let W™ P(Q) be the standard Sobolev space (Adams and Fournier 2003) with the norm
I - lm,p and semi-norm| - |, ,. For any two complex functions u, v € L?(Q), we define the
L2(2) inner product by (u, v) = fQ u(x)(v(x))*dx, where v* denotes the conjugate of v.
Moreover, for any Banach space Y and function f : [0, T] — Y, define the norm

1/
(f nr@nfar) ™" 1= p <o,

esssup;cpo.r1 1L/ (Dlly, p=oo.

I fllLrry =

Let 7; be a uniform rectangular partition of € into rectangles {K} and h =
max g ¢7;, {diam(K)} be the mesh size. For a given element K € 7j,, we define the bilinear

@ Springer f b/v\/\



Unconditionally convergence... Page30of18 302

finite element space
Vi = {vn € C(RQ); vplg € spanf{l, x, y, xy}, vnlag =0, VK € T;}.
Moreover, define R}, : HO1 (2) — Vj, to be the Ritz projection operator by
(V(u — Rpu), Vup) =0, Yo, € Vj. 2.1

Then, by the classical finite element theory (Thomee 2006; Brenner and Scott 2002), there
holds for u € H*(Q) N H{ () that

lu = Ruullo + 1V (u — Ryu)llo < Ch?luly. 22

The weak formulation of the problem (1.1)—(1.4) reads: find u : [0, T] — HO1 (R2) and
o: [0, T] — HO1 (R2), such that

i(ur, v) = (Vu, Vo) + (du, v), Yo € Hy(Q), (2.3)
(VO, Vw) = u(lul*, w), Yw € HJ (). (2.4)

In order to present the fully-discrete scheme, let {#,| t, = nt;0 < n < N} be a uniform
partition in time with time step T = T/N and f" = f(x, t,). For a sequence of functions
{f”}n _o» We denote

n _ gn—1 _ n n—1
PR G N RS

Then, the fully-discrete scheme is: for given uzfl € Vj, and <I>271 € V., find uj € Vj, and
@} € Vj, such that

i(D-uly, vp) = (Vity, Vo) + (P, vi), VYop € Vi, (2.5)
(VO Vwy) = u(up*, wp), Ywy € Vi, (2.6)

with the initial approximations u2 and <I>2 defined by
ul) = Ryup, and (VOY, Vuwy) = (|u)*, wy), Ywy, € Vi. Q2.7)

Lemma 1 The numerical scheme (2.5)—(2.6) has the following mass and energy-conversed
properties

MP=M0,  En=g0, (2.8)
where

1
"= ||uz||%=/ lul}|*dxdy, and E" = ||Vuz||3+ﬂnvq>zn%
/|wh| +—|V<I> [*dxdy.

Proof Choosing vy = uj in (2.5) and taking the imaginary parts of the resulting equation
give that

1 _
o7 (g = e~ 13) = 0,
which shows that

2 —12 02
luplly = lluy,™ g = - = lluyllg. 2.9
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Clearly, by the definition of M", the mass conservation is obtained. Moreover, choosing
vy = Druj in (2.5) and taking the real parts of the resulting equation result in

1 N i
E(nw;'lng — IVuy " 13) + Re(@}ih, Dull) = 0. (2.10)
Note that
_ 1 -
(@il Doull) = Z(QDZ(L{Z +ul ™, ulh —ufh

1 G ® T -
= E[(CDZMZ’ up) — (druy, ”Z_l) + (q)ﬁu’f,‘l, W) — (CDZMZ_I, uz_l)],

one can get
T =1 n 1 =T ) s, n—1 n—1 1 n2 n—112 Fxn
Re(thuh, Druh) = 27((%“;;’ ”h) - (thuh s Uy ) = E('”M - |uh 1< h)'
(2.11)
Substituting (2.11) into (2.10) yields that
IVuplls = 1V~ 5 + (up* = |y~ 12, @) = 0. 2.12)
On the other hand, from (2.6) att = t,, and t = 1,1, we have
V(@5 — @571, V) = u(lui P = 1wy ™', wn), Yy € Vi (2.13)
Then, choosing w;, = d_DZ in (2.13) leads to
1 _ B _
S IV ORIG = IVOLHIG) = pllu* — fay ™ 2, &), (2.14)
Substituting (2.14) into (2.12) gives that
1 1 1
2 2 —12 —12 02 02
IV + 5 IV = IV~ 1E + IV = - = IVl + 5 - IVRIG.

Then, by the definition of £”, we obtain the energy conservation. The proof is complete.
Lemma 2 Suppose that ug € H(; (2), we have the following a priori error bound

luplli <C, n=0,1,...,N, (2.15)
where C is a constant independent of n, h and .
Proof From Lemma 1, one can check that

Vi 15 = e 15 + inwb‘zuﬁ - ﬁnwbmé- (2.16)

Choosing wy, = <b2 in (2.6) at t = 1y yields that

IVRIG < Clluj I 41l Y lo-
Thus, we have

IVl < Clluflll} < C. (2.17)
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Moreover, choosing w, = &} in (2.6) at t = t,, gives that
1 1
2 0 2 2
VLG < Cllugllolluy llo.all @y llo.a = Cllugllollullo.al| Py llo.a < Clluglig IVuglig IV llo,
(2.18)

where we have used (2.9), Sobolev inequality ||)(||%’4 < ClixllollVxlo, for x € HOl (),

H'(Q) — L*() and Poincare inequality in the above estimate. From (2.18), it is not
difficult to see that

VLIS < Cllupllol Vulillo < Cllufli + IVully < € + 1IVul I3, (2.19)

where we have used (2.9) again in the above estimate.
Hence, by (2.16), (2.17) and (2.19), we have

1 1
IVaIi§ < €+ SIVELIG < €+ S 1 Vujl5.
Hence, the desired result (2.15) is obtained by Poincare inequality.

Next, we present the discrete Gronwall inequality, which is an important tool for analyzing
time-dependent problems.

Lemma 3 (Gronwall’s inequality Heywood and Rannacher 1990; Riviére 2008) Let 7, B,
C > 0 and let {a,}, {b,}, {cn} be sequences of nonnegative numbers satisfying

n n n
an—i—erk SB—l—CIZak—i—chk, n > 0.
k=0 k=0 k=0

Then, if Ct < 1, there holds
n n
a +1'Zbk < Lt (B + chk) , n>0.
k=0 k=0

Remark 1 Note that (n + 1)t < 2T, one can see that the constant in the above Gronwall’s
inequality is exponentially dependent on the final time 7'.

3 Unconditionally optimal error estimate in L2-norm of the
fully-discrete scheme

We present the first main result in the following theorem.

Theorem 3.1 Suppose that (u", ®") and (uj, ®}) are the solutions of (2.3)-(2.4) and
(2.5)—(2.6) at t = t,, respectively. Moreover, suppose that u,u;,u;; € LOO(HZ(Q)),
Uy € L®(L*(Q)), ® € L®(H*(RQ)), ®;; € L®°(L*(R)). Then we have the following
unconditionally optimal error estimate

" — ujllo + 1" = Dillo < C(h* +72). 3.1
Proof For the sake of simplicity, we split the errors u" — uj; and ®" — &} as:
u — MZ =u" — Ryu" + Rpu" — MZ = En + nn’
" — DIl = O" — R, " + R, ®" — @) := 0" 40"
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From (2.3)—(2.4) and (2.5)—(2.6), we have the following error equations:

WDy, vp) = —i(D&", vp) + (VE", Vup) + (ViT", Vp) + (D" — @iy, vp)

1

_1 _
FiDeu™ — Ul 72 v + (V@I — "), Vo) + (" 20" — B, vy),
Yo, € Vp, (3.2)
(VO", Vwy) = —(Vo", Vwp) + u(|u")? — u}|?, wy), Ywy € Vi, (3.3)

Choosing v, = 1" in (3.2) and taking the imaginary parts result in

1 _ _ _— - n—1% _
E(Iln”llﬁ—\ln" N13) = —Re(D:E", ") + Im(®"a" — Dl i) + Re(Deu™ —uy >, 7"

5
Im(V" T =), Vi) 4 Im(@" 20T — S ) = Y Ay,
k=1

3.4)
where we have used the definition of Ritz projection.
By the Cauchy—Schwarz inequality and (2.2), A; can be bounded by
AL S IDE" ol llo < CH* 17" o < C* + CAN"IG + 1" " 1). (3.5)

In order to estimate A,, we rewrite ®"i" — Q_DZIZZ as
Pt — Dl = " (@ — i) + (D" — D) = O"E" + " + 5"y + 0"ii),
6
= "E" 4+ "' — 5" + 6" Ryit" — 0"if" + 6" Ryit" ==y A5 (3.6)
k=1
One can easily see that
(A7) + (A3, ") + (A3, 1) < 19" lo.0o (IE" lo + 17" 10 17" o + 15 ol Rait" llo,s0 17" ll0
< Ch* +CUn" 15+ "' 1) 3.7)

By Holder inequality, we have

(A3, 7") < CIG" ol 134 < ClE" o7 oIV llo < ClIE" o7 llo
< Ch2(|i"lo < Ch* + C " 13+ 11" 113). (3.8)

where we have used Lemma 2 and the Sobolev inequality. Similarly, we have

(A3, ") + (AS. ™) < 16" ol 5.4 + 16" ol Rnit" llo,00 17" o
< ClI8" ol ol VA" lo + ClIE" loll7" lo
< ClIF™lolli™llo < CIE™ 15 + C ™15 + 0" 113). 3.9)

Based on the estimates (3.7)—(3.9), A, can be bounded by
Az < Ch* + CII6" I + C (™ 15 + IIn"~ " 119)- (3.10)
According to Taylor expansion and integration by parts, we have

A3+ Ag+ As < CT2|7"lo < CT* + CA" 13 + 1"~ 113). (3.11)
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Substituting (3.5), (3.10) and (3.11) into (3.4) yields that

%(Iln"llé — " 1§ < Ct 4+ + ClE™ G+ CAn™ 1§ + 11"~ 1)
< C* +H + CIVO" G+ Cn" I + "1 (3.12)
On the other hand, choosing w;, = 6" in (3.3) leads to
IVO™I§ = m(lu" [ — [uj >, 0™, (3.13)
where we have used the definition of Ritz projection. Note that
WP = ) = @ — u) @+ @ — u) = E D@+ (EDF A+ ),
one can check that
(E"+ 1@, 0" < CUE o + 1" 10)10™ o < Ch* + [ ) IVO" [lo,  (3.14)
and

Wh(E* + MM, 0™ < lubloaE o + 10" 10)16™ llo,4
< CIIVulloth* + 1" 1) IV6" llo
< CH*+ " 10)1V6" llo, (3.15)

where we have used Lemma 2.
Hence, substituting (3.14) and (3.15) into (3.13) results in

V6™ 15 < Ch* + 1" 10)1IV6" llo.
which implies that
IV6™lo < Ch* + 11" llo)- (3.16)
Clearly, we also have
V0" lo < Ch* + IIn"~ o). (3.17)

Substituting (3.16) and (3.17) into (3.12) gives that
1 _ _
o7 (G = 1"~ 3 = € 74 + CA™ I + "~ 1R)- (3.18)
Multiplying both sides of (3.18) by 27 and summing up the resulting equation, we have

n
In"IF < C* + 4+ Ct Y 115 (3.19)
k=1

An application of Gronwall inequality, we have
1"l < Ch* + 7). (3.20)
Substituting (3.20) into (3.16) yields that

16" llo < ClIVE"llo < C(h* +7°). (3.21)
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Finally, by triangle inequality, one can check that

lu™ — ullllo + D" — D llo < llu" — Ryullo + | Rpu™ — ult [l + | D"
— Ry ®"|lo + IRy D" — D} lo
< CR?+C(In"lo + 16" l0) < C(h* + ©2),

which is the desired result. The proof is complete.

4 Unconditionally superconvergent error estimate in H'-norm of the
fully-discrete scheme

We present the second main result in the following theorem.

Theorem 4.1 Suppose that (u", ®") and (uj,, ©})) are the solutions of (2.3)~(2.4) and (2.5)—
(2.6) at t = t,, respectively. Moreover, suppose that u € L®(H3*(Q)), uy, sy, ey €
L®(H*(Q), un € LOLAQ), & € LOH(Q), dy € L¥(H*(Q), Pu €
L®(L%(S2)). Then we have the following unconditionally superclose error estimate

IV = up)llo + IV UIn@" — p)llo < C(h* + T2), 4.1
where the constant C is independent of h, T and n, but depends on u, T.

Proof Letting v, = D.n" in (3.2) and taking the real parts of the resulting equation give that

1 _ — =
g(nwué—uw "3) = Im(D:&", Dey™) — Re(d"i" — dLit, Den™)

— Im(D.u" — u:l

T2 Do) — Re(V(u" " — i), VDo)
— Re(®""2u""2 — &"a", Do), 4.2)
In terms of Cauchy—Schwarz inequality and (2.2), we have
Im(D:&", Den") < D& [ol|Den” o < Ch*||[Dey™llo < Ch* + C|IDe™ 5. (4.3)
Noticing that
" — dpuy = " (" — i) + (" — P}y
= O" (" — i) + (D" — D) (@, — Rpit") + (D" — D) Ry,
we have from (3.1) that
— Re(®"(u" — i}), Den") — Re((®" — @) Ryit", Do)
< C(la" — iy llo + I1®" — Dpllo) I Den"llo < C(h* + )1 Den’llo
< C(h* + % + C|IDy" (5. (4.4)
and
— Re((®" — ®))(it)y — Rypit"), Dzn")
= Re("i)", D:n") + Re(0"i)", D:n")
< 16" lo.alliT™ lloll D™ llo.4 + 16" lo.4lli7" llo.4 D=n" llo
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< Ch(h* + (D" o) + CIVO™ oI Vi lloll Dzn" lo
< Ch* +)Den" o < C* + ) + CID" (13,

where we have used (2.15), (3.1) and (3.21).
Hence, one can check that

—Re(d"i" — @i, Do) < C(h* 4+ ) + C|| D" |13 4.5)

In addition,by using Taylor expansion and integration by parts, we have

_1 _
—Im(De" — "7, D) — Re(V("™2 — @), VDen") — Re(®"~2u""2 — &"@", Dy’
< CT?|Dello < Ct* + ClI D" |5 (4.6)

Substituting (4.3), (4.5) and (4.6) into (4.2) yields that
1
—UIV0"IlG= 1V 15) < € + %) + CIID" [,
2t
which implies that

n
V0"l < Ch* + 7% + C D 1D (I3 (4.7)
k=1

In what follows, we pay our attention to estimate ||D;n"|lo. To do this, subtracting the
n — l-level from the n-level of (3.2), we have

(D" = Do op) — (V" = 7", Vo) = —i(DE" — D&" ', vp)

+ (@ " — Bty — (@A — T ah), vy + i(Deu” — u;'_%)

— D =), )

(V@ =) = "3 — @), Vo)

F (@MU — By — (03U — ), ). (4.8)
Choosing v, = D 0" = %(D,n” + D"~ in (4.8) and taking the imaginary parts of the
resulting equation, we have
%(IIDTU" 15— 1Den" " 1I5) = —Re(D<£" — D:&"~", D.i")

+ Im((@"a" — @iy — (@it — @p ™, Do)

+ In((De — ™) — (Deu ! — uf‘%x D.7")
FIm(V(@"E = ") — "F =", Do)

FIm((@" 2" — By — (D" — gl Dt

5
=Y B “9)
k=1

By using Cauchy—Schwarz inequality, Taylor expansion and (2.2), we have

By < Cth?||D:ii"|lo < Cth* + Ct|| D" |I3. (4.10)
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By using Cauchy—Schwarz inequality, Taylor expansion and integration by parts, we have
B3+ B4+ Bs < CT°||D.7j"|lo < Ct - t* + C1||D; 7 ||0 .11
To estimate B,, we rewrite (®"i#" — éZﬁZ) — (Pl CID” i ) as
(d_Dann _ huh) _ (QJ" 1- i 1 q_)z—llzz—l)
=[(®" — " Ha" + " N@" — " H) - (D) — P hal + @ —ap )
— (q_)n _ q_)n—l)(ﬁn _ ﬁz) + [(q‘Dn _ cbn—l) _ (q')z _ &32_1)]1,_{”
+ (ci)n—l _ éz—l)(ﬁn _ I/-ln_l) + ci)n_l[(l/_tn _ I/-ln_l) _ (ﬁz —n 1)]
= (@" = " H@" — i) + [(@" — ") — (B, — B} O], — Ryit")
+ [(q‘Dn _ q‘Dn—l) _ ((i)" _ q_anl)]th—ln
+(q'>11 1 q>n 1)(M _un 1) + (<I>n 1 Rh&)n—l)[(ﬁn _ﬁn—l) _ (I/_t _ﬁz 1)]

6
+ Ry®" @ — ") — @@y — iy )= BS. (4.12)

According to Cauchy—Schwarz inequality, Taylor expansion and (3.1), it follows that

Im(By, D:ii") = ((®" — ®" ") (@" — a}), D-7") < Cll@" — i} lloll D" llo
< Ct(h* + %) + Ce|| D" 13 (4.13)

For B%, we have by (2.15) and (3.20)

Im([(@" — ®"7Y) — (@} — ®F D) — Ryit"), Deif") = —t(D:6" + D0M)ii", D ")
< tID:c" o4l ol Deii™ o4 + TN D" [l0,417" lo,.4ll D= 7" llo
< t(CW7"lo(Ch™ | D7 l0) + C VD8 oI V7" o]l D= 77" llo
< Ct(h* + %) + Ct| VD" ol D: 7" lo < Ct(h* + %) + Ce|[VD. " |5 + Ct|| D 77" |3
(4.14)
For B;, there holds

Im([(@" — ") — (@ — @} HIRyi", Deif") < CT(|D:5" [lo + [1D:0" 0) | D=77" llo
< Cth* + Ct|VD.6"|3 + Ct| D, 7" |I3.

4.15)
In terms of (3.1), we have for B; that
Im((@"' = & h@" —a" Y, D"y < C|| @ — ol D" o
< Ct(h* + tH)IIDn"lo
< Cr(h* + 1 + Ct|| D" |3 (4.16)

For B3, we have

(@1 = Ry®" H[@" — """y — @ — @], Den™) = =t (@ H(DE" + D), Deif").
4.17)
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By using (3.1), one can check that
—tIm(@" ' D.E", D:ii") < 210" ol D&  llo.4ll Dz 77" llo,4
< 78" Hlo(ChY(Ch™" | D77 llo)

< Ct(h* + t)|D: 7" o < Ct(h* + t*) + Ct| D, 7"|I3.
(4.18)

To estimate the term —t (8"~ ' D; 7", D;7") appeared on the right hand side of (4.17), we
will discuss in two different cases.
Case I t < h. In this case, from (3.21), we have

16" l0 < C(h* + %) < Ch?,
which shows that
16™10.00 < Ch™'16™l0 < Ch™Y(CR?) < C. (4.19)

Hence, we conclude that
—2Im@" 7 D", D™y < T0" 0,00 I D" 0l D" o < CTlI D" 3. (4.20)
Case Il = > h. In this case, from (3.20), we have
In"llo < C(h* + %) < C7% (4.21)
Hence, we conclude that
—tIm(@" 7' D", D) < T)8" o sl Deii" llo.all D" o < CTIVE" ol Dz i7" llo,4 | D2 1" llo
< Ct VA" o U™ llo.a + 0" 2 llo.a) (@ ™ llo + 17" 2 110))
< Ct|VO" oG AVH llo + IV 2o (x 1 (CT?)

< CtIVA" oIV llo + V0" lo + V7" 2 [l0)
< Cth* + ) + Ce(IVI" IR + IV " 3 + 1V 213),  (4.22)

where we have used (3.21).
Therefore, one can see that

—tIm@" ' D", Deii") < Ct(h* + ¥ + Co(IDn" 13 + 1 D" 13)
+ CT(IV0™ I + V0" HIS + 11V 0" 2113). (4.23)

Based on the estimates (4.18) and (4.23), we have

Im(B3, D:ii") < Ct(h* + %) + Ct (I D" 13 + | D" 113)
+CT(IVR I+ IV 3+ 1V 213). 4.24)

In addition, it follows that for 326

Im(Ry®" (@ — "~ "y — @} — a1, Dei") < Cx(ID<E" o + I D=7 1) |1 D 71" llo
< Cth* + Ct||D. 7" (I3 (4.25)

Substituting the estimates B; ~ B26 into B>, we have
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By < Ct(h* + % + Ct(I D" I§ + 1 D™ 1I3) + CT VDL 0" |1}
+CTUIV I+ IV G + 1V 213, (4.26)

Substituting the estimates B; ~ Bg into (4.9) yields

1 _ _ _
o7 (D" 13 = 1D ' 13) < Coh* + ) + Ct (1D I§ + 1 D" 1) + C |V D" |1}
+ TV I + 1V g + 1V 2 1%).
Summing up the above inequality from 2 to n gives that
n n n
1Dy 1§ < 1Den' 5 + C(h* + 74 + CT Y VD5 + C7 Y IVaFIG + Ct Y 1D I,
k=1 k=1 k=1

4.27)

Next, we focus on the estimate ||V D;60"|o. From (3.3), we have

(VD0", V) = pr ((u" > — [ 1) — (" = ), wh),  Ywy € Vi
(4.28)

Choosing w;, = D.6" in (4.28) leads to
IVD 0" 13 = e ("> — 1l 1) — ("' = Jup =%, D6"). (4.29)
One can check that
(P = 1 ) — Q" = ) = (@ =) — @ = uf )
+ (un—l _ szl)(un _ un—l)*

+ (@} —up™h = Ry — u" ) " — uly*

+ Ry =" D@ — ) T (" =) = @ =) =) Dy

k=1
(4.30)

By using Cauchy—schwarz inequality and (2.2), we have

pntH(Dy, D:6") < CUID:E" o + D" )1 D<6" llo
< C(h* + | D=1 l0) IV D-0" |lo. 4.31)
It is not difficult to check that by (3.1)
ut~ (D2, D:6™) < Ct Mt — Mol — u" 0,001 D26" 10

< C(h?> + 2)|IVD.6" 0. (4.32)

For D3, we have by (2.15)

nt (D3, Do) = — (D" (E")*, DL6") — w(Den™()™)*, D.6")
< CID"N0lIE 0.4l Dz6" lo.4 + ClI D™ lolln" 0.4l D" 0.4
< ClID7"loIVD-6" [lo. (4.33)

In addition, by (3.1), we have
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wt = (Dg, D:6") < Ct IRy " — u" " Hlo,c0llu” — ult ol D6 ll0
< C(h® + T)|IVD:6")o. (4.34)

By using (2.15) again, there holds
nt = (Ds, D:0") < |luftllo.4(| DE"lo + I D=n" 10) I Dz6" [l0.4
< C(h* + |D=n" [0) IV D:6" [o. (4.35)
Thus, based on the above estimates D; ~ Ds, we conclude that
IVD:6"lg < C(h* + * + | D" [l0).- (4.36)
Substituting (4.36) into (4.27) results in
n n
IDen" I3 < IDen 13 + Ch* + o) + €T Y _ IV I3+ Co DD 3. 437)
k=1 k=1

Finally, there remains the term | D:n' o to estimate. To do this, letting n = 1 in (3.2),we
have

1 1 _ _ 1
l(n? ”h) B (V% vvh) = —i(D:E" vn) + (@' — ity vn) +i(Deu' —uf, vp)

+ (V2 —a), Vo) + (@2u2 —d'a', vp), Vo, € Vi,
(4.38)

where we have used n° = 0.

Choosing v, = ’77| in (4.38) and taking the imaginary parts of the resulting equation give
that

2

1 1 B ~ 1 [
= ZRe (Drsl, i) + Im <q>11;1 —plal, i) + Re (Dfu1 —u?, ’L)
7 o T T T
1 1
L n I S
+Im (Vw2 —u),V—|+Im|P2uz —du,—|. (4.39)
T T
By using Cauchy—Schwarz inequality, (2.2), Taylor expansion and integration by parts, we
have
n' Lot 1 n'
—Re (ngl, 7> +Re (Dful —u?, —) +1Im (V(ﬂ —i'), V—)
T T T
1
+Im <q>%u% T ”—)
T
7!
<Ch*+7%) ‘7 . (4.40)
T lo
Noticing that

dla' —dla) = (@' — o' + (@) — RO Y@ — i) + Ry®' (@' — i),

we have by (2.15), (3.1) and (3.21)
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_ . 7! . _ 7! _ _ 7!
Im (cb‘ﬁ‘ — dhal, —) < Clo' — djllo —H +C16 olE 0. | —
T T llo T llo,4
1
+ 116" No.aln Nloa | —| +Cla' —aplo | —
T llo 0
n'! s n!
<CH* 4+ || +CIve'lo|—| <cm®+7H ‘7
T llo T llo 0
4.41)
Substituting (4.40) and (4.41) into (4.39) results in
77]
” —| =cm*+1d. (4.42)
T llo
Then, substituting (4.42) into (4.37) gives that
n n
IDen" 15 < Ch* + v + CT Y IV I+ Ct Y 1D 5. (4.43)
k=1 k=1
Hence, by (4.7) and (4.43), we have
n
IVR" I3 + I1Den" 13 < C* + o) + C >V I + 1D 1) (4.44)
k=1
An application of Gronwall inequality yields that
IVa™llo + IIDen"llo < C(h* + 7). (4.45)

Furthermore, according to triangle inequality and the superclose estimate between Rju" and
Inu™ (Shi et al. 2014; Yang 2021), i.e., foru € H3(§2), there holds

IV (Ryu = Iy)llo < Ch?uls,
Hence, we conclude that
IV U™ = uilio < IVUn" = Rpu™)llo + IV (Rpu" = uj)llo < C(h* +7%). (4.46)
Moreover, in terms of (3.21), we also have
IV " = Pl < C(h* + 7). (4.47)
The desired result (4.1) is obtained and the proof is complete.

In what follows, we adopt the interpolation post-processing approach to derive the
global superconvergence result. A macroelement K is constructed with 4 clements K I3
j =1,2,3,4 (see Fig. 1), the local interpolation operator 15 j, : C(IF(V) — Q22(I?) is adopted
as interpolation post-processing operator (Lin and Lin 2006) with the following interpolation
conditions

Dhpu(zi) =u(zi), i=1,2,...,9,

where z;, i = 1,2,...,9 are the nine vertices of K and Q22(I? ) denotes biquadratic
polynomial space on K.

What’s more, one can check that the properties, which have been shown in Lin and Lin
(2006), for operator I hold:

Ly Iyu = byu, (4.48)
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Fig.1 The macroelement K 24 z7 23
Ky K3

z8 % 26
K, K,

21 25 22

lu — Dpully < Ch?|lulls, Yu € H(Q), (4.49)

I 2nvnllt < Cllupllt, Yvn € Vi (4.50)

Therefore, in terms of (4.46) and (4.48)—(4.50), the global superconvergent error estiamte
can be obtained.

Theorem 4.2 Under the conditions of Theorem 4.1, we have forn = 1,2,..., N
lu" — Dpuy 11 + 19" — @)l < C(h* + 7). @.51)
Proof From (4.48)—(4.50) and Theorem 4.1, one can see that
lu" — Dpuplly < llu" — LpIpu" |1y + | op Ipu" — Dpug
< lu" — Dpu" 11 + 1 on (Tpu" — uf)lh
< Ch*|lu"||5 + Cl Ipu" — uj |y
< Ch® +12).

Similarly, we can derive the superconvergent result for ®”. Hence, we complete the proof.

5 Numerical results

In this section, we present some numerical results to verify the correctness of the theoretical
analysis.

Example 1 (Error estimates and order of convergence) We set the domain 2 = (0, 1) x (0, 1)
and the final time T = 1 in the computation. Consider the following SP equation

i, +Au=du+ f, (x,y)e, 0<t<T,
—AD=|uP4+g x,yeQ, 0<r<T,
ulpo =Pl =0, (x,y)e€dQ, 0<t=<T,
u(0) = sin(mrx) sin(wry), (x,y) € Q.
Let the functions f and g and the initial and boundary conditions be chosen corresponding
to the exact solutions
u(t, x,y) = exp(—t)sin(mx) sin(wry), D, x,y) =exp(—t)x(1 —x)y(l — y).

We present the numerical errors of [|u” —u} |lo, lu" —uj |1, | Tnu" —uf |1, |u" — I puj |1
and [|[®" — @/ [lo, [|®" — DIy, [[4®" — @ [I1, |®" — L, @)1 att = 0.2, 1.0 in Tables 1,
2. Obviously, we can see that the numerical results agree well with the theoretical analysis,
i.e., the convergence rates are O(h%), O(h), O(h?) and O (h?), respectively.
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Table 1 The numerical errors and convergence orders at t = 0.2

Mesh 4 x4 8§x8 16 x 16 32 x 32
t=02 lu™ — ”Z llo 3.1867e—02 7.9918e—03 1.9995e—03 4.9999e—04

Order / 1.9955 1.9988 1.9997

lu — ”Z Il 5.0245e—01 2.5165e—01 1.2589e—01 6.2954e—02

Order / 0.99756 0.99924 0.99980

| 1u™ — ”Z 11 1.0201e—01 2.6740e—02 6.7628e—03 1.6956e—03

Order / 1.9317 1.9833 1.9959

lu — Izhuz Il 2.2676e—01 5.7562e—02 1.4443e—-02 3.6139e—03

Order / 1.9780 1.9948 1.9987

|®" — <I>;l‘ llo 3.4459¢—03 8.9936e—04 2.2725e—04 5.6964e—05

Order / 1.9379 1.9846 1.9961

|®" — <I>Z Il 3.2032e—-02 1.5475e—02 7.6564e—03 3.8176e—03

Order / 1.0496 1.0152 1.0040

|1, ®" — <1>Z||1 2.6004e—03 8.7339e—04 2.3181e—04 5.8795e—05

Order / 1.5741 1.9137 1.9792

|®" — Iy, <I>Z Il 2.6310e—03 9.2116e—04 2.3501e—04 5.8998e—05

Order / 1.5141 1.9707 1.9940

Table 2 The numerical errors and convergence orders at ¢t = 1.0

Mesh 4x4 8x8 16 x 16 32 x 32
t=10  |u" —ullllo 2.6819e—02  7.4567e—03  1.6948¢—03  4.6953e—04
Order / 1.8467 2.1374 1.8518
" — ulllly 5.0260e—01  2.5164e—01 1.2589e—01  6.2954e—02
Order / 0.99808 0.99914 0.99983
™ — ult Iy 1.3213e—01  2.9813e—02  8.5015e—03  1.8657e—03
Order / 2.1479 1.8101 2.1880
" — Lo | 24285e—01  5.9077e—02  1.5338e—02  3.6968e—03
Order / 2.0394 1.9455 2.0527
1" — @7lo 20671e—03  6.1552e—04  1.4146e—04  3.9533e—05
Order / 1.7477 2.1215 1.8392
1" — @y 1.5293e—02  7.1791e—03  3.4602e—03  1.7193e—03
Order / 1.0910 1.0530 1.0091
17, ®" — @Iy 3.6321e—03  1.3643e—03  2.8198e—04  8.9870e—05
Order / 1.4126 2.2745 1.6497
1" — Iy 711y 37181e—03  1.3971e—03  2.8389e—04  9.0011e—05
Order / 1.4121 2.2991 1.6571
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(a) Discrete mass. (b) Discrete energy.

Fig.2 The profile of the discrete mass M”" and energy £"

Example 2 (Conservation of discrete mass and energy) We set the domain 2 = (0, 1) x (0, 1)
and the final time 7 = 100. Consider the following SP equation

iU+ Au=du, (x,y)eQ, 0<t<T =100,
—AD=|u>, (x,y)eQ, 0<r<T =100,
ulpo = Plpa =0, (x,y) €0, 0<r=<T =100,
u(0) = sin(wx)sin(wry), (x,y) € Q.

The temporal direction is divided with time stepsize T = 1, and the spatial direction is divided

with stepsize h = 74/—05. In Fig. 2, we present some values of the discrete mass and energy for
the scheme (2.5)—(2.6) at various time levels ¢". It can be seen that the scheme (2.5)—(2.6)
preserves the discrete mass and energy, which is consistent with the theoretical analysis.
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