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Abstract
This paper aims to investigate the unconditionally optimal and superconvergent error esti-
mates of a mass- and energy-conserved finite element method for the Schrödinger–Poisson
equation. Firstly, a priori error bound of the numerical solutions in H1-norm is obtained by
the conserved property. Secondly, the unconditionally optimal error estimates in L2-norm
are derived without any timestep restriction in terms of the bound of the numerical solution.
Thirdly, the unconditionally superclose error estimates in H1-norm are got by treating the
coupled nonlinear term rigorously and skillfully. Furthermore, the unconditionally super-
convergent error estimates in H1-norm are acquired by the interpolation post-processing
approach. Finally, some numerical results are provided to verify the theoretical analysis.

Keywords Schrödinger–Poisson equation · Mass- and energy-conserved FEM ·
Unconditionally optimal and superconvergent error estimates

1 Introduction

In this paper, we consider the following two dimensional Schrödinger–Poisson (SP) equation:

iut = −�u + �u, (x, t) ∈ � × (0, T ], (1.1)

− �� = μ|u|2, (x, t) ∈ � × (0, T ], (1.2)

u(x, 0) = u0(x), x ∈ �, (1.3)

u(x, t) = 0, �(x, t) = 0, (x, t) ∈ ∂� × (0, T ], (1.4)

where u = u(x, t) is a complex-valued function with respect to time t and spatial variable
x = (x, y) ∈ �, which is a bounded rectangular domain in R

2, μ = ±1 is a rescaled
physical constant, which signifies the property of the underlying forcing, repulsive if μ > 0
and attractive if μ < 0 (Yi and Liu 2022). i = √−1 denotes the imaginary unit and T > 0
is the final time.
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The SP equation can be employed in many physical applications, including semiconduc-
tors (Ringhofer and Soler 2000;Markowich et al. 1990), plasma physics (Shukla and Eliasson
2011) and cosmology (Uhlemann et al. 2014). System (1.1)–(1.4) preserves both the mass
and the energy. It is an important and interesting thing to design numerical schemes that sat-
isfy discrete analogues of these laws, as typically this leads to good qualitative behaviour of
numerical solutions for longer computational times (Athanassoulisa et al. 2023). There exists
a very large literature on numerical methods and analysis for the SP equation. A conservative
discontinuous Galerkin scheme was developed in Yi and Liu (2022) for the SP equation
and the corresponding optimal L2 error estimates were obtained. With the help of a Crank–
Nicolson temporal and finite difference spatial discretization, a predictor–corrector scheme
was studied in Ringhofer and Soler (2000). In Auzinger et al. (2017), a rigorous stability
and error analysis was presented in terms of the second-order Strang splitting finite element
discretization. The convergence rates were established for the periodic SP equation based on
a Galerkin approximation in Bohun et al. (1996). An error analysis of Strang-type splitting
integrators was discussed in detail for Schrödinger–Poisson and cubic nonlinear Schrödinger
equations in Lubich (2008). Moreover, a second order convergence of the Strang splitting
method was discussed in Auzinger et al. (2017) for Schrödinger–Poisson equation.

The objective of this work is to develop a structure-preserving fully-discrete Galerkin
scheme for the SP equation, which preserves both mass and energy at the discrete level.
In particular, for the spatial discretization, we adopt the standard conforming finite element
method, while for the temporal discretization, we use the Crank–Nicolson method. The main
advantage of the proposed scheme is that it avoids the grid ratio restrictions between temporal
step size and spatial step size,while some certain restriction required in the previous literature.
More precisely, a priori error bound in H1-norm rather than the L∞-norm is derived according
to the mass- and energy conserved properties. Then, by treating the nonlinear and coupled
term rigorously and skillfully, the unconditionally optimal error estimates in L2-norm and
the superconvergent error estimates in H1-norm are established.

The rest of this paper is organized as follows. In Sect. 2, we introduce some preliminaries
and lemmas, which are needed in the error analysis. In Sect. 3, the unconditionally optimal
error estimates in L2-norm are presented for the conserved Crank–Nicolson fully-discrete
finite element scheme. In Sect. 4, the unconditionally superconvergent error estimates in
L2-norm are studied. In Sect. 5, some numerical experiments are carried out to confirm the
theoretical analysis.

2 Some preliminaries and lemmas

Let Wm,p(�) be the standard Sobolev space (Adams and Fournier 2003) with the norm
‖ · ‖m,p and semi-norm| · |m,p . For any two complex functions u, v ∈ L2(�), we define the
L2(�) inner product by (u, v) = ∫

�
u(x)(v(x))∗dx, where v∗ denotes the conjugate of v.

Moreover, for any Banach space Y and function f : [0, T ] → Y , define the norm

‖ f ‖L p(Y ) =
⎧
⎨

⎩

(∫ T
0 ‖ f (t)‖p

Y dt
)1/p

, 1 ≤ p < ∞,

ess supt∈[0,T ] ‖ f (t)‖Y , p = ∞.

Let Th be a uniform rectangular partition of � into rectangles {K } and h =
maxK∈Th {diam(K )} be the mesh size. For a given element K ∈ Th , we define the bilinear
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finite element space

Vh = {vh ∈ C(�); vh |K ∈ span{1, x, y, xy}, vh |∂� = 0, ∀K ∈ Th}.
Moreover, define Rh : H1

0 (�) → Vh to be the Ritz projection operator by

(∇(u − Rhu),∇vh) = 0, ∀vh ∈ Vh . (2.1)

Then, by the classical finite element theory (Thomee 2006; Brenner and Scott 2002), there
holds for u ∈ H2(�) ∩ H1

0 (�) that

‖u − Rhu‖0 + h‖∇(u − Rhu)‖0 ≤ Ch2|u|2. (2.2)

The weak formulation of the problem (1.1)–(1.4) reads: find u : [0, T ] → H1
0 (�) and

� : [0, T ] → H1
0 (�), such that

i(ut , v) = (∇u,∇v) + (�u, v), ∀v ∈ H1
0 (�), (2.3)

(∇�,∇w) = μ(|u|2, w), ∀w ∈ H1
0 (�). (2.4)

In order to present the fully-discrete scheme, let {tn | tn = nτ ; 0 ≤ n ≤ N } be a uniform
partition in time with time step τ = T /N and f n = f (x, tn). For a sequence of functions
{ f n}Nn=0, we denote

Dτ f n = f n − f n−1

τ
, f̄ n = f n + f n−1

2
.

Then, the fully-discrete scheme is: for given un−1
h ∈ Vh and �n−1

h ∈ Vh , find unh ∈ Vh and
�n

h ∈ Vh , such that

i(Dτu
n
h, vh) = (∇ūnh,∇vh) + (�̄n

hū
n
h, vh), ∀vh ∈ Vh, (2.5)

(∇�n
h,∇wh) = μ(|unh |2, wh), ∀wh ∈ Vh, (2.6)

with the initial approximations u0h and �0
h defined by

u0h = Rhu0, and (∇�0
h,∇wh) = (|u0h |2, wh), ∀wh ∈ Vh . (2.7)

Lemma 1 The numerical scheme (2.5)–(2.6) has the following mass and energy-conversed
properties

Mn = M0, En = E0, (2.8)

where

Mn = ‖unh‖20 =
∫

�

|unh |2dxdy, and En = ‖∇unh‖20 + 1

2μ
‖∇�n

h‖20

=
∫

�

|∇unh |2 + 1

2μ
|∇�n

h |2dxdy.

Proof Choosing vh = ūnh in (2.5) and taking the imaginary parts of the resulting equation
give that

1

2τ
(‖unh‖20 − ‖un−1

h ‖20) = 0,

which shows that

‖unh‖20 = ‖un−1
h ‖20 = · · · = ‖u0h‖20. (2.9)
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Clearly, by the definition of Mn , the mass conservation is obtained. Moreover, choosing
vh = Dτunh in (2.5) and taking the real parts of the resulting equation result in

1

2τ
(‖∇unh‖20 − ‖∇un−1

h ‖20) + Re(�̄n
hū

n
h, Dτu

n
h) = 0. (2.10)

Note that

(�̄n
hū

n
h, Dτu

n
h) = 1

2τ
(�̄n

h(u
n
h + un−1

h ), unh − un−1
h )

= 1

2τ
[(�̄n

hu
n
h, u

n
h) − (�̄n

hu
n
h, u

n−1
h ) + (�̄n

hu
n−1
h , unh) − (�̄n

hu
n−1
h , un−1

h )],
one can get

Re(�̄n
hū

n
h, Dτu

n
h) = 1

2τ
((�̄n

hu
n
h, u

n
h) − (�̄n

hu
n−1
h , un−1

h )) = 1

2τ
(|unh |2 − |un−1

h |2, �̄n
h).

(2.11)

Substituting (2.11) into (2.10) yields that

(‖∇unh‖20 − ‖∇un−1
h ‖20) + (|unh |2 − |un−1

h |2, �̄n
h) = 0. (2.12)

On the other hand, from (2.6) at t = tn and t = tn−1, we have

(∇(�n
h − �n−1

h ),∇wh) = μ(|unh |2 − |un−1
h |2, wh), ∀wh ∈ Vh . (2.13)

Then, choosing wh = �̄n
h in (2.13) leads to

1

2
(‖∇�n

h‖20 − ‖∇�n−1
h ‖20) = μ(|unh |2 − |un−1

h |2, �̄n
h). (2.14)

Substituting (2.14) into (2.12) gives that

‖∇unh‖20 + 1

2μ
‖∇�n

h‖20 = ‖∇un−1
h ‖20 + 1

2μ
‖∇�n−1

h ‖20 = · · · = ‖∇u0h‖20 + 1

2μ
‖∇�0

h‖20.

Then, by the definition of En , we obtain the energy conservation. The proof is complete.

Lemma 2 Suppose that u0 ∈ H1
0 (�), we have the following a priori error bound

‖unh‖1 ≤ C, n = 0, 1, . . . , N , (2.15)

where C is a constant independent of n, h and τ .

Proof From Lemma 1, one can check that

‖∇unh‖20 = ‖u0h‖20 + 1

2μ
‖∇�0

h‖20 − 1

2μ
‖∇�n

h‖20. (2.16)

Choosing wh = �0
h in (2.6) at t = t0 yields that

‖∇�0
h‖20 ≤ C‖u0h‖20,4‖∇�0

h‖0.
Thus, we have

‖∇�0
h‖0 ≤ C‖u0h‖21 ≤ C . (2.17)
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Moreover, choosing wh = �n
h in (2.6) at t = tn gives that

‖∇�n
h‖20 ≤ C‖unh‖0‖unh‖0,4‖�n

h‖0,4 = C‖u0h‖0‖unh‖0,4‖�n
h‖0,4 ≤ C‖unh‖

1
2
0 ‖∇unh‖

1
2
0 ‖∇�n

h‖0,
(2.18)

where we have used (2.9), Sobolev inequality ‖χ‖20,4 ≤ C‖χ‖0‖∇χ‖0, for χ ∈ H1
0 (�),

H1(�) ↪→ L4(�) and Poincare inequality in the above estimate. From (2.18), it is not
difficult to see that

‖∇�n
h‖20 ≤ C‖unh‖0‖∇unh‖0 ≤ C‖unh‖20 + ‖∇unh‖20 ≤ C + ‖∇unh‖20, (2.19)

where we have used (2.9) again in the above estimate.
Hence, by (2.16), (2.17) and (2.19), we have

‖∇unh‖20 ≤ C + 1

2
‖∇�n

h‖20 ≤ C + 1

2
‖∇unh‖20.

Hence, the desired result (2.15) is obtained by Poincare inequality.

Next, we present the discrete Gronwall inequality, which is an important tool for analyzing
time-dependent problems.

Lemma 3 (Gronwall’s inequality Heywood and Rannacher 1990; Riviére 2008) Let τ , B,
C > 0 and let {an}, {bn}, {cn} be sequences of nonnegative numbers satisfying

an + τ

n∑

k=0

bk ≤ B + Cτ

n∑

k=0

ak + τ

n∑

k=0

ck, n ≥ 0.

Then, if Cτ < 1, there holds

an + τ

n∑

k=0

bk ≤ eC(n+1)τ

(

B + τ

n∑

k=0

ck

)

, n ≥ 0.

Remark 1 Note that (n + 1)τ ≤ 2T , one can see that the constant in the above Gronwall’s
inequality is exponentially dependent on the final time T .

3 Unconditionally optimal error estimate in L2-norm of the
fully-discrete scheme

We present the first main result in the following theorem.

Theorem 3.1 Suppose that (un,�n) and (unh,�
n
h) are the solutions of (2.3)–(2.4) and

(2.5)–(2.6) at t = tn , respectively. Moreover, suppose that u, ut , utt ∈ L∞(H2(�)),
uttt ∈ L∞(L2(�)), � ∈ L∞(H2(�)), �t t ∈ L∞(L2(�)). Then we have the following
unconditionally optimal error estimate

‖un − unh‖0 + ‖�n − �n
h‖0 ≤ C(h2 + τ 2). (3.1)

Proof For the sake of simplicity, we split the errors un − unh and �n − �n
h as:

un − unh = un − Rhu
n + Rhu

n − unh := ξn + ηn,

�n − �n
h = �n − Rh�

n + Rh�
n − �n

h := σ n + θn .
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From (2.3)–(2.4) and (2.5)–(2.6), we have the following error equations:

i(Dτ η
n, vh) = −i(Dτ ξ

n, vh) + (∇ ξ̄n,∇vh) + (∇η̄n,∇vh) + (�̄nūn − �̄n
hū

n
h, vh)

+ i(Dτu
n − u

n− 1
2

t , vh) + (∇(un− 1
2 − ūn),∇vh) + (�n− 1

2 un− 1
2 − �̄nūn, vh),

∀vh ∈ Vh, (3.2)

(∇θn,∇wh) = −(∇σ n,∇wh) + μ(|un |2 − |unh |2, wh), ∀wh ∈ Vh, (3.3)

Choosing vh = η̄n in (3.2) and taking the imaginary parts result in

1

2τ
(‖ηn‖20 − ‖ηn−1‖20) = −Re(Dτ ξ

n, η̄n) + Im(�̄nūn − �̄n
h ū

n
h, η̄

n) + Re(Dτu
n − u

n− 1
2

t , η̄n)

+ Im(∇(un− 1
2 − ūn), ∇η̄n) + Im(�n− 1

2 un− 1
2 − �̄nūn, η̄n) =:

5∑

k=1

Ak ,

(3.4)

where we have used the definition of Ritz projection.
By the Cauchy–Schwarz inequality and (2.2), A1 can be bounded by

A1 ≤ ‖Dτ ξ
n‖0‖η̄n‖0 ≤ Ch2‖η̄n‖0 ≤ Ch4 + C(‖ηn‖20 + ‖ηn−1‖20). (3.5)

In order to estimate A2, we rewrite �̄nūn − �̄n
hū

n
h as

�̄nūn − �̄n
hū

n
h = �̄n(ūn − ūnh) + (�̄n − �̄n

h)ū
n
h = �̄n ξ̄n + �̄n η̄n + σ̄ nūnh + θ̄nūnh

= �̄n ξ̄n + �̄n η̄n − σ̄ n η̄n + σ̄ n Rhū
n − θ̄n η̄n + θ̄n Rhū

n :=
6∑

k=1

Ak
2. (3.6)

One can easily see that

(A1
2, η̄

n) + (A2
2, η̄

n) + (A4
2, η̄

n) ≤ ‖�̄n‖0,∞(‖ξ̄n‖0 + ‖η̄n‖0)‖η̄n‖0 + ‖σ̄‖0‖Rhū
n‖0,∞‖η̄n‖0

≤ Ch4 + C(‖ηn‖20 + ‖ηn−1‖20). (3.7)

By Hölder inequality, we have

(A3
2, η̄

n) ≤ C‖σ̄ n‖0‖η̄n‖20,4 ≤ C‖σ̄ n‖0‖η̄n‖0‖∇η̄n‖0 ≤ C‖σ̄ n‖0‖η̄n‖0
≤ Ch2‖η̄n‖0 ≤ Ch4 + C(‖ηn‖20 + ‖ηn−1‖20), (3.8)

where we have used Lemma 2 and the Sobolev inequality. Similarly, we have

(A5
2, η̄

n) + (A6
2, η̄

n) ≤ ‖θ̄n‖0‖η̄n‖20,4 + ‖θ̄n‖0‖Rhū
n‖0,∞‖η̄n‖0

≤ C‖θ̄n‖0‖η̄n‖0‖∇η̄n‖0 + C‖θ̄n‖0‖η̄n‖0
≤ C‖θ̄n‖0‖η̄n‖0 ≤ C‖θ̄n‖20 + C(‖ηn‖20 + ‖ηn−1‖20). (3.9)

Based on the estimates (3.7)–(3.9), A2 can be bounded by

A2 ≤ Ch4 + C‖θ̄n‖20 + C(‖ηn‖20 + ‖ηn−1‖20). (3.10)

According to Taylor expansion and integration by parts, we have

A3 + A4 + A5 ≤ Cτ 2‖η̄n‖0 ≤ Cτ 4 + C(‖ηn‖20 + ‖ηn−1‖20). (3.11)
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Substituting (3.5), (3.10) and (3.11) into (3.4) yields that

1

2τ
(‖ηn‖20 − ‖ηn−1‖20) ≤ C(h4 + τ 4) + C‖θ̄n‖20 + C(‖ηn‖20 + ‖ηn−1‖20)

≤ C(h4 + τ 4) + C‖∇ θ̄n‖20 + C(‖ηn‖20 + ‖ηn−1‖20). (3.12)

On the other hand, choosing wh = θn in (3.3) leads to

‖∇θn‖20 = μ(|un |2 − |unh |2, θn), (3.13)

where we have used the definition of Ritz projection. Note that

|un |2 − |unh |2 = (un − unh)(u
n)∗ + unh(u

n − unh)
∗ = (ξn + ηn)(un)∗ + unh((ξ

n)∗ + (ηn)∗),

one can check that

((ξn + ηn)(un)∗, θn) ≤ C(‖ξn‖0 + ‖ηn‖0)‖θn‖0 ≤ C(h2 + ‖ηn‖0)‖∇θn‖0, (3.14)

and

(unh((ξ
n)∗ + (ηn)∗), θn) ≤ ‖unh‖0,4(‖ξn‖0 + ‖ηn‖0)‖θn‖0,4

≤ C‖∇unh‖0(h2 + ‖ηn‖0)‖∇θn‖0
≤ C(h2 + ‖ηn‖0)‖∇θn‖0, (3.15)

where we have used Lemma 2.
Hence, substituting (3.14) and (3.15) into (3.13) results in

‖∇θn‖20 ≤ C(h2 + ‖ηn‖0)‖∇θn‖0,
which implies that

‖∇θn‖0 ≤ C(h2 + ‖ηn‖0). (3.16)

Clearly, we also have

‖∇θn−1‖0 ≤ C(h2 + ‖ηn−1‖0). (3.17)

Substituting (3.16) and (3.17) into (3.12) gives that

1

2τ
(‖ηn‖20 − ‖ηn−1‖20) ≤ C(h4 + τ 4) + C(‖ηn‖20 + ‖ηn−1‖20). (3.18)

Multiplying both sides of (3.18) by 2τ and summing up the resulting equation, we have

‖ηn‖20 ≤ C(h4 + τ 4) + Cτ

n∑

k=1

‖ηk‖20. (3.19)

An application of Gronwall inequality, we have

‖ηn‖0 ≤ C(h2 + τ 2). (3.20)

Substituting (3.20) into (3.16) yields that

‖θn‖0 ≤ C‖∇θn‖0 ≤ C(h2 + τ 2). (3.21)
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Finally, by triangle inequality, one can check that

‖un − unh‖0 + ‖�n − �n
h‖0 ≤ ‖un − Rhu

n‖0 + ‖Rhu
n − unh‖0 + ‖�n

− Rh�
n‖0 + ‖Rh�

n − �n
h‖0

≤ Ch2 + C(‖ηn‖0 + ‖θn‖0) ≤ C(h2 + τ 2),

which is the desired result. The proof is complete.

4 Unconditionally superconvergent error estimate in H1-norm of the
fully-discrete scheme

We present the second main result in the following theorem.

Theorem 4.1 Suppose that (un,�n) and (unh,�
n
h) are the solutions of (2.3)–(2.4) and (2.5)–

(2.6) at t = tn , respectively. Moreover, suppose that u ∈ L∞(H3(�)), ut , utt , uttt ∈
L∞(H2(�)), uttt t ∈ L∞(L2(�)), � ∈ L∞(H3(�)), �t t ∈ L∞(H2(�)), �t t t ∈
L∞(L2(�)). Then we have the following unconditionally superclose error estimate

‖∇(Ihu
n − unh)‖0 + ‖∇(Ih�

n − �n
h)‖0 ≤ C(h2 + τ 2), (4.1)

where the constant C is independent of h, τ and n, but depends on u, T .

Proof Letting vh = Dτ η
n in (3.2) and taking the real parts of the resulting equation give that

1

2τ
(‖∇ηn‖20 − ‖∇ηn−1‖20) = Im(Dτ ξ

n, Dτ η
n) − Re(�̄nūn − �̄n

hū
n
h, Dτ η

n)

− Im(Dτu
n − u

n− 1
2

t , Dτ η
n) − Re(∇(un− 1

2 − ūn),∇Dτ η
n)

− Re(�n− 1
2 un− 1

2 − �̄nūn, Dτ η
n). (4.2)

In terms of Cauchy–Schwarz inequality and (2.2), we have

Im(Dτ ξ
n, Dτ η

n) ≤ ‖Dτ ξ
n‖0‖Dτ η

n‖0 ≤ Ch2‖Dτ η
n‖0 ≤ Ch4 + C‖Dτ η

n‖20. (4.3)

Noticing that

�̄nūn − �̄n
hū

n
h = �̄n(ūn − ūnh) + (�̄n − �̄n

h)ū
n
h

= �̄n(ūn − ūnh) + (�̄n − �̄n
h)(ū

n
h − Rhū

n) + (�̄n − �̄n
h)Rhū

n,

we have from (3.1) that

− Re(�̄n(ūn − ūnh), Dτ η
n) − Re((�̄n − �̄n

h)Rhū
n, Dτ η

n)

≤ C(‖ūn − ūnh‖0 + ‖�̄n − �̄n
h‖0)‖Dτ η

n‖0 ≤ C(h2 + τ 2)‖Dτ η
n‖0

≤ C(h4 + τ 4) + C‖Dτ η
n‖20, (4.4)

and

− Re((�̄n − �̄n
h)(ū

n
h − Rhū

n), Dτ η
n)

= Re(σ̄ n η̄n, Dτ η
n) + Re(θ̄n η̄n, Dτ η

n)

≤ ‖σ̄ n‖0,4‖η̄n‖0‖Dτ η
n‖0,4 + ‖θ̄n‖0,4‖η̄n‖0,4‖Dτ η

n‖0
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≤ Ch(h2 + τ 2)(h−1‖Dτ η
n‖0) + C‖∇ θ̄n‖0‖∇η̄n‖0‖Dτ η

n‖0
≤ C(h2 + τ 2)‖Dτ η

n‖0 ≤ C(h4 + τ 4) + C‖Dτ η
n‖20,

where we have used (2.15), (3.1) and (3.21).
Hence, one can check that

−Re(�̄nūn − �̄n
hū

n
h, Dτ η

n) ≤ C(h4 + τ 4) + C‖Dτ η
n‖20. (4.5)

In addition,by using Taylor expansion and integration by parts, we have

−Im(Dτu
n − u

n− 1
2

t , Dτ η
n) − Re(∇(un− 1

2 − ūn),∇Dτ η
n) − Re(�n− 1

2 un− 1
2 − �̄nūn, Dτ η

n)

≤ Cτ 2‖Dτ η
n‖0 ≤ Cτ 4 + C‖Dτ η

n‖20. (4.6)

Substituting (4.3), (4.5) and (4.6) into (4.2) yields that

1

2τ
(‖∇ηn‖20 − ‖∇ηn−1‖20) ≤ C(h4 + τ 4) + C‖Dτ η

n‖20,
which implies that

‖∇ηn‖20 ≤ C(h4 + τ 4) + Cτ

n∑

k=1

‖Dτ η
k‖20. (4.7)

In what follows, we pay our attention to estimate ‖Dτ η
n‖0. To do this, subtracting the

n − 1-level from the n-level of (3.2), we have

i(Dτ η
n − Dτ η

n−1, vh) − (∇(η̄n − η̄n−1),∇ vh) = −i(Dτ ξ
n − Dτ ξ

n−1, vh)

+ ((�̄nūn − �̄n
hū

n
h) − (�̄n−1ūn−1 − �̄n−1

h ūn−1
h ), vh) + i((Dτu

n − u
n− 1

2
t )

− (Dτu
n−1 − u

n− 3
2

t ), vh)

+ (∇((un− 1
2 − ūn) − (un− 3

2 − ūn−1)),∇vh)

+ ((�n− 1
2 un− 1

2 − �̄nūn) − (�n− 3
2 un− 3

2 − �̄n−1ūn−1), vh). (4.8)

Choosing vh = Dτ η̄
n = 1

2 (Dτ η
n + Dτ η

n−1) in (4.8) and taking the imaginary parts of the
resulting equation, we have

1

2τ
(‖Dτ η

n‖20 − ‖Dτ η
n−1‖20) = −Re(Dτ ξ

n − Dτ ξ
n−1, Dτ η̄

n)

+ Im((�̄nūn − �̄n
hū

n
h) − (�̄n−1ūn−1 − �̄n−1

h ūn−1
h ), Dτ η̄

n)

+ Im((Dτu
n − u

n− 1
2

t ) − (Dτu
n−1 − u

n− 3
2

t ), Dτ η̄
n)

+ Im(∇((un− 1
2 − ūn) − (un− 3

2 − ūn−1)), Dτ η̄
n)

+ Im((�n− 1
2 un− 1

2 − �̄nūn) − (�n− 3
2 un− 3

2 − �̄n−1ūn−1), Dτ η̄
n)

:=
5∑

k=1

Bk . (4.9)

By using Cauchy–Schwarz inequality, Taylor expansion and (2.2), we have

B1 ≤ Cτh2‖Dτ η̄
n‖0 ≤ Cτh4 + Cτ‖Dτ η̄

n‖20. (4.10)
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By using Cauchy–Schwarz inequality, Taylor expansion and integration by parts, we have

B3 + B4 + B5 ≤ Cτ 3‖Dτ η̄
n‖0 ≤ Cτ · τ 4 + Cτ‖Dτ η̄

n‖20. (4.11)

To estimate B2, we rewrite (�̄nūn − �̄n
hū

n
h) − (�̄n−1ūn−1 − �̄n−1

h ūn−1
h ) as

(�̄nūn − �̄n
hū

n
h) − (�̄n−1ūn−1 − �̄n−1

h ūn−1
h )

= [(�̄n − �̄n−1)ūn + �̄n−1(ūn − ūn−1)] − [(�̄n
h − �̄n−1

h )ūnh + �̄n−1
h (ūnh − ūn−1

h )]
= (�̄n − �̄n−1)(ūn − ūnh) + [(�̄n − �̄n−1) − (�̄n

h − �̄n−1
h )]ūnh

+ (�̄n−1 − �̄n−1
h )(ūn − ūn−1) + �̄n−1[(ūn − ūn−1) − (ūnh − ūn−1

h )]
= (�̄n − �̄n−1)(ūn − ūnh) + [(�̄n − �̄n−1) − (�̄n

h − �̄n−1
h )](ūnh − Rhū

n)

+ [(�̄n − �̄n−1) − (�̄n
h − �̄n−1

h )]Rhū
n

+ (�̄n−1 − �̄n−1
h )(ūn − ūn−1) + (�̄n−1 − Rh�̄

n−1)[(ūn − ūn−1) − (ūnh − ūn−1
h )]

+ Rh�̄
n−1[(ūn − ūn−1) − (ūnh − ūn−1

h )] :=
6∑

k=1

Bk
2 . (4.12)

According to Cauchy–Schwarz inequality, Taylor expansion and (3.1), it follows that

Im(B1
2 , Dτ η̄

n) = ((�̄n − �̄n−1)(ūn − ūnh), Dτ η̄
n) ≤ Cτ‖ūn − ūnh‖0‖Dτ η̄

n‖0
≤ Cτ(h4 + τ 4) + Cτ‖Dτ η̄

n‖20. (4.13)

For B2
2 , we have by (2.15) and (3.20)

Im([(�̄n − �̄n−1) − (�̄n
h − �̄n−1

h )](ūnh − Rhū
n), Dτ η̄

n) = −τ((Dτ σ̄
n + Dτ θ̄

n)η̄n, Dτ η̄
n)

≤ τ‖Dτ σ̄
n‖0,4‖η̄n‖0‖Dτ η̄

n‖0,4 + τ‖Dτ θ̄
n‖0,4‖η̄n‖0,4‖Dτ η̄

n‖0
≤ τ(Ch)‖η̄n‖0(Ch−1‖Dτ η̄

n‖0) + Cτ‖∇Dτ θ̄
n‖0‖∇η̄n‖0‖Dτ η̄

n‖0
≤ Cτ(h2 + τ 2) + Cτ‖∇Dτ θ̄

n‖0‖Dτ η̄
n‖0 ≤ Cτ(h4 + τ 4) + Cτ‖∇Dτ θ̄

n‖20 + Cτ‖Dτ η̄
n‖20.

(4.14)

For B3
2 , there holds

Im([(�̄n − �̄n−1) − (�̄n
h − �̄n−1

h )]Rhū
n, Dτ η̄

n) ≤ Cτ(‖Dτ σ̄
n‖0 + ‖Dτ θ̄

n‖0)‖Dτ η̄
n‖0

≤ Cτh4 + Cτ‖∇Dτ θ̄
n‖20 + Cτ‖Dτ η̄

n‖20.
(4.15)

In terms of (3.1), we have for B4
2 that

Im((�̄n−1 − �̄n−1
h )(ūn − ūn−1), Dτ η̄

n) ≤ Cτ‖�̄n−1 − �̄n−1
h ‖0‖Dτ η̄

n‖0
≤ Cτ(h2 + τ 2)‖Dτ η

n‖0
≤ Cτ(h4 + τ 4) + Cτ‖Dτ η̄

n‖20. (4.16)

For B5
2 , we have

((�̄n−1 − Rh�̄
n−1)[(ūn − ūn−1) − (ūnh − ūn−1

h )], Dτ η
n) = −τ(θ̄n−1(Dτ ξ̄

n + Dτ η̄
n), Dτ η̄

n).

(4.17)
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By using (3.1), one can check that

−τ Im(θ̄n−1Dτ ξ̄
n, Dτ η̄

n) ≤ τ‖θ̄n−1‖0‖Dτ ξ̄
n‖0,4‖Dτ η̄

n‖0,4
≤ τ‖θ̄n−1‖0(Ch)(Ch−1‖Dτ η̄

n‖0)
≤ Cτ(h2 + τ 2)‖Dτ η̄

n‖0 ≤ Cτ(h4 + τ 4) + Cτ‖Dτ η̄
n‖20.
(4.18)

To estimate the term −τ(θ̄n−1Dτ η̄
n, Dτ η̄

n) appeared on the right hand side of (4.17), we
will discuss in two different cases.

Case I τ ≤ h. In this case, from (3.21), we have

‖θn‖0 ≤ C(h2 + τ 2) ≤ Ch2,

which shows that

‖θn‖0,∞ ≤ Ch−1‖θn‖0 ≤ Ch−1(Ch2) ≤ C . (4.19)

Hence, we conclude that

−τ Im(θ̄n−1Dτ η̄
n, Dτ η̄

n) ≤ τ‖θ̄n−1‖0,∞‖Dτ η̄
n‖0‖Dτ η̄

n‖0 ≤ Cτ‖Dτ η̄
n‖20. (4.20)

Case II τ ≥ h. In this case, from (3.20), we have

‖ηn‖0 ≤ C(h2 + τ 2) ≤ Cτ 2. (4.21)

Hence, we conclude that

−τ Im(θ̄n−1Dτ η̄
n, Dτ η̄

n) ≤ τ‖θ̄n−1‖0,4‖Dτ η̄
n‖0,4‖Dτ η̄

n‖0 ≤ Cτ‖∇ θ̄n−1‖0‖Dτ η̄
n‖0,4‖Dτ η̄

n‖0
≤ Cτ‖∇ θ̄n−1‖0(τ−1(‖ηn‖0,4 + ‖ηn−2‖0,4))(τ−1(‖ηn‖0 + ‖ηn−2‖0))
≤ Cτ‖∇ θ̄n−1‖0(τ−1(‖∇ηn‖0 + ‖∇ηn−2‖0))(τ−1(Cτ 2))

≤ Cτ‖∇ θ̄n−1‖0(‖∇ηn‖0 + ‖∇ηn−1‖0 + ‖∇ηn−2‖0)
≤ Cτ(h4 + τ 4) + Cτ(‖∇ηn‖20 + ‖∇ηn−1‖20 + ‖∇ηn−2‖20), (4.22)

where we have used (3.21).
Therefore, one can see that

−τ Im(θ̄n−1Dτ η̄
n, Dτ η̄

n) ≤ Cτ(h4 + τ 4) + Cτ(‖Dτ η
n‖20 + ‖Dτ η

n−1‖20)
+ Cτ(‖∇ηn‖20 + ‖∇ηn−1‖20 + ‖∇ηn−2‖20). (4.23)

Based on the estimates (4.18) and (4.23), we have

Im(B5
2 , Dτ η̄

n) ≤ Cτ(h4 + τ 4) + Cτ(‖Dτ η
n‖20 + ‖Dτ η

n−1‖20)
+ Cτ(‖∇ηn‖20 + ‖∇ηn−1‖20 + ‖∇ηn−2‖20). (4.24)

In addition, it follows that for B6
2

Im(Rh�̄
n−1[(ūn − ūn−1) − (ūnh − ūn−1

h )], Dτ η̄
n) ≤ Cτ(‖Dτ ξ̄

n‖0 + ‖Dτ η̄
n‖0)‖Dτ η̄

n‖0
≤ Cτh4 + Cτ‖Dτ η̄

n‖20. (4.25)

Substituting the estimates B1
2 ∼ B6

2 into B2, we have
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B2 ≤ Cτ(h4 + τ 4) + Cτ(‖Dτ η
n‖20 + ‖Dτ η

n−1‖20) + Cτ‖∇Dτ θ̄
n‖20

+ Cτ(‖∇ηn‖20 + ‖∇ηn−1‖20 + ‖∇ηn−2‖20). (4.26)

Substituting the estimates B1 ∼ B6 into (4.9) yields

1

2τ
(‖Dτ η

n‖20 − ‖Dτ η
n−1‖20) ≤ Cτ(h4 + τ 4) + Cτ(‖Dτ η

n‖20 + ‖Dτ η
n−1‖20) + Cτ‖∇Dτ θ̄

n‖20
+ Cτ(‖∇ηn‖20 + ‖∇ηn−1‖20 + ‖∇ηn−2‖20).

Summing up the above inequality from 2 to n gives that

‖Dτ η
n‖20 ≤ ‖Dτ η

1‖20 + C(h4 + τ 4) + Cτ

n∑

k=1

‖∇Dτ θ
k‖20 + Cτ

n∑

k=1

‖∇ηk‖20 + Cτ

n∑

k=1

‖Dτ η
k‖20.

(4.27)

Next, we focus on the estimate ‖∇Dτ θ
n‖0. From (3.3), we have

(∇Dτ θ
n,∇wh) = μτ−1((|un |2 − |unh |2) − (|un−1|2 − |un−1

h |2), wh), ∀wh ∈ Vh .
(4.28)

Choosing wh = Dτ θ
n in (4.28) leads to

‖∇Dτ θ
n‖20 = μτ−1((|un |2 − |unh |2) − (|un−1|2 − |un−1

h |2), Dτ θ
n). (4.29)

One can check that

(|un |2 − |unh |2) − (|un−1|2 − |un−1
h |2) = ((un − unh) − (un−1 − un−1

h ))(un)∗

+ (un−1 − un−1
h )(un − un−1)∗

+ ((unh − un−1
h ) − Rh(u

n − un−1))(un − unh)
∗

+ Rh(u
n − un−1)(un − unh)

∗ + un−1
h ((un − unh) − (un−1 − un−1

h ))∗ :=
5∑

k=1

Dk .

(4.30)

By using Cauchy–schwarz inequality and (2.2), we have

μτ−1(D1, Dτ θ
n) ≤ C(‖Dτ ξ

n‖0 + ‖Dτ η
n‖0)‖Dτ θ

n‖0
≤ C(h2 + ‖Dτ η

n‖0)‖∇Dτ θ
n‖0. (4.31)

It is not difficult to check that by (3.1)

μτ−1(D2, Dτ θ
n) ≤ Cτ−1‖un−1 − un−1

h ‖0‖un − un−1‖0,∞‖Dτ θ
n‖0

≤ C(h2 + τ 2)‖∇Dτ θ
n‖0. (4.32)

For D3, we have by (2.15)

μτ−1(D3, Dτ η
n) = −μ(Dτ η

n(ξn)∗, Dτ θ
n) − μ(Dτ η

n(ηn)∗, Dτ θ
n)

≤ C‖Dτ η
n‖0‖ξn‖0,4‖Dτ θ

n‖0,4 + C‖Dτ η
n‖0‖ηn‖0,4‖Dτ θ

n‖0,4
≤ C‖Dτ η

n‖0‖∇Dτ θ
n‖0. (4.33)

In addition, by (3.1), we have
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μτ−1(D4, Dτ θ
n) ≤ Cτ−1‖Rh(u

n − un−1)‖0,∞‖un − unh‖0‖Dτ θ
n‖0

≤ C(h2 + τ 2)‖∇Dτ θ
n‖0. (4.34)

By using (2.15) again, there holds

μτ−1(D5, Dτ θ
n) ≤ ‖unh‖0,4(‖Dτ ξ

n‖0 + ‖Dτ η
n‖0)‖Dτ θ

n‖0,4
≤ C(h2 + ‖Dτ η

n‖0)‖∇Dτ θ
n‖0. (4.35)

Thus, based on the above estimates D1 ∼ D5, we conclude that

‖∇Dτ θ
n‖0 ≤ C(h2 + τ 2 + ‖Dτ η

n‖0). (4.36)

Substituting (4.36) into (4.27) results in

‖Dτ η
n‖20 ≤ ‖Dτ η

1‖20 + C(h4 + τ 4) + Cτ

n∑

k=1

‖∇ηk‖20 + Cτ

n∑

k=1

‖Dτ η
k‖20. (4.37)

Finally, there remains the term ‖Dτ η
1‖0 to estimate. To do this, letting n = 1 in (3.2),we

have

i

(
η1

τ
, vh

)

−
(

∇ η1

2
,∇vh

)

= −i(Dτ ξ
1, vh) + (�̄1ū1 − �̄1

hū
1
h, vh) + i(Dτu

1 − u
1
2
t , vh)

+ (∇(u
1
2 − ū1),∇vh) + (�

1
2 u

1
2 − �̄1ū1, vh), ∀vh ∈ Vh,

(4.38)

where we have used η0 = 0.

Choosing vh = η1

τ
in (4.38) and taking the imaginary parts of the resulting equation give

that
∥
∥
∥
∥
η1

τ

∥
∥
∥
∥

2

0
= −Re

(

Dτ ξ
1,

η1

τ

)

+ Im

(

�̄1ū1 − �̄1
hū

1
h,

η1

τ

)

+ Re

(

Dτu
1 − u

1
2
t ,

η1

τ

)

+ Im

(

∇(u
1
2 − ū1),∇ η1

τ

)

+ Im

(

�
1
2 u

1
2 − �̄1ū1,

η1

τ

)

. (4.39)

By using Cauchy–Schwarz inequality, (2.2), Taylor expansion and integration by parts, we
have

−Re

(

Dτ ξ
1,

η1

τ

)

+Re

(

Dτu
1 − u

1
2
t ,

η1

τ

)

+ Im

(

∇(u
1
2 − ū1),∇ η1

τ

)

+ Im

(

�
1
2 u

1
2 − �̄1ū1,

η1

τ

)

≤ C(h2 + τ 2)

∥
∥
∥
∥
η1

τ

∥
∥
∥
∥
0
. (4.40)

Noticing that

�̄1ū1 − �̄1
hū

1
h = (�̄1 − �̄1

h)ū
1 + (�̄1

h − Rh�̄
1)(ū1 − ū1h) + Rh�̄

1(ū1 − ū1h),

we have by (2.15), (3.1) and (3.21)
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Im

(

�̄1ū1 − �̄1
hū

1
h,

η1

τ

)

≤ C‖�̄1 − �̄1
h‖0

∥
∥
∥
∥
η1

τ

∥
∥
∥
∥
0
+ C‖θ̄1‖0‖ξ̄1‖0,4

∥
∥
∥
∥
η1

τ

∥
∥
∥
∥
0,4

+ ‖θ̄1‖0,4‖η1‖0,4
∥
∥
∥
∥
η1

τ

∥
∥
∥
∥
0
+ C‖ū1 − ū1h‖0

∥
∥
∥
∥
η1

τ

∥
∥
∥
∥
0

≤ C(h2 + τ 2)

∥
∥
∥
∥
η1

τ

∥
∥
∥
∥
0
+ C‖∇ θ̄1‖0

∥
∥
∥
∥
η1

τ

∥
∥
∥
∥
0

≤ C(h2 + τ 2)

∥
∥
∥
∥
η1

τ

∥
∥
∥
∥
0
.

(4.41)

Substituting (4.40) and (4.41) into (4.39) results in
∥
∥
∥
∥
η1

τ

∥
∥
∥
∥
0

≤ C(h2 + τ 2). (4.42)

Then, substituting (4.42) into (4.37) gives that

‖Dτ η
n‖20 ≤ C(h4 + τ 4) + Cτ

n∑

k=1

‖∇ηk‖20 + Cτ

n∑

k=1

‖Dτ η
k‖20. (4.43)

Hence, by (4.7) and (4.43), we have

‖∇ηn‖20 + ‖Dτ η
n‖20 ≤ C(h4 + τ 4) + Cτ

n∑

k=1

(‖∇ηk‖20 + ‖Dτ η
k‖20). (4.44)

An application of Gronwall inequality yields that

‖∇ηn‖0 + ‖Dτ η
n‖0 ≤ C(h2 + τ 2). (4.45)

Furthermore, according to triangle inequality and the superclose estimate between Rhun and
Ihun (Shi et al. 2014; Yang 2021), i.e., for u ∈ H3(�), there holds

‖∇(Rhu − Ihu)‖0 ≤ Ch2|u|3,
Hence, we conclude that

‖∇(Ihu
n − unh)‖0 ≤ ‖∇(Ihu

n − Rhu
n)‖0 + ‖∇(Rhu

n − unh)‖0 ≤ C(h2 + τ 2). (4.46)

Moreover, in terms of (3.21), we also have

‖∇(Ih�
n − �n

h)‖0 ≤ C(h2 + τ 2). (4.47)

The desired result (4.1) is obtained and the proof is complete.

In what follows, we adopt the interpolation post-processing approach to derive the
global superconvergence result. A macroelement K̃ is constructed with 4 elements K j ,
j = 1, 2, 3, 4 (see Fig. 1), the local interpolation operator I2 h : C(K̃ ) → Q22(K̃ ) is adopted
as interpolation post-processing operator (Lin and Lin 2006) with the following interpolation
conditions

I2hu(zi ) = u(zi ), i = 1, 2, . . . , 9,

where zi , i = 1, 2, . . . , 9 are the nine vertices of K̃ and Q22(K̃ ) denotes biquadratic
polynomial space on K̃ .

What’s more, one can check that the properties, which have been shown in Lin and Lin
(2006), for operator I2h hold:

I2h Ihu = I2hu, (4.48)
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Fig. 1 The macroelement K̃

‖u − I2hu‖1 ≤ Ch2‖u‖3, ∀u ∈ H3(�), (4.49)

‖I2hvh‖1 ≤ C‖vh‖1, ∀vh ∈ Vh . (4.50)

Therefore, in terms of (4.46) and (4.48)–(4.50), the global superconvergent error estiamte
can be obtained.

Theorem 4.2 Under the conditions of Theorem 4.1, we have for n = 1, 2, . . . , N

‖un − I2hu
n
h‖1 + ‖�n − I2h�

n
h‖1 ≤ C(h2 + τ 2). (4.51)

Proof From (4.48)–(4.50) and Theorem 4.1, one can see that

‖un − I2hu
n
h‖1 ≤ ‖un − I2h Ihu

n‖1 + ‖I2h Ihun − I2hu
n
h‖1

≤ ‖un − I2hu
n‖1 + ‖I2h(Ihun − unh)‖1

≤ Ch2‖un‖3 + C‖Ihun − unh‖1
≤ C(h2 + τ 2).

Similarly, we can derive the superconvergent result for �n . Hence, we complete the proof.

5 Numerical results

In this section, we present some numerical results to verify the correctness of the theoretical
analysis.

Example 1 (Error estimates and order of convergence)We set the domain� = (0, 1)×(0, 1)
and the final time T = 1 in the computation. Consider the following SP equation

iut + �u = �u + f , (x, y) ∈ �, 0 < t ≤ T ,

− �� = |u|2 + g, (x, y) ∈ �, 0 < t ≤ T ,

u|∂� = �|∂� = 0, (x, y) ∈ ∂�, 0 < t ≤ T ,

u(0) = sin(πx) sin(π y), (x, y) ∈ �.

Let the functions f and g and the initial and boundary conditions be chosen corresponding
to the exact solutions

u(t, x, y) = exp(−t) sin(πx) sin(π y), �(t, x, y) = exp(−t)x(1 − x)y(1 − y).

We present the numerical errors of ‖un −unh‖0, ‖un −unh‖1, ‖Ihun −unh‖1, ‖un − I2 hunh‖1
and ‖�n −�n

h‖0, ‖�n −�n
h‖1, ‖Ih�n −�n

h‖1, ‖�n − I2 h�n
h‖1 at t = 0.2, 1.0 in Tables 1,

2. Obviously, we can see that the numerical results agree well with the theoretical analysis,
i.e., the convergence rates are O(h2), O(h), O(h2) and O(h2), respectively.
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Table 1 The numerical errors and convergence orders at t = 0.2

Mesh 4 × 4 8 × 8 16 × 16 32 × 32

t = 0.2 ‖un − unh‖0 3.1867e−02 7.9918e−03 1.9995e−03 4.9999e−04

Order / 1.9955 1.9988 1.9997

‖un − unh‖1 5.0245e−01 2.5165e−01 1.2589e−01 6.2954e−02

Order / 0.99756 0.99924 0.99980

‖Ihun − unh‖1 1.0201e−01 2.6740e−02 6.7628e−03 1.6956e−03

Order / 1.9317 1.9833 1.9959

‖un − I2hu
n
h‖1 2.2676e−01 5.7562e−02 1.4443e−02 3.6139e−03

Order / 1.9780 1.9948 1.9987

‖�n − �n
h‖0 3.4459e−03 8.9936e−04 2.2725e−04 5.6964e−05

Order / 1.9379 1.9846 1.9961

‖�n − �n
h‖1 3.2032e−02 1.5475e−02 7.6564e−03 3.8176e−03

Order / 1.0496 1.0152 1.0040

‖Ih�n − �n
h‖1 2.6004e−03 8.7339e−04 2.3181e−04 5.8795e−05

Order / 1.5741 1.9137 1.9792

‖�n − I2h�n
h‖1 2.6310e−03 9.2116e−04 2.3501e−04 5.8998e−05

Order / 1.5141 1.9707 1.9940

Table 2 The numerical errors and convergence orders at t = 1.0

Mesh 4 × 4 8 × 8 16 × 16 32 × 32

t = 1.0 ‖un − unh‖0 2.6819e−02 7.4567e−03 1.6948e−03 4.6953e−04

Order / 1.8467 2.1374 1.8518

‖un − unh‖1 5.0260e−01 2.5164e−01 1.2589e−01 6.2954e−02

Order / 0.99808 0.99914 0.99983

‖Ihun − unh‖1 1.3213e−01 2.9813e−02 8.5015e−03 1.8657e−03

Order / 2.1479 1.8101 2.1880

‖un − I2hu
n
h‖1 2.4285e−01 5.9077e−02 1.5338e−02 3.6968e−03

Order / 2.0394 1.9455 2.0527

‖�n − �n
h‖0 2.0671e−03 6.1552e−04 1.4146e−04 3.9533e−05

Order / 1.7477 2.1215 1.8392

‖�n − �n
h‖1 1.5293e−02 7.1791e−03 3.4602e−03 1.7193e−03

Order / 1.0910 1.0530 1.0091

‖Ih�n − �n
h‖1 3.6321e−03 1.3643e−03 2.8198e−04 8.9870e−05

Order / 1.4126 2.2745 1.6497

‖�n − I2h�n
h‖1 3.7181e−03 1.3971e−03 2.8389e−04 9.0011e−05

Order / 1.4121 2.2991 1.6571
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Fig. 2 The profile of the discrete mass Mn and energy En

Example 2 (Conservation of discrete mass and energy)We set the domain� = (0, 1)×(0, 1)
and the final time T = 100. Consider the following SP equation

iut + �u = �u, (x, y) ∈ �, 0 < t ≤ T = 100,

− �� = |u|2, (x, y) ∈ �, 0 < t ≤ T = 100,

u|∂� = �|∂� = 0, (x, y) ∈ ∂�, 0 < t ≤ T = 100,

u(0) = sin(πx) sin(π y), (x, y) ∈ �.

The temporal direction is dividedwith time stepsize τ = 1, and the spatial direction is divided

with stepsize h =
√
2

40 . In Fig. 2, we present some values of the discrete mass and energy for
the scheme (2.5)–(2.6) at various time levels tn . It can be seen that the scheme (2.5)–(2.6)
preserves the discrete mass and energy, which is consistent with the theoretical analysis.
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