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Abstract
A topological index is a numerical property of a molecular graph that explains structural
features of molecules. The potential of topological indices to discriminate between distinct
structures is a significant topic to investigate. In this context, the exponential degree-based
indices were put forward in the literature. The present work focuses on the exponential
augmented Zagreb index (E AZ ), which is defined for a graph G as

E AZ(G) =
∑

viv j∈E(G)

e

(
di d j

di + d j − 2

)3

,

where di represents the degree of the vertex viand E(G) denotes the edge set of G. This
work characterizes the maximal unicyclic graph for E AZ in terms of graph order, which was
posed as an open problem in the recent article Cruz et al. (MATCH Commun Math Comput
Chem 88:481-503, 2022).

Keywords Topological index · Exponential AZ index · Extremal graph · Unicyclic graph

Mathematics Subject Classification 05C07 · 05C09 · 05C35

1 Introduction

Throughout this article, we consider G as a simple connected graph of order n and size m
having vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). A graph G is said to be
unicyclic if m = n. The degree of vertex vi ∈ V (G) is defined as the number of vertices
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adjacent to vi . Let NG(vi ) be the neighbor set of the vertex vi , that is, NG(vi ) = {vk ∈
V (G) : vivk ∈ E(G)}. The double star DSp,q is a graph that is obtained after joining two
central vertices of two stars Sp and Sq .

Topological indices are numerical descriptors used in the field of mathematical chemistry
and chem-informatics to characterize the topology of molecular structures. These indices
provide a quantitative measure of the structural features of a molecule, focusing on the
spatial arrangement of atoms and bonds rather than their chemical nature. The origin of
topological indices lies in graph theory, where a molecule is depicted as a graph featuring
atoms as vertices and bonds as edges. From a mathematical perspective, it is conceptualized
as a function mapping all molecular graphs to real numbers, ensuring its invariance under
graph isomorphism. These indices are employed to explain different physical and chemical
properties ofmolecules,which supports researchersworkingondrugdesign,material science,
and other branches of chemistry (Basak and Vracko 2020). After Wiener’s seminal work in
1947 Wiener (1947), a multitude of indices have been introduced in literature, utilizing
various parameters such as degree, distance, eccentricity, and spectrum (Liu 2023; Hayat
et al. 2023; Liu 2022; Maitreyi et al. 2023; Liu and Huang 2023; Du and Dimitrov 2020;
Ghanbari 2022; Ali et al. 2021; Das et al. 2018; Gutman and Das 2004; Das and Vetrík
2023; Hosseini et al. 2022). While each category has its own set of applications and benefits,
the domain of chemical graph theory is notably influenced by degree-based indices. The
augmented Zagreb index (AZ ) (Furtula et al. 2010) is one of the well-known degree based
indices, which is formulated as

AZ(G) =
∑

viv j∈E(G)

(
di d j

di + d j − 2

)3

.

Widespread investigation of the AZ index is apparent in Chen et al. (2022); Sun et al. (2018);
Cheng et al. (2021); Ali et al. (2021); Li et al. (2019, 2021); Ali (2021). To investigate
the discrimination capability of topological indices, Rada (2019) proposed the exponential
degree-based indices. A comprehensive identification of extremal trees for such invariants
was reported in Cruz and Rada (2019). The path graph was established to be the maximal
tree for the exponential Randić index (Cruz et al. 2020). Eliasi provided characterization of
the maximal unicyclic and bicyclic graphs with respect to the exponential second Zagreb
index in Eliasi (2022). For further insight on this direction, readers are referred to Xu et al.
(2023); Cruz et al. (2021); Das et al. (2021); Wang and Wu (2022); Das and Mondal (2023);
Carballosa et al. (2023). The present work focuses on the exponential augmented Zagreb
index (Rada 2019), which is defined as

E AZ(G) =
∑

viv j∈E(G)

e

(
di d j

di + d j − 2

)3

.

Cruz and Rada (2019) determined that the star graph serves as the smallest tree for E AZ .
They left the problem of identifying the maximal tree open, and this was resolved in Das et al.
(2021). The distinct extremal graphs for E AZ within the set of graphs with n non-isolated
vertices were identified in Cruz and Rada (2022). For more works on the E AZ index, readers
are referred toDas andMondal (2024); Das et al. (2024). LetCn and S′

n be cycle and unicyclic
graphs of order n, respectively, where S′

n is generated from the star graph Sn of order n by
attaching two pendent vertices. Most of the degree based indices yield Cn or S′

n as maximal
unicyclic graph in terms of graph order n. A unified approach reported by Cruz et al. (2022)
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Fig. 1 Unicyclic graph C3
� n−3

2 �, � n−3
2 �

to characterize extremal unicyclic graphs for degree-based indices also confirmed this fact.
However, in case of E AZ , this approach is inadequate to generate maximal unicyclic graph.
As a consequence, the problem of characterizing maximal unicyclic graph for E AZ in terms
of graph order n is posed as an open problem in Cruz et al. (2022). The ultimate aim of this
work is to solve this problem. We are surprised to state an amazing property of this extremal
graph (see, Fig. 1) that the contribution of E AZ corresponding to one edge v1v2 of this
structure greater than the E AZ value of all other unicyclic graphs. Such scenario is rare to
observe in extremal graph theory literature.

2 Main result

In this section, our aim is to explore the maximal unicyclic graph for the E AZ index.Let
C3

� n−3
2 �, � n−3

2 � be a unicyclic graph (see, Fig. 1) of order n containing a cycle C3 : v1v2v3v1

such that � n−3
2 � pendent edges are incident on v1 and � n−3

2 � pendent edges are incident on v2.
We first obtain the following lemma which will be employed to generate the main outcome.

Lemma 1 Let C3
� n−3

2 �, � n−3
2 � be a unicyclic graph of order n as displayed in Fig. 1. Then there

exists an edge v1v2 ∈ E

(
C3

� n−3
2 �, � n−3

2 �

)
such that

e

(
d1 d2

d1 + d2 − 2

)3

>

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n e

(n + 3)3

64 if n is odd,

n e

1

64

(
(n + 4) (n − 2)

n − 1

)3

if n is even.

Proof Using Sage (2015), one can easily verify that the assertion holds for n ≤ 9. We now
investigate the case where n ≥ 10.

First we assume that n = 2p + 1. Then d1 = p + 1 = d2 and

(
d1 d2

d1 + d2 − 2

)3

= (p + 1)6

8p3
= 1

8

(
p + 2 + 1

p

)3

. (1)
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Now,

1

2

(
p + 2 + 1

p

)
− 1

2
(p + 2) = 1

2p
.

Then

1

8

(
p + 2 + 1

p

)3

= (p + 2)3

8
+ 3 (p + 2)2

8p
+ 3 (p + 2)

8 p2
+ 1

8p3

>
(p + 2)3

8
+ 3 (p + 2)2

8p

>
(n + 3)3

64
+ 3 (n + 7)

16
. (2)

Now,

e

3 (n + 7)

16 > 1 + 3 (n + 7)

16
+ 9 (n + 7)2

512
+ 27 (n + 7)3

24, 576
+ 81 (n + 7)4

1572864
.

For n ≥ 11, we obtain

1 + 3 (n + 7)

16
+ 9 (n + 7)2

512
+ 27 (n + 7)3

24, 576
+ 81 (n + 7)4

1572864
> n

and hence

e

3 (n + 7)

16 > n.

Using the above result with (2), from (1), we obtain

e

(
d1 d2

d1 + d2 − 2

)3

> e

(n + 3)3

64 × e

3 (n + 7)

16 > n e

(n + 3)3

64 .

Next we assume that n = 2p. Then d1 = p + 1 and d2 = p. Now,
(

d1 d2
d1 + d2 − 2

)3

=
(
p (p + 1)

2p − 1

)3

=
(

(p + 2) (p − 1)

2p − 1
+ 2

2p − 1

)3

=
(

(p + 2) (p − 1)

2p − 1

)3

+ 8

(2p − 1)3
+ 6 (p + 2)2(p − 1)2

(2p − 1)3

+ 12 (p + 2) (p − 1)

(2p − 1)3

>

(
(p + 2) (p − 1)

2p − 1

)3

+ 6 (p + 2)2(p − 1)2

(2p − 1)3
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Fig. 2 Two unicyclic graphs H1 and H2

= 1

64

(
(n + 4) (n − 2)

n − 1

)3

+ 3 (n + 4)2 (n − 2)2

8 (n − 1)3
. (3)

Now one can write

e

3 (n + 4)2 (n − 2)2

8 (n − 1)3 > 1 + 3 (n + 4)2 (n − 2)2

8 (n − 1)3
+ 9 (n + 4)4 (n − 2)4

128 (n − 1)6
.

For n ≥ 10, it is easy to check that

1 + 3 (n + 4)2 (n − 2)2

8 (n − 1)3
+ 9 (n + 4)4 (n − 2)4

128 (n − 1)6
> n,

which implies

e

3 (n + 4)2 (n − 2)2

8 (n − 1)3 > n.

In view of above result, we obtain from (3) that

e

(
d1 d2

d1 + d2 − 2

)3

> e

3 (n + 4)2 (n − 2)2

8 (n − 1)3 × e

1

64

(
(n + 4) (n − 2)

n − 1

)3

> n e

1

64

(
(n + 4) (n − 2)

n − 1

)3

.

Hence, the proof is done. 
�
Lemma 2 Let G be a unicyclic graph of even order n. Then there exists vα, vβ ∈ V (G) such
that dα = dβ = n

2 if and only if G ∼= Hk, k = 1, 2, 3, 4, 5, where Hk’s are reported in
Figs. 2, 3, 4 and 5.

Proof Suppose n = 2p. First assume that there exists vα, vβ ∈ V (G) such that dα = dβ =
n
2 = p. We have

dα + dβ = |NG(vα) ∪ NG(vβ)| + |NG(vα) ∩ NG(vβ)|. (4)

Let dG(vα, vβ) be the shortest distance between vα and vβ in G. Then dG(vα, vβ) ≥ 1. Now
we build the proof in the three cases listed below.
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Fig. 3 Unicyclic graph H3

Fig. 4 Unicyclic graph H4

Fig. 5 Unicyclic graph H5

Case 1. dG(vα, vβ) = 1. SinceG is a unicyclic graph, 0 ≤ |NG(vα)∩NG(vβ)| ≤ 1. First we
assume that |NG(vα) ∩ NG(vβ)| = 0. By (4), we have |NG(vα) ∪ NG(vβ)| = dα + dβ = n.
All the vertices in S are adjacent to either vα or vβ , where S = V (G)\{vα, vβ}. Since
dα = dβ = n

2 = p and vαvβ ∈ E(G), DSp−1,p−1 is a subgraph of G. Since G is a unicyclic
graph with dα = dβ = n

2 = p, we have viv j ∈ E(G), where vi ∈ NG(vα), v j ∈ NG(vβ); or
vi , v j ∈ NG(vα) (or vi , v j ∈ NG(vβ)), that is, G ∼= H1 (see, Fig. 2) or G ∼= H3 (see, Fig.
3).

Next we assume that |NG(vα) ∩ NG(vβ)| = 1. Let vγ ∈ NG(vα) ∩ NG(vβ). By (4), we
have |NG(vα)∪NG(vβ)| = dα+dβ −1 = n−1. Using this result with dα = dβ = n

2 = p and
vαvβ ∈ E(G), we conclude that H0 (see, Fig. 6) is a subgraph of G with |V (H0)| = n − 1.
Let vn ∈ V (G)\V (H0). Since G is unicyclic of order n, vertex vn is adjacent to vγ , or
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Fig. 6 Unicyclic graph H0 of order 2p − 1

vnvk ∈ E(G), where vk ∈ NG(vα) or vk ∈ NG(vβ), that is, G ∼= H4 (see, Fig. 4) or G ∼= H5
(see, Fig. 5).

Case 2. dG(vα, vβ) = 2. In this case |NG(vα) ∪ NG(vβ)| ≤ n − 2. Since G is a unicyclic
graph, 1 ≤ |NG(vα) ∩ NG(vβ)| ≤ 2. If |NG(vα) ∩ NG(vβ)| = 1, then by (4), we obtain
dα+dβ = |NG(vα)∪NG(vβ)|+|NG(vα)∩NG(vβ)| ≤ n−1 < n = dα+dβ , a contradiction.
Otherwise, |NG(vα) ∩ NG(vβ)| = 2. Again by (4), we have |NG(vα) ∪ NG(vβ)| = n − 2.
Since vα, vβ /∈ NG(vα) ∪ NG(vβ), all the vertices in S are adjacent to vα or vβ or both,
where S = V (G)\{vα, vβ}. Since dα = dβ = n

2 = p with |NG(vα) ∩ NG(vβ)| = 2, we
must have G ∼= H2 (see, Fig. 2).

Case 3. dG(vα, vβ) ≥ 3. In this case |NG(vα) ∩ NG(vβ)| = 0 and vα, vβ /∈ NG(vα) ∪
NG(vβ). This with (4), we obtain |NG(vα)∪ NG(vβ)| ≤ n−2 < n = dα +dβ = |NG(vα)∪
NG(vβ)|, a contradiction.

Conversely, we assume that G ∼= Hk, k = 1, 2, 3, 4, 5. Then from Figs. 2, 3, 4 and 5, it
is evident that there exists vα, vβ ∈ V (G) such that dα = dβ = n

2 . Hence the proof is done.
�
Lemma 3 Let G be a unicyclic graph of even order n. If G contains an edge vαvβ with
dα = dβ = n

2 , then

E AZ(G) < E AZ(C3
� n−3

2 �, � n−3
2 �).

Proof Employing Lemma 2, we can write G ∼= Hk, k = 1, 2, 3, 4, 5. From Figs. 2, 3, 4
and 5, it is clear that

E AZ(Hk) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
n6

64 (n−2)3 + (n − 4) e

(
n

n−2

)3
+ 3e8 if k = 1, 3,

(n − 4) e

(
n

n−2

)3
+ 4e8 if k = 2,

e
n6

64 (n−2)3 + (n − 4) e

(
n

n−2

)3
+ 2e

27n3

(n+2)3 + e
27
8 if k = 4,

e
n6

64 (n−2)3 + (n − 5) e

(
n

n−2

)3
+ 4e8 if k = 5.

One can easily find that E AZ(Hk) < E AZ

(
C3

� n−3
2 �, � n−3

2 �

)
for n = 4, 6, 8, 10, and

k = 1, 2, 3, 4, 5. Now we consider n ≥ 12. Note that di ≤ p for any vi ∈ V (Hk)
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(k = 1, 2, 3, 4, 5.). For any viv j ∈ E(Hk) satisfying di ≥ d j ≥ 2, we obtain

1

di
+ 1

d j
− 2

di d j
= 1

di
+ 1

d j

(
1 − 2

di

)
≥ 1

p
+ 1

di

(
1 − 2

p

)
≥ 1

p
+ 1

p

(
1 − 2

p

)
,

which exerts

di d j

di + d j − 2
≤ p2

2p − 2
= n2

4 (n − 2)
<

(n + 4) (n − 2)

4 (n − 1)
, as n ≥ 12.

For any viv j ∈ E(Hk) satisfying di ≥ d j = 1, we obtain

1

di
+ 1

d j
− 2

di d j
= 1 − 1

di
≥ 1

2
,

that is,

di d j

di + d j − 2
≤ 2 <

(n + 4) (n − 2)

4 (n − 1)
as n ≥ 12.

Thus by Lemma 1, we obtain

E AZ(Hk) < n e

1

64

(
(n + 4) (n − 2)

n − 1

)3

< e

(
d1 d2

d1 + d2 − 2

)3

< E AZ
(
C3

� n−3
2 �, � n−3

2 �
)

for k = 1, 2, 3, 4, 5. Hence the proof is completed. 
�
We are now ready to prove our main result of this paper.

Theorem 1 Let G be a unicyclic graph of order n. Then

E AZ(G) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e

(
n (n+2)
4 (n−1)

)3
+ n−2

2 e

(
n+2
n

)3
+ n−4

2 e

(
n

n−2

)3
+ 2e8 if n is even,

e

(
(n+1)6

64 (n−1)3

)

+ (n − 3) e

(
n+1
n−1

)3
+ 2e8 if n is odd,

(5)

with equality if and only if G ∼= C3
� n−3

2 �, � n−3
2 �.

Proof Using Sage (2015), it is straightforward to examine the result to be true for n ≤ 9.
Therefore, our task is to establish the result for n ≥ 10. Suppose viv j ∈ E(G) with di ≥ d j .
As G is a unicyclic graph, we must have di + d j ≤ n + 1. We consider the subsequent two
cases:
Case 1.n = 2p+1. In this case p ≥ 5. Thuswehaved j ≤ p+1 (Otherwise,di ≥ d j ≥ p+2,
that is, di +d j ≥ 2p+4 = n+3, a contradiction). If d j = p+1, then di = p+1 (Otherwise,
di ≥ p+ 2, that is, di + d j ≥ 2p+ 3 = n+ 2, a contradiction) and hence G ∼= C3

� n−3
2 �, � n−3

2 �
(see, Fig. 1). Thus we have

E AZ(G) = e

(
(n + 1)6

64 (n − 1)3

)

+ (n − 3) e

(
n + 1

n − 1

)3

+ 2e8

and hence equality appears in (5). Otherwise, d j ≤ p. We take into account the following
two cases:
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Case 1.1. di ≤ p + 1. Now,

1

di
+ 1

d j
− 2

di d j
= 1

di
+ 1

d j

(
1 − 2

di

)
≥ 1

di
+ 1

p

(
1 − 2

di

)
= 1

p
+ 1

di

(
1 − 2

p

)

≥ 1

p
+ 1

p + 1

(
1 − 2

p

)
,

that is,

di d j

di + d j − 2
≤ p (p + 1)

2p − 1
= 1

2

(
p + 3

2
+ 3

2 (2p − 1)

)
<

p + 2

2
= n + 3

4
,

as n ≥ 11. Since G is a unicyclic graph, employing the above finding with Lemma 1, it is
clear that

E AZ(G) =
∑

viv j∈E(G)

e

(
di d j

di + d j − 2

)3

< n e

(n + 3)3

64 < e

(
d1 d2

d1 + d2 − 2

)3

< E AZ
(
C3

� n−3
2 �, � n−3

2 �
)

.

Again the result (5) strictly holds.

Case 1.2. di ≥ p + 2. Since di + d j ≤ n + 1, we address the two subcases listed below:
Case 1.2.1. di + d j ≤ n. First we have to prove that

di d j

di + d j − 2
<

n + 3

4
. (6)

For di ≥ d j ≥ 2, we obtain
1

di
+ 1

d j
− 2

di d j
≥ 1

d j
+ 1

2p + 1 − d j

(
1 − 2

d j

)
.

Consider

f (x) = 1

x
+ 1

2p + 1 − x

(
1 − 2

x

)
, 2 ≤ x ≤ p.

Then

f ′(x) = − 1

x2
+ 1

(2p + 1 − x)2

(
1 − 2

x

)
+ 2

(2p + 1 − x) x2

= − (2 p − 1) (2p + 1 − 2x)

(2p + 1 − x)2 x2
< 0 as x ≤ p.

Thus f (x) is strictly decreasing on 2 ≤ x ≤ p, and hence

f (x) ≥ f (p) = 1

p
+ 1

p + 1

(
1 − 2

p

)
= 2p − 1

p(p + 1)
,

that is,
di d j

di + d j − 2
≤ p(p + 1)

2p − 1
= 1

2

(
p + 3

2
+ 3

2 (2p − 1)

)
<

p + 2

2
= n + 3

4
.

The result (6) holds. For di ≥ d j = 1, we obtain
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di d j

di + d j − 2
= di

di − 1
<

p + 2

2
= n + 3

4

as p ≥ 5. Again the result (6) holds. Similarly, as before, we obtain

E AZ(G) < n e

(n + 3)3

64 < e

(
d1 d2

d1 + d2 − 2

)3

< E AZ
(
C3

� n−3
2 �, � n−3

2 �
)

.

Again the result (5) strictly holds.

Case 1.2.2. di + d j = n + 1. In this case

1

di
+ 1

d j
− 2

di d j
= 1

d j
+ 1

2p + 2 − d j

(
1 − 2

d j

)
.

Similarly, as Case 1.2.1, the function
1

x
+ 1

2p + 2 − x

(
1 − 2

x

)
is a strictly decreasing

function on x ≤ p and hence

1

di
+ 1

d j
− 2

di d j
= 1

d j
+ 1

2p + 2 − d j

(
1 − 2

d j

)
≥ 2

p + 2
,

that is,

di d j

di + d j − 2
≤ p + 2

2
= n + 3

4
.

Now,

E AZ(G) ≤ n e

(n + 3)3

64 < e

(
d1 d2

d1 + d2 − 2

)3

< E AZ
(
C3

� n−3
2 �, � n−3

2 �
)

.

Again the result (5) strictly holds.

Case 2. n = 2p. In this case p ≥ 5. Since di + d j ≤ n + 1 = 2p+ 1, we must have d j ≤ p.
If d j = p, then either di = p or di = p + 1. For di = p + 1, we have G ∼= C3

� n−3
2 �, � n−3

2 �
(see, Fig. 1) as G is unicyclic. Thus

E AZ(G) = e

(
n (n + 2)

4 (n − 1)

)3

+ n − 2

2
e

(
n + 2

n

)3

+ n − 4

2
e

(
n

n − 2

)3

+ 2e8,

and hence the equality holds in (5). For di = p, by Lemma 3, the result (5) strictly holds.
Otherwise, d j ≤ p − 1. The remaining portion of the proof can be developed by addressing
the subsequent two cases:

Case 2.1. di ≤ p + 2. Now, we obtain

1

di
+ 1

d j
− 2

di d j
= 1

di
+ 1

d j

(
1 − 2

di

)

≥ 1

di
+ 1

p − 1

(
1 − 2

di

)
= 1

p − 1
+ 1

di

(
1 − 2

p − 1

)
.

Combining the above fact with di ≤ p + 2 and p ≥ 5, we have
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1

di
+ 1

d j
− 2

di d j
≥ 1

p − 1
+ 1

p + 2

(
1 − 2

p − 1

)
,

which exerts

di d j

di + d j − 2
≤ (p + 2) (p − 1)

2p − 1
= (n + 4) (n − 2)

4 (n − 1)
.

It is evident from Lemma 1 that

E AZ(G) ≤ n e

1

64

(
(n + 4) (n − 2)

n − 1

)3

< e

(
d1 d2

d1 + d2 − 2

)3

< E AZ
(
C3

� n−3
2 �, � n−3

2 �
)

.

Again the result (5) strictly holds.

Case 2.2. di ≥ p + 3. Since di + d j ≤ n + 1, we consider the following two subcases:
Case 2.2.1. di + d j ≤ n. First we have to prove that

di d j

di + d j − 2
<

(n + 4) (n − 2)

4 (n − 1)
. (7)

For di ≥ d j ≥ 2, we obtain

1

di
+ 1

d j
− 2

di d j
≥ 1

d j
+ 1

2p − d j

(
1 − 2

d j

)
.

Let us consider a function

g(x) = 1

x
+ 1

2p − x

(
1 − 2

x

)
, x ≤ p − 1.

Similarly, as Case 1.2.1, the function g(x) is a strictly decreasing function on x ≤ p − 1,
and hence

g(x) ≥ g(p − 1) = 1

p − 1
+ 1

p + 1

(
1 − 2

p − 1

)
= 2

p + 1
,

that is,

di d j

di + d j − 2
≤ p + 1

2
= n + 2

4
<

(n + 4) (n − 2)

4 (n − 1)
, as n ≥ 10.

Thus (7) holds. For di ≥ d j = 1, we obtain

di d j

di + d j − 2
= di

di − 1
<

n + 2

4
<

(n + 4) (n − 2)

4 (n − 1)
, as n ≥ 10.

Again (7) holds. Similarly, as before, we obtain

E AZ(G) < n e

1

64

(
(n + 4) (n − 2)

n − 1

)3

< e

(
d1 d2

d1 + d2 − 2

)3

< E AZ
(
C3

� n−3
2 �, � n−3

2 �
)

.

Case 2.2.2. di + d j = n + 1. Let us construct a function

h(x) = x (n + 1 − x), x ≤ n − 2

2
.

Subsequently, it becomes evident that the function h(x) is increasing for x ≤ n−2
2 , and hence
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h(x) ≤ h(n/2 − 1) = (n − 2) (n + 4)

4
.

Employing the aforementioned result, it is apparent that

di d j

di + d j − 2
= (n + 1 − d j ) d j

n − 1
≤ (n + 4) (n − 2)

4 (n − 1)
.

Similarly, as before, we obtain

E AZ(G) ≤ n e

1

64

(
(n + 4) (n − 2)

n − 1

)3

< e

(
d1 d2

d1 + d2 − 2

)3

< E AZ
(
C3

� n−3
2 �, � n−3

2 �
)

.

Again the result (5) strictly holds. This completes the proof of the theorem. 
�

3 Concluding remarks

In this work, we have solved an open problem that was posed in Cruz et al. (2022). The
maximal unicyclic graph has been characterized for the E AZ index in terms of graph order
n. We are delighted to report a remarkable characteristic of this extremal graph (see, Fig. 1)
that the contribution of E AZ associated with a single edge v1v2 of this structure exceeds
the E AZ values of all other unicyclic graphs individually. Observing such a scenario is
uncommon in the literature of extremal graph theory.
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