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Abstract
The Random Variable Transformation (RVT) technique has been applied in recent years to
analyze a wide variety of dynamic models formulated via random differential equations.
The applicability of this technique has usually been focused on problems where an explicit
solution of the underlying deterministic problem is available. This fact limits the usefulness
of the RVT method. This note aims to point out that the RVT technique can be successfully
appliedwithout this requirement by showing awider range of potential applications including
very general classes of single-species models.

Keywords Random differential equations · Population models with uncertainties · Random
variable transformation method · Probability density function

Mathematics Subject Classification 34F05 · 37H10 · 92-10

1 Introduction andmotivation

The study of differential equations with uncertainties is naturally motivated by the key role
that differential equations play when modeling real-world phenomena. In this setting, the
parameters (initial/boundary conditions, source termand/or coefficients) of the corresponding
differential equations need to be set from data that usually contain uncertainties associated
with error measurements, lack of knowledge of the physical process (in a wide sense) because
of its inherent complexity, etc. These facts make it more realistic to describe the dynamics
of the phenomenon under study by means of differential equations that take into account
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randomness in their formulation. To this end, one mainly distinguishes two approaches:
stochastic differential equations (SDEs) and randomdifferential equations (RDEs) (Øksendal
2003; Soong 1973). According to (Banks et al. 2014, p. 258), the theory of RDEs has been
much less advanced than that for SDE, despite the fact that RDEs have interesting advantages
from a mathematical modeling point of view as highlighted by some recent works (Caraballo
et al. 2019; Ke and Xu 2023). Indeed, RDEs offer greater flexibility when they are applied
to model real-world problems since instead of assuming a driving stochastic process for
describing the uncertainties (such as the standard Wiener process in the case of Itô-type
SDE), we can assign appropriate probability distributions to each model parameter (or even
a joint distribution) of the corresponding RDE so that its solution captures data uncertainty.
As indicated in a number of contributions (see for example, the motivating reasons exhibited
in (Caraballo et al. 2019, Sect. 1)), in the setting of biology, and in particular, in the study
of population models, it is a major advantage w.r.t. SDEs since these latter equations may
provide unrealistic answers (non-positive or unbounded behavior for modeling populations).
Although in the last decade there has been a notable increase in the applications of RDEs,
they still seem to be less abundant than those of SDEs.

It is important to point out that when solving an RDE, it is not only important to answer
the same classical questions as in its deterministic counterpart, namely, calculating, exact or
approximately, its solution, stability, etc. It is also relevant to determine themain probabilistic
properties of the solution,which is a stochastic process, such as itsmean or variance functions.
However, a more desirable goal is to determine its finite distributions (also termed fidis),
with a particular interest in calculating the first probability density function (1-PDF) since
from it one can determine all the one-dimensional moments as well as the probability of
any measurable event of interest (Soong 1973, ch. 3). In the setting of RDEs, the random
variable transformation (RVT) technique has proven to be useful for facing this problem.
The RVT technique is a conceptually straightforward method that in its simplest formulation
allows determining the PDF, pX (x), of a random variable, X , that is related to another
random variable Y (with PDF pY (y)) by a one-to-one transformation, X = g(Y ), admitting
a computable inverse, Y = h(X) = g−1(X). Then, it can be shown that

pX (x) = |h′(x)|pY (h(x)). (1)

In higher dimensions, i.e., forX andY random vectors, the previous result permits computing
the joint PDF of X in terms of the joint PDF of Y replacing h′(x) in (1) by the Jacobian of
the transformation (Soong 1973, pp. 24–25).

The RVTmethod has been applied to many different problems with random parameters or
uncertainties, including in the continuous case, ordinary (Dorini et al. 2016), partial (Hussein
andSelim2009), fractional (Burgos et al. 2021), etc., differential equations, and in the discrete
scenario, difference equations, as well as systems of these types of equations (Cortés et al.
2017). However, the applicability of the RVT method has usually been focused on problems
where an explicit solution is available. This note aims to emphasize that the RVT method
can be nicely applied to far more general problems than those usually considered. As many
contributions havemainly focused on applications of the RVT technique to growth population
models (Dorini et al. 2018; Bevia et al. 2020, 2023), we here present how to apply this
technique to rather general single-species models. Nevertheless, it must be emphasized that
it could be similarly applied to problems in other scientific and technical areas.

123



Applying the RVT method... Page 3 of 8 286

2 A general class of population growthmodels

Let x ≡ x(t) be the population number, density, or biomass at time t > 0. We consider the
general growth model

x ′ = r xg(x), t ≥ 0, x(0) = x0 > 0, (2)

where r > 0 is the intrinsic per capita growth rate, and g(x) ∈ C1[0,∞) satisfying the
following assumptions:

1. there exist K0, K , 0 ≤ K0 < K , such that g(K+
0 ) > 0 and g(K ) = 0,

2. (x − K )g(x) < 0 for x ∈ (K0,∞), x �= K .

Under these conditions, V (x) = x − K − log(x/K ) is a Liapunov function for (2) in
(K0,∞), and for any x0 > K0 ≥ 0 the population tends to K (the carrying capacity) as
t → ∞ (Goh 1980; Takeuchi 1996).

This general growthmodel embracesmany of themost usual populationmodels, including
several models where a closed-form solution for x(t) can be obtained. Some of these models
have been studied in the random setting taking advantage of the RVT method, such as the
logistic model (Dorini et al. 2016, 2018),

g(x) = 1 − x

K
, K0 = 0, (3)

the Gompertz model (Bevia et al. 2020),

g(x) = − log
( x

K

)
, K0 = 0, (4)

or Gilpin and Ayala (1973) generalised logistic model (Bevia et al. 2023),

g(x) = 1 −
( x

K

)ρ

, K0 = 0. (5)

Considering now the intrinsic growth rate as a random variable, R, so that x(t) is also
a random variable written as X ≡ X(t) for fixed t > 0, it is clear that R can always be
explicitly expressed in terms of X ,

R = h(X) = 1

t

∫ X

x0

ds

sg(s)
, x0 > 0, (6)

even when a closed-form expression for x(t) in the corresponding pathwise deterministic
problem is not available. Thus, denoting by pR(r) and pX(t)(x) for the PDF of the random
variable R and the 1-PDF of the stochastic process X(t), respectively, and applying the RVT
method (for t arbitrary but fixed), one has

pX(t)(x) = |h′(x)|pR(h(x)) = 1

t x |g(x)| pR
(
1

t

∫ x

x0

ds

sg(s)

)
, t > 0, x > x0 > 0.

(7)

Remark 1 In many situations, as in the following example, the integral in (7) can be explicitly
obtained, but even if that were not the case, it could be carefully computed numerically for
given t and x values.

Example 1 (A growth model with a strong Allee effect) Consider model (2) with g(x) =(
x
K0

− 1
) (

1 − x
K

)
. This model exhibits critical depensation or strong Allee effect, with the
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Fig. 1 1-PDF of the stochastic process X(t) ≡ X in Example 1 with parameters K0 = 1, x0 = 2, K = 4. It
has been at the time instants t = 1 (red); t = 5 (blue) and t = 20 (green), assuming that the intrinsic growth
rate is a random variable with gamma distribution, R ∼ Ga(α, p) with α = 0.2, and p = 1 (left) or p = 2
(right). Computations have been carried out using (9) and (10) (color figure online)

per capita growth rate, rg(x), being negative at low densities until reaching a minimum
threshold size (Gruntfest et al. 1997). Thus, for 0 < x0 < K0 the population goes extinct,
while for any x0 > K0 it tends to the stable positive equilibrium value K .

Although the solution of this model can only be expressed implicitly, when the intrinsic
growth rate is a random variable the 1-PDF of the stochastic process X ≡ X(t) can be
obtained from (7),

pX(t)(x) = 1

t x
∣∣∣ x
K0

− 1
∣∣∣ ∣∣1 − x

K

∣∣ pR
⎛
⎝1

t

∫ x

x0

ds

s
(

s
K0

− 1
) (

1 − s
K

)

⎞
⎠ . (8)

Hence, for K0 < x0 < K one gets

pX(t)(x) = K0K

tx (x − K0) (K − x)
pR (h(x)) , (9)

where

h(x) = 1

t(K − K0)
log

((
K − x0
K − x

)K0
(

x − K0

x0 − K0

)K ( x0
x

)K−K0

)
. (10)

Figure 1 shows the 1-PDF of X(t) at the time instants t ∈ {1, 5, 20} when R ∼ Ga(α, p),
i.e. it has a Gamma distribution with parameters α > 0 (rate) and p > 0 (shape) whose

PDF is pR(r) = r p−1

α p(p−1)!e
−r/α . When p = 1, R becomes an exponential distributed random

variable with mean α: R ∼ Exp(α). The results for this case are shown in Fig. 1 (left), while
Fig. 1 (right) corresponds to p = 2.

Remark 2 So far, we have assumed that the only random parameter in the growth model (2) is
the intrinsic per capita rate r . However, we can also assume that the carrying capacity K is not
deterministic but random due to uncertain fluctuations in the environment (Braumann 2008).
In such a case, the function g(x) in (2) will also depend on K as it happens in the logistic and
Gompertz models (see (3) and (4), respectively). Analogously, for the generalized logistic
model (5) the ρ parameter controlling how fast the limit K is approached can also be regarded
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as a random variable since it will depend on environmental, genetic, etc., factors. When the
above-mentioned situations happen, i.e., g(x) = g(x; θ) being θ = (θ1, . . . , θn) a random
vector collecting the model parameters (θ = K in models (3) and (4), and θ = (K , ρ) in
model (5)), our approach can be extended using the RVT technique. Indeed, it is enough
to introduce the random vector T = θ and define the mapping R

n+1 −→ R
n+1 such that

(T, R) −→ (θ , R) whose Jacobian is h′(x), then the 1-PDF of X(t) is given by

pX(t)(x) =
∫

Rn

1

t x |g(x, θ)| p�,R

(
θ ,

∫ x

x0

ds

g(s, θ

)
dθ , (11)

where p�,R(θ , r) denotes the joint PDF of the random vector (�, R). As the number n of
random parameters θ = (θ1, . . . , θn) is high, the computation of the 1-PDF given in (12)
using quadrature rules could become unaffordable. In such a case, assuming that the growth
rate R is independent of θ (which is a plausible hypothesis from a practical standpoint), the
1-PDF pX(t)(x) given in (12) can be alternatively computed via the following expectation

pX(t)(x) =
∫

Rn

1

t x |g(x, θ)| p� (θ) pR

(∫ x

x0

ds

g(s, θ)

)
dθ

= E�

[
1

t x |g(x, θ)| pR
(∫ x

x0

ds

g(s, θ

)]
. (12)

This expression is simpler since it is enough sampling the random vector � from its joint
PDF p� and evaluate the argument within the above expectation and then averaging to
approximate the 1-PDF over a range of x such that

∫
R
pX(t)(x) dx = 1, for t fixed.

As exemplified in different works applying the RVT method to model with multiple
random parameters (e.g., Dorini et al. 2018; Bevia et al. 2023), computing pX(t)(x) for
particular growth models and distributions of the random parameters, either analytically or
with a numerically efficient method, may not be straightforward, possibly requiring special
particular approaches.

3 Autonomousmodels

We consider now a more general growth model in the form of an autonomous equation,

x ′ = xg(x, q), t ≥ 0, x(0) = x0 > 0. (13)

For the sake of clarity, we single out the case of one randomparameter, but themultiparameter
case can be tackled as indicated in Remark 2.

From (13) one gets

t =
∫ x

x0

ds

sg(s, q)
. (14)

Hence, if q is the realization of a random variable Q, consequently x(t) is the pathwise
solution at time t of a random variable X . Considering the fixed time t as the realization of
a random variable T with Dirac delta PDF, by applying the RVT method one gets

pX(t)(x) =
∫

R

pQ(q)
1

x |g(x, q)|δ
(
t −

∫ x

x0

ds

sg(s, q)

)
dq. (15)

123



286 Page 6 of 8 F. Rodríguez et al.

Fig. 2 Left: 1-PDF for the stochastic process X(t) ≡ X in Example 2, with parameters r = 0.4, K0 = 1,
x0 = 2, K = 10, at the time instants t = 1 (red); t = 2 (blue) and t = 3 (green), assuming that the fishing
mortality is a uniform random variable, Q ∼ Uniform[0.1, 0.2]. Right: Expectation (red line) plus/minus the
standard deviation (grey lines), E[X(t)] ± σ [X(t)] (color figure online)

Example 2 (A growth model with harvesting) A strong Allee effect may be typical in some
fisheries, which can also be harvested. Adding proportional harvesting to the model in Exam-
ple 1, one gets a model of the type (13),

x ′ = x

(
r

(
x

K0
− 1

) (
1 − x

K

)
− q

)
, t ≥ 0, x(0) = x0 > 0, (16)

where none of the parameters can be expressed explicitly in terms of x .
Parameter q , fishing mortality, the product of fishing effort and catchability, may not be

easy to fix without uncertainty. We consider in this example that it might be in the range
q1 − q2, without further knowledge, so we assume that it is a random variable, Q, with
uniform distribution (non-informative distribution) in the interval [q1, q2]. Hence, from (15)
one gets, for K0 < x0 < K ,

pX(t)(x) =
∫ q2

q1

1

q2 − q1

1

xg(x, q)
δ

(
t −

∫ x

x0

ds

sg(s, q)

)
dq, (17)

where

g(x, q) =
(
r

(
x

K0
− 1

) (
1 − x

K

)
− q

)
> 0. (18)

Figure 2 (left) shows the distribution of the stochastic process X(t) at the time instants
t ∈ {1, 2, 3} when the fishing mortality Q is a uniform random variable in the interval
[0.1, 0.2]. For each t , X(t) takes values in the interval defined by the pathwise solutions x(t)
corresponding to q = 0.1 and q = 0.2. The dynamics of the expectation E[X(t)] and the
confidence interval centered at it and radius one standard deviation, σ [X(t)] is presented in
Fig. 2 (right).

Remark 3 (Time dependent separable models) A similar approach might be applicable to
more general separable models. Consider for instance the model in Example 1 with a time-
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declining intrinsic growth rate, possibly due to degrading environmental factors,

x ′ = re− αt
1+t x

(
x

K0
− 1

) (
1 − x

K

)
, t ≥ 0, x(0) = x0 > 0, (19)

We can write, as in (15),

R = h(X) = 1∫ t
0 e

− αs
1+s ds

∫ X

x0

ds

sg(s)
, (20)

and proceed accordingly.

4 Conclusion

In this paper, we have shown how the RVT method can be effectively applied to general
classes of random differential equations without the requirement of having an explicit solu-
tion for the corresponding pathwise deterministic equation. We have illustrated this idea by
considering the application of the RVT method to very general single-species population
models, including as particular cases some of the most commonly employed population
models. We expect that the ideas and examples exhibited in this note will help extend the use
of the RVT technique to wider classes of differential equations with random parameters that
may open new avenues in the applications of differential equations with uncertainties.
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