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Abstract
This paper presents an effective low-rank generalized alternating direction implicit itera-
tion (R-GADI) method for solving large-scale sparse and stable Lyapunov matrix equations
and continuous-time algebraic Riccati matrix equations. The method is based on general-
ized alternating direction implicit iteration (GADI), which exploits the low-rank property
of matrices and utilizes the Cholesky factorization approach for solving. The advantage of
the new algorithm lies in its direct and efficient low-rank formulation, which is a variant of
the Cholesky decomposition in the Lyapunov GADI method, saving storage space and mak-
ing it computationally effective. When solving the continuous-time algebraic Riccati matrix
equation, the Riccati equation is first simplified to a Lyapunov equation using the Newton
method, and then the R-GADI method is employed for computation. Additionally, we ana-
lyze the convergence of the R-GADI method and prove its consistency with the convergence
of the GADI method. Finally, the effectiveness of the new algorithm is demonstrated through
corresponding numerical experiments.

Keywords Lyapunov equation · Continuous-time algebraic Riccati equation · Low-rank
generalized alternating direction implicit iteration

Mathematics Subject Classification 62F15 · 62J05 · 65F08 · 65F45

1 Introduction

This paper focuses on the numerical solution of large-scale continuous-time algebraic Riccati
matrix equations (CARE):
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AT X + X A + Q − XGX = 0, (1)

where Q = CTC is symmetric and positive definite, G = BBT is symmetric and positive
semi-definite, and A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n are known matrices, and X ∈ R
n×n is

unknown matrix. Here, rank(C)=p, rank(B)=m and p, m � n. The numerical treatment of
this type of equation plays a significant role in various fields. For instance, linear quadratic
regulators (Anderson andMoore 1990), linear model reduction systems based on equilibrium
(Roberts 1980), parabolic partial differential equations and transport theory (Jonckheere and
Silverman 1983; Saak 2009), Wiener-Hopf factorization of Markov chains (Williams 1982),
and factorization of rational matrix functions (Clancey and Gohberg 1981), etc. In this paper,
we assume that the coefficient matrix A is sparse. Typically, the stable solution to equation
(1) is desired, where the solution X is symmetric and positive semi-definite, and A − GX
is stable, meaning its eigenvalues have negative real parts. Such stable solutions exist and
under certain assumptions, it is unique (Lancaster and Rodman 1995). When n is large, it is
common to seek low-rank approximations of the symmetric positive semi-definite solution in
the form of Z ZT ≈ X , where the column rank of Z is low, i.e., rank(Z) � n. Since storing
the full matrix X requires a significant amount of memory, considering only the storage of the
matrix Z allows us to optimize resource utilization when dealing with large-scale problems.

Firstly, we present an application of Eq. (1) by considering a linear time-invariant control
system (Kleinman 1968):

{
ẋ(t) = Ax(t) + Bu(t), x(0) = x0,
y(t) = Cx(t),

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control vector, and y(t) ∈ R
p is the

output vector. Quadratic optimal control aims to minimize

J (x0, u) = 1

2

∫ +∞

0
(y(t)T y(t) + u(t)T u(t))dt .

Assuming that (A, B) is stabilizable, i.e., there exists a matrix S such that A − BS is stable.
And (C, A) is detectable, i.e., (AT ,CT ) is stable, there exists a unique optimal solution ū
that minimizes the functional J (x0, u) (Wonham 1968), which can be determined through
the feedback operator P , i.e., ū(t) = Px(t), where P = BT X , and X ∈ R

n×n is the unique
symmetric positive semi-definite stable solution of the matrix Eq. (1).

There are many methods have been proposed for the numerical solution of Eq. (1), includ-
ing the Schur method (Laub 1979), matrix sign function (Roberts 1980; Bai and Demmel
1998), structured doubling algorithm (Guo et al. 2005), symplectic Lanczos method (Benner
and Fassbender 1997), and projection methods based on the global Arnoldi process of the
Krylov subspace (Jbilou 2003; Heyouni and Jbilou 2009). However, these methods often
require multiple iterations to obtain an accurate approximate solution, leading to significant
increases in computational time andmemory requirements. To address this issue, some schol-
ars have also investigated approximate low-rank solutions for computing large sparse matrix
equations. Typically, we combine the Newton’s iteration method with the alternating direc-
tion implicit (ADI) algorithm to solve such equations, and take advantage of the quadratic
local convergence properties of Newton’s method. However, at each Newton iteration step,
solving a large Lyapunov matrix equation is required to obtain the next iteration solution.
The continuous-time Lyapunov matrix equation (Lu and Wachspress 1991) as follows:

FT X + XF = Q, (2)
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where Q = CTC , F ∈ R
n×n, C ∈ R

p×n . From Eq. (1), we observe that equation (2) is a
specific case of Eq. (1) when G = 0. If the spectrum of matrix F is in the positive-real half-
plane. Under these conditions F and −FT have no common characteristic roots (Rutherford
1932), and there is a unique symmetric solution X.

Heinkenschloss et al. (2016) proposed the low-rank Kleinman-Newton ADI iteration
method to solve Eq. (1). In the computational process, the Lyapunov matrix equation is
solved using a low-rank Cholesky factorization. This method is based on solving linear sys-
tems with shifted matrices A+α I , where α is the ADI parameter. However, determining the
optimal ADI parameter and finding approximations for the Lyapunov equation increase the
burden on memory requirements and computational time. Recently, Wong and Balakrishnan
(2005) introduced an algorithm called Quadratic ADI (qADI) method to solve the algebraic
Riccati equation (1). Their method is a direct extension of the Lyapunov ADI method. Addi-
tionally, Wong and Balakrishnan provided a low-level variant of this algorithm. However,
this variant has a significant drawback: in every step, all low-rank factors need to be recon-
structed, which greatly affects the performance of the algorithm. In addition to the qADI
method, several approaches for solving large-scale Riccati equations have emerged in recent
literature. For instance, Amodei and Buchot (2010) obtain approximate solutions by comput-
ing low-dimensional subspaces of the associated Hamiltonian matrix. Benner et al. (2018)
propose a novel ADI iteration method called Riccati ADI (RADI), which expands each fac-
tor by several multiples of columns or rows while keeping the elements from previous steps
unchanged. Their method yields low-rank Lyapunov ADI iteration formulas.

In addition, there are currentlymany algorithms available for solving theLyapunovEq. (2).
For instance, fixed-point iteration (Astudillo and Gijzen 2016), Krylov subspace methods
(Druskin et al. 2011), and rank-2 updates (Ren et al. 2018) are commonly employed. Zhou
et al. (2015) proposed a generalized Hermitian and skew-Hermitian splitting (GHSS) itera-
tive method, demonstrating convergence under certain assumptions. ADI iterative methods
(Benner et al. 2009) can accelerate convergence if the optimal shifts of A and AT can be
effectively estimated. Therefore, for stable Lyapunov Eq. (2), when solving large-scale sparse
problems, ADI iteration methods are often preferred as they preserve sparsity and are more
amenable to parallelization in most cases. Recent theoretical results (Penzl 2000; Simoncini
2008; Li andWhite 2002) indicate that using the Cholesky factorization-alternating direction
implicit (CF-ADI) algorithm to compute low-rank approximations for the Lyapunov equa-
tion is effective. Based on the (Jiang et al. 2021), the GADI iteration for solving large-scale
sparse linear systems can be described as follows:

Ax = b, A ∈ R
n×n, x, b ∈ R

n . (3)

• Firstly, the matrix A is split, assuming that A can be represented as A = M + N , and
then assign parameters to obtain

αx + Mx = αx − Nx + b,

αx + Nx = Nx − (1 − ω)αx + (1 − ω)αx + αx = Nx − (1 − ω)αx + (2 − ω)αx .

• Next, the algorithm is obtained by alternating between these two splittings. Given an
initial x0 = 0, the GADI iteration computes a sequence xk as follows{

(α I + M)xk+ 1
2

= (α I − N )xk + b,

(α I + N )xk+1 = (N − (1 − ω)α I )xk + (2 − ω)αxk+ 1
2
,

(4)

with α > 0, 0 ≤ ω < 2.
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• Specifically, the matrix A is split into A = H + S, where H = A+A∗
2 is a Hermiten

matrix, and S = A−A∗
2 is a skew-Hermitian matrix, then GADI-HS format is obtained

{
(α I + H)xk+ 1

2
= (α I − S)xk + b,

(α I + S)xk+1 = (S − (1 − ω)α I )xk + (2 − ω)αxk+ 1
2
.

(5)

In this paper, we propose a low-rank generalized alternating direction implicit iteration
(R-GADI) algorithm, which is an improvement over the GADI algorithm for solving the
Lyapunov equation. We represent the solution as a low-rank approximation X ≈ VWT ,
where rank(V ) and rank(W ) � n. During the computation, the R-GADI method provides a
low-rank approximation of the solution X , eliminating the need to store X at each iteration and
reducing storage requirements. Additionally,we combine theKleinman-Newtonmethodwith
R-GADI (referred to as Kleinman-Newton-RGADI) to solve the Riccati Eq. (1).This method
is a variant of the Newton-GADI algorithm (Li et al. 2022), which significantly reduces
the total number of ADI iterations and thus lowers the overall computational cost. Finally,
numerical examples in the paper demonstrate the effectiveness of the proposed algorithm.

The remaining structure of this paper is as follows: in Sect. 2, we introduce the R-GADI
iteration format for solving the Lyapunov equation and demonstrates the consistency between
R-GADI and GADI iterations in terms of convergence. The selection of parameters, algo-
rithm complexity, and comparison with other methods are discussed, along with relevant
numerical examples. In Sect. 3, we first transform the Riccati equation into the Lyapunov
equation using the Kleinman-Newtonmethod, and then present the R-GADI iteration format.
Convergence, algorithm complexity, and additional numerical examples are also discussed
to validate the effectiveness of the proposed algorithm. Finally, in Sect. 4 concludes the paper
by summarizing the findings and offering some concluding remarks.

In this article,weuse the followingnotation:Rn×m denotes the set of alln×m realmatrices.
If A ∈ R

n×n , then AT and A−1 represent the transposition and inverse of A, respectively. The
sets of eigenvalues and singular values of A are denoted as�(A) = {λi (A), i = 1, 2, · · · , n}
and �(A) = {σi (A), i = 1, 2, · · · , n}, where λi (A) and σi (A) are the i-th eigenvalue and
the i-th singular value of A, respectively. ρ(A) = max1≤i≤n{|λi (A)|} represents the spectral
radius of A. A > 0 (A ≥ 0) indicates that A is positive definite (positive semidefinite), ‖A‖2
denotes the 2-norm of A, Re(A) and Im(A) represent the real and imaginary parts of the
eigenvalues of A, respectively. A ⊗ I denotes the Kronecker product of A and I .

Definition 1 Let A1 = [ai j ] ∈ C
m×n, B1 ∈ C

p×q , then

A1 ⊗ B1 =

⎛
⎜⎜⎜⎝

a11B1 a12B1 · · · a1n B1

a21B1 a22B1 · · · a2n B1
...

...
...

am1B1 am2B1 · · · amn B1

⎞
⎟⎟⎟⎠ ∈ C

mp×nq ,

it’s called Kronecker product of A1 and B1.

Definition 2 If the vectorization operator vec satisfies Cm×n → C
mn :

vec(X1) = (xT1 , xT2 , · · · , xTn )T , X1 = [x1, x2, · · · , xn] ∈ C
m×n,

then this operator is called a straightening operator.
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2 Low rank GADI for solving Lyapunov equation

2.1 Derivation of iterative format

Firstly, we consider the ADI iterative method for solving the Lyapunov Eq. (2) with a single
parameter. {

(FT + α I )Xk+ 1
2

= Q − Xk(F − α I ),

Xk+1(F + α I ) = Q − (FT − α I )Xk+ 1
2
.

(6)

By (6), we can obtain iterative format for Xk+1,

Xk+1 = (FT − α I )(FT + α I )−1Xk(F − α I )(F + α I )−1 + 2α(FT + α I )−1Q(F + α I )−1.

Since F−α I is interchangeablewith (F+α I )−1, we can derive a low-rankADI (R1-ADI)
iterative formula with a single parameter.⎧⎨

⎩
V1 = √

2α(FT + α I )−1CT , V1 ∈ R
n×p,

Vk = [(FT − α I )(FT + α I )−1Vk−1, V1], Vk ∈ R
n×kp,

Xk = VkV T
k , Xk ∈ Rn×n .

(7)

Next, we consider the ADI iterative method with two parameters for solving the Lyapunov
Eq. (2). {

(FT + α I )Xk+ 1
2

= Q − Xk(F − α I ),

Xk+1(F + β I ) = Q − (FT − β I )Xk+ 1
2
.

(8)

Similarly, we can obtain a low-rank ADI (R2-ADI) iterative formula with two parameters.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V1 = √
α + β(FT + α I )−1CT , V1 ∈ R

n×p,

Vk = [(FT − β I )(FT + α I )−1Vk−1, V1], Vk ∈ R
n×kp,

W1 = √
α + β(FT + β I )−1CT ,

Wk = [(FT + β I )−1(FT − α I )Wk−1,W1],
Xk = VkWT

k , Xk ∈ R
n×n .

(9)

We apply the GADI iterative framework to solve the Lyapunov Eq. (2). Firstly, the
straightening operator is applied and from the Kronecker product, we have

(FT ⊗ I + I ⊗ FT )x = q, x = vec(X), q = vec(Q). (10)

Secondly, by applying the GADI iterative method in Eq. (10), we obtain the following
expression.{

(α In2 + I ⊗ FT )xk+ 1
2

= (α In2 − FT ⊗ I )xk + q,

(α In2 + FT ⊗ I )xk+1 = (FT ⊗ I − (1 − ω)α In2)xk + (2 − ω)αxk+ 1
2
.

(11)

We rewrite Eq. (11) into matrix form as{
(α I + FT )Xk+ 1

2
= Xk(α I − F) + Q,

Xk+1(α I + F) = Xk(F − (1 − ω)α I ) + (2 − ω)αXk+ 1
2
.

(12)

We select the appropriate parameter α to ensure that both matrices α I + FT and α I + F are
invertible. From the first equation of (12), we can obtain

Xk+ 1
2

= (α I + FT )−1Xk(α I − F) + (α I + FT )−1CTC,
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we substitute it into the second equation, then

Xk+1 = Xk(F − (1 − ω)α I )(α I + F)−1

+ (2 − ω)αXk+ 1
2
(α I + F)−1

= Xk(F − (1 − ω)α I )(α I + F)−1

+ (2 − ω)α[(α I + FT )−1Xk(α I − F)

+ (α I + FT )−1CTC](α I + F)−1

= Xk(F − (1 − ω)α I )(α I + F)−1

+ (2 − ω)α(α I + FT )−1Xk(α I − F)(α I + F)−1

+ (2 − ω)α(α I + FT )−1CTC(α I + F)−1.

Taking the initial value X0 = 0, we have X1 = (2 − ω)α(α I + FT )−1CTC(α I + F)−1.
Let

V1 = W1 = √
(2 − ω)α(α I + FT )−1CT ,

where X1 = V1WT
1 . We can also get

X2 = X1(F − (1 − ω)α I )(α I + F)−1

+ (2 − ω)α(α I + FT )−1X1(α I − F)(α I + F)−1

+ (2 − ω)α(α I + FT )−1CTC(α I + F)−1

= V1W
T
1 (F − (1 − ω)α I )(α I + F)−1

+ (2 − ω)α(α I + FT )−1V1W
T
1 (α I − F)(α I + F)−1 + V1W

T
1 .

Let

V2 = [V1,
√

(2 − ω)α(α I + FT )−1V1, V1],
W2 = [(α I + FT )−1(FT − (1 − ω)α I )W1,

√
(2 − ω)α(α I + FT )−1(α I − FT )W1,W1],

where X2 = V2WT
2 .

Based on the previous derivation method, we can obtain the R-GADI iterative format for
soliving the Lyapunov Eq. (2).
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V1 = √
(2 − ω)α(α I + FT )−1CT ,

Vk = [Vk−1,
√

(2 − ω)α(α I + FT )−1Vk−1, V1], Vk ∈ Rn×(2k−1)p,

W1 = √
(2 − ω)α(α I + FT )−1CT ,

Wk = [(α I + FT )−1(FT − (1 − ω)α I )Wk−1,
√

(2 − ω)α(α I + FT )−1(α I − FT )Wk−1,W1],
Xk = VkWT

k .

(13)

Next, the R-GADI algorithm is given as Algorithm 1:

2.2 Convergence analysis

Some simple properties of Kronecker product can be easily derived from the Definitions 1
and 2.
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Algorithm 1 R-GADI iteration for solving Lyapunov equation 2

Require: Matrix F, C , parameters α and ω, kmax and residual limit ε = 1 × 10−15;
Ensure: Approximation X ≈ VkW

T
k for the solution of the Lyapunov equation FT X + XF = Q.

1: X0 = 0; Q = CT C ;
2: for k = 1, · · · , kmax do
3: if k = 1 then
4: Solve 1√

(2−ω)α
(FT + α I )V1 = CT for V1;

5: W1 = V1;
6: else
7: Vk = [Vk−1,

√
(2 − ω)α(FT + α I )−1Vk−1,

√
(2 − ω)α(FT + α I )−1CT ];

8: Wk = [(α I + FT )−1(FT − (1 − ω)α I )Wk−1,
√

(2 − ω)α(α I + FT )−1(α I − FT )Wk−1,√
(2 − ω)α(FT + α I )−1CT ];

9: end if
10: Xk = VkW

T
k ;

11: Compute Res(Xk ) = ‖FT Xk+Xk F−Q‖2‖Q‖2 ;
12: if Res(Xk ) < ε then
13: stop;
14: end if
15: end for

Lemma 1 (Xu (2011)) Let α ∈ C, A1 ∈ C
m×n, B1 ∈ C

p×q , X1 ∈ C
n×p, C1 ∈

C
m×n, D1 ∈ C

p×q , then

(a) α(A1 ⊗ B1) = (αA1) ⊗ B1 = A1 ⊗ (αB1);
(b) (A1 ⊗ B1)(C1 ⊗ D1) = (A1C1) ⊗ (B1D1);
(c) (A1 ⊗ B1)

T = AT
1 ⊗ BT

1 ;
(d) vec(A1X1B1) = (BT

1 ⊗ A1)vec(X1);
(e) �(Ip ⊗ A1 − BT

1 ⊗ In) = {λ − μ : λ ∈ �(A1), μ ∈ �(B1)}.
Lemma 2 Let R(X) = FT X + XF − Q, and {Xk} be an approximate solution sequence
of the Lyapunov Eq. (2) generated by GADI iteration (12), and X is a symmetric positive
definite solution of Eq. (2). Then for any k ≥ 0, we have

(1) (α I + FT )(Xk+ 1
2

− X) = (Xk − X)(α I − F);
(2) (α I + FT )(Xk+ 1

2
− Xk) = −R(Xk);

(3) R(Xk+ 1
2
) = (Xk+ 1

2
− Xk)(F − α I );

(4) (Xk+1 − X)(α I + F) = (Xk − X)F + (1 − ω)α(Xk+ 1
2

− Xk) + (Xk+ 1
2

− X);
(5) (Xk+1 − Xk+ 1

2
)(α I + F) = (Xk+ 1

2
− Xk)((1 − ω)α I − F).

Proof (1) From the first equation of (12), we have

(α I + FT )(Xk+ 1
2

− X) = Xk(α I − F) + Q − (α I + FT )X .

Since Q − FT X = XF , then

(α I + FT )(Xk+ 1
2

− X) = XF − Xk F + Xkα − αX

= (Xk − X)(α I − F).

(2)

(α I + FT )(Xk+ 1
2

− Xk) = Xk(α I − F) + Q − (α I + FT )Xk
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= Q − Xk F − FT Xk

= −R(Xk).

(3) Due to FT Xk+ 1
2

− Q = Xk(α I − F) − αXk+ 1
2
, then

R(Xk+ 1
2
) = FT Xk+ 1

2
+ Xk+ 1

2
F − Q

= Xk(α I − F) − αXk+ 1
2

+ Xk+ 1
2
F

= (Xk+ 1
2

− Xk)(F − α I ).

(4) From the second equation of (12), we have

(Xk+1 − X)(α I + F) = Xk(F − (1 − ω)α I ) + (2 − ω)αXk+ 1
2

− X(α I + F)

= Xk F − Xk(1 − ω)α I + (1 − ω)αXk+ 1
2

+ αXk+ 1
2

− αX − XF

= (Xk − X)F + (1 − ω)α(Xk+ 1
2

− Xk) + α(Xk+ 1
2

− X).

(5)

(Xk+1 − Xk+ 1
2
)(α I + F) = Xk(F − (1 − ω)α I ) + (2 − ω)αXk+ 1

2

− X(α I + F) − Xk+ 1
2
(α I + F)

= Xk F − Xk+ 1
2
F + (1 − ω)α(Xk+ 1

2
− Xk)

= (Xk+ 1
2

− Xk)((1 − ω)α I − F).


�
From the Lemma 2, we can prove that Theorem 3 holds.

Theorem 3 Let X be the symmetric positive definite solution of Lyapunov Eq. (2), and let the
initial matrix X0 = 0, and parameter α > 0, 0 ≤ ω < 2. Then the matrix sequence {Xk}
generated by the previous GADI iteration (12) holds the following inequality.

‖Xk+1 − X‖2 ≤ δ(α)‖Xk − X‖2 + η(α, ω)‖R(Xk)‖2,
where

δ(α) = ‖F(α I + F)−1‖2 + α‖(α I + FT )−1‖2‖(α I − F)(α I + F)−1‖2,
η(α, ω) = |1 − ω|α‖(α I + FT )−1‖2‖(α I + F)−1‖2.

Proof From Lemma 2, we can conclude that

Xk+1 − X = [(Xk − X)F + (1 − ω)α(Xk+ 1
2

− Xk) + α(Xk+ 1
2

− X)](α I + F)−1

= (Xk − X)F(α I + F)−1 − (1 − ω)α(α I + FT )−1R(Xk)(α I + F)−1

+ α(α I + FT )−1(Xk − X)(α I − F)(α I + F)−1.

Therefore, we can get

‖Xk+1 − X‖2 ≤ ‖(Xk − X)F(α I + F)−1‖2 + |1 − ω|α‖(α I + FT )−1R(Xk)(α I + F)−1‖2
+ α‖(α I + FT )−1(Xk − X)(α I − F)(α I + F)−1‖2

≤ ‖(Xk − X)‖2‖F(α I + F)−1‖2
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+ |1 − ω|α‖(α I + FT )−1‖2‖R(Xk)‖2‖(α I + F)−1‖2
+ α‖(α I + FT )−1‖2‖Xk − X‖2‖(α I − F)(α I + F)−1‖2

= [‖F(α I + F)−1‖2 + α‖(α I + FT )−1‖2‖(α I − F)(α I + F)−1‖2]‖Xk − X‖2
+ |1 − ω|α‖(α I + FT )−1‖2‖(α I + F)−1‖2‖R(Xk)‖2.


�
Theorem 4 Let X be the symmetric positive definite solution of Lyapunov Eq. (2), and let
parameters α > 0 and 0 ≤ ω < 2, then for any k = 0, 1, 2, · · · , the matrix VkWT

k defined
by (13) converges to X. This is equivalent to the convergence of the iterative sequence Xk

converging to X, where Xk is obtained from (12).

Proof Here, we only need to prove the convergence of the iterative format (12), since α > 0
and A are stable, then α In2 + I ⊗ FT and α In2 + FT ⊗ I are non-singular. From the iteration
framework (11), we can obtain

xk+ 1
2

= (α In2 + I ⊗ FT )−1(α In2 − FT ⊗ I )xk + (α In2 + I ⊗ FT )−1q,

xk+1 = (α In2 + FT ⊗ I )−1[(FT ⊗ I − (1 − ω)α In2)

+ (2 − ω)α(α In2 + I ⊗ FT )−1(α In2 − FT ⊗ I )]xk
+ (2 − ω)α(α In2 + FT ⊗ I )−1(α In2 + I ⊗ FT )−1q

= (α In2 + FT ⊗ I )−1(α In2 + I ⊗ FT )−1[(α2 In2

+ (I ⊗ FT )(FT ⊗ I ) − (1 − ω)α(I ⊗ FT + FT ⊗ I )]xk
+ (2 − ω)α(α In2 + FT ⊗ I )−1(α In2 + I ⊗ FT )−1q.

Let

M = I ⊗ FT + FT ⊗ I ,

G(α, ω) = (2 − ω)α(α In2 + FT ⊗ I )−1(α In2 + I ⊗ FT )−1,

T (α, ω) = (α In2 + FT ⊗ I )−1(α In2 + I ⊗ FT )−1[(α2 In2

+(I ⊗ FT )(FT ⊗ I ) − (1 − ω)αM],
then

xk+1 = T (α, ω)xk + G(α, ω)q.

Next, we need to prove that for α > 0, 0 ≤ ω < 2, there is ρ(T (α, ω)) < 1. Since

2αM = −(α In2 − I ⊗ FT )(α In2 − FT ⊗ I ) + (α In2 + I ⊗ FT )(α In2 + FT ⊗ I ),

then we can obtain

T (α, ω) = (α In2 + FT ⊗ I )−1(α In2 + I ⊗ FT )−1[(α2 In2 + (I ⊗ FT )(FT ⊗ I ) − (1 − ω)αM]
= (α In2 + FT ⊗ I )−1(α In2 + I ⊗ FT )−1[(α In2 − I ⊗ FT )(α In2 − FT ⊗ I ) + ωαM]
= 1

2
(α In2 + FT ⊗ I )−1(α In2 + I ⊗ FT )−1[2(α In2 − I ⊗ FT )(α In2 − FT ⊗ I ) + ω2αM]

= 1

2
[(2 − ω)(α In2 + FT ⊗ I )−1(α In2 + I ⊗ FT )−1(α In2 − I ⊗ FT )(α In2 − FT ⊗ I )

+ ωIn2 ]
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= 1

2
[(2 − ω)T (α) + ωIn2 ],

where

T (α) = (α In2 + FT ⊗ I )−1(α In2 + I ⊗ FT )−1(α In2 − I ⊗ FT )(α In2 − FT ⊗ I ).

Due to λ(T (α, ω)) = 1
2 [(2 − ω)λ(T (α)) + ω], then we have

ρ(T (α, ω)) ≤ 1

2
[(2 − ω)ρ(T (α)) + ω].

Let

T̃ (α) = (α In2 + I ⊗ FT )−1(α In2 − I ⊗ FT )(α In2 − FT ⊗ I )(α In2 + FT ⊗ I )−1,

it can be seen that T (α) is similar to T̃ (α) through the matrix α In2 + FT ⊗ I . Therefore, we
get

ρ(T (α)) ≤ ‖ (α In2 + I ⊗ FT )−1(α In2 − I ⊗ FT )(α In2 − FT ⊗ I )(α In2 + FT ⊗ I )−1 ‖2
≤ ‖ (α In2 + I ⊗ FT )−1(α In2 − I ⊗ FT ) ‖2‖ (α In2 − FT ⊗ I )(α In2 + FT ⊗ I )−1 ‖2
= ‖ FL ‖2‖ FR ‖2,

where

FL = (α In2 + I ⊗ FT )−1(α In2 − I ⊗ FT ), FR = (α In2 − FT ⊗ I )(α In2 + FT ⊗ I )−1.

For x ∈ R
n2×1, we get

‖ FL ‖22 = max‖x‖2=1

‖ (α In2 − I ⊗ FT )x ‖22
‖ (α In2 + I ⊗ FT )x ‖22

= max‖x‖2=1

‖ (I ⊗ FT )x ‖22 −αxT (I ⊗ F + I ⊗ FT )x + α2

‖ (I ⊗ FT )x ‖22 +αxT (I ⊗ F + I ⊗ FT )x + α2

≤ max‖x‖2=1

‖ (I ⊗ FT )x ‖22 −2αmin Re(λ(I ⊗ F)) + α2

‖ (I ⊗ FT )x ‖22 +2αmin Re(λ(I ⊗ F)) + α2

≤ ‖ I ⊗ FT ‖22 −2αmin Re(λ(I ⊗ F)) + α2

‖ I ⊗ FT ‖22 +2αmin Re(λ(I ⊗ F)) + α2

= ‖ I ⊗ FT ‖22 −2αmin Re(λ(F)) + α2

‖ I ⊗ FT ‖22 +2αmin Re(λ(F)) + α2
.

Similarly, we have a conclusion

‖ FR ‖22≤
‖ FT ⊗ I ‖22 −2αmin Re(λ(F)) + α2

‖ FT ⊗ I ‖22 +2αmin Re(λ(F)) + α2
,

since A is stable and α > 0, then

‖ FL ‖2< 1, ‖ FR ‖2< 1.

Therefore, ρ(T (α)) < 1 and ρ(T (α, ω)) ≤ 1
2 [(2 − ω)ρ(T (α)) + ω] < 1. 
�
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2.3 Selection of parameters

In this section, we first compare the convergence rates of the GADI method and the ADI
method, where ρ(T (α, ω)) and ρ(T (α)) used here are defined in the previous proof of
Theorem 3. Afterwards, we will provide a more practical method to select parameters.

Theorem 5 Assuming that the eigenvalues of matrix F have positive real parts, define

ρ(T (α, ω)) = |ξ | = |a + bi |, ρ(T (α)) = |η| = |c + di |,
(i) if |η|2 ≤ c, then

ρ(T (α)) < ρ(T (α, ω)) < 1;
(ii) if |η|2 > c and 0 < ω <

4(|ηk |2−ck )
(1−ck )2+d2k

< 2, we have

ρ(T (α, ω)) < ρ(T (α)) < 1.

Theorem 6 Let σ j (A) and λ j (F) represent the singular and eigenvalues of the coefficient
matrix F of the Lyapunov Eq. (2), respectively, with j = 1, 2, · · · , n. Let

μ = max
j

σ j (F), ν = min
j

Re(λ j (F)),

then we can obtain the optimal parameters α∗ as follows

α∗ = argmin
α

μ2 − 2αν + α2

μ2 + 2αν + α2 = μ.

The proof of Theorems 5 and 6 is similar to the proof process of Theorems 2.7 and 2.9 in Li
et al. (2022), and we will not delve into the details here.

For the parameterω, since 0 ≤ ω < 2, special values 0 and 1 can be selected for validation
first. The general method is to select the appropriate parameter ω by analyzing residuals in
numerical examples.

2.4 Complexity analysis

According to the iterative scheme (11), this method is primarily used for efficiently solving
large sparse Lyapunov equations. The approach involves utilizing Cholesky factorization
and representing the solution in the form of low-rank factors. Before starting Algorithm 1,
we need to determine the values of parameters α and ω. Finding suitable parameter values
can be challenging as the selection of parameters significantly impacts the iterative results
and convergence speed. In Algorithm 1, a stopping criterion needs to be set to compute the
maximum number of iterations. One approach is to stop the iteration when the change in the
approximate solution is small, i.e., ‖ Xk − Xk−1 ‖< ε, where

‖ Xk − Xk−1 ‖=‖ VkW
T
k − Vk−1W

T
k−1 ‖ .

However, computing the norm of the approximate solution on high-dimensional matrices
can be computationally expensive.We adopt an alternative approach bymeasuring the relative
residual of the approximate solution Xk generated by the low-rank GADI iteration (12) at
the k-th step. The relative residual Res(Xk) is defined as follows:

Res(Xk) = ‖FT Xk + Xk F − Q‖2
‖Q‖2 .
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Therefore, with a given accuracy requirement ε, we stop the iteration when Res(Xk) < ε.
Next, we calculate the computational complexity of Algorithm 1. During the iteration

process, the number of columns inmatricesVk andWk increaseswith the number of iterations,
i.e., Vk, Wk ∈ R

n×(2k−1)p , where p � n. Firstly, in the first iteration, the computational
cost of obtaining V1 is 2n2 p, and at this point, W1 = V1. Then, in the k-th iteration, the
computational cost of obtaining Vk is 2n2(2k−1−1)p, and the computational cost of obtaining
Wk is 4n3 + 2n2(2k−1 − 1)p + 2n2 p. Therefore, the total computational complexity of this
algorithm is 4n3 + 4n22k−1 p.

2.5 Numerical experiments

In this section, we use two examples of the linear system to show the numerical feasibility and
effectiveness of the R-GADI algorithms. The Lyapunov equation is widely used to determine
the stability of linear systems. By solving the Lyapunov equation, such a function can be
found to determine the stability of the system. In our numerical experiment, set the iteration
tolerance ε = 1 × 10−15. The whole process is performed on a computer with Intel Core
1.00GHz CPU, 8.00GB RAM, and MATLAB R2018a. IT represents the number of iteration
steps, and CPU by the computing time. Denote the numerical symmetric solution as X , the
finally relative residual as

Res(X) = ‖FT X + XF − Q‖2
‖Q‖2 .

Example 2.5.1 Consider the linear system of the form ẋ = Fx , if V (z) = zT Xz,then

V̇ (z) = (Fz)T Xz + zT X(Fz) = zT Qz,

where

F =

⎛
⎜⎜⎜⎜⎜⎝

5 0.3 0 · · · 0
0.2 5 0.3 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0.2 5 0.3
0 · · · 0 0.2 5

⎞
⎟⎟⎟⎟⎟⎠

n×n

,

C = (
1, 1, · · · , 1, 1

)
1×n , Q = CTC .

We set the parameters ω = 0.015 and α to be
√

λmax (F)λmin(F) and max σ(F), respec-
tively.We compare the numerical results for differentmatrix dimensions and different choices
of α, which are listed in Table 1 below. From the data in the table, it can be observed that
during the iteration process, when the matrix dimensions are the same and α is chosen as the
maximum singular value of matrix F , the total iteration time is shorter, resulting in better
performance.

Next, we set the parameters α = max σ(F), ω = 0.015. In the case of matrix dimensions
beingmultiplied,we solve the problemusing both theGADImethod and theR-GADImethod.
Table 2 presents the numerical results for relative residual, iteration count, and CPU time.
In terms of iteration count and time, the R-GADI method is relatively more efficient. For
instance, when n = 1024, Fig. 1 shows the iteration count and relative residual obtained by
applying these two methods iteratively, while Fig. 2 displays the computation time required
by each method. It is evident from the figures that the R-GADI method is effective.
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Table 1 Numerical results for Example 2.5.1

n Algorithm α Res IT CPU

128 R-GADI
√

λmax (F)λmin(F) 4.2129e−16 8 0.06s

128 R-GADI max σ(F) 4.5781e−16 8 0.05s

256 R-GADI
√

λmax (F)λmin(F) 4.3544e−16 8 0.24s

256 R-GADI max σ(F) 4.3033e−16 8 0.22s

512 R-GADI
√

λmax (F)λmin(F) 2.3044e−16 8 1.34s

512 R-GADI max σ(F) 5.7213e−16 7 1.27s

1024 R-GADI
√

λmax (F)λmin(F) 4.3802e−16 8 28.64s

1024 R-GADI max σ(F) 9.9827e−16 7 15.51s

2048 R-GADI
√

λmax (F)λmin(F) 9.4348e−15 7 219.72s

2048 R-GADI max σ(F) 1.1144e−15 7 191.26s

4096 R-GADI
√

λmax (F)λmin(F) 4.4282e−16 8 4408.41s

4096 R-GADI max σ(F) 8.887e−16 7 1223.03s

Table 2 Numerical results for
Example 2.5.1

n Algorithm Res IT CPU

128 GADI 9.5268e−16 8 0.07s

128 R-GADI 4.5781e−16 8 0.05s

256 GADI 2.1253e−16 8 0.25s

256 R-GADI 4.3033e−16 8 0.22s

512 GADI 4.2985e−16 8 1.49s

512 R-GADI 5.7213e−16 7 1.27s

1024 GADI 5.4699e−16 7 30.95s

1024 R-GADI 9.9827e−16 7 15.51s

2048 GADI 9.8707e−15 7 380.3s

2048 R-GADI 1.1144e−15 7 191.26s

4096 GADI 9.6536e−15 7 2568.69s

4096 R-GADI 8.887e−16 7 1223.03s

Example 2.5.2 Consider the linear system of the form ẋ = Fx , if V (z) = zT Xz, then

V̇ (z) = (Fz)T Xz + zT X(Fz) = zT Qz,

where

F =

⎛
⎜⎜⎜⎜⎜⎝

9 3 0 · · · 0
−2 9 3 · · · 0
...

. . .
. . .

. . .
...

0 · · · −2 9 3
0 · · · 0 −2 9

⎞
⎟⎟⎟⎟⎟⎠

n×n

,

C = (
1, 1, · · · , 1, 1

)
1×n , Q = CTC .

We utilize the GADI, R1-ADI, R2-ADI, and R-GADI methods to solve the problem.
Table 3 presents the relative residual, iteration count, and time obtained using these four
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Fig. 1 The residual curve of Example 2.5.1 n = 1024

Fig. 2 The time curve of Example 2.5.1

iterativemethods as thematrix dimension increases. By comparing these data, we can observe
the effectiveness of theR-GADImethod in solving the problem.Additionally, Fig. 3 illustrates
the correspondence between iteration count and relative residual for these four iterative
methods when n = 1024. Figure4 displays the iteration time required by each method, it is
evident that the R-GADI method achieves better results in solving the problem.

From the above Fig. 3, we can see that in the initial iteration phase, these four iterative
methods exhibit relatively fast convergence. However, as the iterations progress, the conver-
gence speed slows down. Upon reaching a certain number of iterations, it becomes evident
that theR-GADImethod demonstrates better convergence speed and requires the least amount
of time.
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Table 3 Numerical results for
Example 2.5.2

n Algorithm Res IT CPU

128 GADI 2.1884e−16 14 0.15s

128 R1-ADI 4.8137e−16 14 0.11s

128 R2-ADI 3.0187e−16 12 0.12s

128 R-GADI 6.2135e−16 10 0.07s

256 GADI 8.0851e−16 13 0.65s

256 R1-ADI 2.5974e−16 14 0.47s

256 R2-ADI 7.9983e−16 11 0.43s

256 R-GADI 3.1158e−16 10 0.29s

512 GADI 4.4317e−16 12 4.22s

512 R1-ADI 2.6518e−16 13 2.29s

512 R2-ADI 4.2145e−16 11 2.27s

512 R-GADI 2.0157e−16 10 1.48s

1024 GADI 1.7196e−16 12 45.34s

1024 R1-ADI 3.5374e−16 12 26.63s

1024 R2-ADI 8.1825e−16 10 26.86s

1024 R-GADI 2.2622e−16 10 15.21s

2048 GADI 6.0359e−16 12 490.81s

2048 R1-ADI 1.2585e−15 12 455.37s

2048 R2-ADI 1.0059e−15 10 450.4s

2048 R-GADI 6.6674e−16 9 234.92s

4096 GADI 2.8412e−16 12 3998.2s

4096 R1-ADI 3.2722e−16 12 3225.4s

4096 R2-ADI 4.3943e−15 9 3025.7s

4096 R-GADI 2.983e−16 9 1495.60s

Fig. 3 The residual curve of Example 2.5.2 n = 1024
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Fig. 4 The time curve of Example 2.5.2

3 Low rank GADI for solving Riccati equation

3.1 Derivation of iterative format

In this section, we investigate the conclusions related to solving the continuous algebraic
Riccati Eq. (1) using the GADI method. The algebraic Riccati equation has its origins in
numerical problems in control theory and finds wide applications, particularly in the design
of quadratic optimal control. For certain linear quadratic optimization control problems, the
problem can eventually be transformed into solving the algebraic Riccati equation for a stable
solution. Generally, the solution of the algebraic Riccati Eq. (1) is not unique. Therefore, we
first provide a sufficient condition for the existence of a unique solution.

Lemma 3 (Xu (2011)) If thematrix pair (A, B) in the algebraicRiccati Eq. (1) is stabilizable,
meaning that for any λ such that Reλ ≥ 0, the matrix [A − λI B] has full row rank, and if
the matrix pair (C, A) is detectable, meaning that for any λ and x such that Reλ ≥ 0 and
Ax = λx, we have Cx �= 0, then Eq. (1) has a unique positive semi-definite solution, and
this solution is stable.

Firstly, we consider the Newton iteration method:

• Define mapping F : Rn×n → R
n×n is

F(X) = AT X + X A + Q − XGX , X ∈ R
n×n,

then we have

F(X + E) = AT (X + E) + (X + E)A + Q − (X + E)G(X + E)

= AT X + X A − XGX + Q + AT E + E A − EGX − XGE − EGE

= F(X) + L(X) + O(‖E‖22) (E → 0),

where

L(E) = AT E + E A − EGX − XGE

= (A − GX)T E + E(A − GX),
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it is a linear operator. From the definition of Fréchet differentiability, it follows that for
any X ∈ R

n×n, F is Fréchet differentiable at X . There is

F ′(X)(E) = (A − GX)∗E + E(A − GX), E ∈ R
n×n .

Thus, by applying Newton’s method F ′(Xk)(Ek) = −F(Xk), we can get the iterative format
of the Newton iteration method for solving equation (1).

(a) Seeking Ek that satisfies the equation

(A − GXk)
T Ek + Ek(A − GXk) = −F(Xk). (14)

(b) Calculate Xk+1 = Xk+Ek , where X0 ∈ R
n×n is the initial matrix. Rearranging Eq. (14)

and using Xk+1 = Xk + Ek , then we can obtain the equation satisfied by Xk+1

(A − GXk)
T Xk+1 + Xk+1(A − GXk) + XkGXk + Q = 0. (15)

• Next, we apply the Kleinman-Newton method (Kleinman 1968) with an initial feedback
matrix K0 = 0. Let Kk = Xk B to obtain another equivalent form of Eq. (15).

(A − BKT
k )T Xk+1 + Xk+1(A − BKT

k ) = −KkK
T
k − CTC, (16)

with Ak = BKT
k − A, Mk = [Kk, CT ]. Therefore, Eq. (16) can be rewritten as the

following Lyapunov equation form

AT
k Xk+1 + Xk+1Ak = MkM

T
k . (17)

• In addition, we apply the GADI framework to solve the Lyapunov Eq. (17) and obtain
an iterative format⎧⎨

⎩
(αk I + AT

k )X
(l+ 1

2 )

k+1 = X (l)
k+1(αk I − Ak) + Qk,

X (l+1)
k+1 (αk I + Ak) = X (l)

k+1(Ak − (1 − ωk)αk I ) + (2 − ωk)αk X
(l+ 1

2 )

k+1 ,
(18)

where

Qk = MkM
T
k , l = 0, 1, · · · , s,

X (0)
k+1 = Xk, Xk+1 = X (s)

k+1, αk > 0, 0 ≤ ωk < 2.

Next, we further manipulate the iterative scheme (18) and obtain the following expression
under the assumption that αk I + AT

k and αk I + Ak are non-singular.

X (l+1)
k+1 = X (l)

k+1(Ak − (1 − ωk)αk I )(αk I + Ak)
−1

+ (2 − ωk)αk(αk I + AT
k )−1X (l)

k+1(αk I − Ak)(αk I + Ak)
−1

+ (2 − ωk)αk(αk I + AT
k )−1Qk(αk I + Ak)

−1.

Due to X (0)
k+1 = Xk , then we have

X (1)
k+1 = Xk(Ak − (1 − ωk)αk I )(αk I + Ak)

−1

+ (2 − ωk)αk(αk I + AT
k )−1Xk(αk I − Ak)(αk I + Ak)

−1

+ (2 − ωk)αk(αk I + AT
k )−1Qk(αk I + Ak)

−1.

123



256 Page 18 of 27 J. Zhang, W. Xun

Let the initial value of iteration X0 = 0, we get

X (1)
1 = (2 − ω0)α0(α0 I + AT

0 )−1Q0(α0 I + A0)
−1 = V (1)

1 (W (1)
1 )T ,

where

V (1)
1 = √

(2 − ω0)α0(α0 I + AT
0 )−1M0

= √
(2 − ω0)α0(α0 I − AT )−1CT ,

W (1)
1 = V (1)

1 .

Therefore, we provide a low rank Kleinman Newton GADI iterative scheme for the corre-
sponding Riccati equation.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ak = BKT
k − A, Mk = [Kk, CT ], Qk = MkMT

k ,

V (1)
1 = √

(2 − ω0)α0(α0 I − AT )−1CT ,

V (1)
k+1 = √

(2 − ωk)αk(αk I + AT
k )−1Mk,

V (l)
k+1 = [V (l−1)

k+1 ,
√

(2 − ωk)αk(αk I + AT
k )−1V (l−1)

k+1 , V (1)
k+1],

W (1)
1 = V (1)

1 ,

W (1)
k+1 = √

(2 − ωk)αk(αk I + AT
k )−1Mk,

W (l)
k+1 = [(αk I + AT

k )−1(AT
k − (1 − ωk)αk I )W

(l−1)
k+1 ,√

(2 − ωk)αk(αk I + AT
k )−1(αk I − AT

k )W (l−1)
k+1 ,W (1)

k+1],
X (l)
k+1 = V (l)

k+1(W
(l)
k+1)

T ,

Kk+1 = Vk+1WT
k+1B.

(19)

Algorithm 2 Low rank GADI iteration for solving Lyapunov equation 17

Require: Matrix A, B, C , initial feedback matrix K0 makes BKT
0 − A is stable, kmax ;

Ensure: Approximation Xk+1 ≈ Vk+1W
T
k+1 for the solution of the equation ATk Xk+1 + Xk+1Ak = Qk .

1: for k = 1, · · · , kmax do
2: Ak = BKT

k − A;
3: Mk = [Kk , CT ]; Qk = MkM

T
k ;

4: V (1)
k = √

(2 − ωk−1)αk−1(αk−1 I + ATk−1)
−1Mk−1;

5: W (1)
k = √

(2 − ωk−1)αk−1(αk−1 I + ATk−1)
−1Mk−1;

6: for l = 2, 3, · · · , imax
k do

7: V (l)
k = [V (l−1)

k ,
√

(2 − ωk−1)αk−1(αk−1 I + ATk−1)
−1V (l−1)

k , V (1)
k ];

8: W (l)
k = [(αk−1 I + ATk−1)

−1(ATk−1 − (1− ωk−1)αk−1 I )W
(l−1)
k ,

√
(2 − ωk−1)αk−1(αk−1 I +

ATk−1)
−1(αk−1 I − ATk−1)W

(l−1)
k , W (1)

k ];
9: X (l)

k = V (l)
k (W (l)

k )T ;
10: end for

11: Vk+1 = V
(imax
k )

k+1 , Wk+1 = W
(imax
k )

k+1 ;

12: Kk+1 = Vk+1W
T
k+1B;

13: end for

3.2 Convergence analysis

Next, we provide the convergence results of using the Newton method to solve Eq. (15).
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Theorem 7 (Xu (2011)) For the algebraic Riccati Eq. (1), assuming (A, G) is stable and
(Q, A) is detectable, and selecting a symmetric positive semi-definite matrix X0 such the
A−GX0 is stable, then thematrix sequence {Xk} generated by theNewton iteration converges
quadratically to the unique positive semi-definite solution X of (1). In otherwords, there exists
a constant δ > 0 independent of k, such that for all positive integers

‖Xk − X‖2 ≤ δ‖Xk−1 − X‖22.
Furthermore, the iteration sequence {Xk} exhibits monotonic convergence, i.e.,

0 ≤ X ≤ · · · ≤ Xk+1 ≤ Xk ≤ · · · ≤ X1.

Let

R(Xk+1) = AT
k Xk+1 + Xk+1Ak − MkM

T
k

be the residual matrix of the Lyapunov Eq. (17), then we have the following proposition.

Proposition 8 Let Xk be the k-th step iteration generated by the Kleinman-Newton method
as described above, then

F(Xk+1) = −R(Xk+1) − (Xk B − Xk+1B)(Xk B − Xk+1B)T .

Proof From the residual equation defined above, we can obtain that

R(Xk+1) = AT
k Xk+1 + Xk+1Ak − MkM

T
k

= (Kk B
T − AT )Xk+1 + Xk+1(BK

T
k − A) − KkK

T
k − CTC

= Kk B
T Xk+1 − AT Xk+1 + Xk+1BK

T
k − Xk+1A − KkK

T
k − CTC

= −F(Xk+1) + Kk B
T Xk+1 + Xk+1BK

T
k − Xk+1BBT Xk+1 − KkK

T
k − CTC

= −F(Xk+1) + Xk BBT Xk+1 + Xk+1BBT Xk

− Xk+1BBT Xk+1 − Xk BBT Xk − CTC

= −F(Xk+1) − (Xk − Xk+1)BBT (Xk − Xk+1)

= −F(Xk+1) − (Xk B − Xk+1B)(Xk B − Xk+1B)T .

Algorithm 3 A low rank Kleinman-Newton GADI method for solving Riccati equation 1
Require: Matrix A, B, C , initial feedback matrix K0, loop variables k = 1, · · · , imax

k , and the iteration

tolerance ε = 1 × 10−12;

Ensure: X = X
(imax
k )

k+1 make V
(imax
k )

k+1 (W
(imax
k )

k+1 )T ≈ X
(imax
k )

k+1 , where X is the solution of equation AT X +
X A − XBBT X + CT C = 0.

1: for k = 1, · · · , imax
k do

2: Ak = BKT
k − A;

3: Mk = [Kk , CT ]; Qk = MkM
T
k ;

4: Using Algorithm 2 for low rank GADI to find Xk+1 ≈ Vk+1W
T
k+1 is the approximate solution of the

Lyapunov equation ATk Xk+1 + Xk+1Ak = Qk .

5: Kk+1 = Vk+1W
T
k+1B;

6: Compute Res(Vk+1W
T
k+1) = ‖ATk Vk+1W

T
k+1+Vk+1W

T
k+1Ak−Qk‖2

‖Qk‖2 ;
7: if Res(Vk+1W

T
k+1) < ε then

8: stop;
9: end if
10: end for
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Therefore, from Proposition 8 we can directly prove

‖F(Xk+1)‖2 ≤ ‖R(Xk+1)‖2 + ‖(Xk B − Xk+1B)(Xk B − Xk+1B)T ‖2
≤ ‖R(Xk+1)‖2 + ‖Xk B − Xk+1B‖22.


�

Theorem 9 Let Xk+1 is a symmetric positive semi-definite of the Eq. (17), and let (Ak, Mk)

is stable, and parameter α > 0, 0 ≤ ω < 2, then for all k = 0, 1, · · · , the low-rank form
defined in Eq. (19) V (l)

k+1(W
(l)
k+1)

T converges to Vk+1WT
k+1, which is equivalent to the iteration

sequence defined in Eq. (18) {X (l)
k+1}∞l=0 converges to Xk+1.

Proof Here, we only need to prove the convergence of the GADI iteration format in Eq. (18).
Applying the flattening operator to Eq. (18) yields

⎧⎪⎪⎨
⎪⎪⎩

(αk In2 + I ⊗ AT
k )vec(X

(l+ 1
2 )

k+1 ) = (αk In2 − AT
k ⊗ I )vec(X (l)

k+1) + vec(Qk),

(αk In2 + AT
k ⊗ I )vec(X (l+1)

k+1 ) = (AT
k+1 ⊗ I − (1 − ωk)αk In2)vec(X

(l)
k+1)

+(2 − ωk)αkvec(X
(l+ 1

2 )

k+1 ),

(20)

where x = vec(X), qk = vec(Qk), then the equivalent iteration format is obtained as
follows⎧⎨

⎩
(αk In2 + I ⊗ AT

k )x
(l+ 1

2 )

k+1 = (αk In2 − AT
k ⊗ I )x (l)

k+1 + qk,

(αk In2 + AT
k ⊗ I )x (l+1)

k+1 = (AT
k ⊗ I − (1 − ωk)αk In2)x

(l)
k+1 + (2 − ωk)αk x

(l+ 1
2 )

k+1 .
(21)

Next, the proof of this theorem can be referenced to the proof method of Theorem 2.6 in
Li et al. (2022). 
�

3.3 Complexity analysis

Here,we adopt theKleinman–Newton iteration to transform theRiccati equation into the Lya-
punov Eq. (17) and then use the low-rank GADI method for iterative solving. Each iteration
in the algorithm requires solving a Lyapunov equation, resulting in significant computational
complexity. The Kleinman–Newton iteration method is an improved version of the Newton
iteration method, as the right-hand side of Eq. (14) is usually indefinite with a full rank
matrix, while the method employed in this paper relies heavily on the low-rank structure of
the right-hand side. The rank of the matrix selected in equation is at most m + p, and we use
the low-rank method to compute the approximate solution, making the Kleinman–Newton
iteration method more suitable. We use the product of two low-rank matrices V (l)

k (W (l)
k )T to

replace X (l)
k . Next, we provide the stopping criterion used in the algorithm.

Firstly, we define the residual matrix of the Riccati equation (17) as follows:

F(Xk) = AT Xk + Xk A − XkGXk + Q.

During the iteration process, in order to reflect its relative approximation level, the relative
residual

Res(Xk) = ‖AT Xk + Xk A − XkGXk + Q‖2
‖Q‖2
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is commonly used as a stopping criterion for iteration.However, inNewton iterations, forming
the residual matrix R(VkWT

k ) requires a significant amount of memory. If the number of
columns in Vk ismuch smaller than the number of rows, the relative residual can be effectively
used as the stopping criterion.

Additionally, we can observe the variation of the feedback matrix Kk+1. We use the
criterion

Rs = ‖Kk+1 − Kk‖2
‖Kk+1‖2 < ε,

where Kk+1 = Vk+1WT
k+1B and ε is a very small positive number. This criterion is compu-

tationally efficient since K ∈ R
n×m and m � n.

The direct iteration method has a memory requirement of O(n2), and a computational

complexity of O(n3). First, the computational cost of X
l+ 1

2
k+1 is 4n2(2n − 1) + 3n2, and the

cost of Xl+1
k+1 is 4n2(2n − 1) + 4n2. Therefore, the total computational cost is 16n3 − n2.

By comparing Algorithm 2 and Algorithm 3, we can see that they have smaller memory
requirements. If A is a sparse matrix, the memory requirement can reach O(n). Next, we
calculate their computational complexity. Since A ∈ R

n×n, B ∈ R
n×m and C ∈ R

p×n ,
during the iteration process, the column numbers of matrices Vk and Wk ncrease with the
number of iterations. Here, we have Ak ∈ R

n×n, Mk ∈ R
n×(m+p). The computational cost

of calculating V (1)
1 is 2n2 p, whereW (1)

1 = V (1)
1 . The cost of calculating V (1)

k is 2n2(m + p),

and the cost of V (l)
k is n2(2l −2)(m+ p), while the cost ofW (l)

k is 4n3+2n2(2l −2)(m+ p).
Therefore, the total computational cost is 4n3 + n2(3 · 2l(m + p) − 2(2m + p)).

3.4 Numerical experiments

In this section, we use two examples of the quadratic optimal control to show the numerical
feasibility and effectiveness of the Kleinman-Newton-RGADI algorithms. The Riccati equa-
tion plays a central role in optimal control theory, particularly in linear quadratic regulator
(LQR) problems. By solving the Riccati equation, optimal control strategies can be found
to minimize the cost of control and state errors. Additionally, the Riccati equation can be
utilized for stability analysis of linear systems and designing stable feedback control systems.
In our numerical experiment, set the iteration tolerance ε = 1 × 10−12. The whole process
is performed on a computer with Intel Core 1.00GHz CPU, 8.00GB RAM, and MATLAB
R2018a. IT(inn) and IT(out) represent the number of inter iteration steps and outer iteration
steps, respectively, and CPU by the computing time.

Example 3.4.1 Consider the linear time-invariant control system of the form{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t).

where

A =

⎛
⎜⎜⎜⎜⎜⎝

−12 −3 0 · · · 0
2 −12 −3 · · · 0
...

. . .
. . .

. . .
...

0 · · · 2 −12 −3
0 · · · 0 2 −12

⎞
⎟⎟⎟⎟⎟⎠

n×n

, B =

⎛
⎜⎜⎜⎜⎜⎝

0.2
0.2
...

0.2
0.2

⎞
⎟⎟⎟⎟⎟⎠

n×1

,

C = (
0.1, 0.1, · · · , 0.1, 0.1

)
1×n , G = BBT , Q = CTC .

123



256 Page 22 of 27 J. Zhang, W. Xun

Table 4 Numerical results for
Example 3.4.1

n Algorithm Res out(int)IT CPU

128 K-N-GADI 4.2542e−15 8(8) 0.36s

128 K-N-RADI 1.7696e−15 4(8) 0.24s

128 K-N-RGADI 2.6821e−15 4(8) 0.21s

256 K-N-GADI 6.9046e−15 8(8) 1.38s

256 K-N-RADI 8.5988e−15 4(8) 0.76s

256 K-N-RGADI 5.0362e−15 4(8) 0.69s

512 K-N-GADI 7.1477e−15 8(9) 11.73s

512 K-N-RADI 1.0959e−14 6(9) 7.13s

512 K-N-RGADI 8.9506e−15 6(9) 6.85s

1024 K-N-GADI 9.2023e−15 8(13) 172.32s

1024 K-N-RADI 4.2303e−14 6(11) 141.4s

1024 K-N-RGADI 5.914e−15 6(12) 134.96s

2048 K-N-GADI 7.4253e−12 10(16) 3412.4s

2048 K-N-RADI 6.038e−13 8(16) 2941.4s

2048 K-N-RGADI 2.1016e−13 8(16) 2805s

Fig. 5 The residual curve of Example 3.4.1 n = 1024

When the matrix dimension increases in multiples, we choose the relative residual as the
iteration stopping criterion and use the Kleinman–Newton-GADI (K-N-GADI), Kleinman-
Newton-RADI (K-N-RADI), and Kleinman–Newton-RGADI (K-N-RGADI) methods for
computation. These iteration methods all start from the initial value X0 = 0 and yield
numerical results shown in Table 4. From the table data, we can see that the K-N-RGADI
method is more efficient in solving this example problem compared to the K-N-GADI and
K-N-RADI methods. Additionally, Fig. 5 clearly shows the variation of iteration steps and
relative residual for these three methods when n = 1024, while Fig. 5 displays the time con-
sumption of these three iteration methods as the matrix dimension increases. These findings
further demonstrate the effectiveness of the K-N-RGADI method.

Furthermore, as the order n of the coefficient matrix in the equation increases multiplica-
tively, we employ the K-N-RGADI method with the relative change of the feedback matrix
(Rs) as the iteration stopping criterion. We compare this method with the K-N-GADI and
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Fig. 6 The time curve of Example 3.4.1

Table 5 Numerical results for
Example 3.4.1

K-N-GADI uses Res as the iteration stop standard

n 128 256 512 1024 2048 4096

CPU 0.36s 1.38s 11.73s 172.42s 3412.4s –

K-N-RGADI uses Res as the iteration stop standard

n 128 256 512 1024 2048 4096

CPU 0.21s 0.69s 6.85s 134.96s 2805s –

K-N-RGADI uses Rs as the iteration stop standard

n 128 256 512 1024 2048 4096

CPU 0.12s 0.57s 2.26s 30.95s 213.34s 3478.8s

K-N-RGADI methods that use the relative residual Res as the iteration stopping criterion.
From Table 5, we can observe that when using the relative change of the feedback matrix as
the iteration stopping criterion, the K-N-RGADI method significantly reduces the running
time.

Figure7 shows the iterative steps and corresponding residual Rs obtained by using the
K-N-RGADI method to compute different matrix dimensions n. It can be clearly seen that
as the matrix dimension increases, the residual Rs also increases.

Example 3.4.2 Consider the linear time-invariant control system of the form{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t).

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−12 −3 −2 0 0 · · · 0
2 −12 −3 −2 0 · · · 0
1 2 −12 −3 −2 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 1 2 −12 −3 −2
0 · · · 0 1 2 −12 −3
0 · · · 0 0 1 2 −12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

, B =

⎛
⎜⎜⎜⎜⎜⎝

0.2
0.2
...

0.2
0.2

⎞
⎟⎟⎟⎟⎟⎠

n×1

,

C = (
0.1, 0.1, · · · , 0.1, 0.1

)
1×n , G = BBT , Q = CTC .
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Fig. 7 The residual curve of Example 3.4.1

Table 6 Numerical results for
Example 3.4.2

n Algorithm Res out(int)IT CPU

128 K-N-GADI 2.2313e−15 8(10) 0.46s

128 K-N-RADI 2.2274e−15 4(10) 0.35s

128 K-N-RGADI 3.4297e−15 4(10) 0.32s

256 K-N-GADI 4.8395e−15 8(10) 1.69s

256 K-N-RADI 9.4654e−15 4(10) 1.06s

256 K-N-RGADI 6.6721e−15 4(10) 1.04s

512 K-N-GADI 1.3522e−14 8(9) 13.68s

512 K-N-RADI 1.3458e−14 6(10) 10.56s

512 K-N-RGADI 1.22e−14 6(10) 8.29s

1024 K-N-GADI 7.2204e−14 8(13) 203.93s

1024 K-N-RADI 2.9667e−14 6(12) 176.04s

1024 K-N-RGADI 2.0719e−14 6(12) 152.61s

2048 K-N-GADI 1.2224e−12 10(16) 4019.5s

2048 K-N-RADI 2.5904e−13 8(16) 3145.8s

2048 K-N-RGADI 3.2006e−13 8(16) 2988.2s

We first used the relative residual Res as the iterative stopping criterion and adopted K-
N-GADI, K-N-RADI, and K-N-RGADI methods to solve this example problem. The initial
iteration value is set to X0 = 0, and the numerical results obtained are shown in Table 6.

Next, we utilize the relative change of the feedback matrix (Rs) as the stopping criterion
for the K-N-RGADI iteration method and compare its runtime with that of the K-N-GADI
and K-N-RGADI iteration methods using the relative residual Res as the stopping criterion.
As shown in Table 7, when using the relative change of the feedback matrix as the iteration
stopping criterion, the K-N-RGADI method achieves a shorter runtime.
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Table 7 Numerical results for
Example 3.4.2 K-N-GADI uses Res as the iteration stop standard

n 128 256 512 1024 2048 4096

CPU 0.46s 1.69s 13.68s 203.93s 4019.5s –

K-N-RGADI uses Res as the iteration stop standard

n 128 256 512 1024 2048 4096

CPU 0.32s 1.04s 8.29s 152.61s 2988.2s –

K-N-RGADI uses Rs as the iteration stop standard

n 128 256 512 1024 2048 4096

CPU 0.14s 0.63s 2.58s 35.26s 218.98s 3519.6.5s

4 Conclusions

This paper presents a low-rank GADI algorithm for computing low-rank approximate solu-
tions to large-scale Lyapunov and algebraic Riccati equations. In the computation of low-rank
approximate solutions to the algebraic Riccati equation, we combine the Kleinman-Newton
method and utilize the low-rankGADI algorithm to solve theLyapunov equation at eachNew-
ton step, resulting in the Kleinman-Newton-RGADI algorithm. Additionally, we observe that
the low-rank GADI method exhibits the same convergence properties as the GADI method
when solving both the Lyapunov and algebraic Riccati equations with low-rank approxi-
mations. Furthermore, numerical examples are provided to compare the effectiveness of the
low-rank ADI algorithm and the low-rank GADI algorithm. The results demonstrate that the
low-rank GADI method is more efficient. However, like other solvers, the performance of
this algorithm heavily relies on the choice of shift parameters, which remains a challenging
problem. Currently, there have been some new parameter selection methods developed. For
instance, neural networks can be utilized to learn parameters during the process of solv-
ing the Lyapunov equation, to further improve the efficiency of the algorithm. Additionally,
the Gaussian process regression (GPR) method based on the Bayesian inference, to predict
the GADI framework’s relatively optimal parameters. Applying these parameter selection
methods to our work will be a key focus of our upcoming efforts.
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