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Abstract
In this paper, we study the pseudo almost periodic solutions for a class of nonlinear Duffing
equations with S p-pseudo almost periodic coefficients and delays on time scales. For this
purpose, we establish a result of the existence and uniqueness of pseudo almost periodic
solution for an abstract linear equation with S p-almost periodic coefficients and S p-pseudo
almost periodic forcing term. Meanwhile, to deal with the delay, we extend some concepts
of functions from T → R to T → �, where T is a time scale with translation set �, and
give some basic properties for these concepts. Then, applying these results, we obtain some
results on the existence and uniqueness of pseudo almost periodic solutions for the Duffing
equation. Moreover, some examples are given to illustrate our main results.

Keywords S p-pseudo almost periodic · Duffing equation · Pseudo almost periodic
solution · Time scales

Mathematics Subject Classification 34N05 · 34C27

1 Introduction

In recent years, the dynamic behaviors of nonlinear Duffing equations have been widely
investigated in Burton (1986); Hale (1977); Kuang (2012); Yoshizawa (1975) due to the
potential use in the areas of physics, mechanics and other engineering technique fields.
Among them, the existence of almost periodic solutions and pseudo almost periodic solutions
have attracted many authors. Some results on the existence of almost periodic solutions were
obtained in the literature (see e.g., Zhou and Liu (2009); Peng and Wang (2010); Xu (2012);
Liu and Tunç (2015)).

Recently, Zhou and Liu (2009) considered the following model for a nonlinear Duffing
equation with a deviating argument:

x ′′(t) − ax(t) + bxm(t − τ(t)) = p(t), (1)
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where τ(t) and p(t) are almost periodic functions on R, m > 1 is an integer, a > 0 and
b �= 0 are constants. By setting

y = x ′(t) + δx(t),

where δ > 1 is a constant, (1) transforms into the following system:{
x ′(t) = −δx(t) + y(t),

y′(t) = δy(t) + (a − δ2)x(t) − bxm(t − τ(t)) + p(t).

The authors gave some criteria for the existence of almost periodic solutions for (1).
Then, Peng and Wang (2010) considered the following model for a nonlinear Duffing

equation with a deviating argument:

x ′′(t) + cx ′(t) − ax(t) + bxm(t − τ(t)) = p(t), (2)

where τ(t) and p(t) are almost periodic functions on R, m > 1 is an integer and a, b, c are
constants. By the transformation

y(t) = x ′(t) + ξ x(t) − Q1(t), Q2(t) = p(t) + (ξ − c)Q1(t) − Q′
1(t),

where ξ > 1 is a constant and Q1(t) is continuous and differentiable, (2) transforms into the
following system:{

x ′(t) = −ξ x(t) + y(t) + Q1(t),

y′(t) = −(c − ξ)y(t) + (a − ξ(ξ − c))x(t) − bxm(t − τ(t)) + Q2(t),
(3)

and then proved the existence of positive almost periodic solutions of (2) and (3).
After that, system (3) has been naturally extended by Xu (2012) to the following system

with time-varying coefficients and delays:⎧⎪⎨
⎪⎩

dx(t)

dt
= −δ1(t)x(t) + y(t) + Q1(t),

dy(t)

dt
= δ2(t)y(t) + (a(t) − δ22(t))x(t) − b(t)xm(t − τ(t)) + Q2(t),

(4)

where a(t), b(t), τ (t), δ1(t), δ2(t), Q1(t), Q2(t) are almost periodic functions on R, m > 1
is an integer and a(t) > 0, b(t) �= 0, and gave some sufficient conditions for the existence
of almost periodic solutions of (4).

Based on the work of Xu (2012), Liu and Tunç (2015) considered the system (4) with
δ1, δ2 ∈ AP(R;R), a, b, τ, Q1, Q2 ∈ PAP(R;R), and a > 0, b �= 0 for t ∈ R. They
gave some sufficient conditions for the existence and uniqueness of pseudo almost periodic
solutions of (4). Their results improved the results in the literature (Peng and Wang 2010;
Xu 2012).

Moreover, Yang and Li (2014) considered the Duffing equation on time scales:

(x�)�(t) + c(t)x�(t) − a(t)x(t) + b(t)xm(t − τ(t)) = p(t), (5)

whereT is an invariant time scale, t ∈ T, t−τ(t) ∈ T andm > 1 is a constant, and presented
the existence and global exponential stability of almost periodic solutions for (5).

To combine continuous and discrete issues, Hilger proposed the idea of time scales in
his Ph.D. thesis (Hilger 1988) in 1988. Several mathematicians have been interested in
this theory since it provides an efficient mathematical technique for studying economics,
biomathematics, and quantum physics, among other subjects.
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Motivated by the aboveworks, in this paper, we study the pseudo almost periodic solutions
for the nonlinear Duffing Eq. (5) with S p-pseudo almost periodic coefficients and delays on
time scales. For this purpose, we establish a result of the existence and uniqueness of pseudo
almost periodic solution for an abstract linear equation with S p-almost periodic coefficients
and S p-pseudo almost periodic forcing term (see Theorem 3.1). Meanwhile, to deal with the
delay τ(t), we extend some concepts of functions from T → R to T → �, where T is a time
scale with translation set � (see Definition 2.9, 2.10, 2.13), and give some basic properties
for these concepts including the composition result (see Lemma 2.4, 2.6, 2.7). Then applying
these results and Banach fixed point theorem, we get the existence and uniqueness of the
pseudo almost periodic solution for the Duffing Eq. (5) (see Theorem 3.2, Theorem 3.3).
Moreover, some examples are given to illustrate our main results at the end of this work.

2 Preliminaries

We refer to the sets of positive integers, integers, real numbers and non-negative real numbers,
respectively, as N, Z, R and R

+ throughout this work. The space of all n × n real-valued
matrices with matrix norm ‖ · ‖ is denoted byRn×n , while the Euclidian spaceRn orCn with
Euclidian norm | · | is denoted by E

n .

2.1 Time scale

LetT ⊂ R be a time scale, that is,T �= ∅ is closed. The forward and backward jump operators
σ, ρ : T → T and the graininess μ : T → R

+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ(t) − t .

If σ(t) > t, we say t is right-scattered; otherwise, t is right-dense. Similarly, if ρ(t) < t , we
say t is left-scattered; otherwise t is left-dense.

If T has a left-scattered maximum m, then T
κ = T \ m; otherwise Tκ = T.

Definition 2.1 A time scale T is called invariant under translations if

� := {τ ∈ R : t ± τ ∈ T, t ∈ T} �= {0},
and define

K =
{
inf{|τ | : τ ∈ �, τ �= 0} , if T �= R;
1 , if T = R.

In fact, if T �= R, we have K > 0 and one can show that � = KZ. We say � the translation
set of T (see e.g, Tang and Li (2017)).

In this paper, we always assume that T is invariant under translations.

Definition 2.2 (Bohner and Peterson (2001))

(i) A function f : T → E
n is continuous on T if f is continuous at every right-dense point

and at every left-dense point.
(ii) A function f : T → E

n is rd-continuous on T if it is continuous at all right-dense points
in T and its left-sided limit exists at all left-dense points in T.
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For t, s ∈ T, t < s, denote (t, s), [t, s], (t, s], [t, s) the standard intervals in R, and
use the following symbols:

(t, s)T = (t, s) ∩ T, [t, s]T = [t, s] ∩ T, (t, s]T = (t, s] ∩ T, [t, s)T = [t, s) ∩ T.

Denote

C(T;En) = {
f : T → E

n : f is continuous
}
,

C(T × D;En) = {
f : T × D → E

n : f is continuous
}
,

BC(T;En) = {
f : T → E

n : f is bounded and continuous
}
,

BUC(T;En) = {
f : T → E

n : f is uniformly continuous and bounded
}
,

BC(T × D;En) = {
f : T × D → E

n : f is bounded and continuous
}
,

where D ⊂ E
n is an open set.

Definition 2.3 (Bohner and Peterson (2001)) For f : T → E
n and t ∈ T

κ , f �(t) ∈ E
n is

called the delta derivative of f (t) if for a given ε > 0, there exists a neighborhood U of t
such that

| f (σ (t)) − f (s) − f �(t)(σ (t) − s)| < ε|σ(t) − s|
for all s ∈ U .

Lemma 2.1 (Cabada and Vivero (2006)) Fix a point ω ∈ T and an interval [ω,ω + K)T,
there are at most countably many right-scattered points {ti }i∈I , I ⊆ N in this interval. If
we denote ti j = ti + jK, i ∈ I , j ∈ Z, we get all the right-scattered points, and we have
μ(ti j ) = μ(ti ).

Let F1 = {[t, s)T : t, s ∈ T wi th t � s}. Define a countably additive measure m1 on F1

by assigning to every [t, s)T ∈ F1 its lengths, i.e.

m1([t, s)T) = s − t .

Usingm1, we can generate the outer measurem∗
1 on the power set P(T) of T: for E ∈ P(T)

m∗
1(E) =

⎧⎨
⎩
infB

{ ∑
i∈IB

(si − ti )
}

∈ R
+, β /∈ E;

+∞, β ∈ E,

where β = supT and

B =
{
{[ti , si ) ∈ F1}i∈IB : IB ⊂ N, E ⊂

⋃
i∈IB

[ti , si )T
}
.

A set A ⊂ T is called �−measurable if for E ⊂ T, we have

m∗
1(E) = m∗

1(E ∩ A) + m∗
1(E ∩ (T \ A)).

Let M(m∗
1) = {A : A is a � − measurable subset in T}. Restricting m∗

1 to M(m∗
1), we get

the Lebesgue �−measure, which is denoted by μ�.

Definition 2.4 (Cabada and Vivero (2006))
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(i) A function S : T → E
n is said to be simple if S takes a finite number of values

c1, c2, · · · , cN . Let E j = {s ∈ T : S(s) = c j }, then

S =
N∑
j=1

c jχE j ,

where χE j is the characteristic function of E j , that is

χE j (s) =
{
1, if s ∈ E j ;
0, if s ∈ T \ E j .

(ii) Assume that E is a �−measurable subset of T and S : T → E
n is a �−measurable

simple function, then the Lebesgue �−integral of S on E is defined as∫
E
S(s)�s =

N∑
j=1

c jμ�(E j ∩ E).

(iii) A function g : T → E
n is a �−integrable function if there exists a simple function

sequence {gk : k ∈ N} such that gk(s) → g(s) a.e. in T, then the integral of g is defined
as ∫

T

g(s) = lim
k→∞

∫
T

gk(s)�s.

(iv) For p � 1, g : T → E
n is called locally L p �−integrable if g is �−measurable and

for any compact �−measurable set E ⊂ T, the �−integral∫
E

|g(s)|p�s < ∞.

The set of all L p �−integrable functions is denoted by L p
loc(T;X).

Definition 2.5 (Tang and Li (2018)) Define ‖ · ‖S p : L p
loc(T;En) → R

+ ∪ {+∞} as

‖g‖S p := sup
s∈T

(
1

K

∫ s+K

s
|g(r)|p�r

) 1
p

.

where K is defined in Definition 2.1. A function g ∈ L p
loc(T;En) is called S p-bounded if

‖g‖S p < ∞. The space of all S p-bounded functions is denoted by BSp(T;En); if T = R,

denote it by BSp(En).

2.2 Almost periodicity and pseudo almost periodicity onT

Definition 2.6 (Wang and Agarwal (2015)) A set A ⊂ T is called relatively dense in T if
there exists l > 0 such that [s, s + l]T ∩ A �= ∅, s ∈ T, we call l the inclusion length.

Definition 2.7 (Li and Wang (2011))

(i) A function g ∈ C(T;X) is almost periodic on T if for ε > 0,

T (g, ε) = {τ ∈ � : ‖g(s + τ) − g(s)‖ < ε for s ∈ T}
is a relatively dense set in �. We call T (g, ε) the ε-translation set of g and τ the
ε−translation period of g, and the set of all almost periodic functions on T is denoted by
AP(T;X).
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(ii) Let D ⊂ E
n be open. The set AP(T× D;En) consists of all functions f : T× D → E

n

such that f (·, x) ∈ AP(T;En) uniformly for each x ∈ K where K is any compact subset
of D.

Definition 2.8 (Li andWang (2011)) A continuous function g : T → E
n is said to be normal

on� if for any sequence {α′
n} ⊂ �, there is a subsequence {αn} ⊂ {α′

n} such that {g(t +αn)}
converges uniformly for t ∈ T.

Lemma 2.2 (Li and Wang (2011)) A continuous function g : T → E
n is almost periodic on

T if and only if it is normal on �.

To ensure t − τ(t) ∈ T, we have to give a restriction: τ(t) ∈ �. So we extend some
concepts of functions from T → R to T → � below.

Definition 2.9 A function f : T → � is continuous if f is continuous at every right-dense
point and at every left-dense point.

Denote

C(T;�) = { f : T → � : f is continuous} ,

BC(T;�) = { f : T → � : f is bounded and continuous} .

Definition 2.10 A function g ∈ C(T;�) is almost periodic on T if for ε > 0,

T (g, ε) = {τ ∈ � : ‖g(s + τ) − g(s)‖ < ε for s ∈ T}
is a relatively dense set in�.We call T (g, ε) the ε-translation set of g and τ the ε−translation
period of g, and the set of all almost periodic functions on T is denoted by APm(T;�).

Remark 2.1 For T = R, we have � = R, APm(T;�) = AP(R;R).

Denote the set

PAP0(T;En) =
{
f ∈ BC(T;En) : lim

r→∞
1

2r

∫ t0+r

t0−r
| f (s)|�s = 0,

where t0 ∈ T, r ∈ �
}
,

PAP0(T × D;En) =
{
f ∈ BC(T × D;En) : f (·, x) ∈ PAP0(T;En)

uniformly in x ∈ D
}
,

PAP0(T;�) =
{
f ∈ BC(T;�) : lim

r→∞
1

2r

∫ t0+r

t0−r
| f (s)|�s = 0,

where t0 ∈ T, r ∈ �
}
.

Definition 2.11 (Li and Wang (2012)) A closed subset C of T is said to be an ergodic zero
set in T if

μ�(C ∩ ([t0 − r , t0 + r ]) ∩ T)

2r
→ 0 as r → ∞, for t0 ∈ T.

Definition 2.12 (Li and Wang (2012))
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(i) A function f ∈ BC(T;En) is called pseudo almost periodic if f = g + φ, where
g ∈ AP(T;En) and φ ∈ PAP0(T;En). We denote by PAP(T;En) the set of all pseudo
almost periodic functions.

(ii) A function f ∈ BC(T × D;En) is called pseudo almost periodic if f = g + φ, where
g ∈ AP(T × D;En) and φ ∈ PAP0(T × D;En). We denote by PAP(T × D;En) the
set of all pseudo almost periodic functions.

Definition 2.13 A function f ∈ BC(T;�) is called pseudo almost periodic if f = g + φ,
where g ∈ APm(T;�) and φ ∈ PAP0(T;�). We denote by PAP(T;�) the set of all
pseudo almost periodic functions.

Lemma 2.3 (Li and Wang (2012))

(i) If f ∈ PAP(T;En) and φ ∈ PAP0(T;En), then for any τ ∈ �, f (· + τ) ∈
PAP(T;En) and φ(· + τ) ∈ PAP0(T;En).

(ii) PAP(T;En) and P AP0(T;En) are Banach spaces under the sup norm.

Lemma 2.4 Assume that T �= R.

(i) Let f ∈ APm(T;�), then f is periodic.
(ii) APm(T;�) is a Z-module.

Proof (i) For ε > 0, T ( f , ε) = {τ ∈ � : ‖ f (· + τ) − f (·)‖ < ε for s ∈ T} is relatively
dense in �. Let τ ∈ �, f (t + τ) − f (t) ∈ � = KZ for t ∈ T. Let ε < K, we can get that
‖ f (· + τ) − f (·)‖ < ε if and only if f (t + τ) − f (t) = 0 for t ∈ T. Thus, f is periodic.

(ii) Let f1, f2 ∈ APm(T;�) with period T1 = n1K, T2 = n2K, respectively. Then we
have f1 + f2 is of period T = [n1, n2]K, where [n1, n2] denotes the least common multiple
of n1 and n2, we get that f1 + f2 ∈ APm(T;�) and thus APm(T;�) is an additive group.
Then it is easy to check that APm(T;�) is a Z-module.

��
Remark 2.2 For T �= R, obviously, APm(T;�) is not a vector space on R.

Lemma 2.5 (Zhang (1995)) A function φ0 ∈ BC(R;R) is in P AP0(R;R) if and only if, for
ε > 0, the set Cε = {t ∈ R : |φ0(t)| � ε} is an ergodic zero subset of R.
Lemma 2.6 A bounded continuous function φ0 ∈ PAP0(T;�) if and only if for ε > 0, the
set Cε = {t ∈ T : |φ0(t)| � ε} is an ergodic zero subset of T.

Proof If T = R, the conclusion follows from Lemma 2.5. Assume that T �= R. Let φ0 ∈
PAP0(T;�), by contradiction, suppose that Cε is not an ergodic zero subset of T. Then
there exists a constant ε0 > 0 such that

lim sup
r→∞

μ�(Cε ∩ ([t0 − r , t0 + r ]) ∩ T)

2r
� ε0, for some t0 ∈ T.

We can derive that

lim
r→∞

1

2r

∫ t0+r

t0−r
|φ0(s)|�s � lim sup

r→∞
1

2r

∫
Cε∩[t0−r ,t0+r ]

|φ0(s)|�s � ε0ε > 0,

which contradicts that φ0 ∈ PAP0(T;�) and then Cε is an ergodic zero subset of T.
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On the other hand, for ε > 0 and Cε is an ergodic zero set. Without loss of generality, we
can choose ε < K, then we have φ0(t) = 0 for t ∈ T \ Cε. Let M = sup

t∈T
|φ0(t)|, for t0 ∈ T,

we obtain that

1

2r

∫ t0+r

t0−r
|φ0(s)|�s = 1

2r

∫
Cε∩[t0−r ,t0+r ]

|φ0(s)|�s +
∫

([t0−r ,t0+r ]∩T)\Cε

|φ0(s)|�s

= 1

2r

∫
Cε∩[t0−r ,t0+r ]

|φ0(s)|�s

� M · μ�(Cε ∩ [t0 − r , t0 + r ] ∩ T)

2r
→ 0, as r → ∞.

Thus, we have φ0 ∈ PAP0(T;�). ��
Lemma 2.7 (Liu and Tunç (2015)) Suppose that F ∈ PAP(R;R) ∩ BUC(R;R) and φ ∈
PAP(R;R). Then F(· − φ(·)) ∈ PAP(R;R).

Lemma 2.8 For T �= R, suppose that F ∈ PAP(T;En) and φ ∈ PAP(T;�). Then
F(· − φ(·)) ∈ PAP(T;En).

Proof Let F = F1 + F0, φ = φ1 + φ0 with F1 ∈ AP(T;En), F0 ∈ PAP0(T;En) and
φ1 ∈ APm(T;�), φ0 ∈ PAP0(T;�). Note that, for t ∈ T,

F(t − φ(t)) = F1(t − φ(t)) + F0(t − φ(t))

= F1(t − φ1(t)) + (F1(t − φ(t)) − F1(t − φ1(t))) + F0(t − φ(t)).

We first prove the almost periodicity of F1(t −φ1(t)). From Lemma 2.4, we know that φ1(t)
is periodic on T, then for {α′′

n } ⊂ �, there exists a subsequence {α′
n} ⊂ {α′′

n } such that
φ1(t + α′

n) = φ1(t + α′
m) = τ0 for n,m ∈ N. Since F1 ∈ AP(T;En), by Lemma 2.2,

for {α′
n}, we can extract a subsequence {αn} such that {F1(t + αn)} converges uniformly for

t ∈ T. Thus, F1(t + αn − φ1(t + αn)) = F1(t + αn − τ0) converges uniformly for t ∈ T,
and F1(· − φ1(·)) is normal on �. Hence, F1(· − φ1(·)) ∈ AP(T;En) by Lemma 2.2 again.

Then we only need to show that h = (F1(· − φ(·)) − F1(· − φ1(·))) + F0(· − φ(·)) ∈
PAP0(T;En). First we show that F1(· − φ(·)) − F1(· − φ1(·)) ∈ PAP0(T;En). For 0 <

δ < K, let Cδ = {|φ0(·)| � δ}. By Lemma 2.6, we can get that Cδ is an ergodic zero set in
T. This means that for ε > 0, there exists T > 0 such that when r > T , t0 ∈ T,

μ�([t0 − r , t0 + r ] ∩ T ∩ Cδ)

2r
<

ε

2‖F1‖ .

It is obvious that if t ∈ [t0 − r , t0 + r ] ∩ T\Cδ , φ0(t) = φ(t) − φ1(t) = 0. So we have

1

2r

∫ t0+r

t0−r
|F1(s − φ(s)) − F1(s − φ1(s))|�s

= 1

2r

( ∫
t∈[t0−r ,t0+r ]∩T\Cδ

|F1(s − φ(s)) − F1(s − φ1(s))|�s

+
∫

t∈[t0−r ,t0+r ]∩T∩Cδ

|F1(s − φ(s)) − F1(s − φ1(s))|�s

)

� 0 + 2‖F1‖ · μ�([t0 − r , t0 + r ] ∩ T ∩ Cδ)

2r
< ε.
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Therefore, F1(· − φ(·)) − F1(· − φ1(·)) ∈ PAP0(T;En).
Next we show that F0(·−φ(·)) ∈ PAP0(T;En). Since φ is bounded, φ(T) ⊂ � = KZ is

of finite number of values, denote them by {k1, k2, . . . , kn}, where ki ∈ �, i = 1, 2, . . . , n.
By Lemma 2.3 (i), we have F0(· − ki ) ∈ PAP0(T;En), i = 1, 2, ..., n. So for ε > 0, there
exists T1 > 0 such that for r > T1,

1

2r

∫ t0+r

t0−r
|F0(s − ki )|�s <

ε

n
, i = 1, 2, ..., n.

Then we can get

1

2r

∫ t0+r

t0−r
|F0(s − φ(s))|�s � 1

2r

n∑
i=1

∫ t0+r

t0−r
|F0(s − ki )|�s

< n · ε

n
= ε.

This implies that F0(· − φ(·)) ∈ PAP0(T;En). ��

2.3 Sp-almost periodic functions and Sp-pseudo almost periodic functions

Definition 2.14 (Tang and Li (2018)) A function g ∈ L p
loc(T;En) is S p-almost periodic on

T if given ε > 0, the ε-translation set of g

T (g, ε) = {τ ∈ � : ‖g(· + τ) − g(·)‖S p < ε}

is a relatively dense set in �. The space of all these functions is denoted by S p AP(T;En)

with norm ‖ · ‖S p .

Define the norm operator Np on BSp(T;En) as follows:

Np( f )(t) :=
(
1

K

∫ t+K

t
| f (s)|p�s

) 1
p

for f ∈ BSp(T;En), t ∈ T.

Lemma 2.9 (Tang and Li (2018)) The norm operatorNp maps BSp(T;En) in to BC(T;R)

and maps S p AP(T;En) into AP(T;R). Moreover, for f , g ∈ BSp(T;En), t ∈ T,

‖Np( f )‖∞ = ‖ f ‖S p , |Np( f )(t) − Np(g)(t)| � Np( f ± g)(t) � Np( f )(t) + Np(g)(t).

Lemma 2.10 Let f ∈ BSp(T;En), g ∈ BSq(T;En) with p, q � 1,
1

p
+ 1

q
= 1. Then we

have, for t ∈ T,

N1( f · g)(t) � Np( f )(t) · Nq(g)(t) � ‖ f ‖S p · Nq(g)(t). (6)

In addition, if f is bounded and continuous, we have

N1( f · g)(t) � Nq( f · g)(t) � ‖ f ‖ · Nq(g)(t). (7)
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Proof If p = 1, q = +∞, it is obvious. Now suppose that p, q > 1. By Hölder inequality,
for t ∈ T, we have

N1( f · g)(t) = 1

K

∫ t+K

t
| f (s)g(s)|�s

� 1

K

(∫ t+K

t
| f (s)|p�s

) 1
p

·
(∫ t+K

t
|g(s)|q�s

) 1
q

=
(
1

K

∫ t+K

t
| f (s)|p�s

) 1
p

·
(
1

K

∫ t+K

t
|g(s)|q�s

) 1
q

= Np( f )(t) · Nq(g)(t) � ‖ f ‖S p · Nq(g)(t).

If f is bounded and continuous, then we have

N1( f · g)(t) = 1

K
∫ t+K

t
| f (s)g(s)|�s � 1

K

(∫ t+K

t
| f (s)g(s)|q�s

) 1
q

·
(∫ t+K

t
1p�s

) 1
p

=
(
1

K
∫ t+K

t
| f (s)g(s)|q�s

) 1
q

� ‖ f ‖ ·
(
1

K
∫ t+K

t
|g(s)|q�s

) 1
q

= ‖ f ‖ · Nq (g)(t)

��
Definition 2.15 (Tang and Li (2018)) A function f ∈ BSp(T;En) is said to be ergodic if
Np( f ) ∈ PAP0(T;R). We denote by S p P AP0(T;En) the set of all ergodic functions from
T to E

n .

Definition 2.16 (Tang andLi (2018))A function f ∈ BSp(T;En) is called S p-pseudo almost
periodic if f = g + φ, where g ∈ S p AP(T;En) and φ ∈ S p P AP0(T;En). We denote by
S p P AP(T;En) the set of all such functions f .

Lemma 2.11 (Tang and Li (2018))

(i) PAP(T;En) ⊂ S p P AP(T;En).
(ii) Sq P AP(T;En) ⊂ S p(T;En) for 1 � p � q.

(iii) Assume that f ∈ BSp(T;En). For t0 ∈ T, we have
∫ t0+K

t0
| f (s)|�s � K‖ f ‖S p .

Lemma 2.12 For f = f1 + f2 ∈ PAP(T;En) and g = g1 + g2 ∈ S p P AP(T;En) with
f1 ∈ AP(T;En), f2 ∈ PAP0(T;En), g1 ∈ S p AP(T;En) and g2 ∈ S p P AP0(T;En).
Then f · g ∈ S1PAP(T;En).

Proof For convenience, we denote f τ (·) = f (· + τ) in the proof. In fact, we have f · g =
f1 · g1 + f2 · g1 + f · g2. Now we prove that f · g ∈ S1PAP(T;En) by the following 3
steps.

Step 1: We prove that f1 ·g1 ∈ S1AP(T;En). For ε > 0, choose τ ∈ T ( f1, ε)∩T (g1, ε),
by Lemma 2.9 and (7), we can get that
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‖ f1(· + τ)g1(· + τ) − f1(·)g1(·)‖S p = sup
t∈T

Np(( f1 · g1)τ − f1 · g1)(t)

= sup
t∈T

Np( f
τ
1 · (gτ

1 − g1) + ( f τ
1 − f1) · g1)(t)

� sup
t∈T

Np( f
τ
1 · (gτ

1 − g1))(t) + sup
t∈T

Np(( f
τ
1 − f1) · g1)(t)

� ‖ f1‖ · sup
t∈T

Np(g
τ
1 − g1)(t) + ‖ f τ

1 − f1‖ · sup
t∈T

Np(g1)(t)

� (‖ f1‖ + ‖g1‖S p )ε,

which means that f1 · g1 ∈ S p AP(T;En) and by Lemma 2.11 (ii), we have f1 · g1 ∈
S1AP(T;En).

Step 2: We prove that f · g2 ∈ S1PAP0(T;En). By Lemma 2.11 (iii) and (6), we have

1

2r

∫ t0+r

t0−r
N1( f · g2)(t)�t � ‖ f ‖ · 1

2r

∫ t0+r

t0−r
Np(g2)(t)�t, (8)

for a fixed t0 ∈ T and r ∈ �. Let r → ∞ in (8) we derive that

lim
r→∞

1

2r

∫ t0+r

t0−r
Np( f · g2)�t = 0,

since g2 ∈ S p P AP0(T;En). Thus, f · g2 ∈ S1PAP0(T;En).
Step 3: We prove that f2 · g1 ∈ S1PAP0(T;En). By Lemma 2.11 (i) we can get that

f2 ∈ Sq P AP0(T;En) where
1

q
+ 1

p
= 1. For a fixed t0 ∈ T, r ∈ �, by (6), we have

lim
r→∞

1

2r

∫ t0+r

t0−r
N1( f2 · g1)(t)�t � lim

r→∞
1

2r

∫ t0+r

t0−r
Nq( f2)(t) · Np(g1)(t)�t

� ‖g1‖S p · lim
r→∞

1

2r

∫ t0+r

t0−r
Nq( f2)(t)�t = 0.

Thus, we get f2 · g1 ∈ S1PAP0(T;En). ��

2.4 Exponential functions

For a function p : T → R, if we have 1 + μ(t)p(t) �= 0, t ∈ T
κ , we say that p is

regressive. Denote the set of all regressive and rd-continuous function p : T → R by
R = R(T) = R(T;R) and define the set R+ = R+(T;R) = {p ∈ R : 1 + μ(t)p(t) >

0 for t ∈ T}. We can see that the set R(T;R) is an Abelian group with addition ⊕ defined
by p ⊕ q = p + q + μ(t)pq , and the additive inverse in this Abelian group is defined by

�p = − p

1 + μ(t)p
.

Definition 2.17 (Bohner and Peterson (2001)) For p ∈ R, the exponential function is defined
by

ep(t, s) = exp

(∫ t

s
ξμ(τ)(p(τ ))�τ

)
,

for t, s ∈ T with the cylinder transformation

ξh(z) =
{ 1

hLog(1 + hz) , if h �= 0;
z , if h = 0,
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where Log is the principal logarithm.

Definition 2.18 (Bohner and Peterson (2001)) For a matrix-valued function A : T → R
n×n ,

we say that A(·) is regressive if I + μ(t)A(t) is invertible for t ∈ T
κ , and denote the set of

all such regressive and rd-continuous functions by R(T;Rn×n).

Definition 2.19 (Bohner and Peterson (2001)) Let A ∈ R(T;Rn×n). The initial value prob-
lem

X(t)� = A(t)X(t), X(t0) = I , t, t0 ∈ T

has a unique solution which is denoted by eA(·, t0). We say that eA(·, t0) is the matrix
exponential function at t0.

Lemma 2.13 (Bohner and Peterson (2001)) Let t, s ∈ T.

(i) ep(t, t) = 1, eA(t, t) = I .
(ii) ep(σ (t), s) = (1 + μ(t)p(t))ep(t, s).
(iii) ep(t, s)ep(s, r) = ep(t, r), eA(t, s)eA(s, r) = eA(t, r).

Lemma 2.14 (Tang and Li (2018)) Let α > 0 be a constant and t, s ∈ T.

(i) e�α(t, s) � 1 if t > s.
(ii) e�α(t + τ, s + τ) = e�α(t, s) for τ ∈ �.
(iii) There exists Nα > 0 depending on α such that ntsKe�α(t, s) � Nα for t � s, where

(nts − 1)K � t − s < ntsK.

(iv) The series
∞∑
j=1

e�α(t, σ (t) − ( j − 1)K) converges uniformly for t ∈ T. Moreover, for

all t ∈ T ,

∞∑
j=1

e�α(t, σ (t) − ( j − 1)K) � λα =
{

1
1−e−α , if T = R;
2 + αμ̄ + 1

αμ̄
, if T �= R,

where μ̄ = sup
t∈T

μ(t).

Lemma 2.15 Assume that A ∈ R(T;Rn×n) is S p-almost periodic and

‖eA(t, s)‖ � Ce�α(t, s), t � s, (9)

where C and α are positive real numbers. Let M =
{
C2(1 + αK)Nα, if T �= R,

C2Nα, if T = R

with Nα

the constant in Lemma 2.14 (iii), and for ε > 0,

Υ (ε) = {r ∈ � : ‖eA(t + r , σ (s) + r) − eA(t, σ (s))‖ < ε, t, s ∈ T, t � σ(s)}.
Then T (A, ε/M) ⊂ Υ (ε).

Proof For ε > 0, let r ∈ T (A, ε/M) and U (t, σ (s)) = eA(t + r , σ (s) + r) − eA(t, σ (s)).

Differentiate U with respect to t and denote by
∂�U

∂�t
the partial derivative, then

∂�U

∂�t
= A(t + r)eA(t + r , σ (s) + r) − A(t)eA(t, σ (s))

= A(t)U (t, σ (s)) + (A(t + r) − A(t))eA(t + r , σ (s) + r).
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Note that U (σ (s), σ (s)) = 0, then by the variation of constants formula,

U (t, σ (s)) =
∫ t

σ(s)
eA(t, σ (τ ))(A(τ + r) − A(τ ))eA(τ + r , σ (s) + r)�τ.

For T = R,

‖U (t, s)‖ �
∫ t

s
‖eA(t, τ )‖ · ‖A(τ + r) − A(τ )‖ · ‖eA(τ + r , s + r)‖dτ

� C2
∫ t

s
e−α(t−τ)e−α(τ−s)‖A(τ + r) − A(τ )‖dτ

= C2e−α(t−s)
∫ t

s
‖A(τ + r) − A(τ )‖dτ

� C2e−α(t−s)
∫ t

t−nts
‖A(τ + r) − A(τ )‖dτ

= C2e−α(t−s)
nts∑
j=1

∫ t−( j−1)

t− j
‖A(τ + r) − A(τ )‖dτ

� C2ntse
−α(t−s)‖A(· + r) − A(·)‖S p

� C2Nαε/M = ε.

For T �= R, by Lemma 2.11, 2.13, 2.14 and the fact that μ(τ) � K, τ ∈ T, for t, s ∈ T, t �
σ(s),

‖U (t, σ (s))‖ �
∫ t

σ(s)
‖eA(t, σ (τ ))‖ · ‖A(τ + r) − A(τ )‖ · ‖eA(τ + r , σ (s) + r)‖�τ

� C2
∫ t

σ(s)
e�α(t, σ (τ ))e�α(τ + r , σ (s) + r)‖A(τ + r) − A(τ )‖�τ

= C2e�α(t, σ (s))
∫ t

σ(s)
e�α(τ, σ (τ ))‖A(τ + r) − A(τ )‖�τ

� C2(1 + αμ̄)e�α(t, σ (s))
∫ t

σ(s)
‖A(τ + r) − A(τ )‖�τ

� C2(1 + αK)e�α(t, σ (s))
∫ t

t−ntsK
‖A(τ + r) − A(τ )‖�τ

= C2(1 + αK)e�α(t, σ (s))
nts∑
j=1

∫ t−( j−1)K

t− jK
‖A(τ + r) − A(τ )‖�τ

� C2(1 + αK)ntsKe�α(t, σ (s))‖A(· + r) − A(·)‖S p

� C2(1 + αK)Nαε/M = ε.

This implies that T (A, ε/M) ⊂ Υ (ε), and Υ (ε) is relatively dense in �. ��
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3 Main results

Let y(t) = x�(t) + δ1(t)x(t), Eq. (5) transforms into the following system:{
x�(t) = −δ1(t)x(t) + y(t),

y�(t) = −δ2(t)y(t) + β(t)x(t) − b(t)xm(t − τ(t)) + p(t),
(10)

where δ2(t) = c(t) − δ1(σ (t)), β(t) = a(t) + δ�
1 (t) + δ1(t)δ2(t). To study (10), we first

consider the following abstract linear equation:

x�(t) = A(t)x(t) + f (t), t ∈ T, (11)

where f = g + φ ∈ S p P AP(T;En) ∩ C(T;En).

Lemma 3.1 (Tang and Li (2018)) Assume that A ∈ R(T;Rn×n) with (9) satisfied. Then (11)
admits a unique bounded continuous solution u(t) given by

u(t) =
∫ t

−∞
eA(t, σ (s)) f (s)�s, t ∈ T, (12)

and |u(t)| � CλαK‖ f ‖S p , where λα is given in Lemma 2.14 (iv).

Theorem 3.1 Assume that all conditions in Lemma 2.15 are satisfied. Then (11) admits a
unique pseudo almost periodic solution given by (12).

Proof By Lemma 3.1, it suffices to prove that u ∈ PAP(T;En). For t ∈ T, let

u(t) =
∫ t

−∞
eA(t, σ (s)) f (s)�s =

∞∑
j=1

u j (t),

where

u j (t) =
∫ t−( j−1)K

t− jK
eA(t, σ (s)) f (s)�s

=
∫ t−( j−1)K

t− jK
eA(t, σ (s))g(s)�s +

∫ t−( j−1)K

t− jK
eA(t, σ (s))φ(s)�s

:= g j (t) + φ j (t), j ∈ N.

Nowweprove u j ∈ PAP(T;En). For ε > 0, it follows fromLemma2.15 thatΥ (ε)∩T (g, ε)
is relatively dense in �. For r ∈ Υ (ε) ∩ T (g, ε), by Lemma 2.1 and 2.11,

|g j (t + r) − g j (t)|

=
∣∣∣∣∣
∫ t+r−( j−1)K

t+r− jK
eA(t + r , σ (s))g(s)�s −

∫ t−( j−1)K

t− jK
eA(t, σ (s))g(s)�s

∣∣∣∣∣
=
∣∣∣∣∣
∫ t−( j−1)K

t− jK
eA(t + r , σ (s) + r)g(s + r) − eA(t, σ (s))g(s)�s

∣∣∣∣∣
�
∫ t−( j−1)K

t− jK
‖eA(t + r , σ (s) + r) − eA(t, σ (s))‖ · |g(s)|�s

+
∫ t−( j−1)K

t− jK
‖eA(t, σ (s))‖ · |g(s + r) − g(s)|�s
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� ε

∫ t−( j−1)K

t− jK
|g(s)|�s + Ce�α(t, σ (t) − ( j − 1)K)

∫ t−( j−1)K

t− jK
|g(s + r) − g(s)|�s

� K‖g‖S pε + C(1 + αμ̄)K‖g(· + r) − g(·)‖S p

� K‖g‖S pε + C(1 + αμ̄)Kε = (K‖g‖S p + C(1 + αμ̄)K)ε,

which means that g j (t) is almost periodic for j ∈ N.
Next, we prove that φ j (t) ∈ PAP0(T;En).

|φ j (t)| �
∫ t−( j−1)K

t− jK
‖eA(t, σ (s))‖ · |φ(s)|�s � C

∫ t−( j−1)K

t− jK
e�α(t, σ (s)) · |φ(s)|�s

� Ce�α(t, σ (t) − ( j − 1)K)

∫ t−( j−1)K

t− jK
|φ(s)|�s � C(1 + αμ̄)KNp(φ)(t − jK).

Notice that φ ∈ S p P AP0(T;En). Thus, for a fixed t0 ∈ T,

lim
r→∞

1

2r

∫ t0+r

t0−r
|φ j (t)|�t � C(1 + αμ̄)K lim

r→∞
1

2r

∫ t0+r

t0−r
Np(φ)(t − jK)�t = 0.

This implies that φ j ∈ PAP0(T;En), and then u j (t) ∈ PAP(T;En). This together with
the boundedness of u(t) yields that u(t) ∈ PAP(T;En). ��

The following conditions will be useful in the proof of our main results.

(H1) δ1, δ2 ∈ C(T;R+) ∩ S p AP(T;R+) and −δ1,−δ2 ∈ R+. We denote δ−
i =

inf
t∈T δi (t), i = 1, 2, δ̄ = min(δ−

1 , δ−
2 ).

(H2) β, b, p ∈ S p P AP(T;R), τ ∈ PAP(T;�).

(H3) θ1 = max

{
1

δ−
1

, λδ−
2
K(‖β‖S p + m‖b‖S p )

}
< 1.

We note that, in this work, z(t) = (z1(t), z2(t)) is assumed to be a column vector function
without any further comments. In the rest of this work, we will use the following norm for
PAP(T;R2), which is equivalent to the one mentioned in Lemma 2.3 (ii):

‖ϕ‖∗ = max

{
sup
t∈T

|ϕ1(t)|, sup
t∈T

|ϕ2(t)|
}

,

for ϕ = (ϕ1, ϕ2) ∈ PAP(T;R2). For T �= R, let

E∗
1 =

{
ϕ ∈ PAP(T;R2) : ‖ϕ − ϕ0‖∗ � θ1λ

1 − θ1

}
,

where

ϕ0(t) = (
0, ϕ0

2(t)
)
, ϕ0

2(t) =
∫ t

−∞
e−δ2(t, σ (s))p(s)�s, λ = λδ−

2
K‖p‖S p ,

and by Lemma 3.1, we can get that ‖ϕ0‖∗ � λ.
Now we are in a position to give our main result.
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Theorem 3.2 Suppose that T �= R and the assumptions (H1)-(H3) hold, and
λ

1 − θ1
< 1,

then (10) has a unique pseudo almost periodic solution in E∗
1 and (5) has a unique pseudo

almost periodic solution u satisfying that (u, u� + δ1u) ∈ E∗
1 .

Proof It is easy to see that u(t) is a solution of (5) if and only if (u(t), u�(t) + δ1(t)u(t)) is
a solution of (10). Consider the following system:{

x�(t) = −δ1(t)x(t) + ϕ2(t),

y�(t) = −δ2(t)y(t) + β(t)ϕ1(t) − b(t)ϕm
1 (t − τ(t)) + p(t),

(13)

for t ∈ T, ϕ = (ϕ1, ϕ2) ∈ PAP(T;R2).
Let

A(t) =
(−δ1(t) 0

0 −δ2(t)

)
, (14)

then the homogeneous equation of (13) is

z�(t) = A(t)z(t), t ∈ T,

and we can get that

‖eA(t, s)‖ � 2e−δ̄ (t, s) � 2e�δ̄ (t, s), t � s,

since

e−δ̄ (t, s) = exp

(∫ t

s

Log(1 − δ̄μ(τ ))

μ(τ)
�τ

)
� exp

⎛
⎝∫ t

s

Log 1
1+δ̄μ(τ )

μ(τ)
�τ

⎞
⎠ = e�δ̄ (t, s).

By Lemma 2.8, we have ϕ1(t − τ(t)) is pseudo almost periodic, and by Lemma 2.11 and
2.12, we derive that

ϕ2, βϕ1 − bϕm
1 (· − τ(·)) + p ∈ S1PAP(T;R).

Denote

z(t) = (x(t), y(t)), F(t) = (ϕ2(t), β(t)ϕ1(t) − b(t)ϕm
1 (t − τ(t)) + p(t)).

We can rewrite (13) as
z�(t) = A(t)z(t) + F(t), t ∈ T, (15)

where A(t) is given by (14). By (H1) and (H2), it is easy to see that all conditions in Theorem
3.1 are satisfied with (15) instead of (11). Thus, we obtain that (15) has a unique pseudo
almost periodic solution zϕ(t) = (xϕ(t), yϕ(t)), which is expressed as follows:⎧⎪⎪⎨

⎪⎪⎩
xϕ(t) =

∫ t

−∞
e−δ1(t, σ (s))ϕ2(s)�s,

yϕ(t) =
∫ t

−∞
e−δ2(t, σ (s))

(
β(s)ϕ1(s) − b(s)ϕm

1 (s − τ(s)) + p(s)
)
�s.

(16)

For ϕ ∈ E∗
1 , we have

‖ϕ‖∗ � ‖ϕ − ϕ0‖∗ + ‖ϕ0‖∗ � θ1λ

1 − θ1
+ λ = λ

1 − θ1
< 1.
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Define a nonlinear operator:

T : E∗
1 �→ PAP(T;R2), ϕ = (ϕ1, ϕ2) �→ zϕ = (xϕ, yϕ).

Then (10) has a unique pseudo almost periodic solution in E∗
1 if and only if T has a fixed

point in E∗
1 . So we only need to prove that T has a fixed point in E∗

1 .
First, we show that for any ϕ ∈ E∗

1 , Tϕ ∈ E∗
1 , we have

‖Tϕ − ϕ0‖∗ = max

{
sup
t∈T

∣∣∣∣
∫ t

−∞
e−δ1(t, σ (s))ϕ2(s)�s

∣∣∣∣ ,

sup
t∈T

∣∣∣∣
∫ t

−∞
e−δ2(t, σ (s))

(
β(s)ϕ1(s) − b(s)ϕm

1 (s − τ(s))
)
�s

∣∣∣∣
}

� max

{
sup
t∈T

∫ t

−∞
e−δ1(t, σ (s))�s‖ϕ‖∗ ,

sup
t∈T

∫ t

−∞
e−δ2(t, σ (s)) (|β(s)| + |b(s)|) �s‖ϕ‖∗

}
.

By Lemma 2.11 (iii) and 2.14 (iv), we can get that

∫ t

∞
e−δ2(t, σ (s))(|β(s)| + |b(s)|)�s (17)

=
∞∑
n=1

∫ t−(n−1)K

t−nK
e−δ2(t, σ (s))(|β(s)| + |b(s)|)�s

�
∞∑
n=1

∫ t−(n−1)K

t−nK
e−δ−

2
(t, σ (s))(|β(s)| + |b(s)|)�s

�
∞∑
n=1

e−δ−
2
(t, σ (t) − (n − 1)K)

∫ t−(n−1)K

t−nK
(|β(s)| + |b(s)|)�s

� λδ−
2
K(‖β(s)‖S p + ‖b‖S p ) � λδ−

2
K(‖β‖S p + m‖b‖S p ). (18)

Then we obtain that

‖Tϕ − ϕ0‖∗ � max

{
1

δ−
1

, λδ−
2
K(‖β‖S p + m‖b‖S p )

}
‖ϕ‖∗ = θ1‖ϕ‖∗ � θ1λ

1 − θ1
,

that is Tϕ ∈ E∗
1 .Next,wewill prove that T is a contraction. In fact, for anyϕ = (ϕ1, ϕ2), ψ =

(ψ1, ψ2) ∈ E∗
1 , by Lemma 2.11 (iii), 2.14 (iv) and the same calculation in (18), we can get

‖Tϕ − Tψ‖∗

= max

{
sup
t∈T

∣∣∣∣
∫ t

−∞
e−δ1(t, σ (s))(ϕ2(s) − ψ2(s))�s

∣∣∣∣ , sup
t∈T

∣∣∣ ∫ t

−∞
e−δ2(t, σ (s))

·
(
β(s)(ϕ1(s) − ψ1(s)) − b(s)

(
ϕm
1 (s − τ(s)) − ψm

1 (s − τ(s))
))

�s
∣∣∣}

� max

{
sup
t∈T

∫ t

−∞
e−δ1(t, σ (s))�s‖ϕ − ψ‖∗, sup

t∈T

∫ t

−∞
e−δ2(t, σ (s))

·
(

|β(s)| + |b(s)|
∑

i+ j=m−1

‖ϕ‖i‖ψ‖ j
)

�s‖ϕ − ψ‖∗
}
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� max

{
1

δ−
1

, λδ−
2
K(‖β‖S p + m‖b‖S p )

}
‖ϕ − ψ‖∗ = θ1‖ϕ − ψ‖∗.

Thus, T is a contraction mapping, and by the Banach fixed point theorem, T has a unique
fixed point in E∗

1 . ��
For T = R, the following conditions will be useful.

(H4) δi ∈ BC(R;R) ∩ S p AP(R;R), i = 1, 2 and denote δ+
i = sup

t∈R
δi (t), δ−

i =
inf
t∈R δi (t), i = 1, 2, δ̄ = min{δ−

1 , δ−
2 } > 0;

(H5) β, b, p ∈ S p P AP(R;R) ∩ BC(R;R), τ ∈ PAP(R;R);

(H6) θ2 = max

{
1

δ−
1

,
‖β‖ + m‖b‖

δ−
2

}
< 1.

Let

E∗
2 =

{
ϕ ∈ PAP(R;R2) : ‖ϕ − ϕ0‖∗ � θ2λ

1 − θ2
and ϕ is uniformly continuous

}
,

where ϕ0(t) = (0, ϕ0
2(t)), ϕ0

2(t) =
∫ t

−∞
e−δ2(t, s)p(s)ds, λ = ‖p‖

δ−
2

. It is easy to verify

that ‖ϕ0‖∗ � λ.

Lemma 3.2 (Liu and Tunç (2015)) E∗
2 is a closed subset of P AP(R;Rn).

Theorem 3.3 Suppose that T = R and assumptions (H4)-(H6) hold, and
λ

1 − θ2
< 1, then

(10) has a unique pseudo almost periodic solution in E∗
2 and (5) has a unique pseudo almost

periodic solution u satisfying that (u, u′ + δ1u) ∈ E∗
2 .

Proof We replace ϕ = (ϕ1, ϕ2) ∈ PAP(R;R2) ∩ BUC(R;R2) in (3.4), then we get the
following system:{

x ′(t) = −δ1(t)x(t) + ϕ2(t),

y′(t) = −δ2(t)y(t) + β(t)ϕ1(t) − b(t)ϕm
1 (t − τ(t)) + p(t).

(19)

Let

A(t) =
(−δ1(t) 0

0 −δ2(t)

)
, (20)

and the homogeneous equation of (19) is

z′(t) = A(t)z(t), t ∈ R.

We can check that ‖eA(t, s)‖ � 2e−δ̄ (t, s) for t � s. By Lemma 2.7, we have ϕ1(t − τ(t))
is pseudo almost periodic, and by Lemma 2.11 (i), we derive that

ϕ2, βϕ1 − bϕm
1 (· − τ(·)) + p ∈ S1PAP(T;R).

Denote

z(t) = (x(t), y(t)), F(t) = (ϕ2(t), β(t)ϕ1(t) − b(t)ϕm
1 (t − τ(t)) + p(t)).
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We can rewrite (19) as
z′(t) = A(t)z(t) + F(t), t ∈ R, (21)

where A(t) is given by (20). By (H4) and (H5), it is easy to see that all conditions in Theorem
3.1 are satisfied with (21) instead of (11). Thus, we obtain that (21) has a unique pseudo
almost periodic solution zϕ(t) = (xϕ(t), yϕ(t)), which is expressed as (16).

For ϕ ∈ E∗
2 , we have

‖ϕ‖∗ � ‖ϕ − ϕ0‖∗ + ‖ϕ0‖∗ � θ2λ

1 − θ2
+ λ = λ

1 − θ2
< 1.

Define a nonlinear operator

T : E∗
2 �→ PAP(T;R2), ϕ = (ϕ1, ϕ2) �→ zϕ = (xϕ, yϕ).

Then (10) has a unique pseudo almost periodic solution in E∗
2 if and only if T has a fixed

point in E∗
2 . So we only need to prove that T has a fixed point in E∗

2 .
We first prove that xϕ, yϕ are uniformly continuous. For ε > 0, let 0 < η <

min

{
− ln(1 − ε)

δ+
1

, ε

}
. For t1, t2 ∈ R, |t1 − t2| < η, without loss generality we assume

that t1 > t2, we have

|xϕ(t1) − xϕ(t2)|
=
∣∣∣∣
∫ t1

−∞
e−δ1(t1, s)ϕ2(s)ds −

∫ t2

−∞
e−δ1(t2, s)ϕ2(s)ds

∣∣∣∣
=
∣∣∣∣
∫ t2

−∞
(e−δ1(t1, s) − e−δ1(t2, s))ϕ2(s)ds +

∫ t1

t2
e−δ1(t1, s)ϕ2(s)ds

∣∣∣∣
�
∣∣∣∣
∫ t2

−∞
(e−δ1(t1, t2) − 1)e−δ1(t2, s)ϕ2(s)ds

∣∣∣∣ +
∣∣∣∣
∫ t1

t2
e−δ1(t1, s)ϕ2(s)ds

∣∣∣∣
� (1 − e−δ1(t1, t2))

∫ t2

−∞
e−δ−

1 (t2−s)|ϕ2(s)|ds + ε‖ϕ2‖

� ε · ‖ϕ2‖
δ−
1

+ ε‖ϕ2‖ = Cε,

where C = 1 + δ−
1

δ−
1

‖ϕ2‖. Hence, xϕ is uniformly continuous. Similarly, we can prove that

yϕ is uniformly continuous and we omit the details here. Next, we show that for any ϕ ∈ E∗
2 ,

Tϕ ∈ E∗
2 .

‖Tϕ − ϕ0‖∗ = max
{
sup
t∈R

∣∣∣ ∫ t

−∞
e−δ1(t, s)ϕ2(s)ds

∣∣∣, sup
t∈R

∣∣∣ ∫ t

−∞
e−δ2(t, s)

(
β(s)ϕ1(s)

− b(s)ϕm
1 (s − τ(s))

)
ds
∣∣∣}

� max
{
sup
t∈R

∫ t

−∞
e−δ1(t, s)ds · ‖ϕ‖∗, sup

t∈R

∫ t

−∞
e−δ2(t, s)

· (|β(s)| + |b(s)|)ds · ‖ϕ‖∗
}
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� max

{
1

δ−
1

,
‖β‖ + ‖b‖

δ−
2

}
· ‖ϕ‖∗

� max

{
1

δ−
1

,
‖β‖ + m‖b‖

δ−
2

}
· ‖ϕ‖∗

= θ2‖ϕ‖∗ � θ2λ

1 − θ2
,

that is Tϕ ∈ E∗
2 . At the last, we will prove that T is a contraction. In fact, for any ϕ =

(ϕ1, ϕ2), ψ = (ψ1, ψ2) ∈ E∗
2 , we can get

‖Tϕ − Tψ‖∗

= max
{
sup
t∈R

∣∣∣ ∫ t

−∞
e−δ1(t, s)(ϕ2(s) − ψ2(s))ds

∣∣∣, sup
t∈R

∣∣∣ ∫ t

−∞
e−δ2(t, s)

(
β(s)(ϕ1(s)

− ψ1(s)) − b(s)(ϕm
1 (s − τ(s)) − ψm

1 (s − τ(s)))
)
ds
∣∣∣}

� max

{
sup
t∈R

∫ t

−∞
e−δ1(t, s)ds · ‖ϕ − ψ‖∗, sup

t∈R

∫ t

−∞
e−δ2(t, s)

(
|β(s)| + |b(s)|

·
∑

i+ j=m−1

‖ϕ‖i‖ψ‖ j
)
ds · ‖ϕ − ψ‖∗

}

� max

{
1

δ−
1

,
‖β‖ + m‖b‖)

δ−
2

}
· ‖ϕ − ψ‖∗

� θ2 · ‖ϕ − ψ‖∗.

Thus, T is a contraction mapping, and by the Banach fixed point theorem, T has a unique
fixed point in E∗

2 . ��
Remark 3.1 We note that δi , i = 1, 2, β, b and p are not assumed to be bounded in (H1)

and (H2), but in (H4) and (H5), the boundedness is needed. In fact, for T �= R, under the
conditions (H1) and (H2), we can get the pseudo almost periodicity of ϕ1(· − τ(·)), xϕ and
yϕ in Theorem 3.2 by Lemma 2.8 without the uniform continuity of ϕ. On the other hand, for
T = R, to ensure ϕ1(· − τ(·)) ∈ PAP(R;R), we have to prove that the uniform continuity
of ϕ, where the boundedness of the parameters is essential. There exists counterexamples
showing that ϕ(· − τ(·)) /∈ PAP(R;R2) if ϕ is not uniformly continuous. For more details
of this problem, readers may refer to Zhang (2003). Moreover, assumption (H3) is replaced
by a simple form (H6).

Let us end this work with two examples.

Example 3.1 Let

T =
⋃
k∈Z

([
2k, 2k + 1

2

]
∪

∞⋃
n=2

{
2k + 1 − 1

2n

}
∪ {2k + 1} ∪

{
2k + 3

2

})
,

denote gnl = 10n · l + 1− 1

210n−1 , n � 2, l is odd. Consider the following Duffing equation

on T.
(x�)�(t) + c(t)x�(t) − a(t)x(t) + b(t)x3(t − τ(t)) = p(t), (22)
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where

c(t) =
⎧⎨
⎩
0.1 sin 2π t + 3, t ∈ [2k, 2k + 1

2 ];
0.1n + 1.5, t = gnl , n � 2, l is odd;
3, otherwise,

a(t) =
⎧⎨
⎩

−0.2π cos 2π t − 1.5(0.1 sin 2π t + 1.5) + 1
60 (sin 2π t + h(t)), t ∈ [2k, 2k + 1

2 );
−1.5n + h(t)

60 , t = gnl , n � 2, l is odd;
−2.25 + h(t)

60 , otherwise ,

b(t) =
{ 1

60 (sin 2π t + h(t)), t ∈ [2k, 2k + 1
2 ];

h(t)
60 , otherwise,

h(t) =
{
1, t ∈ [−1, 1]T;
1√|t | , otherwise,

p(t) =
{

12
49 sin 2π t, t ∈

[
2k, 2k + 1

2

]
;

0, otherwise,

τ (t) =

⎧⎪⎪⎨
⎪⎪⎩
8 + τ0(t), t ∈

[
4k, 4k + 1

2

]
;

2 + τ0(t), t ∈
[
4k + 2, 4k + 5

2

]
;

0, otherwise,

where

τ0(t) =
{
4, t ∈

[
2n, 2n + 1

2

]
, n ∈ N

+;
0, otherwise.

It is easy to see that τ ∈ PAP(T;�). Let y(t) = x�(t) + δ1(t)x(t) where

δ1(t) =
{
0.1 sin 2π t + 1.5, t ∈

[
2k, 2k + 1

2

]
;

1.5, otherwise.

Then we transform (22) into the following system:{
x�(t) = −δ1(t)x(t) + y(t),

y�(t) = −δ2(t)y(t) + β(t)x(t) − b(t)x3(t − τ(t)) + p(t),

where

δ2(t) =
{
n, t = gnl , n � 2, l is odd;
1.5, otherwise,

β(t) =
{

1
60 (sin 2π t + h(t)), t ∈

[
2k, 2k + 1

2

]
;

h(t)
60 , otherwise.

Obviously, δ1 ∈ S1AP(T;R), b, β ∈ PAP(T;R), and use the same calculation in Example
3.2 in Yang and Li (2022), we can get that δ2 ∈ S1AP(T;R). FromLemma 2.14 (iv), we have

λδ−
2

= 49

12
, and we derive that ‖β‖S1 = ‖b‖S1 = 1

120

(
2 + 1

π

)
, λ = λδ−

2
K‖p‖S1 = 1

π
,

θ = max(δ−
1 , λδ−

2
K(‖β‖S1 + 3‖b‖S1)) = 2

3
,

λ

1 − θ
= 3

π
< 1. Let

E∗
1 =

{
φ ∈ PAP(T;R2) : ‖φ − φ0‖ � 2

π

}
,
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where φ0(t) = (0, φ0
2(t)), φ0

2(t) = ∫ t
−∞ e−δ2(t, s)p(s)ds. Thus, all conditions in Theorem

3.2 are satisfied, (22) has a unique pseudo almost periodic solution u satisfying that (u, u� +
δ1u) ∈ E∗

1 .

Example 3.2 Consider the following Duffing equation on R with time-varying coefficients:

x ′′(t) + (6 + sin t + cos g(t))x ′(t) + (9 + cos t + 3 cos g(t) + 3 sin t + cos g(t) sin t

− 1

24
(sin t + sin

√
2t))x(t) + 1

24
(cos t + cos

√
2t)x3(t − cos t) = 1

10
(3 sin t + h(t)),

(23)
where

g(t) = 1

2 + cos t + cos
√
2t

, h(t) =
{
1, −1 < t < 1;
1√|t | , otherwise.

From the result in Levitan (1959) (see page 212–213), we know that cos g ∈ S1AP(R;R),
and it is easy to see that h ∈ PAP0(R;R). Let

y = x ′(t) + (3 + sin t)x(t),

then we can transform (23) into the following system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x ′(t) = −(3 + sin t)x(t) + y(t)

y′(t) = −(3 + cos g(t))y(t) + 1

24
(sin t + sin

√
2t)x(t) − 1

24
(cos t + cos

√
2t)

· x3(t − cos t) + 1

10
(2 sin t + sin

√
3t + h(t)).

Denote δ1(t) = 3 + sin t, δ2(t) = 3 + cos g(t), β(t) = 1

24
(sin t + sin

√
2t), b(t) =

1

24
(cos t + cos

√
2t), p(t) = 1

10
(2 sin t + sin

√
3t + h(t)). Let

E∗ =
{
ϕ ∈ PAP(R;R2) : ‖ϕ − ϕ0‖∗ � 1

5
and ϕ is uniformly continuous

}
,

where

ϕ0(t) = (0, ϕ0
2(t)), ϕ0

2(t) =
∫ t

−∞
e−δ2(t, s)p(s)ds.

It is easy to see that δ−
1 = δ−

2 = 2, ‖β‖ = ‖b‖ = 1

12
, and p ∈ PAP(R;R), and consequently

p(t) ∈ S1PAP(R;R) ‖p‖ � 2

5
. Moreover,

θ = max

{
1

δ−
1

,
‖β‖ + 3‖b‖

δ−
2

}
= max

{
1

2
,
1

6

}
= 1

2
< 1; λ = ‖p‖

δ−
2

� 1

5
; λ

1 − θ
� 2

5
< 1.

Now it is easy to check that all conditions in Theorem 3.3 are satisfied. Hence, (23) has a
unique pseudo almost periodic solution u satisfying that (u, u′ + δ1u) ∈ E∗.
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