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Abstract

In this paper, we study the pseudo almost periodic solutions for a class of nonlinear Duffing
equations with S”-pseudo almost periodic coefficients and delays on time scales. For this
purpose, we establish a result of the existence and uniqueness of pseudo almost periodic
solution for an abstract linear equation with S”-almost periodic coefficients and S”-pseudo
almost periodic forcing term. Meanwhile, to deal with the delay, we extend some concepts
of functions from T — R to T — II, where T is a time scale with translation set I1, and
give some basic properties for these concepts. Then, applying these results, we obtain some
results on the existence and uniqueness of pseudo almost periodic solutions for the Duffing
equation. Moreover, some examples are given to illustrate our main results.

Keywords S”-pseudo almost periodic - Duffing equation - Pseudo almost periodic
solution - Time scales

Mathematics Subject Classification 34N05 - 34C27

1 Introduction

In recent years, the dynamic behaviors of nonlinear Duffing equations have been widely
investigated in Burton (1986); Hale (1977); Kuang (2012); Yoshizawa (1975) due to the
potential use in the areas of physics, mechanics and other engineering technique fields.
Among them, the existence of almost periodic solutions and pseudo almost periodic solutions
have attracted many authors. Some results on the existence of almost periodic solutions were
obtained in the literature (see e.g., Zhou and Liu (2009); Peng and Wang (2010); Xu (2012);
Liu and Tung (2015)).

Recently, Zhou and Liu (2009) considered the following model for a nonlinear Duffing
equation with a deviating argument:

x" (1) — ax(t) + bx" (1 — T (1)) = p(t), )

B4 Hong-Xu Li
hoxuli@scu.edu.cn

Hao Yang
hayango1025@163.com

Department of Mathematics, Sichuan University, Chengdu 610000, Sichuan, China

@ Springer f DMAC


http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-024-02742-2&domain=pdf
http://orcid.org/0000-0003-0871-6233

258 Page2of23 H.Yang, H-X. Li

where 7(¢) and p(¢) are almost periodic functions on R, m > 1 is an integer, a > 0 and
b # 0 are constants. By setting
y =x"(1) +8x(1),

where § > 1 is a constant, (1) transforms into the following system:
x'(1) = =8x(1) + y(1),
Y(6) = 8y(t) + (a — 8%)x(t) — bx™ (t — T(1)) + p(1).

The authors gave some criteria for the existence of almost periodic solutions for (1).
Then, Peng and Wang (2010) considered the following model for a nonlinear Duffing
equation with a deviating argument:

x"(t) +ex'(t) —ax(t) + bx"(t — (1)) = p(1), 2)

where 7(¢) and p(t) are almost periodic functions on R, m > 1 is an integer and a, b, ¢ are
constants. By the transformation

y(O) =x'@) +Ex(®) — Q1(1), Qa(t) = p(1) + (£ — ) Q1 (1) — Q) (1),

where & > 1 is a constant and Q1 (¢) is continuous and differentiable, (2) transforms into the
following system:

x'(1) = —Ex(t) + y(1) + Q1(1),

3
Y(@) = —(c=&)y®) + (a —EE —)x(®) —bx"(t — (1) + 02(1), @

and then proved the existence of positive almost periodic solutions of (2) and (3).
After that, system (3) has been naturally extended by Xu (2012) to the following system
with time-varying coefficients and delays:

dx(t)

o= —=81()x (@) + y(t) + 01(), @
d

il(ft) = 8Dy (1) + (@(t) = S O)x (1) = bOx" (1 — T(1)) + 02(1),

where a(t), b(t), t(t), §1(t), 82(t), Q1(t), Q2(¢) are almost periodic functions on R, m > 1
is an integer and a(¢) > 0, b(t) # 0, and gave some sufficient conditions for the existence
of almost periodic solutions of (4).

Based on the work of Xu (2012), Liu and Tung¢ (2015) considered the system (4) with
81,80 € APR;R), a,b, 7, 01,02 € PAP(R;R), anda > 0,b # 0 for t € R. They
gave some sufficient conditions for the existence and uniqueness of pseudo almost periodic
solutions of (4). Their results improved the results in the literature (Peng and Wang 2010;
Xu 2012).

Moreover, Yang and Li (2014) considered the Duffing equation on time scales:

2@) + c()xP (1) — a(O)x(t) + bOX™(t — T(1)) = p(t), ®)

where T is an invariant time scale, t € T, t —t(¢) € T andm > 1is a constant, and presented
the existence and global exponential stability of almost periodic solutions for (5).

To combine continuous and discrete issues, Hilger proposed the idea of time scales in
his Ph.D. thesis (Hilger 1988) in 1988. Several mathematicians have been interested in
this theory since it provides an efficient mathematical technique for studying economics,
biomathematics, and quantum physics, among other subjects.
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Motivated by the above works, in this paper, we study the pseudo almost periodic solutions
for the nonlinear Duffing Eq. (5) with S”-pseudo almost periodic coefficients and delays on
time scales. For this purpose, we establish a result of the existence and uniqueness of pseudo
almost periodic solution for an abstract linear equation with S”-almost periodic coefficients
and S?-pseudo almost periodic forcing term (see Theorem 3.1). Meanwhile, to deal with the
delay 7 (1), we extend some concepts of functions from T — R to T — TII, where T is a time
scale with translation set IT (see Definition 2.9, 2.10, 2.13), and give some basic properties
for these concepts including the composition result (see Lemma 2.4, 2.6, 2.7). Then applying
these results and Banach fixed point theorem, we get the existence and uniqueness of the
pseudo almost periodic solution for the Duffing Eq. (5) (see Theorem 3.2, Theorem 3.3).
Moreover, some examples are given to illustrate our main results at the end of this work.

2 Preliminaries

We refer to the sets of positive integers, integers, real numbers and non-negative real numbers,
respectively, as N, Z, R and RT throughout this work. The space of all n x n real-valued
matrices with matrix norm || - || is denoted by R”*”, while the Euclidian space R” or C" with
Euclidian norm | - | is denoted by E”".

2.1 Time scale

LetT C Rbeatime scale, thatis, T 7# (s closed. The forward and backward jump operators
o, p: T — T and the graininess u : T — R are defined, respectively, by

ot)=inf{s e T:s>1t}, p@t)=sup{lseT:s<t}, ul) =o) —rt.

Ifo(t) > t, we say t is right-scattered; otherwise, 7 is right-dense. Similarly, if p(t) < t, we
say t is left-scattered; otherwise ¢ is left-dense.
If T has a left-scattered maximum m, then T = T \ m; otherwise T* = T.

Definition 2.1 A time scale T is called invariant under translations if
M:={reR:t£7t€T, t €T} #{0},

and define

o _ [inflirl T e Lt £0) if T #E;
11 ,if T=R.

In fact, if T # R, we have £ > 0 and one can show that IT = KZ. We say I1 the translation
set of T (see e.g, Tang and Li (2017)).
In this paper, we always assume that T is invariant under translations.

Definition 2.2 (Bohner and Peterson (2001))

(i) A function f : T — E" is continuous on T if f is continuous at every right-dense point
and at every left-dense point.

(i1) A function f : T — E" is rd-continuous on T if it is continuous at all right-dense points
in T and its left-sided limit exists at all left-dense points in T.
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Fort,s € T, t < s, denote (¢, s), [t,s], (¢,s], [t,s) the standard intervals in R, and
use the following symbols:

t,)r=¢,)NT, [t,slr=1[t,s]NT, st =& sINT, [¢t,s)r =1[t,s)NT.
Denote
C(T;E") ={f:T — E": fis continuous} ,
C(T x D;E") = {f :TxD—E": fiscontinuous},
BC(T;E") ={f : T — E" : f is bounded and continuous} ,
BUC(T; E") = { f: T — E": f is uniformly continuous and bounded} ,
BC(T x D;E") ={f:Tx D — E": f is bounded and continuous} ,

where D C E” is an open set.

Definition 2.3 (Bohner and Peterson (2001)) For f : T — E" andt € T, f2(t) € E" is
called the delta derivative of f(¢) if for a given ¢ > 0, there exists a neighborhood U of ¢
such that

1f (o) — f(s) — fAW)(0(t) —s)| < elo(t) —s]
foralls e U.

Lemma 2.1 (Cabada and Vivero (2006)) Fix a point w € T and an interval v, w + K)T,
there are at most countably many right-scattered points {t;}ic;, I < N in this interval. If
we denote t;j = t; + jK,i € I, j € Z, we get all the right-scattered points, and we have

n(tij) = pu(t).

Let 71 = {[t,s)T : t,s € T witht < s}. Define a countably additive measure m| on Fj
by assigning to every [z, s)T € F| its lengths, i.e.

ml([[,s)']l‘) =51

Using m1, we can generate the outer measure /7 on the power set P(T) of T: for E € P(T)

inf i — b R+, E;
i (E) = ‘“B{,»EZ,B(S )] € B¢
+o00, BeEE,

where 8 = sup T and

B= {{[ti,Si) € Fidiers : Is cNEC | [ti,Si)T]-
ielp

A set A C T is called A—measurable if for E C T, we have
mi(E) =mi(ENA)+mi(EN(T\ A)).

Let M(m7) = {A : Aisa A — measurable subset in T}. Restricting m} to M(m7), we get
the Lebesgue A —measure, which is denoted by 1t a .

Definition 2.4 (Cabada and Vivero (2006))

@ Springer f bMA



Pseudo almost periodic solutions... Page50f23 258

(i) A function S : T — [E” is said to be simple if S takes a finite number of values
cr,c2, - ,cn.Let Ej = {s € T: S(s) = ¢j}, then

N
S=) cjxs;
j=1

where xg i is the characteristic function of E;, that is

(5) = L, ifs € Ej;
XE) =0, ifs e T\ Ej.
(i) Assume that E is a A—measurable subset of T and S : T — E” is a A—measurable
simple function, then the Lebesgue A—integral of S on E is defined as
N

/ES(S)AS = ZC_,‘[LA(E‘/ NE).

j=1

(iii) A function g : T — E”" is a A—integrable function if there exists a simple function
sequence {gx : k € N} such that g;(s) — g(s) a.e.in T, then the integral of g is defined

as
/g(s): lim /gk(s)As.
T k—o00 JT

(iv) For p > 1, g : T — E" is called locally L? A—integrable if g is A—measurable and
for any compact A—measurable set £ C T, the A—integral

f lg(s)|P As < oo.
E

The set of all L? A—integrable functions is denoted by L l’; (T X).
Definition 2.5 (Tang and Li (2018)) Define || - ||s» : Ll’;c(']I‘; E") — R* U {+o0} as

1

1 s+K 7
lgllsp := sup (E/ Ig(r)l”Ar> -
seT s

where /C is defined in Definition 2.1. A function g € Ll'; (T E") is called S”-bounded if
llglls» < oo. The space of all S”-bounded functions is denoted by BS?(T; E"); if T = R,
denote it by BS? (E").

2.2 Almost periodicity and pseudo almost periodicity on T

Definition 2.6 (Wang and Agarwal (2015)) A set A C T is called relatively dense in T if

there exists [ > O such that [s, s + 1]t N A # @, s € T, we call [ the inclusion length.

Definition 2.7 (Li and Wang (2011))

(1) A function g € C(T; X) is almost periodic on T if for ¢ > 0,
T(g,e)={rell:|gls+71t)—g(s)| <efors e T}

is a relatively dense set in T1. We call T(g, ) the e-translation set of ¢ and 7 the
e—translation period of g, and the set of all almost periodic functions on T is denoted by
AP(T; X).
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(i) Let D C E" be open. The set AP (T x D; E") consists of all functions f : T x D — E”"
such that (-, x) € AP(T; E") uniformly foreach x € K where K is any compact subset
of D.

Definition 2.8 (Li and Wang (2011)) A continuous function g : T — [E” is said to be normal
on IT if for any sequence {er,} C II, there is a subsequence {c,} C {o},} such that {g (¢ + )}
converges uniformly for z € T.

Lemma 2.2 (Li and Wang (2011)) A continuous function g : T — E" is almost periodic on
T if and only if it is normal on TI.

To ensure t — t(¢) € T, we have to give a restriction: 7(¢) € Il. So we extend some
concepts of functions from T — R to T — IT below.

Definition 2.9 A function f : T — IT is continuous if f is continuous at every right-dense
point and at every left-dense point.

Denote

C(T; M) ={f : T — II: f is continuous} ,
BC(T; 1) ={f : T — Il : f is bounded and continuous} .

Definition 2.10 A function g € C(T; IT) is almost periodic on T if for ¢ > 0,
T(g,e)={rell:|gls+71)—g)| <eforseT}

is arelatively dense setin I1. We call T (g, ¢) the e-translation set of g and 7 the e —translation
period of g, and the set of all almost periodic functions on T is denoted by A P, (T; IT).

Remark 2.1 For T = R, we have I1 = R, AP, (T; IT) = AP(R; R).

Denote the set

1 to+r
PAPy(T; E") = {f € BC(T;E") : rl_i)n;{);/ |f(s)|As =0,

to—r

wheretg € T, r € H},
PAPy(T x D; E") = [f € BC(T x D;E") : f(-,x) € PAPy(T; E")

uniformly in x € D},

1 to+r
PAP(T; TI) = [f € BC(T; T : lim. 5/ |f(s)|As =0,

fo—r

wheretg € T, r € l'[].

Definition 2.11 (Li and Wang (2012)) A closed subset C of T is said to be an ergodic zero
setin T if

ua(C Nt —r,to+r)) NT)
2r

Definition 2.12 (Li and Wang (2012))

@ Springer f bMA

— Qasr — oo, fortyg e T.



Pseudo almost periodic solutions... Page70f23 258

(1) A function f € BC(T; E") is called pseudo almost periodic if f = g + ¢, where
g€ AP(T; E")and ¢ € PAPy(T; E"). We denote by PA P (T; E") the set of all pseudo
almost periodic functions.

(i1) A function f € BC(T x D; E") is called pseudo almost periodic if f = g + ¢, where
g€ AP(T x D;E")and ¢ € PAPy(T x D; E™"). We denote by PAP (T x D; E") the
set of all pseudo almost periodic functions.

Definition 2.13 A function f € BC(T; I) is called pseudo almost periodic if f = g + ¢,
where ¢ € AP, (T;TI) and ¢ € PAPy(T; IT). We denote by PAP(T; IT) the set of all
pseudo almost periodic functions.

Lemma 2.3 (Li and Wang (2012))

) If f € PAP(T;E") and ¢ € PAPy(T;E"), then for any v € I1, f(-+ 1) €
PAP(T;E") and ¢ (- + ) € PAPy(T; E").
(i) PAP(T; E") and PAPy(T; E™) are Banach spaces under the sup norm.

Lemma 2.4 Assume that T # R.

(1) Let f € APy, (T; IN), then f is periodic.
(i) AP, (T; IT) is a Z-module.

Proof (i)Fore > 0, T(f,e) ={r e I : ||f(-+1)— f()| < efors € T} is relatively
densein I1.Lett € I, f(r + 1) — f(t) e [1 = KZ fort € T. Let e < K, we can get that
lfG+7)— fC)|l <eifandonlyif f(t +7) — f(t) = Ofort € T. Thus, f is periodic.
(1) Let f1, f>» € AP, (T; IT) with period 71 = n1 K, Th = ny K, respectively. Then we
have fi + f> is of period T = [ny, n2]K, where [n1, n,] denotes the least common multiple
of n; and n,, we get that f; + f> € AP, (T; IT) and thus A P, (T; IT) is an additive group.
Then it is easy to check that A P, (T; IT) is a Z-module.
O

Remark 2.2 For T # R, obviously, A P, (T; IT) is not a vector space on R.

Lemma 2.5 (Zhang (1995)) A function ¢o € BC(R; R) is in P APy(R; R) if and only if, for
& >0, the set Cc = {t € R : |po(t)| = &} is an ergodic zero subset of R.

Lemma 2.6 A bounded continuous function ¢o € PAPy(T; IT) if and only if for ¢ > O, the
set Co ={t € T : |po(t)| = €} is an ergodic zero subset of T.

Proof If T = R, the conclusion follows from Lemma 2.5. Assume that T # R. Let ¢g €
P A Py(T; IT), by contradiction, suppose that C; is not an ergodic zero subset of T. Then
there exists a constant &g > 0 such that

C.N([to—r, 1 NnT
uaA(CeN([to—r,t0+71]) )250, for some 7o € T.

lim su
r— oop 2r

We can derive that

fo+r 1
lim —/ [¢po(s)|As > lim sup —/ |[po(s)|As = egoe > 0,
1 Ce:N[to—r,t0+7]

r—o00 2r o—r r—oo &I

which contradicts that ¢g € P A Py(T; IT) and then C; is an ergodic zero subset of T.
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On the other hand, for ¢ > 0 and C; is an ergodic zero set. Without loss of generality, we
can choose ¢ < I, then we have ¢o(t) = 0 fort € T\ C,. Let M = sup |¢po(?)], for 1o € T,

teT
we obtain that
1 fo+r 1
7/ [po(s)|As = — [po(s)|As +/ [po(s)|As
T Ji—r 2r CeNlto—r,to+r] ([to—r,to+r]INT)\Ce

= zi IBo(s)|As
T JCenlto—r.to+r]
UA(Ce N[ty —r,to+rINT)
. 2r
Thus, we have ¢g € PA Py(T; IT). O

<M — 0, asr — oo.

Lemma 2.7 (Liu and Tung (2015)) Suppose that F € PAP(R; R) N BUC(R; R) and ¢ €
PAP(R; R). Then F(- — ¢(-)) € PAP(R; R).

Lemma 2.8 For T # R, suppose that F € PAP(T;E") and ¢ € PAP(T; I1). Then
F(-—¢()) € PAP(T; E").

Proof Let F = F| + Fy, ¢ = ¢1 + ¢o with F| € AP(T; E"), Fy € PAPy(T; E") and
¢1 € AP, (T; IT), ¢9 € PAPy(T; IT). Note that, fort € T,

Ft—¢@) =Fi(t —¢@) + Fot — ¢(1))
=Fi(t—¢1(0)+ (Fi1t — @) — Fi(t — ¢1(1) + Fo(t — ¢(1)).

We first prove the almost periodicity of F(t — ¢1(¢)). From Lemma 2.4, we know that ¢ (¢)
is periodic on T, then for {«)} C TII, there exists a subsequence {c,} C {c, } such that
o1t + o)) = ¢1(t + ) = 10 for n,m € N. Since F; € AP(T; E"), by Lemma 2.2,
for {a;,}, we can extract a subsequence {a,} such that { F| (f + «,)} converges uniformly for
t € T. Thus, F1(t + o, — ¢1(t + o)) = F1(t + oy — 70) converges uniformly for ¢ € T,
and F| (- — ¢1(-)) is normal on IT. Hence, Fi(- — ¢1(-)) € AP(T; E") by Lemma 2.2 again.

Then we only need to show that 1 = (F1(- — ¢(-)) — F1(- — ¢1(:))) + Fo(- — ¢ (")) €
P APy (T; E"). First we show that Fi(- — ¢ () — F1(- — ¢1(-)) € PAPy(T; E"). For 0 <
8§ < K, let Cs = {|¢po(-)| = 8}. By Lemma 2.6, we can get that C; is an ergodic zero set in
T. This means that for ¢ > 0, there exists 7 > 0 such that whenr > T, 1ty € T,

MA([to—r,l0+r]ﬂTﬂC5)< e
2r 2 Fll”

Itis obvious that if t € [tg — r, tg + r] N T\Cs, ¢o(t) = ¢ (t) — ¢d1(¢t) = 0. So we have

1 to+r
2 [Fi(s — ¢(s) — Fi(s — ¢1(s))|As
r to—r
1
=;< / [Fi(s — ¢(s) — Fi(s — ¢1(s))|As
telto—r,to+r]NT\Cs
+ / |F1(S—¢(S))—Fl(S—¢1(S))|AS)
telto—r,to+r]NTNCs
<O+20F]- ua(lto—r,to+r]NTNCs) -

2r
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Therefore, F1(- — ¢ (-)) — F1(- — ¢1(-)) € PAPy(T; E").

Next we show that Fo(- — ¢ (-)) € PAPy(T; E"). Since ¢ is bounded, ¢ (T) C I1 = KZis
of finite number of values, denote them by {k{, k2, ..., k,}, where k; € I1, i =1,2,...,n.
By Lemma 2.3 (i), we have Fo(- — k;) € PAPy(T; E"), i = 1,2, ...,n. So for ¢ > 0, there
exists 71 > 0 such that for r > T7,

1 [lotr &
—/ |Fo(s —ki)|As < —, i=1,2,...,n.
2r Jig—r n

Then we can get

1 to+r 1 <& to+r
*/ |[Fo(s — ¢(s)|As < - / |Fo(s — ki)|As
2}" fo—r 2}" i—1 to—r

<

N

=£.

S o

This implies that Fo(- — ¢ (-)) € PAPy(T; E*). O

2.3 SP-almost periodic functions and SP-pseudo almost periodic functions

Definition 2.14 (Tang and Li (2018)) A function g € Lic(T§ E™) is SP-almost periodic on
T if given ¢ > 0, the e-translation set of g

T(g.e)={rell:llg(-+1)—g0O)lsr <&}

is a relatively dense set in IT. The space of all these functions is denoted by S” AP (T; E")
with norm || - || s».

Define the norm operator NV, on BS?(T; E") as follows:

1 t+K ,]7
Ny ()(t) = (E/ |f(s)|PAs> for f € BSP(T:E"), 1 € T.
t

Lemma 2.9 (Tang and Li (2018)) The norm operator N, maps BS? (T; E") in to BC(T; R)
and maps SP AP (T; E") into AP(T; R). Moreover, for f,g € BSP(T; E"), t €T,

INp (PN lloo = 1 fllsr, INp() @) = Np(@) (D] S Np(f £8)(1) < Np(f)(1) + Np()(0).

1 1
Lemma2.10 Let f € BSP(T; E"), g € BSY(T; E") with p,q > 1, — + — = 1. Then we
p q

have, fort € T,
NMI(f ) @) S Np(f) @) - Ng(@) @) < NI fllse - Ng(@)(0). (6)

In addition, if f is bounded and continuous, we have

Ni(f -9 (1) S Ng(f - ) @) < ILfIl - Ng()(@). )

@ Springer f DMAC



258 Page 10 of 23 H.Yang, H-X. Li

Proof If p = 1, g = 400, it is obvious. Now suppose that p, ¢ > 1. By Holder inequality,
for t € T, we have

1 t+IC
Ni(f - 9)(0) = E/ £ (5)g(s)|As

| [ ik b +K :
<z (/ If(s)l”AS> - (/ |g<s)|qu)
t t
| K 5o/ K :
- = PA = 9N
(/c/, ()17 As (,C/ 12(9)] s)

= Np () @) - Ng() (1) < || fllsr - Ny (9)(0).

If f is bounded and continuous, then we have

1 1

1 [+ 1 t+IC q t+K P
Ni(f-9)@) = E/ [f()g()lAs < o= (/ If(S)g(S)IqAS) : (/ 1”AS>
1 t t

1

1 [+ 7 1 K a
=(,C / If(s)g(s)lqu) <||f||-<,C / |g(s>|qu>

=[£Il - Ng()(®)
O

Definition 2.15 (Tang and Li (2018)) A function f € BSP(T; E") is said to be ergodic if
Np(f) € PAPy(T; R). We denote by S P A Py(T; E") the set of all ergodic functions from
T to E".

Definition 2.16 (Tangand Li (2018)) A function f € BS?(T; E") is called S”-pseudo almost
periodic if f = g + ¢, where g € SPAP(T; E") and ¢ € SP PAPy(T; E"). We denote by
SP PAP(T; E") the set of all such functions f.

Lemma 2.11 (Tang and Li (2018))

(i) PAP(T;E") C SPPAP(T;E").
(i) STPAP(T;E") c SP(T; E*) for1 < p < q.
to+1KC

(iii) Assume that f € BSP(T; E"). Forty € T, we have/ [f()]As < K fllsp-

to

Lemma2.12 For f = fi + f» € PAP(T;E") and g = g1 + g» € SPPAP(T; E") with
f1 € AP(T; EY), fr, € PAPy(T; E"), g1 € SPAP(T; E") and go € SPPAPy(T; E™).
Then f -g € S'PAP(T; E").

Proof For convenience, we denote f*(-) = f(- + ) in the proof. In fact, we have f - g =
fi-g1+ fr-g1+ f - g2 Now we prove that f - g € S'PAP(T;E") by the following 3
steps.

Step 1: We prove that f1-g1 € SYAP(T; E").Fore > 0,choose 7 € T(f1,e)NT(g1,e),
by Lemma 2.9 and (7), we can get that
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IAC+DEC+T) = A0 Ollsr = SupNG((fi - g0 = fi -8
= jleljr;Np(ff (8] — gD+ (f = f1) - gD
<sup N (ff - (5 = 0)(0) +sup Np(f = f) - 1) (1)
< Il sup N (s] = g0 + 17 = fill-sup Np(gn) ()

< (ll + Ngllse)e,

which means that f} - g € SPAP(T; E") and by Lemma 2.11 (ii), we have f] - g1 €
S'AP(T; E").
Step 2: We prove that f - g5 € SLPAPy(T; EM). By Lemma 2.11 (iii) and (6), we have
1 to+r to+r

1
— M(f-g)OAr < | fl - 3 Np(g2) (D) At, (8)

2r fo— to—r

for a fixedfyp € T and r € I1. Let r — o0 in (8) we derive that
1 fo+r
lim — Np(f - g2)At =0,

r—o0 2r to—r

since g» € SP PAPy(T; E"). Thus, f - g» € S' PAPy(T; E").
Step 3: We prove that f> - g € SLPAPy(T; EM). By Lemma 2.11 (i) we can get that

1 1
fr € SYIPAPy(T; E") where — + — = 1. Forafixed o € T, r € I, by (6), we have
q p

) 1 [lotr ‘ fo+r
lim — Ni(f2-g)(®)AL < lim — Ny () (1) - Np(g1) () At
r—o00 2r to—r r—o0 2r to—r
1 to+r
<llgtllse - lim — Ny (f) @) At =0.
r—o00 2r fo—r
Thus, we get f> - g1 € S'PAPy(T; EM). m]

2.4 Exponential functions

For a function p : T — R, if we have 1 + u(t)p(t) # 0, t € T, we say that p is
regressive. Denote the set of all regressive and rd-continuous function p : T — R by
R = R(T) = R(T; R) and define the set RT = RT(T;R) = {p e R : 1 + u(@®)p(t) >
0 fort € T}. We can see that the set R(T; R) is an Abelian group with addition & defined
by p ®q = p + q + n(t) pgq, and the additive inverse in this Abelian group is defined by

op=——"——.
P uop

Definition 2.17 (Bohner and Peterson (2001)) For p € R, the exponential function is defined
by

'
ep(t,s) =exp (/ Smn(p(r))Ar) ,

s

for ¢, s € T with the cylinder transformation

+Log(1 + hz) , if h # 0;

Eh(z)Z{Z Cifh=0
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where Log is the principal logarithm.

Definition 2.18 (Bohner and Peterson (2001)) For a matrix-valued function A : T — R"*",
we say that A(-) is regressive if I + p(¢) A(z) is invertible for # € T*, and denote the set of
all such regressive and rd-continuous functions by R(T; R"*").

Definition 2.19 (Bohner and Peterson (2001)) Let A € R(T; R"*"). The initial value prob-
lem

X2 =AOXW), X(t) =1, t,1p€T

has a unique solution which is denoted by e4 (-, #p). We say that e (-, fp) is the matrix
exponential function at #.

Lemma 2.13 (Bohner and Peterson (2001)) Lett,s € T.
) ep(t,t) =1, ealt,t) =1.
(i) ep(a(®),s) = 1+ u@p@)ey,s).
(iii) ep(t,8)ep(s,r) =ep(t,r),ealt,s)ea(s, r) =ealt,r).

Lemma 2.14 (Tang and Li (2018)) Let « > 0 be a constant and t, s € T.

(1) ecalt,s) < 1ift >s.
(i) ecu(t + 1,5 + 1) = ecn(t,s) fort € I
(iii) There exists Ny > O depending on o such that n;sKegy(t,s) < Ny fort > s, where
(nys — HK <t —s < K.

o0

(iv) The series Y equ(t,o(t) — (j — 1)K) converges uniformly for t € T. Moreover, for

j=1
allt € T,

— L ifT=R;

o0
Y ecult.o(t) = (j — DK) < ha = !zlfag+1 T 2R
ap ’

Jj=1

where i = sup u(t).
teT

Lemma 2.15 Assume that A € R(T; R**") is SP-almost periodic and
llea(t, s)Il < Cegult,s),t =, 9)
C>(1 +ak)Ny, if T #R

N T <R with Ny
a1 =

where C and a are positive real numbers. Let M = {

the constant in Lemma 2.14 (iii), and for ¢ > 0,
YTE)={rell:|ea(t+r,o(s)+r)—ea(t,o(s))| <e,t,s €T, t >0(s)}.
Then T(A,e/M) C T (¢).

Proof Fore > 0,letr € T(A,e/M) and U(t,0(s)) = ea(t +r,0(s) +r) —ealt, 0(s)).

anU
Differentiate U with respect to t and denote by % the partial derivative, then
A

oAU
Onl =A@t +r)eat +r,o(s) +r) — A(t)ea(t, o (s))

=AWU(,0(5) + (At +71) — A()eat +r,0(s) + 7).
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Note that U (o (s), o (s)) = 0, then by the variation of constants formula,

t

U(t,o(s)) = / ea(t,o(T))(A(t +7r) — A(t))ea(t +r,0(s) +r)Ar.

(s)

For T =R,

t
U, 9l < / lealt, Ol - 1A(T + 1) — A@) - llealr +r,s +r)ldT
s
t
< C2/ e == | A(T + 1) — A(T)||dT
s
t
= CZe ™) / IA(T +7) — A(r)|ldT
s

t
< CZe™ (=9 / lA(T +r) — A(7)|ldT
I—ngs

Nis — pt—(j—1)

— C2eat=9) Z/ JAG +7) — AD)lldx
< CPryge TN AC+71) — AG) s
< C*Nye/M = ¢

For T # R, by Lemma 2.11, 2.13, 2.14 and the fact that u(7) < K,t € T, fort,s € T,t >
o (s),

12
U, o) < /( : lealt, o@Dl - |A(T + 1) — A - llea(r +r,0(s) +r)[[AT
t
< Cz/ ecul(t,o(1))eca(t +r,0(s) +r)|A(T +7) — A(D) | At
o(s)

t
= C?ecul(t, 0 (s)) /(,) eca(T, 0 (D) A(T +r) — A(D)[AT

1
< C*(1+ aji)eca(t, o (5)) o [A(T +r) — A(D) [ AT
t

< C3 (1 + aK)egy(t, o (s)) lA(z +r) — A(D)] AT
t—n IC

N5 t—(j—DHK

= C? (1 + aK)esq (1, 0 (s)) Z/ IA(z +r) — A(D) | AT
t

jK

C*(1+ aK)nisKeoa (t, o (SHIAC+r) — ACQ)llsr

<
< C?(1 + aK)Nye/M = &.

This implies that T (A, e/M) C T (¢), and 7 (¢) is relatively dense in IT. ]
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3 Main results

Let y(¢) = X2 + 81 (Ox(), Eq. (5) transforms into the following system:
xB(1) = =81 ()x (1) + y (1),
YA = =820y (1) + BO)x (1) — b()x™ (t — T() + p(1),

where 65(t) = c(t) — 81(a(t)), B(t) = a(t) + BIA(I) + 61(2)82(t). To study (10), we first
consider the following abstract linear equation:

(10)

x2(1) = A()x(t) + f(1), 1 €T, an
where f = g+ ¢ € SPPAP(T; E") N C(T; E™).

Lemma 3.1 (Tang and Li (2018)) Assume that A € R(T; R"*™) with (9) satisfied. Then (11)
admits a unique bounded continuous solution u(t) given by

t
u(t) = / ea(t,o(s)) f(s)As,t €T, (12)

and |u(t)| < CryK|| flsp, where Ay is given in Lemma 2.14 (iv).

Theorem 3.1 Assume that all conditions in Lemma 2.15 are satisfied. Then (11) admits a
unique pseudo almost periodic solution given by (12).

Proof By Lemma 3.1, it suffices to prove thatu € PAP(T; E"). Fort € T, let

o0

t
u) = [ eatt o) )85 = 30

_ o
where

—(j—DK
uj(t) = / ea(t,o(s)) f(s)As
t

—jK
t—(j—DHK t—(j—-DHK

_ f enlt, o (s)g(s)As + / enlt, o ()(s) As
t—jK —jK

— g+, JjeN

Now weproveu; € PAP(T; E").Fore > 0,itfollows from Lemma2.15 that T (¢)NT (g, &)
is relatively dense in I1. For r € T°(¢) N T (g, €), by Lemma 2.1 and 2.11,

lgj(t+r) =gl

t+r—(j—-DHK t—(j—DHK
[ ealt +7,0(5)g(s) As — / en(t. o (s)g(s)As
t+r—jIC t—jK

t—(j—DHK
/ ea(t+r,0(s) +r)gls +r) —ealt,o(s))g(s)As
t—jK

t—(j—DHK
</ C lealro@ ) —eal o) - glas
1—j

—(j—DK
+/ llea®, o ()l - 1g(s +r) — g(s)|As
—jK
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/N

t—(j—DK t—(j—DK

Sf Ig($)|As + Cega(t, 0 (1) — (j — l)IC)/ Ig(s +r) — g(s)|As
t—jK t—jK

< Kligllsre + CA +am)KlgC-+r) —gO)lsr

< Kligllsre + C(0 +ap)Ke = (Kliglls» + C( +app)K)e,

which means that g; () is almost periodic for j € N.
Next, we prove that ¢; (1) € PAPy(T; E").

—(=DK —(—DK
16, ()] </ leatt, o)l - 6 (s)|As < c/ coult, () - [H(5)|As
—jK —jK
—(—DK
< Ceaultea® =G =10 [T 190)1AT < COU+ KNG @) = K.
t—j

Notice that ¢ € S” PAPy(T; E"). Thus, for a fixed ty € T,
1 to+r 1 to+r
lim —/ lp;j (At < C(1+ap)K lim — Ny(@)(t — jK)At = 0.
2}’ to—r r—00 2}" to—r
This implies that ¢; € PAPy(T;E"), and then u;(t) € PAP(T;E"). This together with
the boundedness of u(¢) yields that u(r) € PAP(T; E"). m}

The following conditions will be useful in the proof of our main results.
(Hy) 61,8, € C(T; Rt) N SPAP(T;R") and =81, -8, € R*. We denote §; =
ianT(Si(t),i =1,2,8 =min(§, , 8;,).
te

(H2) B, b, pe SPPAP(T;R), t € PAP(T; I).

1
(H3) 61 = max {(S_,ABZ—K(II,BHSP +m||b||sp)} <1
1

We note that, in this work, z(z) = (z1(t), z2(¢)) is assumed to be a column vector function
without any further comments. In the rest of this work, we will use the following norm for
PAP(T; R?), which is equivalent to the one mentioned in Lemma 2.3 (ii):

llell = max {sup lp1(2)], sup |(02(t)|} ,

teT teT

for ¢ = (@1, ¢2) € PAP(T; R?). For T # R, let

O A
E’f={wePAP(T;R2>:||¢—¢°||*<1 19 }
— Ul

where

t

0 = (0.80) . B0 = [ et a6Np6I85, 1=y Klpllsr

and by Lemma 3.1, we can get that 120 < A
Now we are in a position to give our main result.
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< 1,

A
Theorem 3.2 Suppose that T # R and the assumptions (Hy)-(H3z) hold, and 1
-0
then (10) has a unique pseudo almost periodic solution in E and (5) has a unique pseudo
almost periodic solution u satisfying that (u, u® + 81u) € E}.

Proof Tt is easy to see that u () is a solution of (5) if and only if (u(z), u @) + 81(Hu®)) is
a solution of (10). Consider the following system:

{x%) = —=81(1)x (1) + 2(1),
YA = =8y (0) + BOe1 () — b (t — T(1)) + p(1),
fort € T, ¢ = (@1, ¢2) € PAP(T; R?).

Let 0
=81
At = ( ! _52([)), (14)

then the homogeneous equation of (13) is

13)

20 = AW)z(t), t €T,
and we can get that
lleat, )l < 2e_g(t,s) < 2eg5(t,8), t =5,
since

_ 1
t L 1=6 t LOg—i
e_5(t.s) = exp (/ MAT) < exp / s 721G R\, ecs(t,9).
s wu(z) s u(t)

By Lemma 2.8, we have ¢ (t — t(t)) is pseudo almost periodic, and by Lemma 2.11 and
2.12, we derive that

92, Bo1 —bg'(- —1()) + p € S'PAP(T; R).

Denote

z(1) = (x(0), y(1)), F(t) = (p2(1), B()p1 (1) — b(D)gy" (t — T(1)) + p(1)).

We can rewrite (13) as
2 =AWzt + Ft), 1 €T, (15)

where A(t) is given by (14). By (H;) and (H»), it is easy to see that all conditions in Theorem
3.1 are satisfied with (15) instead of (11). Thus, we obtain that (15) has a unique pseudo
almost periodic solution z%(r) = (x%(¢), y¥(r)), which is expressed as follows:

t
x?(t) :/ e, (1, 0(s))ga(s)As,

(16)
t
OES / e, (1, () (B()@1(s) = b(5)gf' (s — T(5)) + p(s)) As.

For ¢ € ET, we have

O1A A
lplls < Nl — @l + 9%l < A

-6 T 1o T
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Define a nonlinear operator:
T:Ef > PAP(T;R?), ¢ = (¢1, ) > 29 = (x%, y%).

Then (10) has a unique pseudo almost periodic solution in EY if and only if 7 has a fixed
point in E}. So we only need to prove that T has a fixed point in E}.
First, we show that for any ¢ € ET, Tp € EY, we have

ITe = @olls+ = max :Sup
teT

t
/ e—s (t,0(s))p2(s)As

’

sup
teT

t
/ e—5,(1,0(5) (B$)p1(5) = b(s)pf' (s — (5))) As

t
< max {sup/ e_5,(t, () Aslglls .
o0

teT J—

t
sup / e—5,(1,0() (IB(s)| + [b(s)]) ASII(/JII*} .

teT
By Lemma 2.11 (iii) and 2.14 (iv), we can get that

/ e—5, (1,0 (B + b)) As amn

o t—(n—1)K
= Z/ e—s5, (1,0 (s))(IB()] + [b(s)DAs

=1 t—nkC

o t—(n—1HK
< Z/ e_sr (t, 0 (NUBG) +1b(s)DAs

n=1 t—nkC
o] t—(n—1)IKC
< 26_32— (t,0(1) —(n—DK) . (IB(s)I + [b(s)) As
n=1 t—n
S As KAUBS s +1D1lsr) < A5 KBl sp + mllblise). (18)

Then we obtain that
011
1—6;’

thatis T¢ € E}.Next, we will prove that 7' is a contraction. In fact, forany ¢ = (@1, ¢2), ¥ =
(Y1, ¥n) € ET, by Lemma 2.11 (iii), 2.14 (iv) and the same calculation in (18), we can get

1
ITp — @ollx < max {5’

A5 KIBllsp +m||b||sv)} ol =Otllells <
1

ITe — Tl
t t
=max{sup / e_s, (1, 0(5))(@2(s) — Ya(s)) As|, sup\ / e_s,(t,0(s))
teT |/ —o0 teT ' J—o0

(B @16) = 916D = bE) ¢ = 7(5) = Y15 - r(s»))As\}

t
max{sup e_s, (1.0 () Asllg — Yl supf e_5,(t.0(s))
teT teT J—o0
<|ﬁ(S)I+|b(S)| > ||¢||f||¢||-f>m||¢_wu*}
i+j=m—1
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1
< max F,kagﬁ(llﬁllw +mlblise) ¢ llp = ¥llx = 0O1lle — ¥l
1

Thus, T is a contraction mapping, and by the Banach fixed point theorem, 7 has a unique
fixed point in E7. O

For T = R, the following conditions will be useful.

(Hy) 8; € BC(R;R) N SPAP(R;R),i = 1,2 and denote 61.+ = supé;(1), §; =
teR
inf 8;(t),i =1,2, § = min{é,, 8, } > 0;
teR

(Hs) B, b, pe SPPAP(R;R)NBC(R; R), r € PAP(R; R);

1 b
(Ho) 6 = max |, WLEmIPIL
8 8
Let
* 2 02 . . .
E5 =19 € PAP(R;R%) : ¢ — ¢olls« < T and ¢ is uniformly continuous ; ,
— 02
0 0 0 ' el - . .
where ¢” (1) = (0, 9;5(1)), ¢;(t) = f e_5,(t,s)p(s)yds, A = e It is easy to verify
S 5

that [lgo |« < A.

Lemma 3.2 (Liu and Tung (2015)) E3 is a closed subset of PAP (R; R").

A
Theorem 3.3 Suppose that T = R and assumptions (H4)-(Hg) hold, and T < 1, then

-6,
(10) has a unique pseudo almost periodic solution in E5 and (5) has a unique pseudo almost

periodic solution u satisfying that (u, u’ + §1u) € E3.

Proof We replace ¢ = (¢1, ¢2) € PAP(R; R?) N BUC(R; R?) in (3.4), then we get the
following system:

x'(1) = =81 (1)x(t) + a(1), (19
Y () = =82(0)y(1) + BO)e1 (1) — b (1 — (1)) + p(2).
Let 5101 0
_ (o
Ar) = ( 0 _52(1)) : (20)

and the homogeneous equation of (19) is
7)) =AWDz@), 1 € R.

We can check that |e4 (¢, s)|| < 2e_z(t, s) fort > 5. By Lemma 2.7, we have ¢ (t — ())
is pseudo almost periodic, and by Lemma 2.11 (i), we derive that

@, Boi —be'(- — () + p € S'PAP(T; R).
Denote

2(t) = (x(@), y(1), F(t) = (g2(1), BO)e1 (1) — b()e{" (t — T(1)) + p(1)).
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We can rewrite (19) as
7)) = At)z(t) + F(1), t € R, 1)

where A(t) is given by (20). By (H4) and (Hs), it is easy to see that all conditions in Theorem
3.1 are satisfied with (21) instead of (11). Thus, we obtain that (21) has a unique pseudo
almost periodic solution z?#(r) = (x?(¢), y?(t)), which is expressed as (16).

For ¢ € E7, we have

G A A

<o —¢° Ol < A= 1.
Iglhe < llp = ¢l + 10 < = + 4= 7= <

Define a nonlinear operator
T:E3 = PAP(T:R?), ¢ = (91, ¢2) = 2¥ = (%, y¥).

Then (10) has a unique pseudo almost periodic solution in E3 if and only if 7 has a fixed
point in E3. So we only need to prove that 7 has a fixed point in EJ.
We first prove that x?, y? are uniformly continuous. For ¢ > 0, let 0 < n <

, {—111(1—5)
mmnmy ———

5 , 8}. For 11,1 € R, |[t] — 12| < n, without loss generality we assume
1

that 1; > t», we have

Ix?(11) — x¥(02)]

1 n
= / e_s (11, 8)p2(s)ds —/ e_s (2, s)p2(s)ds
—0Q —0Q

1

5]
= (e—5,(t1,8) — e—5,(t2, )2 (s)ds +/ e_s (11, 8)p2(s)ds

[0}

t n
< / (e—s, (11, 12) — De—s,(t2, $)@a(s)ds| + / e_s, (t1, 8)p2(s)ds
—00 15)

15 _
< (= ey, (11.12) / T 0y (5)lds + &g
—00

<e- —”;"2” +ellga]l = Ce,

1

where C = 1 llo2|]. Hence, x¥ is uniformly continuous. Similarly, we can prove that

y¥ is uniformly continuous and we omit the details here. Next, we show that for any ¢ € E3,
Ty € Ej.

t
sup | / e, (1, (BE)e1(5)

70— ool =max| s | [ e-s. 90020005
teR

teR
— b(s)p™ (s — ‘L'(s)))ds“
t t
<maxsup [ e tds dollsup [ eontren
teR J —o0 teR J —o0

(B®I+1bo))ds - Nl
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LBl + 18]
<max{,ﬂ] lls

8 8y
1 18I+ mlbl|

< max | o WEIEmIPIL o),
81 82

— Ollgl < 2

=Pl x 1_927

that is Tg € E7. At the last, we will prove that T is a contraction. In fact, for any ¢ =
(p1,92), ¥ = (Y1, ¥2) € E3, we can get

ITo - Tyl
t

= max  sup| / -4, (1.8)(@a(s) — Y2()ds] . sup | f o5y 1, ) (BS) (@1 (5)
teR teR —00

— 1) = B = 7)) — ¥ = T))ds |}

t t
< maX{ SUP/ e—5(1,8)ds - |l —Pll+ SUP/ e*ﬁz(tas)<|ﬂ(s)| + 1b(s)]

teR J— teR J —
> ||¢||i||w||f)ds Nl - wn*}
i+j=m—1
L |IBIl + m]|b]l)
smaxy——, ————— - llg =¥l
8 &)
SO llo =Yl
Thus, T is a contraction mapping, and by the Banach fixed point theorem, 7 has a unique
fixed point in E;. O

Remark 3.1 We note that §;,i = 1,2, B, b and p are not assumed to be bounded in (Hy)
and (H»), but in (H4) and (Hs), the boundedness is needed. In fact, for T # R, under the
conditions (Hy) and (H»), we can get the pseudo almost periodicity of ¢1(- — 7(-)), x¥ and
y? in Theorem 3.2 by Lemma 2.8 without the uniform continuity of ¢. On the other hand, for
T =R, to ensure ¢ (- — 7(-)) € PAP(R; R), we have to prove that the uniform continuity
of ¢, where the boundedness of the parameters is essential. There exists counterexamples
showing that (- — 7(-)) ¢ PAP(R; R2?) if ¢ is not uniformly continuous. For more details
of this problem, readers may refer to Zhang (2003). Moreover, assumption (H3) is replaced
by a simple form (Hg).

Let us end this work with two examples.
Example 3.1 Let

T= U<[2k2k+] ©{2k+1—21}U{2k+1}u{2k+§}),

keZ n=2

1
denote g,y = 10" -1 4+1— 0T n = 2,1 is odd. Consider the following Duffing equation
onT.
@A) + cOx™ (1) — a(®)x(t) + b (t — T(1) = p(©), (22)
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where

0.1sin27t + 3, t € [2k, 2k + %];

c(t) =4 0.1n+ 15, t = gn,n = 2,l1s odd;
3, otherwise,
—0.27 cos 27t — 1.5(0.1sin 27t + 1.5) + g5 (sin 27t + h(r)), ¢ € [2k, 2k + });

a(t) = —1.5n+%, t = gu,n >2,11sodd;
225+ % otherwise ,
d(sin2mr +h(), 1€ 2k, 2k + 17;

b(r) = i o
50 > otherwise,
L, rel-L1]m;

ht) = L otherwise,
Nl
12 1].

oty | B sin2mt. 1€ [Zk, 2%k + 2],
0, otherwise,
8+ 70, 1 €[4k 4k + 1]

T =Y 2410), t€|dk+2, 4k + %],
0, otherwise,

where

n An 1 +.
w2 |+ rel2n 2+ 4] neny
0, otherwise.

Itis easy to see that t € PAP(T; IT). Let y(t) = x2(1) + 81 (1)x(r) where

5,y — | O-1sin2mi 15 1€ 2k 26+ 3],
.5, otherwise.

Then we transform (22) into the following system:
{x%) = —51(0x() + y(0),
yA(0) = =80y (1) + BO)x(t) — b(H)x (t — T(1) + p(0),
where

_Jn, t=gu, n>2, lisodd;
%2(0) = { 1.5, otherwise,

h(t)

o (si 1].
B(1) = qo(Sin2wr +h(1)), t € [2k, 2k + 2],
0 ° otherwise.

Obviously, §; € stap (T; R), b, B € PAP(T; R), and use the same calculation in Example
3.21in Yang and Li (2022), we can get that §; € S'AP(T; R). From Lemma 2.14 (iv), we have

1 1 1
Ay d we derive that =bllgg = —(2+—=). A=A K =,
5 and we derive that [|B]ls1 = [[bll 51 120( +ﬂ> sy Klpllst = —

AT
_ 2 A 3

6 =max(8l ’)\'SZ_IC(”'B”SI +3||b||sl)) = g, m = ; < 1. Let

* 2 2

| = ¢€PAP(T§R)2||¢—¢0||<; ,
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where ¢o(1) = (0, 9(1)), ¢9(t) = [* es,(t, 5)p(s)ds. Thus, all conditions in Theorem
3.2 are satisfied, (22) has a unique pseudo almost periodic solution u satisfying that (i, u® +
Siu) € EY.

Example 3.2 Consider the following Duffing equation on R with time-varying coefficients:

x"(t) + (6 + sint + cos g(t))x"(¢) + (9 + cost + 3 cos g(¢) + 3sint + cos g(t) sin ¢

1 1 1
— ﬂ(sint + sin ﬁt))x(t) + ﬂ(cost + cos ﬁt)x3(t —cost) = E(?) sint + h(t)),
(23)
where
I, —-l<t<lI;

’ h(l) = 1 .
2+ cost 4 cos /2t { T otherwise.

gt) =

From the resultin Levitan (1959) (see page 212-213), we know that cos g € STAP(R; R),
and it is easy to see that 1 € PA Py(R; R). Let

y =x'(t) + B +sint)x(t),
then we can transform (23) into the following system:
x'(t) = =3 +sint)x(t) + y(t)
V(1) = =3 + cos g(1)y(t) + %(sint + sinv/20)x (1) — i(cost + cos v/21)

1
-x3(t —cost) + E(Z sint + sin /31 + h(t)).

1
Denote 61(t) = 3 + sint, 6(t) = 3 + cosg(t), B(t) = ﬁ(sint + sin\/it), b(t) =

1 1
54 (o8t +cos V21), p(t) = 1o (@sint +sin V3t + h(1)). Let

1
E* = {(p € PAP(R; RQ) e — (p0||* < 3 and ¢ is uniformly continuous} ,

where

t

%) = (0,3 (1)), ¥3(1) = / e_s, (t, $)p(s)ds.

1
Itiseasytoseethatd; =48, =2,[B|l = |Ibll = E,andp € PAP(R; R), and consequently

2
p() € SIPAP(]R; R) Ipll < 3 Moreover,

1 3|b 1 1 1 1 A 2
6 = max —,M :max{f,f}:f<l; ;\:M<,;7<,<1.
T 85 26 2 85 5 1-6

Now it is easy to check that all conditions in Theorem 3.3 are satisfied. Hence, (23) has a
unique pseudo almost periodic solution u satisfying that (u, u’ + 8ju) € E*.
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