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Abstract
This paper studies the single machine scheduling problems with truncated logarithm pro-
cessing times and exponential past-sequence-dependent delivery times. We prove that the
makespan and total completion time minimizations are polynomially solvable. For the total
weighted completion time minimization, we illustrate that it remains polynomially solvable
under a special case; under the general case, this paper proposes heuristic, tabu search and
branch-and-bound algorithms. Computational experiments indicate that the heuristic algo-
rithm is more effective than tabu search algorithm.

Keywords Scheduling · Learning effect · Single machine · Delivery time ·
Branch-and-bound algorithm

Mathematics Subject Classification 90B35 · 68M20

1 Introduction

In the actual production and processing environment, workers,machines and other processing
conditions have a great impact on the time when the job is handed over to the customer (i.e.,
the delivery times, see Zhang et al. 2022; Maecker et al. 2023). As the number of processing
increases, the processing conditions deteriorate gradually, and the total processing time of the
job to the customer increases. This kind of situation related to the previously processed jobs is
called past-sequence-dependent delivery time.Koulamas andKyparisis (2010) considered the
single machine scheduling problems with past-sequence-dependent delivery times (denoted
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by Qpsddt ), they proved that the 1|Qpsddt |ϕ problem can be solved in polynomial time,where
ϕ is the objective function, ϕ ∈ {Cmax(makespan), TCT (= ∑

C j , total completion time),
Lmax(maxumum lateness), Tmax (maxumum tardiness),

∑
Uj (number of tardy jobs)}, and

C j is the completion time of job J j . Liu et al. (2012) showed that the problem 1|Qpsddt |ϕ can
be solved in polynomial time, where ϕ ∈ {TWCT (= ∑

v jC j , total weighted completion
time, where v j is the weight of job J j ),

∑
v j
(
1 − e−ηC j

)
(0 < η < 1, total discounted

weighted completion time), T ADC(= ∑n
i=1

∑n
j=i |Ci −C j |),∑(A1E j + A2Tj + A3d)},

E j = max{0, d − C j } and Tj = max{0,C j − d} are earliness and tardiness of job J j , d
is the common due date, A1 ≥ 0, A2 ≥ 0, A3 ≥ 0 are given constants (i.e., the unit cost
of earliness, tardiness and common due date respectively). Wang et al. (2021) proved that
both the problems 1|Qpsddt |∑� jC[ j] and 1|Qpsddt |∑� j

(
1 − e−ηC[ j]

)
can be solved in

O(n log n) time, where � j is the weight of j th position (position-dependent weight). Qian
and Han (2022) integrated the single-machine due date assignment scheduling with Qpsddt

and simple linear deterioration (SLD). For the earliness-tardiness cost (i.e.,
∑

(A1E j +
A2Tj + A3d j ), where d j is the due date of job J j ) minimization, they proved that the
problem is polynomially solvable. Qian and Zhan (2022) and Mao et al. (2023) studied the
single-machine due window assignment scheduling with Qpsddt and SLD. For the earliness-
tardiness cost (i.e.,

∑
(A1E j + A2Tj + A3d1j + A4D), where d1j is the starting time of due

window of job J j , D is the size of common due window, and A4 is the unit cost of D)
minimization, Qian and Zhan (2022) proved that the problem is polynomially solvable. For
the general totalweighted earliness-tardiness costminimization,Mao et al. (2023) proved that
the problem is polynomially solvable, where the weights are positional-dependent weights.

In addition, a related research area focuses on the learning effects and scheduling (see
Azzouz et al. 2018; Wang et al. 2022b; Heuser and Tauer 2023; Lei et al. 2023; Ma et al.
2023; Paredes-Astudillo et al. 2023; Pei et al. 2023; Wang and Wang 2023; Xin et al. 2023).
Yang and Yang (2012) explained the single-machine scheduling problems with Qpsddt and
learning effects. They proved that 1|pi,[ j] = pi jai , Qpsddt |∑(A1E j+A2Tj+A3d1+A4D)

and 1|pi,[ j] = pi jai , Qpsddt |T ADC can be solved in polynomial time, where pi,[ j] = pi jai

is the actual processing time of job Ji is scheduled at j th position, and pi (resp. ai ) is
the basic processing time (resp. learning rate) of job Ji . Shen and Wu (2013) considered
single-machine scheduling with Qpsddt and general learning effects. They proved that some
regular objective functions minimizations can be solved in polynomial time. Zhao and Tang
(2014) examined the single-machine scheduling problems with Qpsddt and general position-
dependent processing times. Recently, Toksari et al. (2022) considered the single-machine
scheduling problems with general Qpsddt and learning effects. For the objective functions
Cmax and TCT , they proved that the problem remains polynomially solvable. For the special
cases of Tmax and TWCT , they proved that the problem remains polynomially solvable. In
2023, Ren et al. (2023) studied the same problem as Toksari et al. (2022), for the general
cases of Tmax and TWCT , Ren et al. (2023) proposed a branch-and-bound algorithm and
some heuristic algorithms.Wang et al. (2023) combined Qpsddt and truncated learning effect.
They proved that three due date assignment problems can be solved in polynomial time.

However, subjected to the uncontrolled learning effects, the actual job processing times
will plummet to zero dramatically due to the increasing number of jobs which are already
processed or the emergence of jobs with long processing time. Hence,Wu et al. (2012, 2013),
Wu and Wang (2016), Wang et al. (2022a) and Zhao (2022) studied the truncated learning
effects. In this article, we extend the results of Toksari et al. (2022), Ren et al. (2023) and
Wang et al. (2023), but consider the scheduling model with general Qpsddt and truncated
learning effects. The objective functions are given as follows: Cmax, TCT and TWCT .
We prove that the Cmax and TCT minimizations are polynomial solvable. Under a special
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case of the TWCT minimization, we prove that it remains polynomially solvable. To solve
the general case of the TWCT minimization, the heuristic, tabu search and branch-and-
bound algorithms are proposed. We also deal with the computational performances of these
algorithms for the general case of the TWCT minimization.

The structure of this paper is given as follows: Sect. 2 describes the problem; Sect. 3
puts forward several useful properties; Sect. 4 analyzes the single-machine Cmax and TCT
problems; Sect. 5 solves the TWCT problem in general case. Conclusions are given in the
last section.

2 Problem description

Considering that n jobs are to be processed on a single machine, jobs can be processed at
time 0 and can only be processed one job at a time. Let pi be the basic processing time (i.e.,
the processing time without any learning effects) of the job Ji ∈ {J1, J2, . . . , Jn}, Toksari
et al. (2022) studied the following model: the actual processing time of job Ji scheduled at
position j is

pi,[ j] = pi

⎛

⎝1 +
j−1∑

s=1

ln p[s]

⎞

⎠

ϑ

, (i = 1, . . . , n),

where ϑ ≤ 0 is the learning index. Wang et al. (2023) studied the following model: the actual
processing time of job Ji scheduled at position j is

pi,[ j] = pi max

⎧
⎪⎨

⎪⎩

⎛

⎝1 +
j−1∑

s=1

p[s]

⎞

⎠

ϑ

, δ

⎫
⎪⎬

⎪⎭
, (i = 1, . . . , n).

This paper generalizes the model of Toksari et al. (2022) and Wang et al. (2023), i.e., the
logarithm truncation time function with position-dependent weight is:

pi,[ j] = pi max
{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
, (1)

where 0 < a ≤ 1, α ≥ 0, β ≥ 0, α + β = 1, δ is a truncation parameter (0 < δ ≤ 1), and
ws ≥ 1 is the position-dependent weight (s = 1, 2, . . . , n). As in Toksari et al. (2022), the
processing of job pi,[ j] must be followed the general Qpsddt delivery time:

Qi,[ j] = γ

⎛

⎝1 +
j−1∑

s=1

p[s]

⎞

⎠

b

, (2)

where γ > 0 is a constant and b ≥ 1 is the index of delivery times. The objective is to mini-
mize Cmax, TCT , and TWCT . As in Brucker (2007) and Pinedo (2015), the corresponding
problem can be expressed as:

1|GQpsddt , pi,[ j] = pi max
{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
|ϕ,

where ϕ ∈ {Cmax, TCT , TWCT }, and GQpsddt denotes the general delivery time (2).
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3 Basic properties

Lemma 1 λ(αax +Y−1β)− (αaw j ln λ+x +Y−1β) ≤ 0 if 0 < a ≤ 1, λ ≥ 1, Y ≥ 0, w j ≥ 1
and x ≥ 1.

Proof Let F(λ) = λ(αax + Y−1β) − (αaw j ln λ+x + Y−1β), and taking the first and second
partial derivative with respect to λ, it follows that

F ′(λ) = (αax + Y−1β) − αw j ln a · aw j ln λ+x

λ
,

F ′′(λ) = −αw j · w j ln a ln a · aw j ln λ+x + aw j ln a · aw j ln λ+x

λ2
.

According to the given conditions 0 < a ≤ 1, λ ≥ 1, w j ≥ 1 and x ≥ 1, F ′′(λ) ≤ 0, that
is, F ′(λ) is a decreasing function with respect to λ ≥ 1, and F ′(λ) ≤ F ′(1) ≤ 0 can be
obtained. Hence, F(λ) is decreasing function for 0 < a ≤ 1, λ ≥ 1, w j ≥ 1 and x ≥ 1, that
is

F(λ) ≤ F(1) = (αax + Y−1β) − (αax + Y−1β) = 0.

��
Lemma 2
⎛

⎜
⎜
⎜
⎜
⎝

(λ1 − λ2λ)
(
ex
) 1

w j (α + Y−1β) + (λ1 − λ2)γ ϕbY−1 + λ2γY
−1

(

ϕ + (
ex
) 1

w j

)b

−λ1γY
−1

(

ϕ + λ
(
ex
) 1

w j

)b

+ λ2λ
(
ex
) 1

w j (αax + Y−1β) − λ1
(
ex
) 1

w j (αaw j ln λ+x + Y−1β)

⎞

⎟
⎟
⎟
⎟
⎠

≤ 0

if 0 < a ≤ 1, b ≥ 1, λ ≥ 1, 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1, Y ≥ 0, w j ≥ 1 and x ≥ 1.

Proof The proof is similar to Lemma 1. Let

F =

⎛

⎜
⎜
⎝

(λ1 − λ2λ) (ex )
1

w j (α + Y−1β) + (λ1 − λ2)γ ϕbY−1 + λ2γY−1
(

ϕ + (ex )
1

w j

)b

−λ1γY−1
(

ϕ + λ (ex )
1

w j

)b

+ λ2λ (ex )
1

w j (αax + Y−1β) − λ1 (ex )
1

w j (αaw j ln λ+x + Y−1β)

⎞

⎟
⎟
⎠ ,

and take the first derivative with respect to λ:

F ′(λ) =
⎛

⎝
−λ2 (ex )

1
w j (α + Y−1β) − λ1bγY−1 (ex )

1
w j (ϕ + λ (ex )

1
w j )b−1

+λ2 (ex )
1

w j (αax + Y−1β) − λ1(ex )
1

w j αw j ln a·aw j ln λ+x

λ

⎞

⎠

Continue to take the second derivative with respect to λ,

F ′′(λ) =
⎛

⎜
⎝

−λ1γY−1b(b − 1) (ex )
2

w j (ϕ + λ (ex )
1

w j )b−2

− λ1αw2
j ln a ln a·aw j ln λ+x−λ1(ex )

1
w j αw j ln a·aw j ln λ+x

λ2

⎞

⎟
⎠.

Obviously, when 0 < a ≤ 1, b ≥ 1, λ ≥ 1, 0 ≤ λ1, λ2 ≤ 1, w j ≥ 1 and x ≥ 1 are satisfied,
F ′′(λ) ≤ 0, that is, F ′(λ) is a decreasing function of λ ≥ 1, and F ′(λ) ≤ F ′(1) ≤ 0.

Therefore, F(λ) is decreasing for 0 < a ≤ 1, b ≥ 1, λ ≥ 1, 0 ≤ λ1, λ2 ≤ 1, w j ≥ 1 and
x ≥ 1, that is F(λ) ≤ F(1) ≤ 0. ��
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4 Main results

Theorem 4.1 For the problem 1|GQpsddt , pi,[ j] = pi max
{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
|Cmax,

the optimal sequence can be obtained according to the SPT (smallest processing time first)
rule.

Proof Assume that the optimal sequence is σ = [σ1, Jh, Jk, σ2], where Jh and Jk meet
ph ≤ pk , and Jh is at the j th position of the sequence, and Jk is immediately after Jh . The
sequence σ ′ = [σ1, Jk, Jh, σ2] can be obtained by exchanging Jh and Jk .

Let X be the completion time before the job Jh , we have

Ch,[ j](σ ) = X + ph max
{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
+ γ

⎛

⎝1 +
j−1∑

s=1

p[s]

⎞

⎠

b

, (3)

and

Ck,[ j+1](σ ) = X + ph max
{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}

+pk max
{
αa

∑ j−1
s=1 ws ln p[s]+w j ln ph + β, δ

}
+ γ

⎛

⎝1 +
j−1∑

s=1

p[s] + ph

⎞

⎠

b

.

(4)

For sequence σ ′ = [σ1, Jk, Jh, σ2], we have

Ck,[ j](σ ′) = X + pk max
{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
+ γ

⎛

⎝1 +
j−1∑

s=1

p[s]

⎞

⎠

b

, (5)

and

Ch,[ j+1](σ ′) = X + pk max
{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}

+ph max
{
αa

∑ j−1
s=1 ws ln p[s]+w j ln pk + β, δ

}
+ γ

⎛

⎝1 +
j−1∑

s=1

p[s] + pk

⎞

⎠

b

.

(6)

According to the truncated learning effects, the problem can be proved in the following two
cases:

Case 1.When αa
∑ j−1

s=1 ws ln p[s]+w j ln pk + β ≥ δ, the difference between formulas (4) and
(6) is

Ck,[ j+1](σ ) − Ch,[ j+1](σ ′) = (ph − pk)
(
αa

∑ j−1
s=1 ws ln p[s] + β

)

+pk
(
αa

∑ j−1
s=1 ws ln p[s]+w j ln ph + β

)

−ph
(
αa

∑ j−1
s=1 ws ln p[s]+w j ln pk + β

)

+γ

⎛

⎝1 +
j−1∑

s=1

p[s] + ph

⎞

⎠

b

− γ

⎛

⎝1 +
j−1∑

s=1

p[s] + pk

⎞

⎠

b

.
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From ph ≤ pk , and (ph − pk)
(
αa

∑ j−1
s=1 ws ln p[s] + β

)
≤ 0, we have

γ

⎛

⎝1 +
j−1∑

s=1

p[s] + ph

⎞

⎠

b

− γ

⎛

⎝1 +
j−1∑

s=1

p[s] + pk

⎞

⎠

b

≤ 0.

Let λ = pk/ph , x = w j ln ph and Y = a
∑ j−1

s=1 ws ln p[s] , then ln λ = ln pk − ln ph and
ex = (ph)w j . According to Lemma 1, we have

(
pk
(
αa

∑ j−1
s=1 ws ln p[s]+w j ln ph + β

)
− ph

(
αa

∑ j−1
s=1 ws ln p[s]+w j ln pk + β

))
/ph · Y

= λ(αax + Y−1β) − (αaw j ln λ+x + Y−1β)

≤ 0.

To sum up, when αa
∑ j−1

s=1 ws ln p[s]+w j ln pk +β ≥ δ, we have Ck,[ j+1](σ )−Ch,[ j+1](σ ′) ≤ 0.

Case 2. When αa
∑ j−1

s=1 ws ln p[s]+w j ln pk + β < δ, let T = ∑ j−1
s=1 ws ln p[s], from (4) and

(6), we have
(
Ck,[ j+1](σ ) − Ch,[ j+1](σ ′)

)
/ph

= max{αaT + β, δ} − δ + λ
[
max{αaT+x + β, δ} − max{αaT + β, δ}

]
. (7)

Taking the first derivative of λ, the formula (7) is a decreasing function with respect to λ ≥ 1.
In this case, we also have Ck,[ j+1](σ ) − Ch,[ j+1](σ ′) ≤ 0.

From the above cases, the optimal sequence of 1|GQpsddt , pi,[ j] = pi max{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
|Cmax can be obtained by the SPT rule. ��

Theorem 4.2 For the problem 1|GQpsddt , pi,[ j] = pi max
{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
|TCT ,

the optimal sequence can be obtained by the SPT rule.

Proof From Theorem 4.1, if ph ≤ pk , we have Ch,[ j](σ ) ≤ Ck,[ j](σ ′) and Ck,[ j+1](σ ) ≤
Ch,[ j+1](σ ′), then Ch,[ j](σ ) +Ck,[ j+1](σ ) ≤ Ck,[ j](σ ′) +Ch,[ j+1](σ ′). That is, the optimal

sequence of the problem 1|GQpsddt , pi,[ j] = pi max
{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
|TCT can

be obtained by the SPT rule. ��
Theorem 4.3 For theproblem1|GQpsddt , pi,[ j]=pi max

{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
|TWCT ,

if the processing times and weights are anti-agreeable, i.e., ph ≤ pk implies vh ≥ vk for
all the jobs Jh and Jk, the optimal sequence can be obtained by sequencing the jobs in
non-decreasing order of ph/vh (W SPT rule).

Proof Similar to the above theorems, for sequence σ = [σ1, Jh, Jk, σ2], we have
vhCh,[ j](σ ) + vkCk,[ j+1](σ )

= vh

⎛

⎜
⎝X + ph max

{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
+ γ

⎛

⎝1 +
j−1∑

s=1

p[s]

⎞

⎠

b
⎞

⎟
⎠

+vk

⎛

⎝
X + ph max

{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}

+pk max
{
αa

∑ j−1
s=1 ws ln p[s]+w j ln ph + β, δ

}
+ γ

(
1 +∑ j−1

s=1 p[s] + ph
)b

⎞

⎠ .
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For the sequence σ ′ = [σ1, Jk, Jh, σ2], we have
vkCk,[ j](σ ′) + vhCh,[ j+1](σ ′)

= vk

⎛

⎝X + pk max
{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
+ γ (1 +

j−1∑

s=1

p[s])b
⎞

⎠

+vh

⎛

⎝
X + pk max

{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}

+ph max
{
αa

∑ j−1
s=1 ws ln p[s]+w j ln pk + β, δ

}
+ γ

(
1 +∑ j−1

s=1 p[s] + pk
)b

⎞

⎠ .

The proof is similar to Theorem 4.1 and can be divided into the following two cases:

Case 1.When αa
∑ j−1

s=1 ws ln p[s]+w j ln pk + β ≥ δ, we have

TWCT (σ ) − TWCT (σ ′)

= (vh ph − vk pk)
(
αa

∑ j−1
s=1 ws ln p[s] + β

)
+ (vk ph − vh pk)

(
αa

∑ j−1
s=1 ws ln p[s] + β

)

+(vh − vk)γ

⎛

⎝1 +
j−1∑

s=1

p[s]

⎞

⎠

b

+ vkγ

⎛

⎝1 +
j−1∑

s=1

p[s] + ph

⎞

⎠

b

− vhγ

⎛

⎝1 +
j−1∑

s=1

p[s] + pk

⎞

⎠

b

+vk pk
(
αa

∑ j−1
s=1 ws ln p[s]+w j ln ph + β

)
− vh ph

(
αa

∑ j−1
s=1 ws ln p[s]+w j ln pk + β

)
.

Let λ1 = vh
vh+vk

, λ2 = vk
vh+vk

, x = w j ln ph , Y = a
∑ j−1

s=1 ws ln p[s] and ϕ = (1+∑ j−1
s=1 p[s]),

then according to Lemma 2, we have
⎛

⎜
⎜
⎜
⎝

(vh ph − vk pk)
(
αa

∑ j−1
s=1 ws ln p[s] + β

)
+ (vh − vk)

(
1 +∑ j−1

s=1 p[s]
)b

+vkγ
(
1 +∑ j−1

s=1 p[s] + ph
)b − vhγ

(
1 +∑ j−1

s=1 p[s] + pk
)b

+vk pk
(
αa

∑ j−1
s=1 ws ln p[s]+w j ln ph + β

)
− vh ph

(
αa

∑ j−1
s=1 ws ln p[s]+w j ln pk + β

)

⎞

⎟
⎟
⎟
⎠

(vh + vk)Y

= vk

⎛

⎜
⎝X + pk max

{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
+ γ

⎛

⎝1 +
j−1∑

s=1

p[s]

⎞

⎠

b
⎞

⎟
⎠

+vh

⎛

⎝
X + pk max

{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}

+ph max
{
αa

∑ j−1
s=1 ws ln p[s]+w j ln pk + β, δ

}
+ γ

(
1 +∑ j−1

s=1 p[s] + pk
)b

⎞

⎠

≤ 0.

According to the WSPT rule (i.e., ph/vh ≤ pk/vk), we have

(vk ph − vh pk) ·
(
αa

∑ j−1
s=1 ws ln p[s] + β

)
≤ 0,

that is, vhCh,[ j](σ ) + vkCk,[ j+1](σ ) ≤ vkCk,[ j](σ ′) + vhCh,[ j+1](σ ′).
Case 2. When αa

∑ j−1
s=1 ws ln p[s]+w j ln pk + β < δ, similarly, let T = ∑ j−1

s=1 ws ln p[s], we
have

TWCT (σ ) − TWCT (σ ′)
= (vh ph − vk pk)max{αaT + β, δ} + (vk ph − vh pk)max{αaT + β, δ}

123
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+(vh − vk)γ ϕb + (vh − vk)γ ϕb

+vkγ

⎛

⎝1 +
j−1∑

s=1

p[s] + ph

⎞

⎠

b

− vhγ

⎛

⎝1 +
j−1∑

s=1

p[s] + pk

⎞

⎠

b

+vk pk max{αaT+x + β, δ} − vh phδ − vhγ

(

ϕ + λ
(
ex
) 1

w j

)b

.

According to the above formula, we have
⎛

⎝
(vh ph − vk pk)max{αaT + β, δ} + vk pk max{αaT+x + β, δ}
−vh phδ − vhγ

(

ϕ + λ (ex )
1

w j

)b

⎞

⎠

(vh + vk)ph

= λ1(1 − δ) − λ1
(
ex
) 1

w j γ

(

ϕ + λ
(
ex
) 1

w j

)b

.

Similarly, by taking the derivative of this formula with respect to λ, it can be obtained that
this formula is a decreasing function with respect to λ ≥ 1, and

λ1(1 − δ) − λ1
(
ex
) 1

w j γ

(

ϕ + λ
(
ex
) 1

w j

)b

≤ 0

can be easily obtained. According to the WSPT rule, if ph/vh ≤ pk/vk , we have
(vk ph − vh pk)max{αaT +β, δ} ≤ 0, that is, vhCh,[ j](σ )+ vkCk,[ j+1](σ ) ≤ vkCk,[ j](σ ′)+
vhCh,[ j+1](σ ′).

In summary, the theorem holds. ��

5 General case of TWCT

For the general case, the complexity of the 1|GQpsddt , pi,[ j] = pi max{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
|TWCT problem is still open. We will propose the following

heuristic, Tabu search and branch-and-bound algorithms to solve this problem.

5.1 Heuristic algorithm

According to Theorem 4.3 and Nawaz et al. (1983), the following heuristic algorithm can be
proposed.
Algorithm 1 (H-A)
Part 1.

Step 1. Sequence the jobs by the SPT rule.
Step 2. Sequence the jobs in non-increasing order of vh .
Step 3. Sequence the jobs by the WSPT rule.
Step 4. Choose the better solution from Steps 1–3.

Part 2.

Step 1. Let σ0 be the sequence obtained in Part 1.
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Step 2. Set t = 2, select the first two jobs in σ0, and select the partial sequence with the
best objective function value among the two possible sequences.
Step 3. Iterate t in sequence, that is, t = t + 1, select the t th job, insert it in all possi-
ble t positions, and select a sequence from t sequences to minimize TWCT . Next, by
exchanging the jobs at positions j and i , where 1 ≤ j < t , j < i ≤ t . A better partial
sequence is selected from t(t − 1)/2 sequences to minimize the value of TWCT .
Step 4. If t = n, stop the algorithm; otherwise, go back to Step 3.

Since the time of Part 1 is O(n) and the time of Part 2 is O(n2) (see Nawaz et al. (1983)),
then the time of Algorithm 1 is O(n2).

5.2 Tabu search algorithm

Problem 1|GQpsddt , pi,[ j] = pi max
{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
|TWCT can also be solved

by tabu search algorithm. Let the initial sequence can be sorted by the order of increasing
ph/vh , and let themaximum number of iterations be 100n. The steps of tabu search algorithm
are as follows:
Algorithm 2 (T-S)

Step 1. Let the tabu list empty and the iteration number be 0.
Step 2. The initial sequence can be obtained according to the WSPT rule, and calculate
the value of TWCT , and let the current sequence is the optimal sequence σ ∗.
Step 3. Search the relevant neighborhood of the current sequence, and determine whether
there is a sequence σ with the smallest objective function in the relevant neighborhood,
and the sequence is not in the tabu list.
Step 4. If TWCT (σ ) < TWCT (σ ∗), then set σ ∗ = σ , and update the tabu list and the
number of iteration.
Step 5. If there is no sequence in the associated neighborhood, but it is not in the tabu list,
or the given maximum number of iteration is reached, then the final sequence is output.
Otherwise, update the tabu list and turn Step 3.

5.3 Branch-and-bound algorithm

Let σ = [σv, σu] be a job sequence, where σv is the scheduled part, and σu is the unscheduled
part. Suppose that there are l jobs in σv , then the completion time for the (l + 1)th job in the
unscheduled part is:

C[l+1] = C[l] + p[l+1] max
{
αa

∑l
s=1 ws ln p[s] + β, δ

}
+ γ

(

1 +
l∑

s=1

p[s]

)b

,

and for the (l + 2)th job, the completion time is:

C[l+2] = C[l] + p[l+1] max
{
αa

∑l
s=1 ws ln p[s] + β, δ

}

+p[l+2] max
{
αa

∑l
s=1 ws ln p[s]+wl+1 ln p[l+1] + β, δ

}
+ γ

(

1 +
l∑

s=1

p[s] + p[l+1]

)b

.

By analogy, the formula for the completion time of the nth job can be obtained as follows:

C[n] = C[l] + p[l+1] max
{
αa

∑l
s=1 ws ln p[s] + β, δ

}
+ · · ·
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+p[n] max
{
αa

∑l
s=1 ws ln p[s]+∑n−1

s=l+1 ws ln p[s] + β, δ
}

+ γ

(

1 +
l∑

s=1

p[s] +
n−1∑

s=l+1

p[s]

)b

,

then the objective function can be expanded as follows:

TWCT =
l∑

i=1

viCi +
n∑

i=l+1

v[i]C[i] =
l∑

i=1

viCi

+
n∑

i=l+1

⎡

⎣
(v[i] + · · · + v[n])p[i] max

{
αa

∑l
s=1 ws ln p[s]+∑i−1

s=l+1 ws ln p[s] + β, δ
}

+v[i]γ
(
1 +∑l

s=1 p[s] +∑i−1
s=l+1 p[s]

)b

⎤

⎦ ,

(8)

where
∑l

i=1 viCi is known, and the second item is the function value of unsorted part. Let
vmin = min{v j | j ∈ σu}, from Theorems 1 and 2, a lower bound of formula (8) can be
obtained by:

LB1 =
l∑

i=1

viCi

+
n∑

i=l+1

⎛

⎝
(n − i + 1)vmin p(i) max

{
αa

∑l
s=1 ws ln ps+∑i−1

s=l+1 ws ln p(s) + β, δ
}

+vminγ
(
1 +∑l

s=1 ps +∑i−1
s=l+1 p(s)

)b

⎞

⎠ ,

(9)

where p(l+1) ≤ p(l+2) ≤, . . . ,≤ p(n).
Let pmin = min{p j | j ∈ σu}, then the second lower bound can be obtained as follows:

LB2 =
l∑

i=1

viCi

+
n∑

i=l+1

⎛

⎝
(v(i) + · · · + v(n))pmin max

{
αa

∑l
s=1 ws ln ps+∑i−1

s=l+1 ws ln pmin + β, δ
}

+v(i)γ
(
1 +∑l

s=1 ps + (i − l − 1)pmin

)b

⎞

⎠ ,

(10)

where v(l+1) ≥ v(l+2) ≥ · · · ≥ v(n).
When p<l+1> ≤ p<l+2> ≤ · · · ≤ p<n> and v(l+1) ≥ v(l+2) ≥ · · · ≥ v(n), (p<s> and

v(s) do not necessarily correspond to the same job), from Theorem 3, the following lower
bound can be obtained:

LB3 =
l∑

i=1

viCi

+
n∑

i=l+1

⎛

⎝
(v(i) + · · · + v(n))p<i> max

{
αa

∑l
s=1 ws ln ps+∑i−1

s=l+1 ws ln p<s> + β, δ
}

+(v(i) + · · · + v(n))γ
(
1 +∑l

s=1 ps +∑i−1
s=l+1 p<s>

)b

⎞

⎠ .

(11)

Now, in order to get a tighter lower bound, the maximum value of (9), (10) and (11) can
be taken as the lower bound, namely:

LB = max{LB1, LB2, LB3}. (12)
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The following branch-and-bound algorithm is proposed to specifically solve the problem

1|GQpsddt , pi,[ j] = pi max
{
αa

∑ j−1
s=1 ws ln p[s] + β, δ

}
|TWCT .

Algorithm 3 (B-B)

Step 1. The optimal sequence obtained according to the above Algorithm 1 is taken as
the initial sequence, and the objective function value is taken as the upper bound.
Step 2. Calculate the lower bound of each node according to (12). If the lower bound of
the unfinished part is greater than or equal to the objective function value of the initial
solution, the node and all nodes after the node are deleted. Calculate the objective function
value of the completed sequence. If it is less than the initial solution, the sequence replaces
the initial sequence, otherwise the sequence is deleted.
Step 3. Traverse all nodes.

5.4 An example for B-B algorithm

Now consider an example with n = 5, the processing time vector and weight vector are given
as follows: (p1, p2, p3, p4, p5) = (12, 4, 7, 11, 6), (v1, v2, v3, v4, v5) = (4, 2, 5, 3, 6), and
(w1, w2, w3, w4, w5) = (1, 1, 1, 1, 1). And α = β = 0.5, γ = δ = 0.5 and a = 0.8, and
b = 1. The example is first solved according to Algorithm 1 (H-A), in order to obtain the
initial sequence required by the B-B Algorithm.

Part 1.

Step 1. The sequence σ1 = [J2, J5, J3, J4, J1] is obtained according to SPT rule, and
the objective function value is TWCT = 462.0505.
Step 2. According to the descending order of vh , the sequence σ2 = [J5, J3, J1, J4, J2]
is obtained. And the corresponding value of objective function is TWCT = 442.7471.
Step 3. The sequence σ3 = [J5, J3, J2, J1, J4] is obtained according to ph/vh increasing
order, and the objective function value is TWCT = 418.0759.
Step 4. By comparison, the sequence corresponding to the value of theminimumobjective
function is σ3 = [J5, J3, J2, J1, J4], that is, σ0 = [J5, J3, J2, J1, J4].
Part 2.

Step 1. Let σ0 = [J5, J3, J2, J1, J4] be the initial sequence.
Step 2. Set t = 2, the two possible sequences are [J5, J3, J2, J1, J4] and [J3, J5, J2,
J1, J4], and the corresponding objective function values are TWCT = 418.0759 and
TWCT = 436.3744, respectively. Then the better partial sequence is [J5, J3, J2, J1, J4].
Step 3. Set t = 3, and the three possible sequences are [J2, J5, J3, J1, J4], [J5, J2, J3,
J1, J4], and [J5, J3, J2, J1, J4], separately. And the corresponding objective function
values are TWCT = 435.7654, TWCT = 422.8465 and TWCT = 418.0759, respec-
tively. Then the better one is [J5, J3, J2, J1, J4].
Now, swap the jobs at positions 1 and 2, 1 and 3; and 2 and 3 to obtained the sequences

[J3, J5, J2, J1, J4], [J2, J3, J5, J1, J4] and [J5, J2, J3, J1, J4], and the corresponding objec-
tive function values are TWCT = 436.3744, TWCT = 452.1878 and TWCT = 422.8465.
After comparison, the better sequence is [J5, J3, J2, J1, J4].

Step 4. Carry out the above step for the remaining jobs, and the optimal sequence can be
obtained as: [J5, J3, J2, J1, J4], and the objective function value is TWCT = 418.0759.

Then the objective function value TWCT = 418.0759 corresponding to the sequence is
used as the upper bound of the following Algorithm 3 (B-B). For the given parameters of
the problem, according to Algorithm 3 (B-B), the following search tree can be obtained,
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Fig. 1 Search tree of the Algorithm 3 (B-B) for the example (× denotes pruning)

which is defined as Fig. 1. The numbers in Fig. 1 represent the values of lower bound, and J0
is defined as the level 0.

As level 1, i.e., j = 1, for the job J1, the lower bounds LB1, LB2 and LB3 can be obtained
as follows according to formulas (9), (10) and (11), respectively:

LB1 =
1∑

i=1

viCi +
5∑

i=2

⎛

⎝
(5 − i + 1)vmin p(i) max

{
αa

∑1
s=1 ln ps+∑i−1

s=2 ln p[s] + β, δ
}

+vminγ
(
1 +∑1

s=1 ps +∑i−1
s=2 p(s)

)b

⎞

⎠

= 12.5 × 4 + 21.6487 × 2 + 27.9133 × 2 + 35.4025 × 2 + 45.4094 × 2 = 310.7478.

LB2 =
1∑

i=1

viCi +
5∑

i=2

⎛

⎝
(v(i) + · · · + v(5))pmin max

{
αa

∑1
s=1 ln ps+∑i−1

s=2 ln pmin + β, δ
}

+v(i)γ
(
1 +∑1

s=1 ps + (i − 1 − 1)pmin

)b

⎞

⎠

= 12.5 × 4 + 21.6487 × 6 + 26.4918 × 5 + 31.1106 × 3 + 35.5647 × 2 = 476.8124.

LB3 =
1∑

i=1

viCi +
5∑

i=2

⎛

⎝
(v(i) + · · · + v(5))p<i> max

{
αa

∑1
s=1 ws ln ps+∑i−1

s=2 ws ln p<s> + β, δ
}

+(v(i) + · · · + v(5))γ
(
1 +∑1

s=1 ps +∑i−1
s=2 p<s>

)b

⎞

⎠

= 12.5 × 4 + 21.6487 × 6 + 27.9133 × 5 + 35.4025 × 3 + 45.4094 × 2 = 516.4850.
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Then the lower bound LB = 516.4850 can be obtained according to LB =
max{LB1, LB2, LB3}. And the calculation process of other nodes is similar to the calcu-
lation process of this node. Then from the Fig. 1, the optimal sequence is [J5, J3, J2, J1, J4],
and the optimal value of the objective function is TWCT = 418.0759.

5.5 Data simulation

The H-A algorithm (i.e. Algorithm 1), T-S algorithm (i.e. Algorithm 2), and B-B algorithm
(i.e. Algorithm 3) were programmed in CLion 2020.x64 and carried out on a CPU Intel(R)
Core(TM) i5-10500 3.10GHz, 8GB RAM with Windows 10 operating system. The number
of jobs n = 15, 16, 17, 18, 19, 20 were tested. The parameters setting can be obtained as
follows: ws = 1(s = 1, . . . , n), α = β = 0.5, γ = δ = 0.5, a = 0.8 and b = 1, and
the range of processing time, delivery time and weight are p j ∈ [1, 100], q j ∈ [1, 100] and
v j ∈ [1, 100], separately.

For Algorithm B-B, set the maximum CPU time at 3600s for each instance of the number
of jobs. And the percentage relative error of the solution produced by H-A algorithm and
B-B algorithm is calculated as

TWCT (H-A) − TWCT (B-B)

TWCT (B-B)
× 100%,

and the percentage relative error of the solution produced by T-S algorithm andB-B algorithm
is

TWCT (T-S) − TWCT (B-B)

TWCT (B-B)
× 100%,

where TWCT (H-A), TWCT (B-B) and TWCT (T-S) are the value of objective function
TWCT generated by Algorithm 1, Algorithm 3 and Algorithm 2, separately. The exper-
imental results are shown in Table 1. It can be seen from table 1 that when n ≥ 20, the
average CPU time of B-B algorithm is 3600s, and the CPU time of T-S algorithm is greater
than that of H-A algorithm. From Table 1, it can be seen that H-A algorithm is better, and
the maximum error is less than 0.9%.

6 Conclusion

In this paper, single machine scheduling problems with delivery times and the truncated log-
arithm processing time have been studied. The problems include makespan, total completion
time, and total weighted completion time, and the results showed that the problems of min-
imizing the makespan and the total completion time can be solved in polynomial time. In
addition, the general problem of minimizing the total weighted completion time is analyzed
in details, and the heuristic algorithm (i.e., Algorithm 1), tabu search algorithm (i.e., Algo-
rithm 2) and branch-and-bound algorithm (i.e., Algorithm 3) were proposed. Computational
study demonstrated that H-A algorithm is more effective than T-S algorithm. Future research
can consider (1) scheduling with group technology (Liu and Wang 2023); (2) job-rejection
scheduling with setup times (Mor and Shapira 2020; Liu et al. 2024); (3) scheduling with
deterioration effects (Sun et al. 2011; Wang et al. 2011; Sun et al. 2023; Lv and Wang 2024;
Lv et al. 2024;Wang et al. 2024c; Zhang et al. 2024); (4) scheduling with position-dependent
weights (Wang et al. 2024a); flow shop or parallel machines scheduling (Wang et al. 2011;
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Wang and Wang 2012; Wang et al. 2019; Sun et al. 2021; Kovalev et al. 2023; Wang et al.
2024b) with GQpsddt .
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