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Abstract
In this paper, we introduce some set-theoretic operations and laws of the IV-CFSSs, such as
interval-valued complex fuzzy soft complement, union, intersection, t-norm, s-norm, simple
product, Cartesian product, probabilistic sum, simple difference, and the convex linear sum
of min and max operators. We define the distance measure of two IV-CFSSs. This distance
measure is then used to define the δ-equality of IV-CFSSs. We establish some particular
examples and basic results of these operations and laws. Moreover, we use IV-CFSSs in
decision-making problems. We develop a new decision-making method using the interval-
valued complex fuzzy distance measures under the environments of IV-CFSSs. We discuss
the real-life case based on the proposed decision-makingmethod. A real-life example demon-
strates that the decision-making method developed in the paper can be utilized to deal with
problems of uncertainty. Further, the comparative study of IV-CFSSs with complex fuzzy
soft sets, interval-valued fuzzy soft sets, and fuzzy soft sets is established.
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1 Introduction

Many theories are proposed to cope with uncertainty and imprecision that manage in almost
all the real-life problems, such as the theory of fuzzy sets (FSs) (Zadeh 1965), theory of
rough sets (Pawlak 1982), theory of intuitionistic fuzzy sets (IFSs) (Atanassov 2016), theory
of Pythagorean fuzzy sets (Peng andYang 2015), theory of complex fuzzy sets (CFSs) (Ramot
et al. 2002), theory of picture fuzzy sets (Hussain et al. 2022), theory of soft sets (Molodtsov
1999), theory of fuzzy soft sets (FSSs) (Maji 2001), and theory of complex fuzzy soft sets
(SSs) (Thirunavukarasu et al. 2017). All these models have their own limitations, advantages,
and characteristics. These models are used in many situations of uncertainties, such as engi-
neering, computer science, decision-making problems, networking, pattern recognition, and
many other fields of science.

FSs, IFSs, and PFSs, these three types of sets all other a more flexible and nuanced
representation of uncertainty and imprecision than classical set theory and have been applied
in D–M, Pa–Re, and image processing. However, these three models cannot handle two-
dimensional problems. To discuss two-dimensional phenomena, Ramot et al. (2002) gave the
idea of complex fuzzy sets (CFSs). A CFS is the generalization of an FS whose membership
function is a complex-valued function, that is, its range is the unit disk in a complex plane. The
complex-valued function describes the degree of membership of a member in the CFS using
both magnitude and phase information. CFSs have found applications in various fields such
as image processing, Pa–Re, control systems, and D–M. They provide a powerful tool for
modeling and analyzing complex systems with uncertainty and imprecision. Liu et al. (2020)
discussed aD–Mmethodbasedon complex fuzzyDi-Meand complex fuzzy entropymeasure.
Hu et al. (2018) introduced some Di-Mes in the environment of CFSs. They discussed their
applications to continuity problems. Zhang et al. (2009) developed a new complex fuzzy
Di-Me based on the maximum operator. They proposed an algorithm for signal processing in
the environment of complex fuzzy Di-Mes. Zeeshan and Khan (2022) defined new Di-Mes
in the environment of CFSs. They constructed an algorithm for the high resemblance of a
signal based on complex fuzzy Di-Mes. A new algorithm for signal processing method in
the environment of CFSs was proposed by Ma et al. (2019). A new self-learning complex
neuro-fuzzy system based on CFSs was developed by Li et al. (2012). They utilized them in
the adaptive image noise canceling process.

Bipolar fuzzy sets (BFSs) are introduced by Zhang (1994). BFS is the generalization
of FSs and IFSs. Bipolar fuzzy sets find applications in various fields, including decision-
making, control systems, and artificial intelligence, where uncertainty and imprecision need
to be considered in a more nuanced manner than traditional fuzzy sets allow (Akram et al.
2018; Sarwar and Akram 2017; Patrascu 2015; Zararsız and Riaz 2022; Sakr et al. 2023).
Alkouri et al. (2020) gave the idea of bipolar complex fuzzy sets (BCFSs). They discussed
their applications in multiple attributes decision-making (MADM) problems. BCFSSs have
many applications in various field of science (Gwak et al. 2023; Qiyas et al. 2024; Akram
et al. 2023).
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Maji (2001) developed the notion of the FSSs by associating the ideas of SSs and FSs.
FSS is the generalization of FSs. The FSSs have considerable application potential in engi-
neering, decision-making problems, computer science, and optimization (Atef et al. 2021;
Petchimuthu et al. 2020; Beg et al. 2018). Močkoř and Hurtík (2021) introduced fuzzy soft
relations and fuzzy soft approximations. They discussed an image processing application
based on fuzzy soft relations and fuzzy soft approximations. Močkoř (2020) proposed the
powerset theory of FSSs. Bhardwaj and Sharma (2021) developed a decision-makingmethod
under the environments of FSSs. Memis et al. utilized Euclidean pseudo-similarity to pro-
pose a new classification algorithm, i.e., fuzzy parameterized fuzzy soft Euclidean classifier
(Memiş et al. 2021a). A new fuzzy soft expert system to predict lung cancer disease was pro-
posed by Khalil et al. (2020). Begam et al. (2020) introduced similarity measures between
lattice ordered multi-fuzzy soft sets. They discussed the applications of similarity measures
of lattice ordered multi-fuzzy soft sets in decision-making problems.

Yang et al. (2009) introduced the concept of interval-valued soft set (IV-FSS) by com-
bining the interval-valued fuzzy set and soft set models. The IV-FSS is more reasonable to
give interval-valued data to describe membership degree. The IV-FSSs have desirable appli-
cations in engineering, decision-making problems, computer science, and optimization. Ma
et al. (2021) proposed a decision-making method under the environments of IV-FSSs. A
novel interval-valued fuzzy soft decision-making method based on Combined Compromise
Solution (CoCoSo) and Criteria Importance Through Inter-criteria Correlation (CRITIC) for
intelligent healthcare management evaluation was developed by Peng et al. (2021). Mohanty
and Tripathy (2021) proposed an algorithm that is used to recommend the best variety of
turmeric under the environments of IV-FSSs. Qin et al. (2021) discussed a new decision-
making method based on an interval-valued fuzzy soft set by means of the contrast table.

Maji (2009) gave the concept of intuitionistic fuzzy soft set (IFSS) by combining the
intuitionistic fuzzy set and soft set models. The IFSS is a powerful tool that is extremely
useful in multicriteria decision-making (MCDM) problems. Hayat et al. (2021) proposed
new aggregation operators on generalized intuitionistic fuzzy soft sets. They developed a
decision-making method based on the generalized intuitionistic fuzzy soft aggregation oper-
ators. A TOPSIS method based on the correlation coefficient of interval-valued intuitionistic
fuzzy soft sets (IV-IFSSs) was proposed by Zulqarnain et al. (2021). They defined interval-
valued IFS weighted average and interval-valued IFS weighted geometric operators and
proposed decision-making techniques based on the defined operators. The complex intu-
itionistic fuzzy soft prioritized weighted averaging operator, the complex intuitionistic fuzzy
soft prioritized ordered weighted averaging operator, the complex intuitionistic fuzzy soft
prioritized weighted geometric operator, and complex intuitionistic fuzzy soft prioritized
ordered weighted geometric operator were developed by Ali et al. (2021). They discussed a
decision-making method on the developed operators. Memiş et al. (2021b) defined a classi-
fication method based on Hamming pseudo-similarity of intuitionistic fuzzy parameterized
intuitionistic fuzzy soft matrices. Ghosh et al. (2021) proposed a new hybrid soft computing
entrenched segmentation method for the detection of breast cancer in early stages. Singh
discussed the non-linear programming (NLP) methods under the environment of an IV-IFSS
for solving multiattribute decision-making (MADM) problems (Singh 2021). To improve the
visual quality and highlight the local details in enhanced images, Ghosh and Ghosh discussed
a colonogram enhancement approach utilizing IFSSs (Ghosh and Ghosh 2021). Ali intro-
duced complex intuitionistic fuzzy power interaction aggregation operators and discussed
their applications (Ali 2022).

FSSs, IV-FSSs, IFSSs, and IV-IFSSs cannot handle imprecise, inconsistent, and incom-
plete information of two-dimensional phenomena. These models are applicable to different
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areas of science, but there is one major deficiency in these models, that is, a lack of capa-
bility to model periodic nature. To overcome this difficulty, Thirunavukarasu et al. (2017)
introduced the concept of a complex fuzzy soft set (CFSS). They discussed an application
in decision-making under the complex fuzzy soft information. Zeeshan et al. (2022) defined
new distance measure based on CFSSs and applied them in signal processing. Mahmood
et al. (2021) explored the concept of complex fuzzy N-soft sets. They developed a decision-
making method under the environments of complex fuzzy N-soft sets. Akram et al. (2021a)
discussed an application of Complex Spherical Fuzzy N-Soft Sets for solving a multiattribute
group decision-making (MAGDM) problem, namely, the selection of a firm for participation
in a Saudi oil refinery project in Pakistan. Ahsan et al. (2021) proposed a new mathematical
model for the treatment of HIV using complex fuzzy hypersoft mapping. A multiattribute
group decision-making method under complex spherical fuzzy N-soft sets was proposed by
Akram et al. (2021b).

Selvachandran and Salleh gave the notion of IV-CFSSs by combining complex fuzzy
sets with type-2 fuzzy sets and soft sets (Selvachandran and Salleh 2017). They discussed
the application of the proposed model in economic problems. A generalized interval-valued
complex fuzzy soft set model was proposed by Selvachandran and Salleh (2017). They dis-
cussed an application of the proposed model in multiattribute decision-making problems.
Rahman et al. (2021) presented the novel concept of a complex interval-valued fuzzy hyper-
soft set. The interval-valued complex fuzzy soft weighted arithmetic averaging operator and
the interval-valued complex fuzzy soft weighted geometric averaging operator was defined
by Fan et al. (2019). They developed a decision-making method based on the proposed oper-
ators. Greenfield et al. (2016) gave the notions of interval-valued complex fuzzy logic. Dai
et al. (2019) introduced distance measures between the interval-valued complex fuzzy sets.
They discussed their applications in decision-making problems.

1.1 Background andmotivation

IV-CFSSs are an extension of classical fuzzy soft sets that incorporate the concept of intervals
and complex numbers. Here are some motivations for considering IV-CFSSs and interval-
valued complex fuzzy soft distance measure in decision-making problems:
(1) In many real-world situations, information is uncertain or vague. IV-CFSS provide a

framework to represent uncertainty using interval-valued fuzzy sets, allowing for a more
flexible representation of imprecision in the data.

(2) Interval-valued fuzzy sets are a generalization of classical fuzzy sets that allow for a
range of possible membership values rather than a single point value. IV-CFSS extend
this idea to complex fuzzy sets, enabling a more versatile representation of uncertainty
in both the real and imaginary components.

(3) Fuzzy soft sets, including their interval-valued complex counterparts, find applications
in decision-making processes. The flexibility of representation allows decision-makers
to consider various sources of uncertainty and vagueness when making decisions.

(4) Soft sets are well suited for modeling situations where information is incomplete or
partial. IVCFSS enhance this modeling capability by introducing intervals and complex
numbers, providing a richer representation of the uncertainty associatedwith the elements
in the set.

(5) The mathematical formalism of IV-CFSS provides a systematic way to handle uncer-
tainty through the use of intervals and complex numbers. This allows researchers and
practitioners to develop algorithms and methodologies for analysis, manipulation, and
decision-making based on this formalism.
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1.2 Contribution of interval-valued complex fuzzy soft sets in decision-making
problems

The application of IV-CFSS in decision-making problems offers several contributions,mainly
due to their ability to handle complex and uncertain information. Here are some key contri-
butions of IVCFSS in decision-making problems:

(1) IVCFSS provide a flexible and comprehensive representation of uncertainty. By incor-
porating intervals and complex numbers, these sets can express not only imprecision but
also capture the relationships between real and imaginary components of uncertain infor-
mation. This representation is valuable in decision-making scenarios where uncertainty
is inherent.

(2) IVCFSS allow the integration of both quantitative and qualitative information through the
use of complex numbers. Decision-making often involves multiple criteria or attributes,
and IV-CFSS enable the representation of these multidimensional aspects in a unified
framework. This is particularly beneficial in cases where decisions are based on a com-
bination of numerical and non-numerical factors.

(3) Real-world decision-making problems are often characterized by complex relationships
and uncertainty. IV-CFSS provide a more accurate modeling approach by considering
the interplay of interval-valued and complex fuzzy information, offering a richer repre-
sentation of the underlying complexities in the decision environment.

(4) Decision-making problems may involve inconsistent or ambiguous information. IV-
CFSS can accommodate such inconsistencies and ambiguities, allowing decision-makers
to explicitly model and manage situations where the available information may be con-
flicting or unclear.

1.3 Significance of interval-valued complex fuzzy soft sets

IV-CFSSs hold significance in various fields and applications due to their ability to effectively
model and handle complex, uncertain, and imprecise information. Here are some key aspects
of the significance of IV-CFSSs:

(1) IVCFSS provide a powerful framework for modeling uncertainty and imprecision in
information. The combination of intervals and complex numbers allows for a more
nuanced representation of uncertain data, addressing real-world scenarios where pre-
cise information may be unavailable or difficult to obtain.

(2) IVCFSScontribute to decision-making processes by providing a soft computing approach
that accommodates the uncertainty inherent in decision environments. The soft set frame-
work allows decision-makers tomodel their subjective judgments, and the interval-valued
complex nature enhances the realism of decision models.

(3) IVCFSS seamlessly integrate with interval-valued fuzzy sets, offering a unified approach
to handling uncertainty in decision-making problems. This integration is valuable in
applications where both interval-valued and complex fuzzy information need to be con-
sidered simultaneously.

(4) Decision problems frequently require the consideration of multiple criteria or attributes.
IVCFSS enable the construction of multidimensional decision models, where both real
and imaginary components can be used to represent diverse aspects of the decision-
making criteria. This is especially useful in complex decision environments.

(5) IVCFSS distance measures and similarity measures enable a quantitative assessment of
the relationships between decision alternatives. This allows decision-makers to compare
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and evaluate alternatives based on amore comprehensive understanding of the similarities
and differences within the decision space.

In this paper, we introduce some set-theoretic operations and laws of the IV-CFSSs, such as
interval-valued complex fuzzy soft complement, union, intersection, t-norm, s-norm, simple
product, Cartesian product, probabilistic sum, simple difference, and the convex linear sum
of min and max operators. We propose the distance measure of two IV-CFSSs. This distance
measure is then used to define the δ-equality of IV-CFSSs. We establish some particular
examples and basic results of these operations and laws. Moreover, we develop a decision-
making method utilizing the interval-valued complex fuzzy distance measures under the
environments of IV-CFSSs. We discuss the real-life case and comparison analysis based on
the proposed decision-making method.

2 Preliminaries

In this section, we will recall some basic notions of fuzzy sets theory.

Definition 1 (Ramot et al. 2002) A CFS χ is characterized by a grade value �L(x) =
�L(x)eiwL(x) on a universe of discourse L. In a CFS L, the GV �L(x) of an element x ∈ L
is determined by a complex-valued function rather than a simple grade value. In the grade
value of CFS L, the term �L(x) is said to be an amplitude term and wL(x) is called a phase
term.

Note that both these functions are real-valued and �L(x) ∈ [0, 1].
Mathematically;
It can be written as

L = {(κ; �L(x)) : x ∈ χ},
= �L(x)eiwL(κ) : x ∈ χ.

Motivation
In many real-world scenarios, information is not only uncertain but also possesses a

complex nature, characterized by both magnitude and phase. Complex fuzzy sets provide a
mathematical framework to represent this complex information, allowing for a more accu-
rate modeling of the relationships between elements. Complex fuzzy sets are built on a
mathematically rigorous foundation. The use of complex numbers allows for precise and
systematic representation, making it suitable for applications where a high level of math-
ematical rigor is required. Complex fuzzy sets can model cognitive and linguistic aspects
of decision-making and reasoning. The qualitative and quantitative aspects of information
in complex fuzzy sets can represent human judgments and linguistic expressions in a more
nuanced manner. In summary, the motivation for complex fuzzy sets arises from the need to
represent complex, multidimensional, and uncertain information in a mathematically rigor-
ous manner. Their application spans various domains, ranging from engineering and physics
to decision-making and cognitive modeling, making them a valuable tool in addressing real-
world problems characterized by both complexity and uncertainty.

Definition 2 (Molodtsov 1999) Letχ be a universe of discourse, andF be a set of parameters.
Let P(χ) denotes the power set of χ . Let L ⊂ F . A pair (�,L) is called a soft set over χ ,
where � is a mapping given by � : L → P(χ).
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Definition 3 (Maji 2001) Let �(χ) denotes the set of all fuzzy sets of χ . A pair (�,L) is
called a fuzzy soft set over �(χ), where � is a mapping given by � : τ → P(�(χ)).

Definition 4 (Selvachandran and Salleh 2017) Let χ be a universe of discourse, and F be a
set of parameters. Let L ⊂ F and P(χ) represent the power set of χ. Then, a pair (�,L) is
called an interval-valued complex fuzzy soft set (IV-CFSS) over χ, where � is a mapping
defined by � : L → P(χ), and is specified by

L(x) =
{(

x,
(
Z

−
�α

(x), Z
+
�α

(x)
))

: x ∈ χ
}

=
{(

x,
(
[C−

�α
(x), C

+
�α

(x)].ei[�−
�α

(x),�+
�α

(x)])) : x ∈ χ
}

(1)

for all α ∈ L and i = √−1. Both the amplitude terms C
−
�α

(x) and C
+
�α

(x) and the phase

terms �−
�α

(x) and �+
�α

(x) are real-valued with C
−
�α

(x) < C
+
�α

(x) and the phase terms

�−
�α

(x) < �+
�α

(x), and C
−
�α

(x), C
+
�α

(x) ∈ [0, 1], C
−
�α

(x), C
+
�α

(x) ∈ [0, 2π].
Note that complex fuzzy soft set is a special case of IV-CFSS by takingC

−
�α

(x) = C
+
�α

(x)

and �−
�α

(x) = �+
�α

(x).

Definition 5 (Selvachandran and Salleh 2017) Let (�,L) and (�,ℵ) be two IV-CFSSs over
χ. Then,

(i) (�,L) is said to be a subset of (�,ℵ), denoted by (�,L) ⊂ (�,ℵ) if and only if
C

−
�α

(x) ≤ C
−
�α

(x) and C
+
�α

(x) ≤ C
+
�α

(x) for the amplitude terms, and �−
�α

(x) ≤ �−
�α

(x)

and �+
�α

(x) ≤ �+
�α

(x) for the phase terms for all x ∈ χ.

(i i) (�,L) is said to be a equal to (�,ℵ), denoted by (�,L) = (�,ℵ) if and only if
C

−
�α

(x) = C
−
�α

(x) and C
+
�α

(x) = C
+
�α

(x) for the amplitude terms, and �−
�α

(x) = �−
�α

(x)

and �+
�α

(x) = �+
�α

(x) for the phase terms for all x ∈ χ.

Definition 6 (Selvachandran and Salleh 2017) The complement of (�,L) denoted by (�,L)c

is defined as

(�,L)c =
{(

x,
(
[(C−

�α
(x))c, (C+

�α
(x))c].ei[(�−

�α
(x))c,(�+

�α
(x))c])) : x ∈ χ

}

=
{(

x,
(
[1 − C

+
�α

(x), 1 − C
−
�α

(x)].ei[2π−�+
�α

(x),2π−�−
�α

(x)])) : x ∈ χ
}

.

Definition 7 (Selvachandran and Salleh 2017) Let (�,L) and (�,ℵ) be two IV-CFSSs over
χ. Then, the union of (�,L) and (�,ℵ) is an IV-CFSSs (	,	), defined as (�,L)∪(�,ℵ) =
(	,	), where 	 = L ∪ ℵ, and

(	,	) =

⎧
⎪⎨
⎪⎩

(
x,

( [max(C−
�α

(x), C
−
�α

(x)),max(C+
�α

(x), C
+
�α

(x))].
ei[max(�−

�α
(x),�−

�α
(x)),max(�+

�α
(x),�+

�α
(x))]

))
: x ∈ χ

;	 ∈ L ∩ ℵ.

⎫
⎪⎬
⎪⎭

.

Definition 8 (Selvachandran and Salleh 2017) Let (�,L) and (�,ℵ) be two IV-CFSSs over
χ. Then, the intersection of (�,L) and (�,ℵ) is an IV-CFSSs (	,	), defined as (�,L) ∩
(�,ℵ) = (	,	), where 	 = L ∩ ℵ, and

(	,	) =

⎧⎪⎨
⎪⎩

(
x,

( [min(C−
�α

(x), C
−
�α

(x)),min(C+
�α

(x), C
+
�α

(x))].
ei[min(�−

�α
(x),�−

�α
(x)),min(�+

�α
(x),�+

�α
(x))]

))
: x ∈ χ

;	 ∈ L ∩ ℵ

⎫⎪⎬
⎪⎭

.
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3 Interval-valued complex fuzzy soft sets

In this section, we will introduce some new operations on IV-CFSSs.

Definition 9 1). A function � : (0, 1] × (0, 1] → [0, 1] is a quasi-triangular norm that
satisfies the following conditions:

i). �(1, 1) = 1;
i i). �(a, b) = �(b, a);
i i i). �(a, b) ≤ �(c, d); a ≤ c, b ≤ d.

iv). �(�(a, b), c) = �(a,�(b, c)).

2). A function � : [0, 1] × [0, 1] → [0, 1] is a triangular norm that satisfies the conditions
(i)–(iv) and the following condition:

v). �(0, 0) = 0.
We said � is an s-norm, if a triangular norm � satisfies
vi). �(a, 0) = a.

We said � is an t-norm, if a triangular norm � satisfies
vi i). �(a, 1) = a.

We said a binary function
÷� :

÷� : L∗(χ) × L∗(χ) → L∗(χ),

÷�((�,L), (�,ℵ)) → sup
x∈χ

[
�1(C

−
�α

(x), C
−
�α

(x)),�1(C
+
�α

(x), C
+
�α

(x))
]

e
i sup
x∈χ

[�2(�−
�α

(x),�−
�α

(x)),�2(�+
�α

(x),�+
�α

(x))],

where L(χ) is a collection of IV-CFSSs.

The operator
÷� is a triangular norm if�1 is a triangular norm and�2 is a quasi-triangular

norm.
÷� is an s-norm if �1 is an s-norm and

÷� is a t-norm if �1 is a t-norm.

Definition 10 Let (�,L) and (�,ℵ) be two IV-CFSSs over χ. Then, the IV-CFS product
of (�,L) and (�,ℵ) is an IV-CFSSs (	,	), denoted as (�,L) • (�,ℵ) = (	,	), and is
specified by a function

(	,	) =

⎧⎪⎨
⎪⎩

(
x,

( [C−
�α

(x) • C
−
�α

(x)), •C
+
�α

(x), C
+
�α

(x))].
ei[2π(

�−
�α

(x)

2π • �−
�α

(x)

2π ),2π(
�+

�α
(x)

2π • �+
�α

(x)

2π )]

))
: x ∈ χ

;	 ∈ L ∩ ℵ

⎫⎪⎬
⎪⎭

.

Example 1 Letχ = {x1, x2} be a universe of discourse andL = ℵ = {α1 = beauti f ul, α2 =
big} be sets of parameters, and

�(α1) =
{
(x1, [0.2, 0.6]ei[0.2π,1.4π ]), (x2, [0.4, 1]ei[0.6π,π ])

}
.

�(α2) =
{
(x1, [0.5, 0.9]ei[0.4π,1.2π ]), (x2, [0.1, 0.8]ei[π,1.4π ])

}
.

�(α1) =
{
(x1, [0.3, 0.5]ei[0.8π,1.8π ]), (x2, [0.7, 0.9]ei[0.4π,1.6π ])

}
.

�(α2) =
{
(x1, [0.1, 1]ei[0.6π,2π ]), (x2, [0.2, 0.7]ei[0.8π,2π ])

}
.
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Then, the IV-CFS product of (�,L) and (�,ℵ) is

	(α1) =
{
(x1, [0.06, 0.3]ei[0.08π,1.26π ]), (x2, [0.28, 0.9]ei[0.12π,0.8π ])

}
,

	(α2) =
{
(x1, [0.05, 0.9]ei[0.12π,1.2π ]), (x2, [0.02, 0.56]ei[0.4π,1.4π ])

}
.

Definition 11 Let (�n,Ln); n = 1, 2, . . . , N be N IV-CFSSs over χ. Then, the IV-CFS
Cartesian product of (�n,Ln), denoted (�1,L1) × (�2,L2) × · · · × (�n,Ln) = (�,L), and
is specified by a function

(�,L) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝x,

⎛
⎜⎜⎜⎝

[min(C−
�1α

(x), C
−
�2α

(x), . . . , C
−
�nα

(x)),
min(C+

�1α
(x), C

+
�2α

(x), . . . , C
+
�nα

(x))].

e

i[min(�−
�1α (x),�−

�2α (x),...,�−
�nα

(x)),

min(�+
�1α (x),�+

�2α (x),...,�+
�nα

(x))]

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

: x ∈ χ;L ∈ L1 ∩ L2 ∩ · · · ∩ Ln

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Example 2 Consider (�,L) and (�,ℵ) in Example 1. Then, the Cartesian product of (�,L)

and (�,ℵ) is

	(α1) =
{

((x1, x1), [0.2, 0.5]ei[0.2π,1.4π ]), ((x1, x2), [0.2, 0.6]ei[0.2π,1.4π ]),
((x2, x1), [0.3, 0.5]ei[0.6π,π ]), ((x2, x2), [0.4, 0.9]ei[0.4π,π ])

}
,

	(α2) =
{

((x1, x1), [0.1, 0.9]ei[0.4π,1.2π ]), ((x1, x2), [0.2, 0.7]ei[0.4π,1.2π ]),
((x2, x1), [0.1, 0.8]ei[0.6π,1.4π ]), ((x2, x2), [0.1, 0.7]ei[0.8π,1.4π ])

}
.

Definition 12 Let (�,L) and (�,ℵ) be two IV-CFSSs overχ.Then, the IV-CFS probabilistic
sum of (�,L) and (�,ℵ) is an IV-CFSSs (	,	), denoted as (�,L) � (�,ℵ) = (	,	),

and is specified by a function

(	,	) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝
x,

⎛
⎜⎜⎜⎜⎝

[C−
�α

(x) + C
−
�α

(x) − C
−
�α

(x) • C
−
�α

(x),
C

+
�α

(x) + C
+
�α

(x) − C
+
�α

(x) • C
+
�α

(x)].

e

i[2π(
�−

�α
(x)

2π + �−
�α

(x)

2π − �−
�α

(x)

2π • �−
�α

(x)

2π ),

2π(
�+

�α
(x)

2π + �+
�α

(x)

2π − �+
�α

(x)

2π • �+
�α

(x)

2π )]

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

: x ∈ χ

;	 ∈ L ∩ ℵ

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Example 3 Consider (�,L) and (�,ℵ) in Example 1. Then, the probabilistic sum of (�,L)

and (�,ℵ) is

	(α1) =
{
(x1, [0.44, 0.8]ei[0.92π,1.88π ]), (x2, [0.82, 1]ei[0.88π,1.8π ])

}
,

	(α2) =
{
(x1, [0.55, 0.1]ei[0.88π,1.28π ]), (x2, [0.28, 0.94]ei[1.4π,2π ])

}
.

Definition 13 Let (�,L) and (�,ℵ) be two IV-CFSSs over χ. Then, the IV-CFS simple
difference of (�,L) and (�,ℵ) is an IV-CFSSs (	,	), denoted as (�,L)�(�,ℵ) = (	,	),

and is specified by a function

(	,	) = (�,L) ∩ (�,ℵ)c

=

⎧⎪⎨
⎪⎩

(
x,

( [min(C−
�α

(x), 1 − C
+
�α

(x)),min(C+
�α

(x), 1 − C
−
�α

(x))].
ei[min(�−

�α
(x),2π−�+

�α
(x)),min(�+

�α
(x),2π−�−

�α
(x))]

))

: x ∈ χ;	 ∈ L ∩ ℵ

⎫⎪⎬
⎪⎭

.
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Example 4 Consider (�,L) and (�,ℵ) in Example 1. Then, the complement of (�,ℵ) is

(�(α1))
c =

{
(x1, [0.5, 0.7]ei[0.2π,1.2π ]), (x2, [0.1, 0.3]ei[0.4π,1.6π ])

}
.

(�(α2))
c =

{
(x1, [0, 0.9]ei[0.π,1.4π ]), (x2, [0.3, 0.8]ei[0.π,1.2π ])

}
.

The simple difference of (�,L) and (�,ℵ) is

	(α1) =
{
(x1, [0.2, 0.6]ei[0.2π,1.2π ]), (x2, [0.1, 0.3]ei[0.4π,π ])

}
,

	(α2) =
{
(x1, [0, 0.9]ei[0π,1.2π ]), (x2, [0.1, 0.8]ei[0.π,1.2π ])

}
.

Definition 14 Let (�,L) and (�,ℵ) be two IV-CFSSs over χ. Then, the IV-CFS convex
linear sum ofmin andmax of (�,L) and (�,ℵ) is an IV-CFSSs (	,	), denoted as (�,L)⊕λ

(�,ℵ) = (	,	), and is specified by a function

(	,	) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎝x,

⎛
⎜⎜⎝

[λmin(C−
�α

(x), C
−
�α

(x)) + (1 − λ)max(C−
�α

(x), C
−
�α

(x)),
λmin(C+

�α
(x), C

+
�α

(x)) + (1 − λ)max(C+
�α

(x), C
+
�α

(x))].

e

i[λmin(�−
�α

(x),�−
�α

(x))+(1−λ)max(�−
�α

(x),�−
�α

(x)),

λmin(�+
�α

(x),�+
�α

(x))+(1−λ)max(�+
�α

(x),�+
�α

(x))]

⎞
⎟⎟⎠

⎞
⎟⎟⎠ :

x ∈ χ; 	 ∈ L ∩ ℵ

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Definition 15 A distance measure of IV-CFSSs is a function� : ÷�(χ)× ÷�(χ) → [0, 1]with
the property: for any ξ1 = (�,L), ξ2 = (�,ℵ), ξ3 = (	,	) ∈ ÷�(χ) are three IV-CFSSs
over χ

i). �(ξ1, ξ2) ≥ 0,
i i). �(ξ1, ξ2) = 0 if and only if ξ1 = ξ2,

i i i). �(ξ1, ξ2) = �(ξ2, ξ1),

iv). �(ξ1, ξ3) ≤ �(ξ1, ξ2) + �(ξ2, ξ3).

In the following, the distance measure � is defined as follows:

�(ξ, η) = max

⎧⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫⎬
⎭ , (2)

where l denotes the length of the interval.

Example 5 Consider ξ = (�,L) and η = (�,ℵ) in Example 1. Then, the IV-CFS distance
measure is

�(ξ, η) = max

{
0.5,

1

2π
(0.8π)

}

= 0.5.

Definition 16 Let ξ = (�,L) and η = (�,ℵ) be two IV-CFSSs over χ. Then, the IV-CFSSs
ξ and η is said to be δ-equal if and only if

�(ξ, η) ≤ 1 − δ; 0 ≤ δ ≤ 1.
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4 Main results

Proposition 1 The IV-CFS union on
÷�(χ) is an s-norm.

Proof The conditions (i), (i i), (v), and (vi) can be easily verified from definition 6. Here,
we only prove the condition (i i i) and (iv).

i i i). Let (�,L), (�,ℵ), (	,	) be three IV-CFSSs over χ, and μ(�,L) = [C−
�α

(x),

C
+
�α

(x)].ei[�−
�α

(x),�+
�α

(x)]
, μ(�,ℵ) = [C−

�α
(x), C

+
�α

(x)].ei[�−
�α

(x),�+
�α

(x)]
, and μ(	,	) =

[C−
	α

(x), C
+
	α

(x)].ei[�−
	α

(x),�+
	α

(x)] their membership functions, respectively. We suppose

C
−
�α

(x) ≤ C
−
�α

(x), C
+
�α

(x) ≤ C
+
�α

(x), �−
�α

(x) ≤ �−
�α

(x), �+
�α

(x) ≤ �+
�α

(x), ∀x ∈ χ.

Then,

C
−
(�,L)∪(	,	)(x) = max(C−

�α
(x), C

−
	α

(x))

≤ max(C−
�α

(x), C
−
	α

(x))

= C
−
(�,ℵ)∪(	,	), ∀x ∈ χ.

C
+
(�,L)∪(	,	)(x) = max(C+

�α
(x), C

+
	α

(x))

≤ max(C+
�α

(x), C
+
	α

(x))

= C
+
(�,ℵ)∪(	,	), ∀x ∈ χ.

�−
(�,L)∪(	,	)(x) = max(�−

�α
(x),�−

	α
(x))

≤ max(�−
�α

(x),�−
	α

(x))

= �−
(�,ℵ)∪(	,	), ∀x ∈ χ.

�+
(�,L)∪(	,	)(x) = max(�+

�α
(x),�+

	α
(x))

≤ max(�+
�α

(x),�+
	α

(x))

= �+
(�,ℵ)∪(	,	), ∀x ∈ χ.

iv).

μ(�,L)∪((�,ℵ)∪(	,	))(x) =
[max(C−

�α
(x), C

−
((�,ℵ)∪(	,	)(x)),

max(C+
�α

(x), C
+
((�,ℵ)∪(	,	)(x))].

e

i[max(�−
�α

(x),�−
((�,ℵ)∪(	,	)

(x)),

max(�+
�α

(x),�+
((�,ℵ)∪(	,	)

(x))]

=
[
max(C−

�α
(x),max(C−

�α
(x), C

−
	α

(x))),
max(C+

�α
(x),max(C+

�α
(x), C

+
	α

(x)))

]

e

i[max(�−
�α

(x),max(�−
�α

(x),�−
	α

(x))),

max(�+
�α

(x),max(�+
�α

(x),�+
	α

(x)))]

=
[
max(max(C−

�α
(x), C

−
�α

(x)), C
−
	α

(x))),
max(max(C+

�α
(x), C

+
�α

(x)), C
+
	α

(x)))

]

e

i[max(max(�−
�α

(x),�−
�α

(x)),�−
	α

(x))),

max(max(�+
�α

(x),�+
�α

(x)),�+
	α

(x)))]

= μ((�,L)∪(�,ℵ))∪(	,	)(x). ��
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Proposition 2 The IV-CFS intersection on
÷�(χ) is a t-norm.

Proof The conditions (i), (i i), (v), and (vi) can be easily verified from definition 6. Here,
we only prove the condition (i i i) and (iv).

i i i). Let (�,L), (�,ℵ), (	,	) be three IV-CFSSs over χ, and μ(�,L) = [C−
�α

(x),

C
+
�α

(x)].ei[�−
�α

(x),�+
�α

(x)]
, μ(�,ℵ) = [C−

�α
(x), C

+
�α

(x)].ei[�−
�α

(x),�+
�α

(x)]
, and μ(	,	) =

[C−
	α

(x), C
+
	α

(x)].ei[�−
	α

(x),�+
	α

(x)] their membership functions, respectively. We suppose

C
−
�α

(x) ≤ C
−
�α

(x), C
+
�α

(x) ≤ C
+
�α

(x), �−
�α

(x) ≤ �−
�α

(x), �+
�α

(x) ≤ �+
�α

(x), ∀x ∈ χ.

Then

C
−
(�,L)∩(	,	)(x) = min(C−

�α
(x), C

−
	α

(x))

≤ min(C−
�α

(x), C
−
	α

(x))

= C
−
(�,ℵ)∩(	,	), ∀x ∈ χ.

C
+
(�,L)∩(	,	)(x) = min(C+

�α
(x), C

+
	α

(x))

≤ min(C+
�α

(x), C
+
	α

(x))

= C
+
(�,ℵ)∩(	,	), ∀x ∈ χ.

�−
(�,L)∩(	,	)(x) = min(�−

�α
(x),�−

	α
(x))

≤ min(�−
�α

(x),�−
	α

(x))

= �−
(�,ℵ)∩(	,	), ∀x ∈ χ.

�+
(�,L)∩(	,	)(x) = min(�+

�α
(x),�+

	α
(x))

≤ min(�+
�α

(x),�+
	α

(x))

= �+
(�,ℵ)∩(	,	), ∀x ∈ χ.

iv).

μ(�,L)∩((�,ℵ)∩(	,	))(x) =
[min(C−

�α
(x), C

−
((�,ℵ)∩(	,	)(x)),

min(C+
�α

(x), C
+
((�,ℵ)∩(	,	)(x))].

e

i[min(�−
�α

(x),�−
((�,ℵ)∩(	,	)

(x)),

min(�+
�α

(x),�+
((�,ℵ)∩(	,	)

(x))]

=
[
min(C−

�α
(x),min(C−

�α
(x), C

−
	α

(x))),
min(C+

�α
(x),min(C+

�α
(x), C

+
	α

(x)))

]

e

i[min(�−
�α

(x),min(�−
�α

(x),�−
	α

(x))),

min(�+
�α

(x),min(�+
�α

(x),�+
	α

(x)))]

=
[
min(min(C−

�α
(x), C

−
�α

(x)), C
−
	α

(x))),
min(min(C+

�α
(x), C

+
�α

(x)), C
+
	α

(x)))

]

e

i[min(min(�−
�α

(x),�−
�α

(x)),�−
	α

(x))),

min(min(�+
�α

(x),�+
�α

(x)),�+
	α

(x)))]

= μ((�,L)∩(�,ℵ))∩(	,	)(x).

��
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Proposition 3 The IV-CFS product on
÷�(χ) is a t-norm.

Proof The conditions (i), (i i), (v), and (vi) can be easily verified from definition 6. Here,
we only prove the condition (i i i) and (iv).

i i i). Let (�,L), (�,ℵ), (	,	) be three IV-CFSSs over χ, and μ(�,L) = [C−
�α

(x),

C
+
�α

(x)].ei[�−
�α

(x),�+
�α

(x)]
, μ(�,ℵ) = [C−

�α
(x), C

+
�α

(x)].ei[�−
�α

(x),�+
�α

(x)]
, and μ(	,	) =

[C−
	α

(x), C
+
	α

(x)].ei[�−
	α

(x),�+
	α

(x)] their membership functions, respectively. We suppose

C
−
�α

(x) ≤ C
−
�α

(x), C
+
�α

(x) ≤ C
+
�α

(x), �−
�α

(x) ≤ �−
�α

(x), �+
�α

(x) ≤ �+
�α

(x), ∀x ∈ χ.

Then

C
−
(�,L)•(	,	)(x) = C

−
�α

(x) • C
−
	α

(x)

≤ C
−
�α

(x) • C
−
	α

(x)

= C
−
(�,ℵ)•(	,	), ∀x ∈ χ.

C
+
(�,L)•(	,	)(x) = C

+
�α

(x) • C
+
	α

(x)

≤ C
+
�α

(x) • C
+
	α

(x)

= C
+
(�,ℵ)•(	,	), ∀x ∈ χ.

�−
(�,L)•(	,	)(x) = 2π(

�−
�α

(x)

2π
• �−

	α
(x)

2π
)

≤ 2π(
�−

�α
(x)

2π
• �−

	α
(x)

2π
)

= �−
(�,ℵ)•(	,	), ∀x ∈ χ.

�+
(�,L)∩(	,	)(x) = 2π(

�+
�α

(x)

2π
• �+

	α
(x)

2π
)

≤ 2π(
�+

�α
(x)

2π
• �+

	α
(x)

2π
)

= �+
(�,ℵ)•(	,	), ∀x ∈ χ.

iv).

μ(�,L)•((�,ℵ)•(	,	))(x) =

[C−
�α

(x) • C
−
((�,ℵ)•(	,	)(x)),

C
+
�α

(x), C
+
((�,ℵ)•(	,	)(x))].

e

i[2π(
�−

�α
(x)

2π • �−
((�,ℵ)•(	,	)

(x)

2π ),

2π(
�+

�α
(x)

2π • �+
((�,ℵ)•(	,	)

(x)

2π )]

,

=
[

C
−
�α

(x) • C
−
�α

(x) • C
−
	α

(x),
C

+
�α

(x) • C
+
�α

(x) • C
+
	α

(x)))

]

e

i[2π(
�−

�α
(x)

2π • 2π(
�−

�α
(x)

2π •
�−

	α
(x)

2π )

2π ),

2π(
�+

�α
(x)

2π • 2π(
�+

�α
(x)

2π •
�+

	α
(x)

2π )

2π )]
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μ(�,L)•((�,ℵ)•(	,	))(x) =
[

(C−
�α

(x) • C
−
�α

(x)) • C
−
	α

(x),
(C+

�α
(x) • C

+
�α

(x)) • C
+
	α

(x)))

]

e

i[2π(
2π(

�−
�α

(x)

2π •
�−

�α
(x)

2π )

2π • �−
	α

(x)

2π ),

2π(
2π(

�+
�α

(x)

2π •
�+

�α
(x)

2π )

2π • �+
	α

(x)

2π )]

= μ((�,L)•(�,ℵ))•(	,	)(x).

��

Proposition 4 The IV-CFS probabilistic sum on
÷�(χ) is an s-norm.

Proof The conditions (i), (i i), (v), and (vi) can be easily verified from definition 6. Here,
we only prove the condition (i i i) and (iv).

i i i). Let (�,L), (�,ℵ), (	,	) be three IV-CFSSs over χ, and μ(�,L) = [C−
�α

(x),

C
+
�α

(x)].ei[�−
�α

(x),�+
�α

(x)]
, μ(�,ℵ) = [C−

�α
(x), C

+
�α

(x)].ei[�−
�α

(x),�+
�α

(x)]
, and μ(	,	) =

[C−
	α

(x), C
+
	α

(x)].ei[�−
	α

(x),�+
	α

(x)] their membership functions, respectively. We suppose

C
−
�α

(x) ≤ C
−
�α

(x), C
+
�α

(x) ≤ C
+
�α

(x), �−
�α

(x) ≤ �−
�α

(x), �+
�α

(x) ≤ �+
�α

(x), ∀x ∈ χ.

Then

C
−
(�,L)�(	,	)(x) = C

−
�α

(x) + C
−
	α

(x) − C
−
�α

(x).C−
	α

(x),

≤ C
−
�α

(x) + C
−
	α

(x) − C
−
�α

(x).C−
	α

(x),

= C
−
(�,ℵ)�(	,	), ∀x ∈ χ.

C
+
(�,L)�(	,	)(x) = C

+
�α

(x) + C
+
	α

(x) − C
+
�α

(x).C+
	α

(x),

≤ C
+
�α

(x) + C
+
	α

(x) − C
+
�α

(x).C+
	α

(x),

= C
+
(�,ℵ)�(	,	), ∀x ∈ χ.

�−
(�,L)•(	,	)(x) = 2π(

�−
�α

(x)

2π
+ �−

	α
(x)

2π
− �−

�α
(x)

2π
.
�−

	α
(x)

2π
),

≤ 2π(
�−

�α
(x)

2π
+ �−

	α
(x)

2π
− �−

�α
(x)

2π
.
�−

	α
(x)

2π
),

= �−
(�,ℵ)�(	,	), ∀x ∈ χ.

�+
(�,L)�(	,	)(x) = 2π(

�+
�α

(x)

2π
+ �+

	α
(x)

2π
− �+

�α
(x)

2π
.
�+

	α
(x)

2π
),

≤ 2π(
�+

�α
(x)

2π
+ �+

	α
(x)

2π
− �+

�α
(x)

2π
.
�+

	α
(x)

2π
),

= �+
(�,ℵ)�(	,	), ∀x ∈ χ.

123



Decision-making method under the interval-valued complex… Page 15 of 28 203

iv).

μ(�,L)�((�,ℵ)�(	,	))(x) =

[
[C−

�α
(x) + C

−
((�,ℵ)�(	,	)(x) − C

−
�α

(x).C−
((�,ℵ)�(	,	)(x)

, C
+
�α

(x) + C
+
((�,ℵ)�(	,	)(x) − C

+
�α

(x).C+
((�,ℵ)�(	,	)(x)]

]

e

i[2π(
�−

�α
(x)

2π + �−
((�,ℵ)�(	,	)

(x)

2π −
�−

�α
(x)

2π .
�−

((�,ℵ)�(	,	)
(x)

2π
2π ),

2π(
�+

�α
(x)

2π + �+
((�,ℵ)�(	,	)

(x)

2π −
�+

�α
(x)

2π .
�+

((�,ℵ)�(	,	)
(x)

2π
2π ]

=

⎡
⎢⎢⎣

[C−
�α

(x) + (C−
�α

(x) + C
−
	α

(x) − C
−
�α

(x).C−
	α

(x))−
C

−
�α

(x).(C−
�α

(x) + C
−
	α

(x) − C
−
�α

(x).C−
	α

(x)),
C

+
�α

(x) + (C+
�α

(x) + C
+
	α

(x) − C
+
�α

(x).C+
	α

(x))−
C

+
�α

(x).(C+
�α

(x) + C
+
	α

(x) − C
+
�α

(x).C+
	α

(x))]

⎤
⎥⎥⎦

e

i[2π(
�−

�α
(x)

2π + 2π(
�−

�α
(x)

2π +
�−

	α
(x)

2π −
�−

�α
(x)

2π .
�−

	α
(x)

2π )

2π −
�−

�α
(x)

2π .2π(
�−

�α
(x)

2π +
�−

	α
(x)

2π −
�−

�α
(x)

2π .
�−

	α
(x)

2π )

2π ),

2π(
�+

�α
(x)

2π + 2π(
�+

�α
(x)

2π +
�+

	α
(x)

2π −
�+

�α
(x)

2π .
�−

	α
(x)

2π )

2π −
�−

�α
(x)

2π .2π(
�−

�α
(x)

2π +
�−

	α
(x)

2π −
�−

�α
(x)

2π .
�−

	α
(x)

2π )

2π ]

=

⎡
⎢⎢⎣

[(C−
�α

(x) + C
−
�α

(x) − C
−
�α

(x).C−
�α

(x)) + C
−
	α

(x)−
(C−

�α
(x) + C

−
�α

(x) − C
−
�α

(x).C−
�α

(x)).C−
	α

(x),
(C+

�α
(x) + C

+
�α

(x) − C
+
�α

(x).C+
�α

(x)) + C
+
	α

(x)−
(C+

�α
(x) + C

+
�α

(x) − C
+
�α

(x).C+
�α

(x)).C+
	α

(x)]

⎤
⎥⎥⎦

e

i[2π(
�−

�α
(x)

2π + 2π(
�−

�α
(x)

2π +
�−

	α
(x)

2π −
�−

�α
(x)

2π .
�−

	α
(x)

2π )

2π −
�−

�α
(x)

2π .2π(
�−

�α
(x)

2π +
�−

	α
(x)

2π −
�−

�α
(x)

2π .
�−

	α
(x)

2π )

2π ),

2π(
�+

�α
(x)

2π + 2π(
�+

�α
(x)

2π +
�+

	α
(x)

2π −
�+

�α
(x)

2π .
�−

	α
(x)

2π )

2π −
�−

�α
(x)

2π .2π(
�−

�α
(x)

2π +
�−

	α
(x)

2π −
�−

�α
(x)

2π .
�−

	α
(x)

2π )

2π ]

=

⎡
⎢⎢⎣

[(C−
�α

(x) + C
−
�α

(x) − C
−
�α

(x).C−
�α

(x)) + C
−
	α

(x)−
(C−

�α
(x) + C

−
�α

(x) − C
−
�α

(x).C−
�α

(x)).C−
	α

(x),
(C+

�α
(x) + C

+
�α

(x) − C
+
�α

(x).C+
�α

(x)) + C
+
	α

(x)−
(C+

�α
(x) + C

+
�α

(x) − C
+
�α

(x).C+
�α

(x)).C+
	α

(x)]

⎤
⎥⎥⎦

e

i[2π(
2π(

�−
�α

(x)

2π +
�−

�α
(x)

2π −
�−

�α
(x)

2π .
�

−
	α

(x)

2π )

2π + �−
	α

(x)

2π −
2π(

�−
�α

(x)

2π +
�−

�α
(x)

2π −
�−

�α
(x)

2π .
�

−
	α

(x)

2π ).
�−

	α
(x)

2π
2π ),

2π(
2π(

�+
�α

(x)

2π +
�+

�α
(x)

2π −
�+

�α
(x)

2π .
�

+
	α

(x)

2π )

2π + �+
	α

(x)

2π −
2π(

�+
�α

(x)

2π +
�+

�α
(x)

2π −
�+

�α
(x)

2π .
�

+
	α

(x)

2π ).
�+

	α
(x)

2π
2π ]

= μ((�,L)�(�,ℵ))�(	,	)(x).

��
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Proposition 5 The IV-CFS simple difference on
÷�(χ) is an s-norm.

Proof The proof is similar to the Proof of Proposition 2. ��
Proposition 6 �(ξ, η) defined by the equality (12.1) is a distance function of IV-CFSSs on
χ.

Proof (i). The condition �(ξ, η) ≥ 0 obviously holds true. Next, consider

�(ξ, η) = max

⎧
⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫
⎬
⎭

= max

{
1,

1

2π
(2π)

}
= 1.

Therefore, 0 ≤ �(ξ, η) ≤ 1.
Also

�(ξ, ξ) = max

⎧
⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ξαi

(x), C
+
ξαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ξα
(x),�+

ξα
(x)])|

⎫
⎬
⎭

= max {0, 0} = 0.

The condition (i i) is a straight forward. To prove (i i i), we have

�(ξ, η) = max

⎧
⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫
⎬
⎭

= max

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
βαi

(x), C
+
βαi

(x)])+
l([C−

βαi
(x), C

+
βαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

βα
(x),�+

βα
(x)])+

l([�−
βα

(x),�+
βα

(x)]) − l([�−
ηα

(x),�+
ηα

(x)])|

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≤ max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
βαi

(x), C
+
βαi

(x)])|+
|l([C−

βαi
(x), C

+
βαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

βα
(x),�+

βα
(x)])|+

|l([�−
βα

(x),�+
βα

(x)]) − l([�−
ηα

(x),�+
ηα

(x)])|

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= max

⎧⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
βαi

(x), C
+
βαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

βα
(x),�+

βα
(x)])|

⎫⎬
⎭+

max

⎧⎨
⎩

sup
x

|l([C−
βαi

(x), C
+
βαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

βα
(x),�+

βα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫⎬
⎭

= �(ξ, β) + �(β, η).

Therefore

�(ξ, η) ≤ �(ξ, β) + �(β, η).

��
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Proposition 7 Let �(ξ, η) be a distance function on IV-CFSSs. Then, the following holds.

i). �(ξ, ηc) = �(ξ c, η) = �(ξ, η),

i i). �(ξ c, ηc) = �(ξ, η),

i i i). �(ξ, η) = �(ξ ∩ η, ξ ∪ η).

Proof (i). For �(ξ, η) = max

⎧
⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫
⎬
⎭ ,

we have the following:

�(ξ, ηc) = max

⎧
⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([1 − C
−
ηαi

(x), 1 − C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([2π − �−

ηα
(x), 2π − �+

ηα
(x)])|

⎫
⎬
⎭

= max

⎧⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫⎬
⎭

(
∵ l([1 − C

−
ηαi

(x), 1 − C
+
ηαi

(x)]) = l([C−
ηαi

(x), C
+
ηαi

(x)]) &
l([2π − �−

ηα
(x), 2π − �+

ηα
(x)]) = l([�−

ηα
(x),�+

ηα
(x)])

)

= �(ξ, η).

Similarly, �(ξ c, η) = �(ξ, η).

i i).

�(ξ c, ηc) = max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
x

|l([1 − C
−
ξαi

(x), 1 − C
+
ξαi

(x)])−
l([1 − C

−
ηαi

(x), 1 − C
+
ηαi

(x)])|,
1
2π sup

x
|l([2π − �−

ξα
(x), 2π − �+

ξα
(x)])−

l([2π − �−
ηα

(x), 2π − �+
ηα

(x)])|

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= max

⎧⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫⎬
⎭

= �(ξ, η).

i i i). To prove (i i i), two cases arise here.
Case 1.

C
−
ξαi

(x) ≤ C
−
ηαi

(x), C
+
ξαi

(x) ≤ C
+
ηαi

(x),�−
ξα

(x) ≤ �−
ηα

(x),�+
ξα

(x) ≤ �+
ηα

(x).

�(ξ ∩ η, ξ ∪ η) = max

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
x

|l([min(C−
ξαi

(x), C
−
ηαi

(x)),min(C+
ξαi

(x), C
+
ηαi

(x))])
−l([max(C−

ξαi
(x), C

−
ηαi

(x)),max(C+
ξαi

(x), C
+
ηαi

(x))]),
1
2π sup

x
|l([min(�−

ξα
(x),�−

ηα
(x)),min(�+

ξα
(x),�+

ηα
(x))])−

l([max(�−
ξα

(x),�−
ηα

(x)),max(�+
ξα

(x),�+
ηα

(x))])|

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= max

⎧
⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫
⎬
⎭

= �(ξ, η).
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Case 2.

C
−
ξαi

(x) ≥ C
−
ηαi

(x), C
+
ξαi

(x) ≥ C
+
ηαi

(x),�−
ξα

(x) ≥ �−
ηα

(x),�+
ξα

(x) ≥ �+
ηα

(x).

�(ξ ∩ η, ξ ∪ η) = max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
x

|l([min(C−
ξαi

(x), C
−
ηαi

(x)),min(C+
ξαi

(x), C
+
ηαi

(x))])
−l([max(C−

ξαi
(x), C

−
ηαi

(x)),max(C+
ξαi

(x), C
+
ηαi

(x))]),
1
2π sup

x
|l([min(�−

ξα
(x),�−

ηα
(x)),min(�+

ξα
(x),�+

ηα
(x))])−

l([max(�−
ξα

(x),�−
ηα

(x)),max(�+
ξα

(x),�+
ηα

(x))])|

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= max

⎧⎨
⎩

sup
x

|l([C−
ηαi

(x), C
+
ηαi

(x)]) − l([C−
ξαi

(x), C
+
ξαi

(x)])|,
1
2π sup

x
|l([�−

ηα
(x),�+

ηα
(x)]) − l([�−

ξα
(x),�+

ξα
(x)])|

⎫⎬
⎭

= max

⎧
⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫
⎬
⎭

= �(ξ, η).

��

Proposition 8 Let ξ = (�,L) and η = (�,ℵ) be two IV-CFSSs on χ. Then

i). ζ = (0)η.

i i). ζ = (1)η for ζ = η.

i i i). ζ = (δ)η ⇐⇒ η = (δ)ζ.

iv). ζ = (δ1)η and δ2 ≤ δ1 �⇒ ζ = (δ2)η.

v). If, for all γ ∈ I , ζ = (δγ )η, where I is an index set, then ζ = (sup
γ∈I

δγ )η.

Proof (i). Since �(ξ, η) ≤ 1. It can be written as �(ξ, η) ≤ 1 − 0. So, by definition of
IV-CFS δ-equality, we have ζ = (0)η.

(i i). Since �(ξ, ξ) = 0. It can be written as �(ξ, ξ) = 1 − 1. Therefore, by definition of
IV-CFS δ-equality, we have ζ = (1)η.

(i i i). Let ζ = (δ)η, then, by definition of IV-CFS δ-equality, we have

�(ξ, η) ≤ 1 − δ

�(η, ξ) ≤ 1 − δ (∵ �(ξ, η) = �(η, ξ)). (3)

Therefore, (3) implies that η = (δ)ζ.

Similarly, if η = (δ)ζ , then ζ = (δ)η.

(iv). Let ζ = (δ1)η, then

�(ξ, η) = max

⎧
⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫
⎬
⎭

≤ 1 − δ1.
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Since for δ2 ≤ δ1, the above inequality also holds, that is

�(ξ, η) = max

⎧⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫⎬
⎭

≤ 1 − δ2.

Thus, ζ = (δ2)η.

(v). Let ζ = (δγ )η, then

�(ξ, η) = max

⎧
⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫
⎬
⎭

≤ 1 − δγ , for all γ ∈ I .

Thus, it is easy to see that

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])| ≤ 1 − sup
γ∈I

δγ ,

1

2π
sup
x

|l([�−
ξα

(x),�+
ξα

(x)]) − l([�−
ηα

(x),�+
ηα

(x)])| ≤ 1 − sup
γ∈I

δγ .

Therefore

max

⎧⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫⎬
⎭ ≤ 1 − sup

γ∈I
δγ .

This implies that �(ξ, η) ≤ 1 − sup
γ∈I

δγ , and hence, ξ = (sup
γ∈I

δγ )η. ��

Proposition 9 If ζ = (δ1)η and η = (δ2)ψ , then ζ = (δ)ψ, where δ = δ1 ∗ δ2.

Proof Let ζ = (δ1)η and η = (δ2)ψ , then we have

�(ξ, η) = max

⎧
⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫
⎬
⎭

≤ 1 − δ1,

and

�(η,ψ) = max

⎧
⎨
⎩

sup
x

|l([C−
ηαi

(x), C
+
ηαi

(x)]) − l([C−
ψαi

(x), C
+
ψαi

(x)])|,
1
2π sup

x
|l([�−

ηα
(x),�+

ηα
(x)]) − l([�−

ψα
(x),�+

ψα
(x)])|

⎫
⎬
⎭

≤ 1 − δ2.
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Therefore

�(ξ, ψ) = max

⎧
⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ψαi

(x), C
+
ψαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ψα
(x),�+

ψα
(x)])|

⎫
⎬
⎭

= max

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])+
l([C−

ηαi
(x), C

+
ηαi

(x)]) − l([C−
ψαi

(x), C
+
ψαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])+

l([�−
ηα

(x),�+
ηα

(x)]) − l([�−
ψα

(x),�+
ψα

(x)])|

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≤ max

⎧
⎨
⎩

sup
x

|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|,
1
2π sup

x
|l([�−

ξα
(x),�+

ξα
(x)]) − l([�−

ηα
(x),�+

ηα
(x)])|

⎫
⎬
⎭+

max

⎧⎨
⎩

sup
x

|l([C−
ηαi

(x), C
+
ηαi

(x)]) − l([C−
ψαi

(x), C
+
ψαi

(x)])|,
1
2π sup

x
|l([�−

ηα
(x),�+

ηα
(x)]) − l([�−

ψα
(x),�+

ψα
(x)])|

⎫⎬
⎭

≤ (1 − δ1) + (1 − δ2)

= 1 − (δ1 + δ2 − 1) = 1 − (δ1 ∗ δ2) = 1 − δ.

Thus, ξ = (δ)ψ. ��

5 Applications of interval-valued complex fuzzy soft sets

In this section, we will discuss a real-life application of IV-CFSSs. Especially, the IV-CFSS
explains how to get a better and clear choice in decision-making problems.

We propose the following definitions utilized in decision-making algorithm taking the
idea of an IV-CFSSs into account.

Definition 17 Let ξ = (�,L) ∈ ÷�(χ) be an IV-CFSSs. Then, the cardinality set of ξ,

represented by ξC , is defined by

ξC = {
(x, μξC (x)) : x ∈ χ

}
,

is a fuzzy set over L, and the membership function μξC (x) of ξC is a mapping μξC (x) :
L → [0, 1], defined by

μ
ξ

(α)
C

(x) = [C
−
�α

(x)

|χ | ,
C

+
�α

(x)

|χ | ]).ei[
�−

�α
(x)

|χ | ,
�+

�α
(x)

|χ | ]; x ∈ χ,

=
where |χ | is the cardinality of universe χ, and |l([C−

�α
(x), C

+
�α

(x)]).eil([�−
�α

(x),�+
�α

(x)])| is
the scalar cardinality of a fuzzy set.

Note that the set of all cardinality sets is denoted by
÷�C (χ).

Definition 18 Let ξ = (�,L) ∈ ÷�(χ) be an IV-CFSSs and ξC be the cardinality of ξ.

Assume that L ⊂ F be a subset of parameters, such that L = {α1, α2, . . . , αn}. Then, ξC
can be denoted by the following table.
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L α1 α2 . . . αn

μ
ξ
(α)
C

(x) μ
ξ
(α1)

C
(x) μ

ξ
(α2)

C
(x) . . . μ

ξ
(α3)

C
(x)

The cardinal setμ
ξ

(α)
C

(x) is uniquely represented by amatrix, [a1 j ]1×n = [a11 a12 . . . a1n],
and is called the cardinal matrix of the cardinal set μ

ξ
(α)
C

(x) over L.

Definition 19 Let ξ1 = (�,L), ξ2 = (�,ℵ), ξ3 = (	,	) ∈ ÷�(χ) be any three IV-CFSSs
over χ. Then, the weighted distance measure of IV-CFSSs is defined as follows:

�(ξ, η) = max

⎧⎨
⎩

sup
x

|l([w(α)C
−
ξα

(x), w(α)C
+
ξα

(x)]) − l([w(α)C
−
ηα

(x), w(α)C
+
ηα

(x)])|,
1
2π sup

x
|l([w(α)�−

ξα
(x), w(α)�+

ξα
(x)]) − l([w(α)�−

ηα
(x), w(α)�+

ηα
(x)])|

⎫⎬
⎭ ,

(4)

where l denotes the length of the interval and w(α) is the weighted vector corresponding to
the parameter α.

6 Algorithm

In this algorithm, we utilize the concepts of the cardinality of IV-CFSSs, interval-valued
complex fuzzy soft distance measure, interval-valued complex fuzzy soft weighted distance
measure, and cardinal matrix proposed in the previous section. Here, we solve the decision-
making problems under the environments of IV-CFSSs. The detailed steps of the decision-
making algorithm for finding the best choice in decision-making problems are described as
follows:

Step 1.
Construct an IV-CFSSs ξ = (�,L) over χ.

Step 2.
Compute the cardinal set ξC of ξ for amplitude term and phase term separately.
Step 3.
Compute the distance measure of IV-CFSSs ξ(αi ) and cardinal set ξC .

Step 4.
Rank the alternatives based on the distance measures between the parameters and hence

select the most desirable one(s).

7 A case analysis

Suppose a businessman decides to make an investment in four football clubs (Alterna-
tives). Let χ = {x1 =Real Madrid, x2 = Barcelona, x3 = Manchester United,

x4 = Juventus} be a set of alternatives. Let C = {α1 = Sponsorship Deal, α2 = Social
Media Income, α2 = Players Worth, Annual T ax} be a set of criteria. Football clubs
are organizations that field teams to compete in football (soccer) competitions. They are
typically associated with a specific city or region and have a fan base that supports them
passionately. Investing in football clubs can take various forms, and individuals or entities
may choose different strategies based on their goals and interests.
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Table 1 Evaluated values of parameters in the environment of IV-CFSSs

x1 x2 x3 x4

α1 [0.2, 0.9]ei[0.4π,1.5π ] [0.4, 0.7]ei[0.1π,1.8π ] [0.1, 0.8]ei[0.2π,1.2π ] [0.3, 0.6]ei[0.3π,1.9π ]

α2 [0.1, 1]ei[0.5π,1.1π ] [0.3, 0.8]ei[0.5π,1.4π ] [0.4, 1]ei[0.2π,2π ] [0.2, 0.9]ei[0.8π,1.6π ]

α3 [0.7, 0.9]ei[0.3π,π ] [0.5, 1]ei[0.6π,1.5π ] [0.1, 0.8]ei[0.7π,2π ] [0.3, 0.7]ei[0.6π,1.6π ]

α4 [0.2, 0.6]ei[0.1π,1.2π ] [0.1, 0.9]ei[0.9π,1.8π ] [0.5, 0.8]ei[0.3π,1.3π ] [0.4, 1]ei[0.3π,2π ]

Sponsorship deal
Companies often invest in football clubs through sponsorship deals. These deals involve

the company’s logo appearing on the club’s jerseys, stadium, or other promotional materials.
Sponsorship agreements can be lucrative and provide visibility for the sponsoring brand.

Media and broadcasting rights
Investment in media and broadcasting rights is crucial for the financial success of football

clubs. Investors may negotiate lucrative broadcasting deals, streaming rights, or digital media
partnerships, contributing to the club’s revenue streams.

Partnerships and collaborations
Investorsmay seek strategic partnerships and collaborationswith football clubs. This could

involve joint ventures, co-branding opportunities, or collaborative initiatives that benefit both
the investor and the club.

Here are four well-known football clubs from different parts of the world:
Real Madrid CF (Spain)
One of the most successful football clubs globally based in Madrid, Spain. Real Madrid

has won numerous domestic and international titles, including the UEFAChampions League.
FC Barcelona (Spain)
Another Spanish powerhouse, based in Barcelona. FC Barcelona has a rich history and is

known for its commitment to an attractive, possession-based style of play.
Manchester United FC (England)
Located in Manchester, England, Manchester United is one of the most popular and

successful football clubs in the world. The club has a massive global fan base.
Juventus FC (Italy)
Located in Turin, Italy, Juventus is one of the most successful and popular football clubs

in Italy. The club has a strong tradition of success in Serie A.
The expert team investigates and takes part in the evaluation of these three enterprises

under the environments of IV-CFSSs. The information of the decision-makers is given in
Table 1.

Step 1. The IV-CFSSs ξ = (�,L) over χ is written by

ξ(x1) =
{

(α1, [0.2, 0.9]ei[0.4π,1.5π ]), (α2, [0.1, 1]ei[0.5π,1.1π ]), (α3, [0.7, 0.9]ei[0.3π,π ]),
(α4, [0.2, 0.6]ei[0.1π,1.2π ])

}
.

ξ(x2) =
{

(α1, [0.4, 0.7]ei[0.1π,1.8π ]), (α2, [0.3, 0.8]ei[0.5π,1.4π ]), (α3, [0.5, 1]ei[0.6π,1.5π ]),
(α4, [0.1, 0.9]ei[0.9π,1.8π ])

}
.

ξ(x3) =
{

(α1, [0.1, 0.8]ei[0.2π,1.2π ]), (α2, [0.4, 1]ei[0.2π,2π ]), (α3, [0.1, 0.8]ei[0.7π,2π ]),
(α4, [0.5, 0.8]ei[0.3π,1.3π ])

}
.

ξ(x4) =
{

(α1, [0.3, 0.6]ei[0.3π,1.9π ]), (α2, [0.2, 0.9]ei[0.8π,1.6π ]), (α3, [0.3, 0.7]ei[0.6π,1.6π ]),
(α4, [0.4, 1]ei[0.3π,2π ])

}
.
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Table 2 Values of IV-CFS
distance measure

� �(ξ(x1), ξC ) �(ξ(x2), ξC ) �(ξ(x3), ξC ) �(ξ(x4), ξC )

0.25 0.315 0.3875 0.275

Table 3 Values of IV-CFS
weighted distance measure

� �(ξ(x1), ξC ) �(ξ(x2), ξC ) �(ξ(x3), ξC ) �(ξ(x4), ξC )

0.05 0.0945 0.11625 0.055

Step 2.
The cardinal set ξC of ξ for amplitude term and phase term is

ξC =
{

(α1, [0.25, 0.75]ei[0.25π,1.6π ]), (α2, [0.11, 0.925]ei[0.5π,1.525π ]),
(α3, [0.4, 0.85]ei[0.55π,1.525π ]), (α4, [0.3, 0.825]ei[0.4π,1.575π ])

}
.

Step 3.
The distance measure of ξ(αi ) and cardinal set ξC are given in Table 2.
If w = (0.2, 0.3, 0.2, 0.3) is the weightage assigned to each parameter αi ; i = 1, 2, 3, 4,

then
From the distance measure of ξ(αi ) and ξC , we conclude that x3 > x2 > x4 > x1.

Therefore, x3 = Manchester United is the best football club for investment.
If we assigned the weighted vector w = (0.2, 0.3, 0.2, 0.3) to the parameters

α1, α2, α3, α4, then the rank of alternatives is x3 > x2 > x4 > x1. Therefore, we get
the same order of rank.

8 Comparison analysis

Here, we discussed the comparison of the proposed distance measure of the interval-valued
complex fuzzy soft set with the complex fuzzy soft set and fuzzy soft set. The interval-valued
complex fuzzy soft distance measure reduces the environments of complex fuzzy soft set and
fuzzy soft set. The comparison is given in cases 1 and 2. The numerical data in other fuzzy
environments are also considered. Moreover, we discussed the advantages of the proposed
distance measure.

Case 1.
The interval-valued complex fuzzy soft distance measure reduces to the environment of

complex fuzzy soft sets if C
−
ξαi

(x) = C
+
ξαi

(x), C
−
ηαi

(x) = C
+
ηαi

(x), �−
ξα

(x) = �+
ξα

(x),

�−
ηα

(x) = �+
ηα

(x), & remove length from the definition, then we have

�(ξ, η) = max

{
sup
x

|Cξαi
(x) − Cηαi

(x)|, 1

2π
sup
x

|�ξα (x) − �ηα (x)|
}

,

where Cξαi
(x), Cηαi

(x) ∈ [0, 1], and �ξα (x),�ηα (x) ∈ [0, 2π].
Case 2.
The interval-valued complex fuzzy soft distance measure reduces to the environment of

interval-valued fuzzy soft sets if �−
ξα

(x) = �+
ξα

(x) = �−
ηα

(x) = �+
ηα

(x) = 0, then we
have

�(ξ, η) = sup
x

(|l([C−
ξαi

(x), C
+
ξαi

(x)]) − l([C−
ηαi

(x), C
+
ηαi

(x)])|),
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Table 4 Evaluated values of
parameters in the environment of
CFSSs

x1 x2 x3 x4

α1 0.9ei0.4π 0.4ei0.1π 0.8ei1.2π 0.3ei0.3π

α2 1ei1.1π 0.3ei0.5π 1ei2π 0.2ei0.8π

α3 0.9eiπ 1ei1.5π 0.1ei0.7π 0.7ei1.6π

α4 0.2ei0.1π 0.9ei1.8π 0.5ei0.3π 1ei2π

Table 5 Values of CFS distance
measure

� �(ξ(x1), ξC ) �(ξ(x2), ξC ) �(ξ(x3), ξC ) �(ξ(x4), ξC )

0.475 0.325 0.575 0.475

Table 6 Values of CFS weighted
distance measure

� �(ξ(x1), ξC ) �(ξ(x2), ξC ) �(ξ(x3), ξC ) �(ξ(x4), ξC )

0.095 0.0975 0.115 0.095

where C
−
ξαi

(x), C
+
ξαi

(x), C
−
ηαi

(x), C
+
ηαi

(x) ∈ [0, 1].
Case 3.
The interval-valued complex fuzzy soft distance measure reduces to the environment of

fuzzy soft sets if C
−
ξαi

(x) = C
+
ξαi

(x), C
−
ηαi

(x) = C
+
ηαi

(x), �−
ξα

(x) = �+
ξα

(x) = �−
ηα

(x) =
�+

ηα
(x) = 0, & remove length from the definition, then we have

�(ξ, η) = sup
x

|Cξαi
(x) − Cηαi

(x)|,

where Cξαi
(x), Cηαi

(x) ∈ [0, 1].
All the above distance measures can be applied to decision-making problems. Now, we

consider the decision-making problem in the environment of complex fuzzy soft sets.
The complex fuzzy soft information about the index’s evaluation is given in Table 4.
The IV-CFSSs ξ = (�,L) over χ are written by

ξ(x1) =
{
(α1, 0.9e

i0.4π ), (α2, 1e
i1.1π ), (α3, 0.9e

iπ ), (α4, 0.2e
i0.1π )

}
.

ξ(x2) =
{
(α1, 0.4e

i0.1π ), (α2, 0.3e
i0.5π ), (α3, 1e

i1.5π ), (α4, 0.9e
i1.8π )

}
.

ξ(x3) =
{
(α1, 0.8e

i1.2π ), (α2, 1e
i2π ), (α3, 0.1e

i0.7π ), (α4, 0.5e
i0.3π )

}
.

ξ(x4) =
{
(α1, 0.3e

i0.3π ), (α2, 0.2e
i0.8π ), (α3, 0.7e

i1.6π ), (α4, 1e
i2π )

}
.

The cardinal set ξC is

ξC =
{
(α1, 0.6e

i0.5π ), (α2, 0.625e
i1.1π ), (α3, 0.675e

i1.2π ), (α4, 0.65e
i1.05π ),

}

Now, the complex fuzzy soft distance measure of ξ(x) and ξC is given in Table 5.
The rank of the scheme is x3 > x1 = x4 > x2.
If the weighted vector w is assigned to each parameter αi ; i = 1, 2, 3, 4, that is, w =

(0.2, 0.3, 0.2, 0.3). Then, the distance measure is
Therefore, the rank is of the scheme is x3 > x2 > x1 = x4.
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Table 7 Evaluated values of
parameters in the environment of
IV-FSSs

x1 x2 x3 x4

α1 [0.2, 0.9] [0.4, 0.7] [0.1, 0.8] [0.3, 0.6]
α2 [0.1, 1] [0.3, 0.8] [0.4, 1] [0.2, 0.9]
α3 [0.7, 0.9] [0.5, 1] [0.1, 0.8] [0.3, 0.7]
α4 [0.2, 0.6] [0.1, 0.9] [0.5, 0.8] [0.4, 1]

Table 8 Evaluated values of
parameters in the environment of
FSSs

x1 x2 x3 x4

α1 0.2 0.4 0.1 0.3

α2 1 0.8 0.4 0.2

α3 0.7 0.5 0.8 0.7

α4 0.6 0.9 0.8 1

Similarly, we consider the decision-making problem in the environment of interval-valued
fuzzy soft sets.

The interval-valued fuzzy soft information about the index’s evaluation is given in Table 7.
The decision-making problem based on interval-valued fuzzy soft information can be

solved using the distance measure proposed in case 2.
We consider the decision-making problem in the environment of fuzzy soft sets.
The fuzzy soft information about the index’s evaluation is given in Table 8.
The decision-making problem based on fuzzy soft information can be solved using the

distance measure proposed in case 3.

9 Key features and benefits of proposed distancemeasure

The key features and benefits of the proposed distance measure are given below:
i) The interval-valued complex fuzzy soft distance measure can solve the problems based

on complex fuzzy soft sets, interval-valued fuzzy soft sets, and fuzzy soft sets. On the other
hand, complex fuzzy soft distance measure, interval-valued fuzzy soft distance measure,
and fuzzy soft distance measure cannot solve the decision-making problems in the form of
CPFSs.

i i)The amplitude term and phase term are any interval numbers; it showsmore probability
of occurrence in the interval D[0, 1]. Therefore, the IV-CFSSs are more faithful than a
complex fuzzy set and complex fuzzy soft set.

i i i) Complex numbers in interval-valued complex fuzzy soft distance measures enable
the modeling of information with both real and imaginary components. This is particularly
valuable in applications where the phase of information is significant.

iv) Interval-valued complex fuzzy soft distance measures can assess the distance between
sets in a multidimensional space. This is beneficial in decision-making problems involving
multiple criteria or attributes, where the relationships between elements may have both real
and imaginary components.

v) Interval-valued complex fuzzy soft distance measures seamlessly integrate with
interval-valued fuzzy sets, allowing for a unified approach to handling uncertainty. This is
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particularly advantageous when dealing with applications that involve both interval-valued
and complex fuzzy information.

10 Conclusion

In this paper, we explored the further development of the theory of IV-CFSSs (IV-CFSSs).
Some set-theoretic operations and laws of the IV-CFSSs were proposed. We defined the
distance measure in the environment of IV-CFSSs. The concept of δ-equality of IV-CFSSs
was developed based on interval-valued complex fuzzy soft distance measures. We discussed
some particular examples and basic results of these operations and laws. Moreover, we dis-
cussed a decision-making problembased on IV-CFSSs.We developed a newdecision-making
method using the interval-valued complex fuzzy distance measures under the environments
of IV-CFSSs.We discussed the real-life case based on the proposed decision-makingmethod.
A real-life example demonstrated that the decision-making method developed in the paper
could be utilized to deal with problems of uncertainty. Further, the comparative study of
IV-CFSSs with complex fuzzy soft sets, interval-valued fuzzy soft sets, and fuzzy soft sets
was established.

In the future, we will extend the elaborated work for interval-valued complex intuitionistic
fuzzy soft sets, interval-valued complex Pythagorean fuzzy soft sets, interval-valued complex
neutrosophic fuzzy soft sets, complex q-rung orthopair fuzzy sets, complex spherical fuzzy
sets, and complex T-spherical fuzzy sets, etc., to improve the quality of the research works.
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Memiş S, Enginoğlu S, Erkan U (2021a) Numerical data classification via distance-based similarity measures

of fuzzy parameterized fuzzy soft matrices. IEEE Access 9:88583–88601
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