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Abstract
This paper solves a class of Fredholm integro-differential equations involving a small param-
eter with integral boundary conditions numerically. The solution to the problem possesses
boundary layers at both end boundaries. A central difference scheme is used for approximat-
ing the derivatives. In contrast, the trapezoidal rule is used for the integral term, provided
an appropriately adapted mesh is considered, namely Shishkin and Bakhvalov–Shishkin
meshes. The proposed numerical method presents a uniform second-order convergence rate
regardless of the perturbation parameter. Furthermore, using a post-processing technique, we
have significantly improved the convergence from second to fourth order. The effectiveness
of the proposed approach is validated through some numerical examples.

Keywords Singular perturbation · Integral boundary conditions · Boundary layer · Central
difference scheme · Uniform convergence

Mathematics Subject Classification 65L12 · 65L70 · 65G50 · 65R20

1 Introduction

In many scientific domains, including engineering, biology, physics, chemistry, potential
theory, electrostatics, finance, theory of elasticity, fluid dynamics, astronomy, economics,
heat-mass transfer and other subjects, Fredholm integro-differential equations (FIDEs) are
fundamental (see, e.g., Brunner 2018; Jalilian and Tahernezhad 2020; Saadatmandi and
Dehghan 2010). However, obtaining precise solutions to these problems is highly challeng-
ing. As a result, numerical methods play a significant role in solving these problems, as in
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Brunner (2018), Chen et al. (2019), Chen et al. (2020), Jalilian and Tahernezhad (2020), Saa-
datmandi and Dehghan (2010). As an example, we show the convection-diffusion parabolic
partial integro-differential equation Fahim and Araghi (2018); Siddiqi and Arshed (2013)
given by:

ut (s, t) + cus(s, t) − duss(s, t)

=
( ∫ t

0
K (q − t)u(s, q)dq

)
+ f (s, t), s ∈ [a, b], t > 0,

with u(s, 0) = g(s), s ∈ (a, b) and y(a, t) = g1(t), y(b, t) = g2(t), t > 0, where the
integral term is known as memory term and g(s), g1(t), g2(t) are known functions.

Suppose the most excellent derivative term in a differential equations (DEs) is multiplied
by a tiny parameter ε ∈ (0, 1). In that case, this parameter is said to be a singular perturbation
parameter and the DEs is called a singularly perturbed differential equations (SPDEs). Due to
the presence of the perturbation parameter, layers occur on the boundaries, named boundary
layers. These SPDEs have a lot of applications in biology, ecology, physical sciences and
other areas. For example, the one-dimensional groundwater flow and solute transport problem
is governed by the following equation:

yt (s, t) = εzss(s, t) − υyx (s, t) − λy(s, t), s > 0, t > 0.

It explains how water and solutes flow through the unsaturated zone (De Marsily 1986),
where the time is t , the horizontal distance is s and both quantities are positive and measured
to the right of the soil’s center.

Furthermore, polymer rheology, population dynamics and mathematical models of glu-
cose tolerance all use singularly perturbed integro-differential equations (SPIDEs). For more
applications of SPIDEs, we can cite Lodge et al. Lodge et al. (1978), De Gaetano and Arino
De Gaetano and Arino (2000), Brunner and van der Houwen Brunner and van der (1986) and
Jerri Jerri (1999). Mainly, Nefedov and Nikitin’s Nefedov and Nikitin (2007) optimum con-
trol issues use the singularly perturbed Fredholm integral equations (SPFIDEs). There have
been some asymptotic solutions to this issue mentioned in Lange and Smith (1993), Nefedov
and Nikitin (2000, 2007)) For instance, in Grimmer and Liu (1994) a class of singularly
perturbed partial integro-differential equations in viscoelasticity is given as

ρuρ
t t (t, x) = εuρ

xx (t, x) +
∫ t

−∞
a(t − s)uρ

ss(s, x)ds + ρg(t, x) + f (x).

However, the theory and approximate numerical solutions of SPIDEs are still at an initial
stage. In recent years, various numerical methods have been proposed for first-order SPIDEs
without non-local conditions on uniform and non-uniform meshes, as in Amiraliyev et al.
(2018), Amiraliyev and Sevgin (2006), Cakır and Gunes (2022), De Bonis et al. (2021), De
Bonis et al. (2023), Durmaz et al. (2022), Kudu et al. (2016), Mennouni (2020). In Cimen
and Cakir (2021), Durmaz and Amiraliyev (2021), Durmaz et al. (2022), Durmaz et al.
(2022), Durmaz et al. (2022), second-order SPIDEs without non-local boundary conditions
on Shishkin meshes are discussed. In Sekar (2022), Sekar and Tamilselvan (2019), Sekar
et al. (2021), Sekar and Tamilselvan (2019) various problems on singularly perturbed delay
differential equations with integral boundary conditions are considered. To our knowledge,
numerical methods for first-order SPFIDEs with initial and boundary conditions (IBCs) on
Shishkin meshes have been discussed only in Durmaz et al. (2022). Motivated by the above
research, we present an effective numerical approach for second-order SPIDEs with IBCs
on Shishkin-type meshes(Shishkin and Bakhvalov-Shishkin meshes). The main aim of this
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article is to solve numerically a singularly perturbed Fredholm integro-differential equation
with integral boundary conditions given by

Lu := L1u + L2u = f (x), x ∈ � = (0, 1),
Ku(0) := u(0) − ε

∫ 1
0 g1(x)u(x)dx = l,

Ku(1) := u(1) − ε
∫ 1
0 g2(x)u(x)dx = r ,

(1.1)

where L1u = −εu′′ + a(x)u, L2u = −λ

∫ 1

0
K (x, s)u(s)ds and γ > K (x, s) ∈ L2[0, 1]. It

is assumed that a(x)≥β > λγ > 0, where λ is a positive constant and
∫ 1
0 gi (x)dx < 1, i =

1, 2, gi (x) are non negative sufficiently smooth functions satisfying appropriate regularity
constraints.

The task will be addressed using a central difference scheme for approximating the
second-order derivative and the composite trapezoidal rule for approximating an integral
part, considering Shiskin-type meshes. The proposed method provides an optimal second-
order rate of convergence

(
CN−2

)
, but lately, using the extrapolation technique, a fourth

order rate of convergence
(
CN−4

)
will be obtained.

The article is organized as follows: In Sect. 2, we present some issues concerning the
exact solution. Section3 constructs the Shishkin-type mesh and the computational analysis.
Section4 introduces the Richardson extrapolation, its application and the corresponding
convergence analysis. Section5 presents some numerical examples with graphs and tables
to show the performance of the proposed method. Finally, Sect. 6 summarizes the article’s
conclusions.

Along this work, we considerC to be any positive constant independent of ε. The standard
supremum norm, ||f||D = sup

y∈D
|f(y)|, on a given domain D, will be used along the paper. If

the domain is clear, we use only ||f||.

2 Stability and bounds on the derivatives of the continuous solution

Theorem 2.1 Let 	(x) be any function such that K	(0) ≥ 0, K	(1) ≥ 0 and L	(x) ≥
0, ∀x ∈ �, where K and the differential operator L are defined in (1.1). Then, it holds that
	(x) ≥ 0, ∀x ∈ � = [0, 1].
Proof Consider the function t(x) = 1 + x , which is non negative for x ∈ �. Let denote

μ = max
{−	(x)

t(x)
: x ∈ �

}
.

There exists x0 ∈ � such that 	(x0) + μt(x0) = 0 and thus 	(x) + μt(x) ≥ 0,∀x ∈ �. As
a result, the function (	 + μt) attains its minimum at x = x0. We proceed by contradiction.
If we assume that the conclusion is false, then it is μ > 0. Now, consider two cases:
Case (i): x0 = 0 or x0 = 1;
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Note that K(	 + μt)(x0) = K	(x0) + μKt(x0) > 0. On the other hand, it is

K(	 + μt)(x0) = (	 + μt)(x0) − ε

1∫
0

g1(x)(	 + μt)(x)dx,

= −ε

1∫
0

g1(x)(	 + μt)(x)dx ≤ 0,

which is a contradiction.
Case (ii): x0 ∈ �.

According to the hypothesis, it is L	(x0) ≥ 0. On the other hand, it is

L1(	 + μt)(x0) = −ε(	 + μt)′′(x0) + a(x0)(	 + μt)(x0),

= −ε(	 + μt)′′(x0) ≤ 0,

L2(	 + μt)(x0) = −λ

∫ 1

0
K (x, s)(	 + μt)(s)ds ≤ 0,

and thus, we arrive at a contradiction.

Theorem 2.2 (Stability Result)
Let u(x) be the solution of problem (1.1). Then, the following bounds of the solution and

its derivatives hold:

(i) ||u|| ≤ C maxx∈�

{
Ku(0),Ku(1), Lu(x)

}
.

(ii) ||u(k)|| ≤ C(1 + ε−k/2), for k = 1, 2, 3, 4.

Proof Proof is available in Miller et al. (1996, Chapter 6, p. 46).

Lemma 2.3 Let consider the decomposition of the solution u(x) of problem (1.1) in the form
u = v + wL + wR, where v is smooth and wL , wR are singular components. Then, it holds
for k = 0, 1, 2, 3, 4 that

(i) |v(k)(x)| ≤ C(1 + ε−(k−2)/2).
(ii) |w(k)

L (x)| ≤ Cε−k/2e−x
√

β/ε.

(iii) |w(k)
R (x)| ≤ Cε−k/2e−(1−x)

√
β/ε.

Proof (i) The proof is available in Miller et al. (1996, Chapter 6, p 48).
(ii) Consider ψ±(x) = Ce−x

√
β/ε ± wL(x), then

Kψ±(0) = C ± wL(0) − ε

∫ 1

0
g1(x)(Ce−x

√
β/ε ± wL(x))dx,

= C(1 − ε

∫ 1

0
g1(x)e

−x
√

β/εdx) ± KwL(0) ≥ 0.

Kψ±(1) = C ± wL(1) − ε

∫ 1

0
g2(x)(Ce−x

√
β/ε ± wL(x))dx,

= C(1 − ε

∫ 1

0
g2(x)e

−x
√

β/εdx) ± KwL(1) ≥ 0.

Lψ±(x) = Ce−x
√

β/ε
[
ε(−β/ε) + a(x)

]
− λ

∫ 1

0
CK (x, s)e−s

√
β/εds ± LwL(x),
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≥ Ce−x
√

β/ε
[
a(x) − β − λγ

]
≥ 0.

By Theorem 2.1 we have that ψ±(x) ≥ 0 and thus

|wL(x)| ≤ Ce−x
√

β/ε.

For the derivative bounds of regular component, the proof is the same as in Miller et al.
(1996), resulting in

|w(k)
L (x)| ≤ Ce−x

√
β/εε−k/2.

(iii) It can be proven similarly as in the previous case that

|w(k)
R (x)| ≤ Cε−k/2e−(1−x)

√
β/ε.

3 Non-uniformmeshes and analysis

3.1 Non-uniformmeshes

Shishkinmesh (S-mesh)

The transition parameter σ is defined as

σ = min
{1
4
,
σ0

√
ε

β
log(N )

}
,

where σ0 > 0 is an user choice parameter and it is assumed that
√

ε ≤ N−1. More details
about the S-mesh can be found in Miller et al. (1996); Shishkin and Shishkina (2009). The
mesh points are defined as Gx = {x1, x2, . . . , xn} ∈ [0, 1], where

xi =

⎧⎪⎪⎨
⎪⎪⎩

i H1, for i = 0, . . . , N
4 ,

σ +
(

i
N − 1

4

)
H2, for i = N

4 + 1, . . . , 3N
4 ,

1 − (N − i)H1, for i = 3N
4 + 1, . . . , N ,

with H1 = 4σ
N , H2 = 2(1−2σ)

N . The step sizes in the space variable are given by hi = xi−xi−1,

for i = 1, . . . , N .

Bakhvalov–Shishkinmesh (B–S-mesh)

For a detailed construction of the B–S mesh one can refer to Liu and Yang (2022). The mesh
points are

xi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ0
√

ε

β
ln

(
ϑ( i

N ) + 1
)
, for i = 0, . . . , N/4,

σ1 +
(4i
N

− 1
)(
1/2 − σ1

)
, for i = N

4
+ 1, . . . ,

3N

4
,

1 + σ0
√

ε

β
ln

(
ϑ

(
1 − i

N

) + 1
)
, for i = 3N

4
+ 1, . . . , N ,
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where, σ1 = min

{
1

4
,
σ0

√
ε

β
ln min{ε−1, N }

}
and ϑ = 4

(
exp

( − βσ1/(σ0
√

ε)
) − 1

)
. The

step sizes, in this case are denoted as in the previous case by hi = xi −xi−1 for i = 1, . . . , N .

3.2 Numerical approach

Given a mesh function φi , the backward, forward and center difference operators are defined
as follows:

D+
x φi = φi+1 − φi

hi+1
, D−

x φi = φi − φi−1

hi
, D0

xφi = φ j+1 − φi−1

hi+1 + hi
,

respectively and the approximate second-order operator is given by

D+
x D−

x φi = 2

hi + hi+1

(
φi+1 − φi

hi+1
− φi − φi−1

hi

)
.

where φi = φ(xi ).
We discretize problem (1.1) using the central difference scheme for the second order

derivative and the trapezoidal method for the integral part.
The proposed numerical scheme is given as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
LN
1 + LN

2

)
Ui = fi , for i = 1, . . . , N − 1,

KNU0 = U0 − ε
N∑
i=1

gi−1Ui−1+giUi
2 ,

KNUN = UN − ε
N∑
i=1

gi−1Ui−1+giUi
2 hi ,

(3.1)

where,

LN
1 Ui = −εD+

x D−
x Ui + aiUi , LN

2 Ui = −λ

N∑
j=0

τ j Ki, jU j ,

τ0 = h0
2

, τ j = h j + h j+1

2
, j = 1, 2, . . . , N − 1, τN = hN

2
,

Ui = U (xi ) is the approximate solution to the exact solution of the problem (1.1), ai =
a(xi ), fi = f (xi ), Ki, j = K (xi , s j ) and {xi } are the grid points considered.

The following result is a discrete version of Theorem 2.1 and the proof can be obtained
similarly.

Theorem 3.1 Given any discrete function 	(xi ) on a mesh {xi }Ni=1 such that KN	(x0) ≥ 0,
KN	(xN ) ≥ 0 and LN	(xi ) ≥ 0, where KN , LN are defined similarly as in Theorem 2.1,

it holds that 	(xi ) ≥ 0, ∀xi ∈ �
N
.

Proof Consider t(xi ) = 1 + xi ,

Note that the function is non negative on xi ∈ �
N
. Let

μ = max
{−	(xi )

t(xi )
: xi ∈ �

N
}
.

Furthermore, ∃ xk ∈ �
N
such that 	(xk)+μt(xk) = 0 and 	(xi )+μt(xi ) ≥ 0,∀xi ∈ �

N
.

As a result, at x = xk , the function (	+μt) attains itsminimum.Weproceed by contradiction.
If the theorem is false, then it is μ > 0.
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Case (i): xk = x0 or xk = xN . Then

0 < KN (	 + μt)(xk) = (	 + μt)(xk) − ε

N∑
i=1

gi−1(	 + μt)xi−1 + gi (	 + μt)xi
2

hi ≤ 0.

Case (ii): xk ∈ �N . In this case, we have

0 < L1(	 + μt)(xk) = −εD+
x D−

x (	 + μt)(xk) + a(xk)(	 + μt)(xk) ≤ 0.

0 < L2(	 + μt)(xk) = −λ
[
h1ki,1(	 + μt)1 + · · · + hNki,N (	 + μt)N

]
,

≤ −λ(	 + μt)k
[
h1ki,1 + · · · + hNki,N

]
≤ 0.

It any case, we arrive at a contradiction.

Theorem 3.2 If φi is any mesh function, then

∣∣∣φi

∣∣∣ ≤ 1

β
max

1≤ j≤N−1

{
|LNφ j |, |KNφ0|, |KNφN |

}
, for 0 ≤ i ≤ N .

Proof One can prove this easily by using Theorem 3.1. 
�

3.3 Error estimate for the difference schemes

Error estimates are bounds on the error of the numerical solution. The discretemaximumnorm
is ameasure of the error that takes themaximumabsolute value of the errors at themesh points.
Formally, if u is the exact solution andUN is the numerical solution on ameshwith parameter
N , then the discretemaximumnorm of the error is ‖(u−UN )(xi )‖∞ = max |u(x)−UN (xi )|
for all mesh points xi .

We demonstrate that the numerical solution approaches near first-order convergence
when applied on a Shishkin mesh, while it achieves definitive first-order convergence on
a Bakhvalov–Shishkin mesh. Additionally, we calculate error estimates using the discrete
maximum norm to evaluate the solution accuracy.

Remark Using the integral form of the truncation term and the composite trapezoidal rule
on the range [0, 1],

∫ 1

0
F(s)ds =

N∑
i=0

hi Fi + RN , (3.2)

with τ0 = h1
2 , τi = hi+hi+1

2 , i = 1, 2, 3, ..., N − 1, τN = hN
2 and

RN = 1

2

N∑
i=1

∫ xi

xi−1

(xi − ξ)(xi−1 − ξ)F ′′(ξ)dξ.

Similarly as in (3.2), then

λ

∫ 1

0
K (xi , s)u(s)ds = λ

N∑
j=0

h j Ki j u j + Ri ,
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where

Ri = λ

2

N∑
j=1

∫ x j

x j−1

(x j − ξ)(x j−1 − ξ)
d2

dξ2
(K (xi , ξ))u(ξ)dξ,

|Ri | =
∣∣∣λ
2

N∑
j=1

∫ x j

x j−1

(x j − ξ)(x j−1 − ξ)
d2

dξ2
(K (xi , ξ))u(ξ)dξ

∣∣∣,
∣∣Ri

∣∣ ≤ C
N∑
j=1

∫ x j

x j−1

(x j − ξ)(ξ − x j−1)(1 + |u′(ξ)| + |u′′(ξ)|)dξ.

Theorem 3.3 Given u and UN , which are respectively the solutions to (1.1) and (3.1), we
get the following estimate of the numerical errors (3.1)

max
1≤i≤N−1

∣∣(u −UN )(xi )
∣∣ ≤

{
C

(
(N−1 ln N )2

)
on a S-mesh,

CN−2 on a B-S-mesh.

Proof The discrete solution U can be decomposed into smooth (V ) and singular (W ) com-
ponents. The error can be written in the form

LN (U − u) = LN
1 (U − u) + LN

2 (U − u).

By Miller Miller et al. (1996), it is

LN
1 (U − u) ≤ C(N−1 ln N )2.

Now, for the L2 operator, then

LN
2 (U − u) = LN

2 (V − v) + LN
2 (W − w) ≤ C(N−1 ln N )2.

Now, we analyzed the bounds for the smooth and singular components.

Smooth components:

LN
2 (Vi − vi ) = LN

2 (V (xi )) − LN
2 (v(xi )),

= λ

N∑
j=0

Ki j Vj − λ

∫ 1

0
K (x, s)v(s)ds,

= λ

N∑
j=0

Ki j Vj − λ

∫ 1

0
K (xi , si )v(si )ds,

≤ C
N∑
j=1

∫ x j

x j−1

(x j − ξ)(ξ − x j−1)(1 + |v′(ξ)| + |v′′(ξ)|)dξ,

≤ C
√

ε(h),

≤ CN−1(h),

≤ CN−2.

At the points xk = x0 and xk = xN , then

KN (V − v), (xk) = KN V (xk) − KNv(xk),

= l − KNv(xk),
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KN (V − v), (xk) = KN V (xk) − KNv(xk),

= l − KNv(xk),

= Kv(xk) − KNv(xk),

= v(xk) + ε

xk∫
x0

g(x)v(x)dx − v(xN ) − ε

N∑
i=1

gi−1vi−1 + givi
2

hi ,

|KN (V − v)(xN )| ≤ Cε((h31v
′′(χ1) + · · · + h2N

3v′′(χN )),

≤ Cε(h31 + · · · + h3N ),

≤ CN−2, where xi−1 ≤ χi ≤ xi , 1 ≤ i ≤ N .

By Theorem 2.2 gives

|V (xi ) − v(xi )| ≤ CN−2 ln N .

Singular components:
The estimate for WL − wL is presented first. We must consider two cases, σ = 1

4 or

σ = 2
√

ε
β
ln N < 1

4 to be used in the argumentation.

Case(i): σ = 1
4 .

We have a uniformmesh in this instance and 1
4 ≤ 2

√
ε
β
ln N . It is obvious that xi −xi−1 =

N−1 and ε− 1
2 ≤ C ln N . By Miller et al. (1996), we get that

LN
2 (WL(xi ) − wL(xi )) = LN

2 (WL (xi )) − LN
2 (wL(xi )),

= λ

N∑
j=0

Ki jWL (x j ) − λ

∫ 1

0
K (x, s)wL(s)ds,

= λ

N∑
j=0

Ki jWL (x j ) − λ

∫ 1

0
K (xi , si )wL(si )ds,

≤ C
N∑
j=1

∫ x j

x j−1

(x j − ξ)(ξ − x j−1)
(
1 + |w′

L(ξ)| + |w′′
L(ξ)|) dξ,

≤ C
N∑
j=1

∫ x j

x j−1

(x j − ξ)(ξ − x j−1)

(
1

ε

)
(e−x

√
β/ε)dξ,

≤ CN−1 h
3

ε
,

≤ CN−2.

At x = x0 or x = xN , then

KN (WL − wL)(xk) = KNWL(xk) − KNwL(xk),

= B − KNwL(xk),

= KwL(xk) − KNwL(xk),

|KN (WL − wL)(xN )| ≤ Cε((h31w
′′
L(χ1) + · · · + h3Nw′′

L(χN )),

≤ Cε−1(h31 + · · · + h3N ),
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≤ CN−2.

where xi−1 ≤ χi ≤ xi . Applying Theorem 3.2 in Miller et al. (1996) to the function (WL −
wL)(xi ) gives

|(WL − wL)(xi )| ≤ C(N−2 ln2 N ).

Case(ii): σ < 1
4 .

The resulting mesh is a piece wise uniform one, with the mesh spacing 2(1 − 2σ)/N in
the sub interval [σ, 1 − σ ] and 4σ/N in each of the sub intervals [0, σ ] and [1 − σ, 1].

By Miller et al. (1996), then

|LN
1 (WL − wL)(xi )| ≤ C(N−2 ln2 N ),

and

LN
2 (WL(xi ) − wL(xi )) = LN

2 (WL(xi )) − LN
2 (wL(xi )),

= λ

N∑
j=0

τ j Ki jWL (x j ) − λ

∫ 1

0
K (x, s)wL (s)ds,

≤ C
N∑
j=1

∫ x j

x j−1

(x j − ξ)(ξ − x j−1)(1 + |w′
L(ξ)| + |w′′

L(ξ)|)dξ,

LN
2 (WL(xi ) − wL(xi )) ≤ CN−2.

At x = x0 or x = xN , then

|KN (WL − wL)(xk)| ≤ ε|C(h31w
′′(χ1) + · · · + h3Nw′′(χN ))|,

≤ C(h31 + · · · + h3N ),

≤ CN−2,

where xi−1 ≤ χi ≤ xi . Applying Lemma 4.2 in Miller et al. (1996) to the function (WL −
wL)(xi ) gives

|(WL − wL)(xi )| ≤ C(N−2 ln2 N ).

The error estimates for WR are established using a similar procedure. Therefore,

|U (xi ) − u(xi )| = |V (xi ) − v(xi )| + |W (xi ) − w(xi )| ≤ CN−2 ln2 N .


�

4 Post-process technique

We use the Richardson extrapolation approach to improve the accuracy of the proposed
scheme. The discrete problem (3.1) is first solved on the Shishkin type mesh G

2N , which
is created by dividing each Shishkin mesh named G

N by a specified transition parameter.
Consequently, the appropriate S-mesh nodes areG2N = {̃xi ∈ [0, 1] : 0 = x̃0 < x̃1 < · · · <
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x̃2N−1 < x̃2N = 1} given by

x̃i =

⎧⎪⎪⎨
⎪⎪⎩

i H1, for 0 ≤ i ≤ N
2 ,

σ +
(

i
N − 1

4

)
H2, for N

2 + 1 ≤ i ≤ 3N
2 ,

1 − (N − i)H1, for 3N
2 + 1 ≤ i ≤ 2N ,

and the grid points in the B–S-mesh are given by

x̃i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ0
√

ε

β
ln

(
ϑ

( i
N

) + 1

)
, for 0 ≤ i ≤ N/2,

σ1 +
(
4i

N
− 1

)(
1/2 − σ1

)
, for

N

2
+ 1 ≤ i ≤ 3N

2
,

1 + σ0
√

ε

β
ln

(
ϑ

(
1 − i

N

) + 1
)
, for

3N

2
+ 1 ≤ i ≤ 2N .

Now, from Theorem 3.3, the error is

(u −UN )xi = C
(
(N−1 ln N )2

)
+ o

(
(N−1 ln N )2

)
,

= C
(
N−1σ
ρ0

√
ε

)2 + o
(
(N−1 ln N )2

)
,

(4.1)

for xi ∈ G
N . Let Ũ (̃xi ) represent the discrete solution on the mesh G

2N (see (3.1)). From
Theorem 3.3, we get

(Ũ N − u)̃xi = C

(
(2N )−2

(
σ

ρ0
√

ε

)2 )
+ o

(
(N−1 ln N )2

)
, (4.2)

for x̃i ,∈ G
2N . Now, the elimination of the o(N−2) term from (4.1) and (4.2) leads to the

following approximation

u(xi ) − 1

3

(
4Ũ N −UN

)
(xi ) = o

(
(N−1 ln N )2

)
, xi ∈ G

N . (4.3)

Therefore, we use the extrapolation formula as

Uexp(xi ) = 1

3

(
4Ũ N −UN

)
(xi ), xi ∈ G

N . (4.4)

Theorem 4.1 Let Uexp represent the result of the Richardson extrapolation method (4.4) by
solving the discrete problem (3.1) on two meshes GN and G

2N and u be the solution of
the continuous problem (1.1). Also, assume that

√
ε ≤ N−1. Then we have the following

error-bound

∣∣∣Uexp(xi ) − u(xi )
∣∣∣ ≤

{
C

(
N−4 ln4 N

)
, on a S-mesh,

CN−4 on a B-S-mesh, for 1 ≤ i ≤ N − 1.

Proof The error can be written in the form

LN (Uexp − u) = LN
1 (Uexp − u) + LN

2 (Uexp − u).

For the first term, we have (the complete proof of this bound available in Natividad and
Stynes 2000; Shishkin and Shishkina 2016)

LN
1 (Uexp − u) ≤ C(N−1 ln N )4.
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Now, to get a bound for the L2 operator, we write

LN
2 (Uexp − u) = LN

2 (Vexp − v) + LN
2 (Wexp − w) ≤ C(N−1 ln N )4.

We decompose Ũ on G
2N as Ũ = Ṽ + W̃ , where W̃ is layer component and Ṽ is smooth

layer on G
2N .

Smooth component:

LN
2 (Vi − vi ) = LN

2 (V (xi )) − LN
2 (v(xi )), for xi ∈ G

N ,

from the integral form of Taylor series expansion and using derivative bounds as we have
done in Theorem 3.3, we have

LN
2 (Vi − vi ) ≤ C

(
N−2 + N−4),

LN
2 (Vi − vi ) ≤ CN−2 + O

(
N−4).

From the stability result we can write∣∣(Vi − vi )
∣∣ ≤ CN−2 + O

(
N−4) for xi ∈ G

N . (4.5)

Similarly we can obtain on G2N ,∣∣(Ṽi − vi )
∣∣ ≤ C(2N )−2 + O

(
N−4) for x̃i ∈ G

2N . (4.6)

From the extrapolation formula (4.4), we can write

(Vexp − v)(xi ) =
(1
3
(4Ṽ − V )(xi )

)
− v(xi ) = 1

3

(
4(Ṽ − v) − (V − v)

)
(xi ).

From (4.5) and (4.6), we get
∣∣∣(Vexp − v)(xi )

∣∣∣ =
∣∣∣1
3

(
4(Ṽ − v) + (V − v)

)
(xi )

∣∣∣ ≤ CN−4.

Layer components:

LN
2 (Wi − wi ) = LN

2 (W (xi )) − LN
2 (w(xi )), for xi ∈ G

N ,

from the integral form of Taylor series expansion and using derivative bounds as we have
done in Theorem 3.3, we have

LN
2 (Vi − vi ) ≤ C

(
N−2(ln N )2 + N−4),

LN
2 (Wi − wi ) ≤ CN−2(ln N )2 + O

(
N−4(ln N )4

)
.

From stability result we can write∣∣(Wi − wi )
∣∣ ≤ CN−2(ln N )2 + O

(
N−4(ln N )4

)
for xi ∈ G

N . (4.7)

Similarly we can obtain on G2N ,∣∣(Ṽi − vi )
∣∣ ≤ C(2N )−2(ln 2N )2 + O

(
N−4(ln N )2

)
for x̃i ∈ G

2N .∣∣(W̃i − wi )
∣∣ ≤ C(2N )−2(ln N )2 + O

(
N−4(ln N )2

)
for x̃i ∈ G

2N . (4.8)

From the extrapolation formula (4.4), we can write

(Wexp − w)(xi ) =
(
1

3
(4W̃ − W )(xi )

)
− w(xi ) = 1

3

(
4(W̃ − w) − (W − w)

)
(xi ).

123



Numerical scheme for singularly perturbed Fredholm… Page 13 of 21 126

From (4.7) and (4.8), we get
∣∣∣(Wexp − w)(xi )

∣∣∣ =
∣∣∣1
3

(
4(W̃ − w) + (W − w)

)
(xi )

∣∣∣ ≤ CN−4(ln N )4.

Hence, we get bound on S-mesh∣∣∣Uexp(xi ) − u(xi )
∣∣∣ ≤ CN−4(ln N )4.

Similarly, we can prove the bound B–S mesh∣∣∣Uexp(xi ) − u(xi )
∣∣∣ ≤ CN−4.

For more details about B–S mesh, one can find in Mohapatra and Govindarao (2021). 
�

5 Computational simulations

The suggested approach is used to solve two test problems and the results are presented in
this section.

Example 5.1 Consider the following problem:⎧⎪⎪⎨
⎪⎪⎩

−εu′′(x) + (2 − e−x )u(x) − 0.5
∫ 1

0
xu(s)ds = x cos(x), x ∈ (0, 1),

u(0) − ε

∫ 1

0
xu(x)dx = 1, u(1) − ε

∫ 1

0
x2u(x)dx = 0.

(5.1)

Example 5.2 Consider the following problem:⎧⎪⎪⎨
⎪⎪⎩

−εu′′(x) + (
1 + sin

(
πx
2

))
u(x) − 0.5

∫ 1

0
e1−xsu(s)ds = √

1 + x, x ∈ (0, 1),

u(0) − ε

∫ 1

0
xu(x)dx = −1, u(1) − ε

∫ 1

0
x2u(x)dx = 1.

(5.2)

The exact solutions to the above problems are unknown. We apply the concept of the
double mesh principle to get the pointwise errors and to confirm the ε-uniform convergence.
Let denote Ũ N (xi ), the numerical result obtained on the Shishkin-type mesh created with
the fixed transition parameter. This mesh is based on the G̃2N grid.

Now, we determine both maximum element-wise errors before and after extrapolation for
each ε by EN

ε = max(xi )∈GN |UN (xi ) − Ũ N (xi , tn)| and EN
ε = max(xi )∈GN |UN

exp(xi ) −
Ũ N
exp(xi )|. The corresponding order of convergence is defined by PN

ε = log2

(
EN

ε

E2N
ε

)
. Here,

the double mesh concept is also applied to the obtained extrapolation solution for Ũ N
exp(xi ).

For different values of ε, the approximate solutions for Example 5.1 are plotted in Fig. 1 on
a S-mesh. Numerical solutions of Example 5.2 are plotted in Fig. 2. These figures show that
when ε decreases, boundary layers are present near x = 0 and x = 1. Before extrapolation,
the error is plotted in Fig. 3a on a S-mesh and in Fig. 3b on a B–S mesh for Example 5.1.
Similarly, after extrapolation, the errors are plotted in Fig. 4a for a S-mesh and in Fig. 4b for
a B–S mesh of Example 5.1. From these figures, one can observe that the error is less on
B–S mesh compared to S-mesh, as well as the use of the extrapolation approach results in a
decrease in the errors.
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Fig. 1 Plots of the approximate solutions of Example 1 on the S-mesh taking N = 64

Fig. 2 Plots of the approximate solutions of Example 1 on the B–S-mesh taking N = 64

The calculated maximum pointwise errors and the corresponding rate of convergence for
Example 5.1 by using the proposed scheme are presented before extrapolation in Table 1 and
after extrapolation in Table 2. Similarly, for Example 5.1, before extrapolation, the results
are given in Table 3 and after extrapolation, the results are shown in Table 4. One can observe
from these tables that before extrapolation, the rate of convergence is almost two (up to a
logarithmic factor) on the S-mesh, but on the B–S mesh, the rate of convergence is two.
Similarly, after extrapolation, the convergence rate is almost four (up to a logarithmic factor)
on the S-mesh, but on the B–S mesh, the convergence rate is four. We note that the accuracy
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Fig. 3 Error plots before extrapolation for Example 1 taking N = 64

Fig. 4 Error plots before extrapolation for Example 1 taking N = 64

Table 1 Values of EN
ε and PN

ε obtained using the proposed approach for Example 5.1

Number of intervals N
ε 32 64 128 256 512

1e − 2 9.8229e−04 2.4730e−4 6.2049e−5 1.5519e−5 3.8808e−6

1.9899 1.9948 1.9994 1.9996

1e − 3 9.1327e−3 2.6288e−3 6.7017e−4 1.6838e−4 4.2147e−5

1.7966 1.9718 1.9928 1.9982

1e − 4 9.3528e−3 3.5521e−3 1.2478e−3 4.1038e−4 1.3028e−4

1.3967 1.5093 1.6044 1.6553

S-mesh 1e − 5 9.4238e−3 3.5813e−3 1.2583e−3 4.1386e−4 1.3139e−4

1.3958 1.5090 1.6042 1.6553

1e − 6 9.4464e−3 3.5906e−3 1.2616e−3 4.1497e−4 1.3174e−4

1.3955 1.5090 1.6042 1.6553

1e − 7 9.4536e−3 3.5936e−3 1.2627e−3 4.1532e−4 1.3186e−4

1.3954 1.5089 1.6042 1.6553

1e − 8 9.4558e−3 3.5945e−3 1.2630e−3 4.1543e−4 1.3189e−4

1.3954 1.5089 1.6042 1.6553

1e − 2 6.6409e−4 1.6766e−4 4.2347e−5 1.0624e−5 2.6630e−6

1.9858 1.9852 1.9949 1.9962

1e − 3 2.6617e−3 6.3322e−4 1.5619e−4 3.8894e−5 9.7058e−6

2.0716 2.0194 2.0057 2.0026
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Table 1 continued

Number of intervals N
ε 32 64 128 256 512

1e − 4 2.7956e−3 6.7855e−4 1.6935e−4 4.2394e−5 1.0575e−5

2.0427 2.0025 1.9981 2.0032

B–S-mesh 1e − 5 2.8771e−3 6.9030e−4 1.7171e−4 4.3031e−5 1.0784e−5

2.0593 2.0072 1.9966 1.9965

1e − 6 2.9107e−3 6.9469e−4 1.7263e−4 4.3240e−5 1.0834e−5

2.0669 2.0087 1.9972 1.9967

1e − 7 2.9215e−3 6.9612e−4 1.7293e−4 4.3309e−5 1.0851e−5

2.0693 2.0092 1.9974 1.9968

1e − 8 2.9249e−3 6.9658e−4 1.7302e−4 4.3330e−5 1.0856e−5

2.0700 2.0093 1.9975 1.9968

Table 2 Values of EN
ε and PN

ε using the proposed approach after extrapolation for Example 5.1

Number of intervals N
ε 32 64 128 256 512

1e − 2 6.0311e−6 3.8598e−7 2.4269e−8 1.5192e−9 9.4698e−11

3.9658 3.9913 3.9977 4.0039

1e − 3 4.0042e−4 3.5236e−5 2.3441e−6 1.5110e−7 9.4814e−9

3.5064 3.9099 3.9555 3.9942

1e − 4 5.6298e−4 1.1527e−4 1.4145e−5 1.6283e−6 1.6748e−7

2.2880 3.0267 3.1188 3.2813

S-mesh 1e − 5 5.7614e−4 1.1483e−4 1.4078e−5 1.6206e−6 1.6599e−7

2.3269 3.0280 3.1189 3.2874

1e − 6 5.8027e−4 1.1469e−4 1.4057e−5 1.6181e−6 1.6542e−7

2.3390 3.0284 3.1189 3.2901

1e − 7 5.8157e−4 1.1465e−4 1.4050e−5 1.6175e−6 1.6532e−7

2.3428 3.0285 3.1188 3.2904

1e − 8 5.8198e−4 1.1463e−4 1.4048e−5 1.6173e−6 1.6530e−7

2.3440 3.0285 3.1188 3.2904

1e − 3 2.6432e−4 2.0142e−5 1.3881e−6 9.6205e−8 1.1395e−8

3.7141 3.8590 3.8508 3.0777

1e − 4 1.0064e−3 1.3499e−4 9.4407e−6 6.2414e−7 4.1470e−8

2.8982 3.8379 3.9189 3.9118

1e − 5 1.5847e−3 2.4939e−4 1.9499e−5 1.1239e−6 9.9008e−8

2.6678 3.6769 4.1168 3.5048

B–S-mesh 1e − 6 6.5813e−5 4.6847e−6 3.0903e−7 2.1071e−8 2.6914e−9

3.8123 3.9221 3.8744 2.9688
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Table 2 continued

Number of intervals N
ε 32 64 128 256 512

1e − 7 6.5797e−5 4.6819e−6 3.0740e−7 1.9668e−8 1.3004e−9

3.8129 3.9289 3.9662 3.9188

1e − 8 6.5793e−5 4.6815e−6 3.0731e−7 1.9600e−8 1.2389e−9

3.8129 3.9292 3.9708 3.9838

1e − 9 6.5791e−5 4.6814e−6 3.0730e−7 1.9597e−8 1.2362e−9

3.8129 3.9292 3.9710 3.9866

Table 3 Values of EN
ε and PN

ε using the proposed approach for Example 5.2

Number of intervals N
ε 32 64 128 256 512

1e − 2 1.2896e−3 3.2648e−4 8.2184e−5 2.0563e−5 5.1418e−6

1.9818 1.9901 1.9988 1.9997

1e − 3 1.2001e−2 3.4566e−3 8.8172e−4 2.2156e−4 5.5462e−5

1.7958 1.9710 1.9926 1.9981

1e − 4 1.2829e−2 4.8659e−3 1.7114e−3 5.6305e−4 1.7873e−4

1.3987 1.5075 1.6039 1.6555

S-mesh 1e − 5 1.3074e−2 4.9658e−3 1.7452e−3 5.7402e−4 1.8222e−4

1.3966 1.5087 1.6042 1.6554

1e − 6 1.3149e−2 4.9966e−3 1.7556e−3 5.7741e−4 1.8330e−4

1.3960 1.5090 1.6043 1.6554

1e − 7 1.3173e−02 5.0063e−3 1.7588e−3 5.7847e−4 1.8364e−4

1.3958 1.5091 1.6043 1.6554

1e − 8 1.3180e−02 5.0093e−3 1.7599e−3 5.7880e−4 1.8375e−4

1.3957 1.5092 1.6043 1.6554

1e − 2 1.2257e−3 3.1119e−4 7.8679e−5 2.0138e−5 5.2873e−6

1.9777 1.9838 1.9660 1.9293

1e − 3 3.8135e−3 9.1671e−4 2.2676e−4 5.6548e−5 1.4142e−5

2.0566 2.0153 2.0036 1.9995

1e − 4 3.9085e−3 9.5118e−4 2.3754e−4 5.9575e−5 1.4883e−5

2.0388 2.0015 1.9954 2.0010

B–S-mesh 1e − 5 3.9900e−3 9.5959e−4 2.3895e−4 5.9901e−5 1.5018e−5

2.0559 2.0057 1.9960 1.9959

1e − 6 4.0382e−3 9.6449e−4 2.3973e−4 6.0056e−5 1.5049e−5

2.0659 2.0084 1.9970 1.9966

1e − 7 4.0537e−3 9.6611e−4 2.4002e−4 6.0115e−5 1.5062e−5

2.0690 2.0090 1.9974 1.9968

1e − 8 4.0587e−3 9.6663e−4 2.4011e−4 6.0134e−5 1.5067e−5

2.0700 2.0093 1.9975 1.9968
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Table 4 Values of EN
ε and PN

ε using the proposed approach after extrapolation for Example 5.2

Number of intervals N
ε 32 64 128 256 512

1e − 2 6.0311e−6 3.8598e−7 2.4269e−8 1.5192e−9 9.4698e−11

3.9658 3.9913 3.9977 4.0039

1e − 3 4.0042e−4 3.5236e−5 2.3441e−6 1.5110e−7 9.4814e−9

3.5064 3.9099 3.9555 3.9942

1e − 4 5.6298e−4 1.1527e−4 1.4145e−5 1.6283e−6 1.6748e−7

2.2880 3.0267 3.1188 3.2813

S-mesh 1e − 5 5.7614e−4 1.1483e−4 1.4078e−5 1.6206e−6 1.6599e−7

2.3269 3.0280 3.1189 3.2874

1e − 6 5.8027e−4 1.1469e−4 1.4057e−5 1.6181e−6 1.6542e−7

2.3390 3.0284 3.1189 3.2901

1e − 7 5.8197e−4 1.1465e−4 1.4050e−5 1.6175e−6 1.6532e−7

2.3428 3.0285 3.1188 3.2904

1e − 8 5.8198e−4 1.1463e−4 1.4048e−5 1.6173e−6 1.6530e−7

2.3440 3.0285 3.1188 3.2904

1e − 3 2.6432e−4 2.0142e−5 1.3881e−6 9.6205e−8 1.1395e−8

3.7141 3.8590 3.8508 3.0777

1e − 4 1.0064e−3 1.3499e−4 9.4407e−6 6.2414e−7 4.1470e−8

2.8982 3.8379 3.9189 3.9118

1e − 5 1.5847e−3 2.4939e−4 1.9499e−5 1.1239e−6 9.9008e−8

2.6678 3.6769 4.1168 3.5048

BS-mesh 1e − 6 6.5813e−5 4.6847e−6 3.0903e−7 2.1071e−8 2.6914e−9

3.8123 3.9221 3.8744 2.9688

1e − 7 6.5797e−5 4.6819e−6 3.0740e−7 1.9668e−8 1.3004e−9

3.8129 3.9289 3.9662 3.9188

1e − 8 6.5793e−5 4.6815e−6 3.0731e−7 1.9600e−8 1.2389e−9

3.8129 3.9292 3.9708 3.9838

1e − 9 6.5791e−5 4.6814e−6 3.0730e−7 1.9597e−8 1.2362e−9

3.8129 3.9292 3.9710 3.9866

is higher on B–S meshes compared to S-meshes in both cases, before extrapolation and after
extrapolation. To visualize the numerical order of convergence, the maximum pointwise
errors before extrapolation are plotted in a log–log scale plot on the S-mesh in Fig. 5a and
B–S-mesh in Fig. 5b. Similarly, maximum pointwise errors after extrapolation are plotted in
Fig. 6 on the S-mesh and B–S mesh, respectively.

6 Conclusion

In this article, Fredholm integro-differential equations involving a small parameter with inte-
gral boundary conditions are solved numerically. The central difference scheme is used for
approximating the derivative and the trapezoidal rule is used for approximating the inte-
gral part considering Shishkin-type meshes (Shishkin and Bakhvalov–Shishkin meshes). We
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Fig. 5 Loglog plots before extrapolation for Example 2

Fig. 6 Loglog plots after extrapolation for Example 2

prove that the proposed numerical scheme converges uniformly with respect to the small
parameter ε, providing a second-order accuracy. Then, we use the post processing tech-
nique based on the extrapolation approach, providing a fourth order convergence rate. The
numerical scheme has been tested in two examples, confirming the theoretical bounds.
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