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Abstract
In this paper, we use the multistep collocation method for linear Volterra integro-differential
equations of the third kind. First, the structure of multistep collocation method is described,
then the convergence of the method and its order are investigated. The comparison of the
proposed method with classical one-step collocation method shows that the order of conver-
gence increases with the same computational cost. Some numerical examples are given in
the last part of the article to illustrate the theoretical results.

Keywords Volterra integro-differential equation · Multistep collocation · Hermite Birkhoff
interpolation · Convergence

Mathematics Subject Classification 45A05 · 45D05 · 45E99

1 Introduction

Many problems in mathematics, physics, biology and engineering involve integral equations
and among them, some of the problems are in integro-differential equation form. For example,
the problem of determining the shape of a simply supported sandwich beam leads up to a
Volterra integro-differential equation (VIDE). Therefore, it is important to provide suitable
numerical methods to solve such equations. In particular, great attention has been paid to
collocationmethods in some literature. For example, inBrunner (2004), the author has applied
the collocationmethod to various classes ofVolterra integral and differential equations. Seyed
allaei et al have studied analytical properties of the third kind Volterra integral equation (VIE)
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in Seyed Allaei et al. (2015) and they have also applied the collocation method for solving
this equation in Seyed Allaei et al. (2017). A spectral collocation method for a class of
nonlinear Volterra Hammerstein integral equations of the third kind has been investigated in
Laeli Dastjerdi and Shayanfard (2021). Also, a multistep collocation method for third kind
VIEs has been studied in Shayanfard et al. (2019).

In this paper we consider first order linear Volterra integro-differential equation of the
third kind:

tβ y′(t) = a1(t)y(t) + g1(t) +
∫ t

0
k(t, x)y(x)dx, y(0) = y0, t ∈ I , (1)

in which, β > 0, a1(t) = tβa(t), g1(t) = tβg(t), k ∈ C(D) and g(t), a(t) ∈ C(I ), where
I = [0, T ] and D = {(t, x) |t ∈ I , 0 ≤ x ≤ t }.

Numerical methods for (1) have also received attention. Recently a collocation method
for (1) has been studied by Shayanfard et al. (2020). In Cardone and Conte (2013) the authors
have analyzed the multistep collocation method for a class of VIDEs of the second kind. In
the multistep collocation method the solution is approximated by a piecewise polynomial,
which depends on solutions of r previous steps. The convergence order of this method is
higher than classical one-step collocation methods with the same computational cost, see for
example (Cardone andConte 2013; Shayanfard et al. 2019). In this paper, we use themultistep
collocation method for approximating solution of third kind Volterra integro-differential
equation (1).
The paper is organized as follows:
In Sect. 2, the structure of the multistep collocation method is described, then it is applied
to Eq. (1) and its corresponding equations are extracted. In Sect. 3, we have analyzed the
convergence of the method by presenting and proving a theorem. Finally, to illustrate the
theoretical results some numerical examples are considered in Sect. 4.

2 Themultistep collocationmethod

We consider the first order linear Volterra integro-differential equation of the third kind:

tβ y′(t) = a1(t)y(t) + g1(t) +
∫ t

0
k(t, x)y(x)dx, y(0) = y0, t ∈ I , (2)

in which, β > 0, a1(t) = tβa(t), g1(t) = tβg(t), k ∈ C(D) and g(t), a(t) ∈ C(I ), where,
I = [0, T ] and D = {(t, x) |t ∈ I , 0 ≤ x ≤ t }.

To assure to have a unique solution for Eq. (2), the following two theorems proved,
respectively in Seyed Allaei et al. (2015) and Jiang and Ma (2013).

Theorem 2.1 Suppose that q ≥ 1 is an integer number, 0 < β < 1, k(t, x) = xβ+q−1l(t, x)
such that:

(i) ∂ j k
∂t j

∈ C(D), j = 0, 1, . . . , q,

(ii) ∂ j l
∂t j

∈ C(D), j = 0, 1, . . . , q − 1,

(iii) Hj+1(t) = ∂ j l
∂t j

(t, t) ∈ Cq− j−1(I ), j = 0, 1, . . . , q − 1,
then the operator

(�β y)(t) =
∫ t

0
t−βk(t, x)y(x)dx, t ∈ I , (3)
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is continuous from Cq−1(I ) to Cq(I ).

Theorem 2.2 If a(t), g(t) ∈ Cq−1(I ) and the assumptions of Theorem (2.1) hold, then Eq.
(2) has a unique solution in Cq(I ).

Now, we express and construct the multistep collocation method of solving Eq. (2).
Consider Ih = {tn; 0 = t0 < t1 < . . . < tN = T } as a partition for interval I = [0, T ],

such that h = T
N , tn = nh.

Also suppose that 0 < c1 < c2 < · · · < cm ≤ 1 are m collocation parameters and define
the set of collocation points in the form

Xh = {
tn,i = tn + ci h; 0 ≤ n ≤ N − 1, 1 ≤ i ≤ m

}
. (4)

We approximate the solution y(t) of Eq. (2) with a function PN (t), which its restriction on
the interval σn = (tn, tn+1], is a polynomial of degree at most m + r − 1 and its value on
σn depends on r previous approximations yn−k � y(tn−k), k = 0, 1, . . . , r − 1, which are
computed in r previous steps. In other words,

PN (tn + sh) =
r−1∑
k=0

ϕk(s)yn−k + h
m∑
j=1

ψ j (s)Yn, j , s ∈ [0, 1], n ≥ r , (5)

in which, Yn, j = P ′
N (tn, j ). It is worth pointing out that the starting values y1, y2, . . . , yr ,

which are needed in (5) may be approximated by an appropriate method such as classical
one-step collocation method. Also, ϕk(s) and ψ j (s) are polynomials of degree m + r − 1
and are determined by interpolation conditions at the points tn, j and tn−k , namely:

Yn, j = P ′
N (tn, j ), j = 1, . . . ,m, yn−k = PN (tn−k); k = 0, . . . , r − 1. (6)

By replacing any specified set of collocation parameters c1, c2, . . . , cm in Eq. (5) and using
(6), the Hermite–Birkhoff interpolation problem is obtained, that is:

ϕl(−k) = δlk, ϕ′
l (c j ) = 0,

ψ ′
i (c j ) = δi j , ψi (−k) = 0,

l, k = 0, . . . , r − 1, i, j = 1, . . . ,m. (7)

Since Eq. (2) is valid for PN (t) at the collocation points tn, j and using (6), for n = r −
1, . . . , N − 1, we have:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tβn,i Yn,i = a1(tn,i )

⎛
⎝r−1∑

k=0

ϕk(ci )yn−k + h
m∑
j=1

ψ j (ci )Yn, j

⎞
⎠+ g1(tn,i ) + Fn,i + ζn,i

yn+1 =
r−1∑
k=0

ϕk(1)yn−k + h
m∑
j=1

ψ j (1)Yn, j

(8)

where

Fn,i =
∫ tn

0
k(tn,i , x)PN (x)dx, ζn,i =

∫ tn,i

tn
k(tn,i , x)PN (x)dx . (9)
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Now, using an appropriate change of variables and the definition of PN (t) in (5), we can
write:

Fn,i = h
r−1∑
l=0

1∫

0

k(tn,i , tl + sh)PN (tl + sh)ds

+ h
n−1∑
l=r

r−1∑
k=0

⎛
⎝

1∫

0

k(tn,i , tl + sh) ϕk(s)ds

⎞
⎠ yl−k

+ h2
n−1∑
l=r

m∑
j=1

⎛
⎝

1∫

0

k(tn,i , tl + sh) ψ j (s)ds

⎞
⎠ Yl, j ,

(10)

and

ζn,i = h
r−1∑
k=0

⎛
⎝

ci∫

0

k(tn,i , tn + sh)ϕk(s)ds

⎞
⎠yn−k

+ h2
m∑
j=1

⎛
⎝

ci∫

0

k(tn,i , tn + sh) ψ j (s)ds

⎞
⎠ Yn, j .

(11)

Putting (10) and (11) in (8) leads to

tβn,i Yn,i − ha1(tn,i )

m∑
j=1

ψ j (ci )Yn, j − h2
m∑
j=1

⎛
⎝

ci∫

0

k(tn,i , tn + sh) ψ j (s)ds

⎞
⎠ Yn, j

= a1(tn,i )

r−1∑
k=0

ϕk(ci )yn−k + g1(tn,i ) + h
r−1∑
l=0

1∫

0

k(tn,i , tl + sh)PN (tl + sh)ds

+ h
n−1∑
l=r

r−1∑
k=0

⎛
⎝

1∫

0

k(tn,i , tl + sh) ϕk(s)ds

⎞
⎠ yl−k

+ h2
n−1∑
l=r

m∑
j=1

⎛
⎝

1∫

0

k(tn,i , tl + sh) ψ j (s)ds

⎞
⎠ Yl, j

+ h
r−1∑
k=0

⎛
⎝

ci∫

0

k(tn,i , tn + sh)ϕk(s)ds

⎞
⎠ yn−k .

(12)

Now, we define the following vectors Y (l) ∈ R
r and U (l),Gn, D

(l)
n ∈ R

m appropriately,

Y (l) = (yl , yl−1, . . . , yl−r+1)
T , l = r , . . . , n, (13)

U (l) = (
Yl,1, Yl,2, . . . , Yl,m

)T
, l = r , . . . , n, (14)
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Gn = (
g1(tn,1), g1(tn,2), . . . , g1(tn,m)

)T
, (15)

D(l)
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1∫
0
k(tn,1, tl + sh)PN (tl + sh)ds

1∫
0
k(tn,2, tl + sh)PN (tl + sh)ds

...
1∫
0
k(tn,m, tl + sh)PN (tl + sh)ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, l = 0, 1, . . . , r − 1, (16)

also the (m × m)-matrices (T β
n ), A, (An), and (m × r)-matrices (B

(l)
n ), (B̃(l)

n ), C and (Cn)

as follows:

T β
n = diag(tβn,1, t

β
n,2, . . . , t

β
n,m), (17)

B
(l)
n =

⎡
⎣

1∫

0

k(tn,i , tl + sh)ϕk(s)ds

⎤
⎦ ,

i=1,...,m, k=0,...,r−1

l = r , . . . , n − 1, (18)

B
(n)

n =
⎡
⎣

ci∫

0

k(tn,i , tn + sh)ϕk(s)ds

⎤
⎦ ,

i=1,...,m, k=0,...,r−1

(19)

B̃(l)
n =

⎡
⎣

1∫

0

k(tn,i , tl + sh)ψ j (s)ds

⎤
⎦ ,

i=1,...,m, j=1,...,m

l = r , . . . , n − 1, (20)

B̃(n)
n =

⎡
⎣

ci∫

0

k(tn,i , tn + sh)ψ j (s)ds

⎤
⎦ ,

i=1,...,m, j=1,...,m

(21)

A = [
ψ j (ci )

]
i=1,...,m, j=1,...,m, (22)

An = diag(a1(tn,1), a1(tn,2), . . . , a1(tn,m))A, (23)

C = [ϕk(ci )]i=1,...,m,k=0,...,r−1, (24)

Cn = diag
(
a1(tn,1), a1(tn,2), . . . , a1(tn,m)

)
C . (25)

Using the above matrices, Eq. (8) can be rewritten in matrix form as follows:

(
T β
n − h(An + h B̃(n)

n )
)
U (n) = CnY

(n) + Gn + h
r−1∑
l=0

D(l)
n

+ h
n∑

l=r

B
(l)
n Y (l) + h2

n−1∑
l=r

B̃(l)
n U (l).

(26)

Solving (26) gives us the values of Yn, j s. Note that the values of y0, y1, . . . , yr−1 can be
obtained by using one-step collocation methods. Also we can approximate the values of
integrals arising in (26), by appropriate quadrature methods, see Cardone and Conte (2013).

Toprove themethod’s solvability,wehave toprove that thematrices
(
T β
n − h(An + h B̃(n)

n )
)

are nonsingular, which we see it in the following theorem.
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Theorem 2.3 Consider Eq. (2) and suppose that k ∈ C(D) and 0 < β < 1. Then for any
choice of collocation parameters 0 < c1 < c2 < · · · < cm ≤ 1 there exists an h̄ > 0 such

that all matrices
(
T β
n − h(An + h B̃(n)

n )
)
are nonsingular for each h ≤ h̄.

Proof Similar to the proof of Theorem 3.1. in Shayanfard et al. (2020). ��

3 Convergence analysis

In this section, we analyze the convergence properties of multistep collocation method for
Eq. (2).

Theorem 3.1 Consider Eq. (2) with y(0) = y0. Suppose that the conditions of Theorem 2.1
hold and a(t), g(t) ∈ Cm+r (I ), k ∈ Cm+r (D). Let


̃ =
[
ϕ0(1) · · · ϕr−2(1)ϕr−1(1)

Ir−1 Or−1,1

]

in which, Ir−1 is the identity matrix with dimension r − 1 and Or−1,1 is the (r − 1× 1) zero
vector. If the starting errors, arising from approximation of y1, y2, . . . , yr satisfy |e(t)| =
O(hm+r ), t ∈ [t0, tr ] and the spectral radius of the matrix 
̃ is less than 1, then the global
error of multistep collocation method satisfies ‖e‖∞ = O(hm+r ).

Proof According to the assumptions of the current theorem and referring to Theorem 2.2,
we conclude that Eq. (2) has a unique solution in Cm+r [0, T ].

Now, let y(t) and PN (t) be the exact and approximate solutions of (2), respectively. Thus
the error e(t) = y(t) − PN (t) for t ∈ Xh satisfy the following equation:

tβe′(t) = a1(t)e(t) +
∫ t

0
k(t, x)e(x)dx, t ∈ Xh, . (27)

By Peano’s theorem (Brunner 2004) and similar to lemma 4.1 in Conte and Paternoster
(2009), we can argue:

y(tn + sh) =
r−1∑
k=0

ϕk(s)y(tn−k) + h
m∑
j=1

ψ j (s)y
′(tn, j ) + hm+r Rm,r ,n(s), s ∈ [0, 1], (28)

where ϕk(s) and ψ j (s) are the same as in (7) and

Rm,r ,n(s) =
∫ 1

−r+1
km,r (s, ν)y(m+r)(tn + νh)dν, (29)

km,r (s, ν) = 1

(m + r + 1)!

(
(s − ν)m+r−1+ −

r−1∑
k=0

ϕk(s)(−k − ν)m+r−1+

)

− h

(m + r + 1)!
m∑
j=1

ψ j (s)(c j − ν)m+r−1+ . (30)

Thus by using Eq. (5), we have:

e(tn + sh) =
r−1∑
k=0

ϕk(s)en−k + h
m∑
j=1

ψ j (s)εn, j + hm+r Rm,r ,n(s), s ∈ [0, 1], (31)
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in which, en−k = e(tn−k) and εn, j = e′(tn, j ) for k = 0, 1, . . . , r − 1, j = 1, 2, . . . ,m.
On the other hand, Eq. (2) is valid for both y(t) and PN (t) at the collocation points, so

we can deduce:

tβn,i y
′(tn,i ) = tβn,i a(tn,i )y(tn,i ) + tβn,i g(tn,i )

+ h
n−1∑
l=0

∫ 1

0
k(tn,i , tl + sh)y(tl + sh)ds

+ h
∫ ci

0
k(tn,i , tn + sh)y(tn + sh)ds

(32)

and

tβn,i P
′
N (tn,i ) = tβn,i a(tn,i )PN (tn,i ) + tβn,i g(tn,i )

+ h
n−1∑
l=0

∫ 1

0
k(tn,i , tl + sh)PN (tl + sh)ds

+ h
∫ ci

0
k(tn,i , tn + sh)PN (tn + sh)ds, i = 1, . . . ,m, n ≥ r .

(33)

By subtracting Eqs. (32) and (33), we have:

tβn,i e
′(tn,i ) = tβn,i a(tn,i )e(tn,i )

+ h
n−1∑
l=0

∫ 1

0
k(tn,i , tl + sh)e(tl + sh)ds

+ h
∫ ci

0
k(tn,i , tn + sh)e(tn + sh)ds, i = 1, . . . ,m, n ≥ r .

(34)

But by the assumptions of the current theorem for starting errors, we have:

e(tl + sh) = hm+rγl(s), l = 0, 1, . . . , r − 1, (35)

in which, ‖γl(s)‖∞ ≤ M1 and M1 > 0 is constant. Now, by inserting (35) and (31) in (34)
the following equation is derived:

tβn,iεn,i = tβn,i a(tn,i )

⎛
⎝r−1∑

k=0

ϕk(ci )en−k + h
m∑
j=1

ψ j (ci )εn, j + hm+r Rm,r ,n(ci )

⎞
⎠

+ hm+r+1
r−1∑
l=0

∫ 1

0
k(tn,i , tl + sh)γl(s)ds

+ h
n−1∑
l=r

r−1∑
k=0

∫ 1

0
k(tn,i , tl + sh)ϕk(s)el−kds

+ h2
n−1∑
l=r

m∑
j=1

∫ 1

0
k(tn,i , tl + sh)ψ j (s)εl, j ds
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+ hm+r+1
n−1∑
l=r

∫ 1

0
k(tn,i , tl + sh)Rm,r ,l(s)ds

+ h
r−1∑
k=0

∫ ci

0
k(tn,i , tn + sh)ϕk(s)en−kds

+ h2
m∑
j=1

∫ ci

0
k(tn,i , tn + sh)ψ j (s)εn, j ds

+ hm+r+1
∫ ci

0
k(tn,i , tn + sh)Rm,r ,n(s)ds. (36)

Now, we define the vectors ω
(l)
n ∈ R

m as:

ω(l)
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1

0
k(tn,i , tl + sh)γl(s)ds, l = 0, . . . , r − 1,

∫ 1

0
k(tn,i , tl + sh)Rm,r ,l(s)ds, l = r , . . . , n − 1,

∫ ci

0
k(tn,i , tl + sh)Rm,r ,l(s)ds, l = n.

(37)

Then we can rewrite (36) as follows:

(
T β
n − h(An + h B̃(n)

n )
)
En = CnEn + h

n∑
l=r

B
(l)
n El

+ h2
n−1∑
l=r

B̃(l)
n El + hm+r+1

n∑
l=0

ω(l)
n + hm+rκn,

(38)

in which, El = (el , el−1, . . . , el−r+1)
T and El = (

εl,1, εl,2, . . . , εl,m
)T for l = r , . . . , n and

κn = diag
[
a1(tn,1), . . . , a1(tn,m)

]
⎡
⎢⎣
Rm,r ,n(c1)

...

Rm,r ,n(cm)

⎤
⎥⎦ . (39)

Now, by choosing s = 1 and n = l − 1 in Eq. (31), we obtain the following system of linear
equations:

El = 
̃El−1 + h�̃El−1 + hm+r Q̃m,r ,l−1, l ≥ r , (40)

where �̃ =
[

ψ1(1) ψ2(1) . . . ψm(1)

Or−1,m

]
and Q̃m,r , j =

[
Rm,r , j (1)

Or−1,1

]
.

By solving (40), we conclude:

El = 
̃l−r+1Er−1 +
l−1∑

j=r−1


̃l− j+1 (�̃E j + hm+r Q̃m,r , j
)
, l ≥ r . (41)
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Now, by replacing (41) in (38), we have:

(
T β
n − h(An + h B̃(n)

n )
)
En = hm+r

n−1∑
i=r−1


̃n−i−1 Q̃m,r ,i

+ hm+r+1
n−1∑

l=r−1

(
n∑

i=l+1

B̄(i)
n 
̃i−l−1

)
Q̃m,r ,l

+ hm+r+1
r−2∑
l=1

(
n∑

i=l+r−1

B̄(i)
n 
̃i−l−1

)
Q̃m,r ,l

+
(
Cn
̃

n−r+1 + h
n∑

l=r

B̄(l)
n 
̃l−r+1

)
Er−1

+
n−1∑
j=r−1


̃n− j−1�̃E j + h2
n−1∑
l=r

B̃(l)
l El

+ h
n∑

l=r

B̄(l)
n

l−1∑
j=1


̃l− j−1�̃E j

+ hm+r+1
n∑

l=0

ω̄(l)
n + hm+rκn .

(42)

By using theorem 2.3 and referring to Brunner (2017), for 0 < β < 1 and h < h, there exists
a constant M2, such that:

‖T β
n − h(An + h B̃(n)

n )‖−1
1 ≤ M2 , (43)

hence

‖En‖1 ≤ M2‖Cn‖1‖En‖1 + hM2

n∑
l=r

‖B̄(l)
n ‖1‖El‖1

+ h2M2

n−1∑
l=r

‖B̃(l)
n ‖1‖El‖1

+ hm+r+1M2

n∑
l=0

‖ω̄(l)
n ‖1 + M2h

m+r‖κn‖1.

(44)

Now, by using (35) it is concluded that:

‖El‖1 ≤ rM1h
m+r , (45)

also

‖Q̃m,r ,l‖1 = |Rm,r ,l(1)| ≤ Dm,r Mm,r , (46)
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in which,

Dm,r = max
s∈[0,1]

1∫

−r+1

∣∣km,r (s, ν)
∣∣ dν, Mm,r = ‖y(m+r)‖∞. (47)

On the other hand, since ρ(
̃) < 1 then there is a constant D1 independent of k ∈ N, such
that:

k∑
l=0

‖
̃l‖1 ≤ D1, ‖kn‖ ≤ α1Dm,r Mm,r , (48)

and

‖ω(l)
n ‖1 ≤ α2Dm,r km,r , l = r , . . . , n, (49)

where, α1 and α2 are constants. From (42), we will have:

‖En‖1 ≤ hm+r (λ1) +
n−1∑
j=1

μ j‖E j‖1, (50)

in which, λ1 is a constant. Now, Gronwall’s inequality leads to:

‖En‖1 ≤ hm+r (λ1)e
∑n−1

j=1 μ j . (51)

Furthermore from Eq. (41), we deduce:

‖En‖1 ≤ λ2h
m+r‖�̃‖1D1

2e
∑n−1

i=1 μi , (52)

in which,

λ2 = r D1M1 + ‖�̃‖1D1(l − r + 1)λ1e
∑n−1

i=1 μi + Dm,r Mm,r , (53)

and finally from Eq. (31)

|e(tn + sh)| ≤ ‖En‖1
r−1∑
k=0

|ϕk(s)| + h‖En‖1
m∑
j=1

|ψ j (s)| + hm+r Dm,r Mm,r . (54)

This inequality with (51) and (52) completes the proof. ��

4 Numerical experiments

In this section, we have carried out the multistep collocation method for some examples. We
present two examples to numerically verify our results. The numerical order of convergence
is defined by:

p = log2
( ‖eN ‖∞‖e2N ‖∞

)
.

and the errors are compared via ‖eN‖∞ = sup1≤i≤N |eN (ti )|.
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Table 1 ‖eN ‖∞ and p for Example 1 with m = 1 and r = 2

N ‖eN ‖∞ for c = 1√
2

p ‖eN ‖∞ for c = 1
3 p ‖eN ‖∞ c = 1√

5
p

8 1.9065 × 10−2 1.0182 × 10−2 9.1806 × 10−4

16 6.6129 × 10−3 1.5276 3.5993 × 10−3 1.5002 3.2516 × 10−4 1.4974

32 2.3076 × 10−3 1.5189 1.2725 × 10−3 1.5000 1.1498 × 10−4 1.4998

64 8.0849 × 10−4 1.5131 4.4990 × 10−4 1.5000 4.0652 × 10−5 1.4999

128 2.8403 × 10−4 1.5092 1.5907 × 10−4 1.5000 1.4373 × 10−5 1.5000

Table 2 ‖eN ‖∞ and p for Example 2 with m = 2 and r = 2

N ‖eN ‖∞ p ‖eN ‖∞ p ‖eN ‖∞ p

c1 = 1
3 , c2 = 1 c1 = 3−√

3
6 , c2 = 3+√

3
6 c1 = 3

8 , c2 = 7
8

8 1.2761 × 10−4 2.5175 × 10−5 4.2886 × 10−4

16 2.6017 × 10−5 2.2942 5.1395 × 10−6 2.2923 8.4654 × 10−5 2.3408

32 5.2500 × 10−6 2.3091 1.0231 × 10−6 2.3287 1.6727 × 10−5 2.3394

64 1.0533 × 10−6 2.3175 2.0310 × 10−7 2.3327 3.3099 × 10−6 2.3373

128 2.1047 × 10−7 2.3232 4.0304 × 10−8 2.3332 6.5561 × 10−7 2.3358

Example 1 We consider the equation

t
1
2 y′(t) = g1(t) +

∫ t

0
x2y(x)dx, t ∈ I , y(0) = 0, (55)

where, g1(t) = 3
2 t − 2

9 t
9
2 . The exact solution of this equation is y(t) = √

t3. Here, we
have applied the 2-step collocation method with m = 1 for different values of collocation
parameter c. The results are shown in Table 1. Furthermore the absolute error on [0, 1], for
choosing an arbitrary c = 1√

5
and N = 16 is shown in Fig. 1. Note that when m = 1, the

polynomials ϕi , i = 0, 1 and ψ1 are as follows:

ϕ0(s) = 1

1 + 2c
(−s2 + 2cs + 1 + 2c), ϕ1(s) = 1

1 + 2c
(s2 − 2cs), ψ1(s) = 1

1 + 2c
(s2 + s).

Example 2 We applied 2-step collocation method with m = 2 for the Volterra integro-
differential equation

t
1
2 y′(t) = g1(t) +

∫ t

0
x(t − x)y(x)dx, t ∈ I , y(0) = 0, (56)

where g1(t) = 7
3 t

11
6 − 9

208 t
16
3 and the exact solution is y(t) = t

7
3 . We have used Radau

II 2-points c1 = 1
3 , c2 = 1, Gauss points, c1 = 3−√

3
6 , c2 = 3+√

3
6 and arbitrary points

c1 = 3
8 , c2 = 7

8 to approximate the solution of this equation. For each case the polynomials

ϕi , i = 0, 1 and ψ j , j = 1.2 are different, for instance when we consider c1 = 3−√
3

6 ,

c2 = 3+√
3

6 , these polynomials are as follows:

ϕ0(s) = 1

6

(
2s3 − 3s2 − s + 6

)
, ϕ1(s) = −1

6

(
2s3 − 3s2 + s

)
,
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Fig. 1 Absolute error for Example 1 with N=16 and c = 1√
5

Fig. 2 Absolute error for Example 2 with Gauss points And N=8
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ψ1(s) = − 1

12

(
(4

√
3 + 2)s3 − 3s2 − (4

√
3 + 5)s

)
,

ψ2(s) = 1

12

(
(4

√
3 − 2)s3 + 3s2 − (4

√
3 − 5)s

)
.

The results are presented in Table 2. The absolute error for N = 8, which we used Gauss
points as collocation parameters is plotted in Fig. 2.

Conclusions

In this paperwe applied amultistep collocationmethod to a linearVolterra integro-differential
equation of the third kind with an initial value. Our observations show that under suitable
conditions, this method has uniform orderm+r−1, and increasing the number of collocation
parameters and steps gives us better approximations of the solution. Also numerical exper-
iments state that choosing specific values for collocation parameters leads to better results,
But the values obtained for the order of convergence in the present examples are slightly less
than the theoretical results, which can be caused by the approximation error of the integrals
in the system, which we intend to investigate in future works.
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