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Abstract
In this paper, we use a method based on radial basis functions and the collocation method for
the numerical solution of a class of Volterra integral equations of the third kind, using zeros
of the shifted Legendre polynomial as the collocation points. The principal benefit of this
scheme is that it does not require any discretization and so it is independent of the geometry
of the domains and can thus be applied to the solution of various kinds of integral equations.
The procedure is more flexible for the majority of classes of Volterra integral equations of the
third kind. The construction of the suggested technique has been introduced. The convergence
analysis of the presented method is investigated. Finally, certain numerical examples are
included to show the accuracy and efficiency of the new technique. The numerical results
obtained and their comparison with other methods demonstrate the reliability of this method.
Our proposed method gives acceptable accuracy with a small use of data, which also reduces
the computational costs.
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1 Introduction

The integral equations appear as reformulations of other mathematical problems, such as
partial differential equations and ordinary differential equations. Over the last few years,
the theory and application of integral equations of the third kind have been a major theme
in applied mathematics. Researchers have conducted extensive scientific studies on these
equations. Third kind Volterra integral equations have received greater attention; they have
appeared in many problems in different branches of science and engineering, such as heat
transfer, population growth models, and shock wave problems. In recent years, meshless
methods have attracted the attention of mathematicians and engineers. Therefore, there
are several works on meshless approximation methods in various branches of science. For
instance, RBFs are extensively applied for the approximation of multivariate functions or
the interpolation of sparse data. The main purpose of this paper is to study the numerical
solution by meshless techniques of a class of linear and nonlinear VIEs of the third kind in
the following form:

tβu(t) = tβ f (t) +
∫ t

0
sβ−1k(t, s)G(u(s))ds, t ∈ I , (1)

and

tβu(t) = tβ f (t) +
∫ t

0
sβ−1k(t, s)u(s)ds, t ∈ I , (2)

in which sβ−1k(t, s) ∈ C (D), tβ f (t) ∈ C(I ), I = [0, T ], u(t) is an unknown function,
D := {(t, s), 0 ≤ s ≤ t, t ∈ I } and G ∈ C1(R). The Eq. (1) can be written in the form of
the equivalent cordial integral equation

u(t) = f (t) + (Vk,β

)
(u)(t), t ∈ I ,

in which

(Vk,β

)
(u)(t) =

∫ t

0
t−1φ

( s

t

)
k(t, s)G(u(s))ds,

where φ(r) = rβ−1 ∈ L1(0, 1).
Whereas, the Eq. (2) can be written in the form of the equivalent cordial integral equation

u(t) = f (t) + (Vk) (u)(t), t ∈ I ,

in which

(Vk) (u)(t) =
∫ t

0
t−1φ

( s

t

)
k(t, s)u(s)ds,

where φ(r) = rβ−1 ∈ L1(0, 1) is called the core (Vainikko 2009). Many researchers in
different branches of science and engineering have been interested in the numerical solution
of integral equations of the third kind. We would like to review some of the most recent work
concerning the numerical solution of these equations, like the spectral collocation method
presented by Dastjerdi and Shayanfard (2021). In Shayanfard et al. (2019) the multistep
collocation method is applied to solve linear Volterra integral equations of the third kind.
The existence, uniqueness, and regularity of the solution of linear VIEs of the third kind
are examined in Allaei et al. (2015). For a detailed discussion of the analytical properties of
solutions of linear and nonlinear VIEs of the third kind, see also Song et al. (2019), Vainikko
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(2009, 2010b). Whereas for equations with compact operators, the numerical analysis is
analogous to that of classical VIEs of the second kind (see, for example, Brunner et al.
1999; Brunner 2004). A numerical analysis of collocation methods for third-kind VIEs is
investigated in Allaei et al. (2017). The superconvergence analysis of collocation methods is
presented in Song et al. (2022). Over the past few decades, meshless techniques have attracted
the attention of various researchers in many fields of applied sciences and engineering. The
meshless approximations have important applications in various computational mathematics
problems, such as integral equations (Aourir et al. 2024). Meshless methods don’t need a
structured grid and use only a scattered set of collocation points. The RBFs are efficient
procedures for interpolating an unknown function on a scattered set of points that have been
used in the past few decades. It is important to mention that the RBFmethod does not require
any domain elements, so it is meshless. The history of RBF estimates dates back to 1968. The
most common basic meshless techniques are known in the literature as radial basis functions
(RBFs) and moving least squares (MLS) methods. In this paper, we propose a new method
based on the RBFmethod for the solution of a class of linear and nonlinear third kind Volterra
integral equations of the form (1) and (2).We use RBFswith collocation nodes

{
t j
}N

j=1 which
are the zeros of the shifted Legendre polynomial L N (t), 0 ≤ t ≤ 1. The shifted Legendre
polynomials Li (t) are defined on the interval [0, 1]

L0(t) = 1, L1(t) = 2t − 1

Li+1(t) = 2i + 1

i + 1
(2t − 1)Li (t) − i

i + 1
Li−1(t), i = 1, 2, 3, . . .

The outline of this paper contains the following sections

• Section2: Existence and uniqueness of solutions are presented.
• Section3: We introduce the radial basis function.
• Section4: The proposed method is introduced and applied to linear and nonlinear VIEs

of the third kind of the form (1) and (2).
• Section5: The convergence of this method is analyzed.
• Section6: Numerical experiments are carried out in comparisonwith other existingmeth-

ods to show the accuracy and efficiency of the proposed method.
• Section7: Conclusions and further work.

2 Existence and uniqueness of solutions of class of third-kind VIEs

2.1 Class of nonlinear VIEs of the third kind

Theorem 1 (Brunner 2017) Let’s assume that

(a) φ ∈ L1(0, 1), f ∈ C(I ) and k ∈ C(D),
(b) G ′(u) ∈ C(E), where E is some open set in R. Then, (1) has a unique solution u ∈ C(I ).

Theorem 2 (Brunner 2017) Let’s suppose that

(a) φ ∈ L1(0, 1),
(b) k ∈ Cm (D) for certain m ≥ 1. Therefore, for each f ∈ Cm(I ), (1) has a unique solution

u ∈ Cm(I ).

Remark 1 For 0 < β < 1 or β = 1 and k(0, 0) = 0, the operator Vk,β is compact (Song
et al. 2019).
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2.2 Class of linear VIEs of the third kind

The existence and uniqueness of the solution of linear VIEs of the third kind are discussed
in Vainikko (2009, 2010a) and Yang (2015).

Theorem 3 Let 0 < β ≤ 1, k ∈ C(I ). Then the operator Vk has the following properties:

(i) For β ∈ (0, 1), the operator Vk is compact, and the operator I − Vk has a bounded
inverse operator from L∞(I ) to L∞(I ).

(ii) For β = 1, the operator Vk is compact if and only if k(0, 0) = 0.
(iii) For β = 1, the spectrum of the operator Vk is given by

σ (Vk) = {0} ∪ {k(0, 0)(1 + λ)−1 : Re λ ≥ 0
}
.

(iv) For β = 1, the operator I −Vk has a bounded inverse from L∞(I ) to L∞(I ) if and only
if k(0, 0) < 1.

Theorem 4 Let’s suppose that k ∈ C(D). So, for all f ∈ C(I ) (2) has a unique continuous
solution u on C(I ) if any of the following characteristics is satisfied

(i) 0 < β < 1.
(ii) β = 1, k(0, 0) = 0.
(iii) β = 1, k(0, 0) �= 0 and 1 /∈ σ0 (Vk).

3 An outline of the RBF approximation

In this section, we review some definitions and properties of the RBFs method (Wendland
2005). The radial basis function (RBF) method for multivariate approximation is one of the
most frequently applied tools in modern approximation theory due to its accuracy. The good
conditionality of the interpolation problem for scattered data by the RBFs method is that
the function φ used in constructing the RBFs is positive definite, then the corresponding
interpolation matrix is also positive definite and so nonsingular. The meshless method does
not need a mesh to discretize the problem domain under consideration, and the estimated
solution is constructed entirely on the basis of a set of scattered nodes.

Definition 1 (Wendland 2005; Fasshauer 2006) A function � : Rd → R is said to be radial
if there exists a function φ : [0,∞) → R such that �(t) = φ (‖t‖2), for all t ∈ R

d .

In order to introduce the multivariate scattered data interpolation by radial basis functions,
let us consider the following definition

Definition 2 (Wendland 2005) A real-valued continuous even function � is conditionally
positive definite, if for all sets X = {ti }N

i=1 ⊂ R
d of distinct points, and for all vectors

λ = [λ1, . . . , λN ]T ∈ R
N , the quadratic form

N∑
i=1

N∑
j=1

λiλ j�
(
ti − t j

)
,

is positive.
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Table 1 Some well-known functions that generate RBFs

Name of RBFs Definition

Gaussian (GA) φ(r) = exp
(
−εr2

)

Multiquadrics (MQ) φ(r) =
√

r2 + ε2

Inverse multiquadrics (IMQ) φ(r) =
(√

r2 + ε2
)−1

Thin plate spline (TPS) φ(r) = (−1)k+1r2k log(r), k ∈ N

Inverse quartics (IQ) φ(r) =
(

r2 + ε2
)−1

Some of the well known RBFs are mentioned in Table 1. The RBF spaces are produced
by φ j (·) = φ

(∥∥· − t j
∥∥), where φ : R+ → R is a given, continuous univariate function, and{

t j
}
are some nodes in the domain of the problem. Let the set X = {t j

}N
j=1, where N is the

number of data points. Given data
{
t j , u

(
t j
)}N

j=1, in interpolation of the scattered data using
RBFs, the approximation of a function u is generally presented in the form

u (t) ≈ PN u(t) =
N∑

i=1

λiφ (‖t − ti‖) , t ∈ R
d . (3)

The interpolation problem is to find λi , i = 1, . . . , N such that the interpolant PN u, all data
satisfied

PN u (ti ) = u (ti ) , i = 1, . . . , N .

This can be lead to a system of equations for the unknown coefficients λi

Aλ = u,

where λ = [λ1, . . . , λN ]T , u = [u1, . . . , uN ]T and A = (
φ
(∥∥tk − t j

∥∥)) is named the
interpolation matrix or the system matrix.

We know that this system has only one solution when the matrix A is non-singular. If we
apply positive definite RBFs, the generated coefficient matrix A is non-singular, and so the
solution of the interpolation problem is unique.

Definition 3 (Wendland 2005; Fasshauer 2006) A function φ : [0,∞) → R that is in C[0,
∞) ∩ C∞(0,∞) and fulfills

(−1)lφ(l)(r) ≥ 0, r > 0, l = 0, 1, 2, . . . ,

is known as completely monotone on [0,∞).

The relation between positive definite RBFs and completely monotone functions is given
by the following theorem (Wendland 2005; Schoenberg 1938).

Theorem 5 A function φ is completely monotone on [0,∞) if and only if � = φ
(‖ · ‖2) is

positive definite and radial basis on R
s for each s.

Theorem 6 A function φ is completely monotone on [0,∞) but not constant, then � =
φ
(‖.‖2) is strictly positive definite and radial basis on R

s for each s.
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There exists an associated Hilbert space where the radial basis function yields a better
approximation of a chosen function. Every radial basis and strictly positive definite functions
yield reproducing kernels with respect to certain Hilbert spaces or semi-Hilbert spaces. For
this purpose, we define reproducing kernels.

Definition 4 (Buhmann 2003) Let H be a real Hilbert space of functions u : � → R. A
function K : � × � → R is known as reproducing kernel for H if

• K (t, .) ∈ H for each t ∈ �,

• u(t) = 〈u, K (., t)〉H for each u ∈ H and each t ∈ �.

There is a connection between reproducing-kernel Hilbert spaces and positive definite kernels
(Wendland 2005). In fact, if K (t, s) = �(t − s), t, s ∈ R, where � is a radial basis function,
then K (t, s) is a symmetric reproducing kernel and

H�� = span{�(· − s) : s ∈ �},
is the space with an associated bilinear form

〈
N∑

i=1

ci�(· − ti ) ,

N∑
k=1

λk�(· − sk)

〉

�

=
N∑

i=1

N∑
k=1

ciλk�(ti , sk) , ti , sk ∈ �.

Theorem 7 (Wendland 2005) If � is a radial basis and strictly positive definite function, then
the bilinear form 〈, 〉� defines an inner product on H�(�). Moreover, H�(�) is a pre-Hilbert
space with reproducing �.

Definition 5 (Fasshauer 2006) The native spaceℵ�(�) of� is now defined to be the comple-
tion of H�(�)with respect to the�-norm ‖·‖� so that ‖u‖� = ‖u‖ℵ�(�) for all u ∈ ℵ�(�).

The RBFs contain a parameter c, called the shape parameter, which affects the accuracy
of the solution and the conditioning of the collocation matrix. The shape parameter has been
studied by many authors. For example,

• Hardy’s shape parameter (Hardy 1971)

c = 0.815d where d = 1

N

N∑
i=1

di ,

in which di is the distance from i th center to the nearest neighbor and N is the total
number of centers.

• Franke’s shape parameter (Franke 1982)

c = 1.25D√
N

,

in which D is the diameter of smallest circle encompassing all the center locations and
N is the total number of centers.

• Fasshauer’s shape parameter (Fasshauer 2002)

c = 2√
N

,

in which N is the total number of centers.
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However, in the cases ofMQ, inverse IMQ andGA, the accuracy of the RBF solution depends
largely on the choice of parameter c. InGA, for example, a fixed number of N and the smallest
shape parameters provide the most accurate approximation. The choice of shape parameters
is an essential task in the approximation of functions using RBF, and researchers have always
been interested in choosing an appropriate shape parameter. We estimate the integral of f (t)
on [−1, 1] by

∫ 1

−1
f (t)dt =

N∑
i=1

wi f (ti ) ,

wi = 2

N (N + 1) [PN (ti )]2
, i = 1, . . . , N ,

where wi are the Legendre–Gauss–Lobatto weights.

4 Description of themethod

4.1 Formulation for class of linear Volterra integral equations of the third kind

This subsection presents an RBF scheme for solving a class of linear VIEs of the third kind.
RBFs are computational means for approximating complicated functions or functions in
several variables. The basic idea of the RBF method for solving a class of linear Volterra
integral equations of the third kind is to employ a linear combination of RBFs to approximate
the unknown function. Therefore, the integral equation is transformed into a combination of
RBFs and their coefficients. Then, the weight coefficients of the RBFs can be computed using
the collocation method. Finally, an approximate formula for the unknown function can be
obtained. Let’s apply the RBF approximation method for solving (2). In order to do this, we
require a RBF and nodes in [a, b]. Therefore, we put

φ j (t) = �(r), r = ∣∣t − t j
∣∣ .

We can rewrite (2) as follows

u(t) = f (t) +
∫ t

0
t−βsβ−1k(t, s)u(s)ds, t ∈ I , (4)

To use the proposed new technique, based on the RBF collocationmethod, to find an approxi-
mate solution of the Eq. (2), it is necessary to transform the previous equation into an algebraic
system of equations. To apply the suggested scheme, we estimate the unknown function u(t)
by the RBFs method. For this, we can introduce

ũ(t) =
N∑

j=1

d jφ j (t), t ∈ [a, b], (5)

as an approximation of u(t). Now, by substituting (5) into (4) we obtain

N∑
j=1

d jφ j (t) −
∫ t

0
t−βsβ−1k(t, s)

⎡
⎣ N∑

j=0

d jφ j (s)

⎤
⎦ ds = f (t),
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by simplifying, we have

N∑
j=1

d j [φ j (t) −
∫ t

0
t−βsβ−1k(t, s)φ j (s)ds] = f (t). (6)

In order to compute the integral in this equation, let the collocation points be the set of
quadrature formula points {ti }N

i=1. Suppose that Eq. (6) holds at collocation points, i.e.

N∑
j=1

d j [φ j (ti ) −
∫ ti

0
(ti )

−βsβ−1k(ti , s)φ j (s)ds] = f (ti ).

By using the Legendre–Gauss–Lobatto integration formula, we can evaluate the above inte-
gral. In order to do so, we apply the following transformation:

s(t, η) = t

2
η + t

2
, −1 ≤ η ≤ 1.

Hence, the above equation can be written as follows

N∑
j=1

d j [φ j (ti ) − 1

2

∫ 1

−1
(ti )

1−β(s (ti , η))β−1k(ti , s (ti , η))φ j (s (ti , η))dη] = f (ti ),

we approximate the above integrals using the l points quadrature formula with the quadrature
points {ηl}N

l=1 and the quadrature weights{wl}N
l=1. Therefore, the above equation can be

written as follows
N∑

j=1

d̂ j [φ j (ti ) − 1

2

N∑
l=1

wl(ti )
1−β(s (ti , ηl))

β−1k(ti , s (ti , ηl))φ j (s (ti , ηl))] = f (ti ), (7)

where d̂ j are approximations for d j , then by assuming that is exact for the collocation points,
we get a system of linear equations 
χ = � where


 = [φ j (ti ) − 1

2

N∑
l=1

wl(ti )
1−β(s (ti , ηl))

β−1k(ti , s (ti , ηl))φ j (s (ti , ηl))]i, j ,

� = [ f (t1) , f (t2) , . . . , f (tN )]T ,

χ =
[
d̂1, d̂2, . . . , d̂N

]T
.

By solving the above system using mathematical software with a suitable numerical method,
we obtain the values of the unknown coefficients d̂ j . Then finally u(t) can be approximated
at any point t ∈ [a, b] by

û(t) =
N∑

j=1

d̂ jφ j (t).

4.2 Formulation for class of nonlinear Volterra integral equation of the third kind

In this section, we use the RBF approximation to solve (1). We can rewrite (1) as follows

u(t) = f (t) +
∫ t

0
t−βsβ−1k(t, s)G(u(s))ds, t ∈ I . (8)
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First, we need a radial basis function and nodal points in the interval [a, b]. Therefore, let’s
take

φ j (t) = �(r), r = ∣∣t − t j
∣∣ .

By substituting

uh(t) =
N∑

j=1

d jφ j (t),

as an estimation to u(t) in (8), we get

uh(t) = f (t) +
∫ t

0
t−βsβ−1k(t, s)G(uh(s))ds, t ∈ I

or
N∑

j=1

d jφ j (t) = f (t) +
∫ t

0
t−βsβ−1k(t, s)G(

N∑
j=1

d jφ j (s))ds, t ∈ I

By using the Legendre–Gauss–Lobatto integration formula, we can calculate the above inte-
gral. So, we need to change the integration distance [0, t] to a fixed distance [0, 1]. To do
this, we use the following transformation

s := t x, x ∈ [0, 1], s ∈ [0, t].
We obtain

N∑
j=1

d jφ j (t) = f (t) +
∫ 1

0
t1−β(t x)β−1k(t, t x)G(

N∑
j=1

d jφ j (t x))dx, t ∈ I . (9)

In order to solve the problem, let the collocation points be the set of quadrature formula
points ti , i = 0, . . . , n. Suppose (9) holds at the collocation points, we obtain the following
system of nonlinear equations

N∑
j=1

d jφ j (ti ) = f (ti ) +
∫ 1

0
t1−β
i (ti x)β−1k(ti , ti x)G(

N∑
j=1

d jφ j (ti x))dx i = 0, . . . , n.

(10)

By using quadrature formula with the quadrature points {γl}N
l=1 and the quadrature weights

{wl}N
l=1 in (10), we obtain

N∑
j=1

d̂ jφ j (ti ) −
N∑

l=1

wl t
1−β
i (tiγl)

β−1k(ti , tiγl)G

⎛
⎝ N∑

j=1

d̂ jφ j (tiγl)

⎞
⎠ = f (ti ) i = 0, . . . , n,

(11)

where d̂ j are approximations for d j . This is a system of nonlinear equations that can be solved
by an appropriate numerical method, which then provides the coefficients d̂ j . By solving the
above system using mathematical software, u(t) can be estimated by

ũh(t) =
N∑

j=1

d̂ jφ j (t). (12)
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5 Convergence analysis

In this section, we investigate the error analysis of the proposed method for solving a class
of Volterra integral equations of the third kind. As mentioned in the previous sections, the
coefficient matrix of the interpolation by RBFs is non-singular. This matrix has a very large
condition number. Thus, a small perturbation of the problem input causes a large variation.
Note that the condition number of the global RBFs increases as the number of N nodes in
the domain increases to get accurate results. We introduce an estimation of the error of the
proposed method based on strictly positive definite RBFs. A comparable approach can be
used to get an estimate of the error for the suggested scheme based on strictly conditionally
positive definite RBFs. We are interested in how the interpolation approaches the function u
on � when the set of data X becomes denser in �. We now move to the estimation of the
RBF interpolation error, which is introduced in terms of the fill distance parameter hX ,�.

Definition 6 (Fasshauer 2006) The fill distance of a given set X = {ti }N
i=1 consisting of

pairwise distinct points in � can be defined as

hX ,� = sup
t∈�

min
t j ∈X

∥∥t − t j
∥∥ ,

which shows how well the data in the set X fill out the domain �.

Definition 7 The separation distance of � = {ti }N
i=1 ⊂ � is defined by

qX = 1

2
min
i �= j

∥∥ti − t j
∥∥ .

The set X is said to be quasi-uniform with respect to a constant c > 0 if

qX ≤ hX ,� ≤ cqX .

We limit ourselves to domains that satisfy the specific interior cone condition as follows

Definition 8 (Wendland 2005) A set � is said to satisfy an interior cone condition if there
exists an angle θ ∈ (0, π

2

)
and a radius r > 0 such that for every given t ∈ � a unit vector

η(t) exists such that the cone

C(t, η(t), θ, r) =
{

t + λs : s ∈ R
d , ‖s‖2 = 1, sT η(t) ≥ cos(θ), λ ∈ [0, r ]

}
,

is contained in �.

Definition 9 (Wendland 2005) Suppose � ∈ C
(
R

d
) ∩ L1

(
R

d
)
is a real-valued strictly

positive definite function. Then the real native Hilbert space of � on Rd is inserted as

ℵ�

(
R

d
)

=
{

u ∈ C
(
R

d
)

∩ L2
(
R

d
)

: û√
�̂

∈ L2
(
R

d
)}

,

with inner product

〈u, γ 〉�
(
R

d
)

= 1√
2π

〈
û√
�̂

,
γ̂√
�̂

〉

L2(Rd)

= 1√
2π

∫
Rd

û(w)γ̂ (w)√
�̂

dw,

where û indicate Fourier transform of u. Moreover, each u ∈ ℵ�

(
R

d
)
has the representation

u(t) = 1√
2π

∫
Rd

û(w)eitw dw.
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Theorem 8 (Wendland 2005) Let � is positive definite RBF with infinitely smoothness.
Assume that � ⊂ R

d be open and bounded, satisfying an interior cone condition. Designate
the interpolant of a function u ∈ ℵ�(�) based on this RB F and the distinct set X =
{t1, . . . , tN } by PN u. Thus, for every l ∈ N there exist constants h0(l), Cl such that

‖u − PN u‖L∞(�) ≤ Cl h
l
X ,�|u|ℵ�(�),

for all t ∈ �, provided hX ,� ≤ h0(l).

As a conclusion from Theorem 8, for small enough hX ,�, some positive constant c and
u ∈ ℵ�(�), we give the error bound as follows For GAs, we have

Theorem 9 (Wendland 2005) The Enhanced error bound associated with Gaussian (GA)

�(t) = e
(−c‖t‖2), c > 0

is computed in the following manner

‖u − PN u‖L∞(�) ≤ e

(
− c|log hX ,�|

hX ,�

)
‖u‖ℵ�(�),

where c is a constant, hX ,� is sufficiently small, and u ∈ ℵ�(�).

For IMQs, we have

Theorem 10 (Wendland 2005) The Enhanced error bound associated with inverse multi-
quadrics (IMQ)

�(t) = (‖t‖2 + c2
)β

, c > 0, β < 0, or β > 0 and β /∈ N

is calculated in the following way

‖u − PN u‖L∞(�) ≤ e

(
− c

hX ,�

)
‖u‖ℵ�(�).

We can express (4) in abstract form as follows

(I − K)u = f ,

where the integral operator K : C(�) → C(�) is defined as follows

Ku(t) =
∫ t

0
t−βsβ−1k(t, s)u(s)ds. (13)

The Geometric Series Theorem (Atkinson 1997) involves that the operator I − K has a
bounded inverse and

∥∥(I − K)−1
∥∥ ≤ 1

1 − ‖K‖ .

The projection operator PN : C(�) → CN (�) for the collocation points {t1, . . . , tN } ⊂ �

is set as follows

PN u(t) =
N∑

k=1

λkφ (‖t − tk‖) , t ∈ �,
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where CN (�) = span {�1, . . . , �N } with the dimension dN and the coefficients {λk} deter-
mined by solving the linear system

PN u (ti ) = u (ti ) , i = 1, . . . , N .

As a result, the system associated with the collocation method is equivalent to the abstract
form

(I − PNK) uN = PN f . (14)

We apply the quadrature rule relative to the coefficients {ηl} and weights {wl}, a sequence of
numerical integral operators KN is entered defined by

KN u(t) = 1

2

N∑
l=1

wl t
1−β(s (t, ηl))

β−1k(t, s (t, ηl))u(s (t, ηl)) . (15)

Here are the assumptions for the approximation operators (Atkinson andPotra 1987;Atkinson
1997, 1993).

• H1 : KN is a collectively compact family on C(�) i.e., for any bounded set B ⊂ C(�)

the closure of the set ∪∞
N=1KN (B) is compact in C(�).

• H2 : KN is pointwise convergent to K on C(�).

By using (15) and (3), therefore (7) becomes

(I − PNKN ) ûN = PN f . (16)

In order to achieve themost precise estimate solution, the iterated discrete collocation solution
can be achieved.

ūN = f + PNKN ûN , (17)

therefore, it is easy to notice that

PN ūN = ûN .

Then, we have

(I − KNPN ) ūN = f .

Theorem 11 (Atkinson 1997) Let {PN } be a family of interpolatory projection operators on
C(�) to C(�), and assume that

PN u → u as N → ∞,

for all u ∈ C(�) and u0 be a unique solution of (4). Then for all sufficiently large N, say
N > M, (I − KNPN )−1 exists and is uniformly bounded. Also, for the solution ūN

‖ūN − u0‖L∞(�) ≤ ∥∥(I − KNPN )−1
∥∥ ‖Ku0 − KNPN u0‖L∞(�) , N ≥ M .

This imposes a bound on the rate of convergence of the iterative solution ūN to u0. Thus, the
error analysis is completed by the next theorem

Theorem 12 Assume that the assumptions of Theorem 8 are satisfied. Also, suppose that
u0 ∈ ℵ�(�) is the unique exact solution of Eq. (4) and the suggested method has been
installed on the quasi-uniform set X = {ti }N

i=1 ⊂ �. So there is M > 0 such that for every
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N > M, the method has a unique solution ûN . Moreover, there exist constants η1, η2, η3 and
c such that for the Gaussians (GA), we have

∥∥ûN − u0
∥∥

L∞(�)
≤ (1 + η3) e

(
− c|log hX ,�|

hX ,�

)
‖u0‖ℵφ(�)

+ η3

⎛
⎝η1

⎧⎨
⎩‖Ku0 − KN u0‖L∞(�) + η2 (1 + η3) e

(
− c|log hX ,�|

hX ,�

)
‖u0‖ℵφ(�)

⎫⎬
⎭
⎞
⎠ ,

and for the inverse multiquadrics (IMQ), as a result

∥∥ûN − u0
∥∥

L∞(�)
≤ (1 + η3) e

(
− c

hX ,�

)
‖u0‖ℵφ(�)

+ η3

(
η1

{
‖Ku0 − KN u0‖L∞(�) + η2 (1 + η3) e

(
− c

hX ,�

)
‖u0‖ℵφ(�)

})
.

Proof According toTheorem11, the iteratedmethod has a solution ūN and as (I − KNPN )−1

exists and is uniformly bounded, i.e.
∥∥(I − KNPN )−1

∥∥ ≤ η1 < ∞.

From pointwise convergence of KN for a certain great N , which means that there exists a
certain η2 > 0 so that we can suppose that

‖KN ‖ ≤ η2 < ∞.

Furthermore, according to the uniform boundedness principle for radial basis functions, it
follows that

‖PN ‖ ≤ η3 < ∞, N ∈ N.

So, we get this

‖ūN − u0‖L∞(�) ≤
∥∥∥(I − KNPN )−1

∥∥∥ ‖Ku0 − KNPN u0‖L∞(�)

≤ η1 ‖Ku0 − KNPN u0‖L∞(�)

≤ η1
{‖Ku0 − KN u0‖L∞(�) + ‖KN (u0 − PN u0)‖L∞(�)

}
≤ η1

{‖Ku0 − KN u0‖L∞(�) + η2 ‖u0 − PN u0‖L∞(�)

}

≤ η1

{
‖Ku0 − KN u0‖L∞(�) + η2

(∥∥u0 − û0
∥∥

L∞(�)
+ ∥∥PN u0 − PN û0

∥∥
L∞(�)

)}

≤ η1

{
‖Ku0 − KN u0‖L∞(�) + η2 (1 + η3)

∥∥u0 − û0
∥∥

L∞(�)

}
.

Using the error bound of Theorem 10, we obtain

‖ūN − u0‖L∞(�) ≤ η1

{
‖Ku0 − KN u0‖L∞(�) + η2 (1 + η3) e

(
− c

hX ,�

)
‖u0‖ℵφ(�)

}
.

Furthermore, let ûN = PN ūN , and consider the decomposition

u0 − ûN = u0 − PN ūN = (u0 − PN u0) + PN (u0 − ūN ) .

This enables us to obtain
∥∥ûN − u0

∥∥
L∞(�)

≤ ‖u0 − PN u0‖L∞(�) + ‖PN ‖ ‖u0 − ūN ‖L∞(�) .
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So, we can achieve∥∥ûN − u0
∥∥

L∞(�)
≤ ‖u0 − PN u0‖L∞(�) + η3 ‖ūN − u0‖L∞(�)

≤ (1 + η3) e

(
− c

hX ,�

)
‖u0‖ℵφ(�)

+ η3

(
η1

{
‖Ku0 − KN u0‖L∞(�) + η2 (1 + η3) e

(
− c

hX ,�

)
‖u0‖ℵφ(�)

})
,

the proof is complete. ��

6 Numerical results

In order to illustrate the performance of theRBFsmethod in solving a class ofVIEs of the third
kind and to demonstrate the accuracy, efficiency, and applicability of the proposed method,
we consider both the linear and non-linear classes of the third kind of VIEs. In all examples,
we use the Gaussian (GA) and inverse Multiquadric (IMQ) RBFs, whose applicability and
efficiency strongly depend on the shape parameters. Also, the results obtained are compared
with the method based on the use of the MLS scheme presented in Mirzaei and Dehghan
(2010). For the tests in the MLS method, we use the linear case (m = 1), the quadratic case
(m = 2), and the degree 3 case (m = 3) and the Gaussian weight functions. Furthermore,
the accuracy of the numerical solutions can be computed by measuring the maximum error
and the mean error, which can be defined in the following way

‖eN ‖2 =
(∫ 1

0
|e(t)|2dt

) 1
2

,

‖eN ‖∞ = max
t∈[0,1]|e(t)|,

where

e(t) = u(t) − ûN (t),

and the exact solution u(t) is evaluated by the numerical solution ûN (t) achieved by the
current paper. All routines run on a Core(TM) i3-6006U CPU @ 2.00 GHz CPU and 4 GB
RAM.

6.1 Class of linear VIEs of the third kind

Example 1 Consider the following class of third-kind VIE

tβu(t) = tβ f (t) +
∫ t

0
sβ−1k(t, s)u(s)ds, t ∈ [0, 1],

where k(t, s) = set−s , β = 1, the exact solution is u(t) = e−t and f (t) is defined accord-
ingly. Table 2 reports numerical results in terms of ‖eN ‖2 and ‖eN ‖∞ at different numbers
of N for Gaussian and Inverse Multiquadric (IMQ) functions as radial basis functions with
β = 1. As indicated by the theoretical results presented in the Theorems 9 and 10, described
in the previous section, we can see that the accuracy increases with the increase in the num-
ber of collocation points. Accuracy of the present approximation is examined in the L2-error
and L∞-error. The IMQ RBF method has a clear advantage over the Gaussian RBF method,
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Table 2 Numerical results for
Example 1 with β = 1 by RBF
method

GA (c = 2) GA (c = 2) IMQ (c = 3)

N ‖e‖2 ‖e‖∞ ‖e‖∞

5 4.4 ×10−4 7.7 ×10−4 1.8 ×10−5

10 7.2 ×10−8 1.2 ×10−7 7.1 ×10−10

15 4.1 ×10−12 6.8 ×10−12 2.6 ×10−14

20 1.0 ×10−16 1.6 ×10−16 1.0 ×10−18

25 1.3 ×10−21 2.2 ×10−21 3.6 ×10−23

Table 3 ‖e‖∞ for Example 1
with different values of m, N and
β = 1 by MLS method

N m = 1 m = 2 m = 3

3 2.0 ×10−4 3.2 × 10−4 2.3 × 10−4

7 8.9 ×10−5 2 ×10−6 6.8 × 10−7

11 5.1 × 10−6 3.3 × 10−7 1.8 × 10−7

16 4.5 × 10−7 3.5 × 10−8 4.0 × 10−9

which can be seen in the numerical results. With the superior interpolation performance of
the IMQ function, the method can achieve greater accuracy with fewer nodes. In order to
compare the method presented, we also solve Example 1 using the MLS method, and the
numerical results are shown in Table 3. Table 4 describes the RBF error estimation; it is clear
that the results progressively converge to the exact values as the number of nodes increases.
Figures1 and 2 depict the behavior of the absolute error function for β = 1 on the interval
[0, 1]. The computational efficiency of Example 1 for β = 1 using the presented method
and the MLS scheme is graphically plotted in semi-logarithmic representation in Fig. 3. We
find that the new approach is very fast compared to other methods. The numerical results
obtained demonstrate the accuracy and efficiency of the method compared to other existing
methods. Figure4 illustrates the curve of exact and approximate solutions for β = 1. The
numerical results indicate that the current approach to solving this problem is very practical
and effective.

Example 2 Consider a class of linear third-kind VIEs of the form

tβu(t) = tβ f (t) +
∫ t

0
sβ−1k(t, s)u(s)ds, t ∈ [0, 1],

where k(t, s) = √
s × sin(t), β = 4

5 , the exact solution is given by u(t) = t3 and

f (t) = t5/2(−10 sin(t)t+43
√

t)
43 . Table 5 shows numerical results in terms of ‖eN ‖2 and ‖eN ‖∞

at different numbers of N ’s, and for GA and IMQ RBFs with β = 4
5 , it is clear the errors

decrease as N increase, which proves the convergence of the proposed method. Therefore,
as stated in the previous section, all the results of this example substantiate the theoretical
analysis of the error achieved in Theorems 9 and 10. A comparison of the maximum absolute
error of the suggested method with the MLS method is presented in Table 6. In Table 7, we
summarize the estimation of error by RBF technique with β = 4

5 . This table indicates that
as N increases, the error decreases more rapidly. Figures5 and 6 depict the behavior of the
absolute error function for β = 4

5 on the interval [0, 1]. The computational efficiency of
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Table 4 Estimation of error by RBF (IMQ) for Example 1

(β = 1, N = 26, c = 3)

t Exact Approx | Error |

0.1 0.904837418035959573164249 0.904837418035959573164248 3.37 × 10−25

0.2 0.818730753077981858669935 0.818730753077981858669930 4.53 × 10−24

0.3 0.740818220681717866066873 0.740818220681717866066868 4.79 × 10−24

0.4 0.670320046035639300744432 0.670320046035639300744429 3.60 × 10−24

0.5 0.606530659712633423603799 0.606530659712633423603799 7.90 × 10−26

0.6 0.548811636094026432628458 0.548811636094026432628462 3.35 × 10−24

0.7 0.496585303791409514704800 0.496585303791409514704803 3.88 × 10−24

0.8 0.449328964117221591430102 0.449328964117221591430105 3.24 × 10−24

0.9 0.406569659740599111883454 0.406569659740599111883454 2.82 × 10−25

1 0.367879441171442321595523 0.367879441171442321595525 2.09 × 10−24

Fig. 1 The absolute error function |e(t)| for various values of N for Example 1 by RBF method

example 2 for β = 4
5 using the presented method and the MLS scheme is shown in semi-

logarithmic form in Fig. 7. The results obtained with the scheme presented are better than
those given with the MLS method. Figure8 illustrates the comparison between the exact
and approximate solutions for β = 4

5 . The numerical results correspond well to the exact
solution, which confirms the high accuracy of the considered approach.

Example 3 We test a class of linear VIEs of the third kind of the form

tβu(t) = f (t) +
∫ t

0
sβ−1k(t, s)u(s)ds, t ∈ [0, 1],
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Fig. 2 The absolute error for Example 1 by RBF method

Fig. 3 |e(t)| for various values of N and β = 1 for Example 1

Table 5 Numerical results for
Example 2 with β = 4

5 using
RBF method

GA (c = 2) GA (c = 2) IMQ(c = 3)
N ‖e‖2 ‖e‖∞ ‖e‖∞

6 2.5 ×10−4 4.0 ×10−4 1.2 ×10−5

9 1.2 ×10−6 2.1 ×10−6 1.5 ×10−8

12 6.4 ×10−9 1.0 ×10−8 1.8 ×10−10

15 1.3 ×10−11 3.6 ×10−11 2.0 ×10−11

18 1.4 ×10−12 4.5 ×10−12 4.4 ×10−12
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Fig. 4 The exact solution and
RBF solution of Example 1 with
β = 1

Table 6 ‖e‖∞ for Example 2
with different values of m, N and
β = 4

5 by MLS method

N m = 1 m = 2

3 1.9 ×10−3 7.9 ×10−4

7 5.0 ×10−4 1.2 ×10−5

11 2.7 ×10−5 2.6 ×10−6

21 3.1 ×10−6 4.9 ×10−7

Table 7 Estimation of error by RBF (IMQ) for Example 2

(β = 4
5 , N = 15, c = 3)

t Exact Approx | Error |

0.1 0.0010000000000000 0.0010000000000073 7.39 × 10−15

0.2 0.0080000000000000 0.0079999999999972 2.78 × 10−15

0.3 0.0270000000000000 0.0269999999998808 1.19 × 10−13

0.4 0.0640000000000000 0.0639999999996905 3.09 × 10−13

0.5 0.1250000000000000 0.1249999999990202 9.79 × 10−13

0.6 0.2160000000000000 0.2159999999979150 2.08 × 10−12

0.7 0.3430000000000000 0.3429999999956980 4.30 × 10−12

0.8 0.5120000000000000 0.5119999999923244 7.67 × 10−12

0.9 0.7290000000000000 0.7289999999870534 1.29 × 10−11

1 1 0.9999999999793603 2.06 × 10−11
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Fig. 5 The absolute error function |e(t)| for various values of N for Example 2 by RBF method

Fig. 6 The absolute error for Example 2 by RBF method
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Fig. 7 |e(t)| for various values of N and β = 4
5 for Example 2

Fig. 8 The exact solution and
RBF solution of Example 2 with
β = 4

5

where k(t, s) = sin(s)t
2
3 , β = 3

5 , the exact solution is given by u(t) = t4 and

f (t) =
(
5616 cos(t)LommelS 1

( 1
10 ,

1
2 , t
)+ 3510 sin(t)LommelS 1

( 11
10 ,

3
2 , t
))

t7/6

625

− 5616 sin(t)LommelS 1
( 1
10 ,

1
2 , t
)

t1/6

625
+ t64/15 cos(t) − 234t34/15 cos(t)

25

+ 234t19/15 sin(t)

25
− 18t49/15 sin(t)

5
+ t23/5.
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Table 8 Numerical results for
Example 3 with β = 3

5 by RBF
method

GA (c = 2) GA (c = 2) IMQ (c = 3)
N ‖e‖2 ‖e‖∞ ‖e‖∞

5 1.8 ×10−3 3.1×10−3 2.7 ×10−4

10 4.7 ×10−7 7.9 ×10−7 8.2 ×10−9

15 3.9 ×10−11 6.4 ×10−11 6.1 ×10−13

20 2.7 ×10−15 1.0 ×10−14 9.1 ×10−15

Fig. 9 The absolute error function |e(t)| for various values of N for Example 3 by RBF method

In order to demonstrate the effectiveness of the investigated scheme, ‖e‖∞ and ‖e‖2 are
displayed in Table 8 for various values of N for GA and IMQ functions as radial basis
functions with β = 3

5 . Consequently, as the number of nodes increases, the results converge
towards the exact values.Wehave also compared themaximumabsolute error of the presented
approachwith that of theMLSmethod, as shown in Table 9. Table 10 illustrates the estimation
of error by RBF, and Figs. 9 and 10 depict the behavior of the absolute error function for
β = 3

5 on the interval [0, 1]. According to these figures, the proposed method provides good
precision for the numerical results. The computational efficiency of Example 3 for β = 3

5
using the presented technique and theMLS scheme is graphically plotted in semi-logarithmic
representation in Fig. 11. The results of the new method are much more effective. Figure12
illustrates the curves of exact and approximate solutions for β = 3

5 .
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Fig. 10 The absolute error for Example 3 by RBF method

Fig. 11 |e(t)| for various values of N for Example 3 by RBF method

Table 9 ‖e‖∞ for Example 3
with β = 3

5 by MLS method
N m = 1 m = 2 m = 3

4 2.2 ×10−3 8.8 ×10−4 6.5 ×10−4

8 3.1 ×10−4 6.1 ×10−5 3.3 ×10−6

12 2.0 ×10−5 8.2 ×10−6 2.8 ×10−6

16 5.1 ×10−6 8.8 ×10−7 1.4 ×10−7

20 1.1 ×10−6 5.2 ×10−7 5.1 ×10−8
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Table 10 Estimation of error by RBF (IMQ) for Example 3

(β = 3
5 , N = 17, c = 3)

t Exact Approx | Error |

0.1 0.0001000000000 0.000099999999996 3.41 × 10−15

0.2 0.0016000000000 0.001600000000003 3.92 × 10−15

0.3 0.0081000000000 0.008100000000003 3.28 × 10−15

0.4 0.0256000000000 0.025599999999993 6.91 × 10−15

0.5 0.0625000000000 0.062500000000009 9.46 × 10−15

0.6 0.1296000000000 0.129599999999995 4.80 × 10−15

0.7 0.2401000000000 0.240100000000010 1.06 × 10−14

0.8 0.4096000000000 0.409600000000019 1.92 × 10−14

0.9 0.6561000000000 0.656100000000025 2.54 × 10−14

1 1 1.000000000000048 4.81 × 10−14

Fig. 12 The exact solution and
RBF solution of Example 3 with
β = 3

5

6.2 Class of nonlinear Volterra integral equations of the third kind

Example 4 We consider the following equation as in Dastjerdi and Shayanfard (2021)

tβu(t) = tβ f (t) +
∫ t

0
sβ−1k(t, s)G(u(s))ds, t ∈ I , (18)

where G(u) = sin(u), k(t, s) = s. The exact solution is u(t) = t2 and f (t) is defined
accordingly. We have applied the RBF method to this equation for β = 4

5 and β = 1
3 . To

measure the accuracy of the method studied, ‖e‖∞ and ‖e‖2 are depicted in Tables 11 and 12
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Table 11 Numerical results for
Example 4 with β = 1

3 using
RBF method

GA (c = 2) GA (c = 2) IMQ (c = 2)
N ‖e‖2 ‖e‖∞ ‖e‖∞

3 1.2 ×10−2 2.1 ×10−2 4.1 ×10−3

6 1.0 ×10−4 1.7 ×10−4 1.4 ×10−5

9 8.8 ×10−7 1.4 ×10−6 1.6 ×10−7

12 3.1 ×10−9 9.5 ×10−9 7.3 ×10−9

14 9.5 ×10−10 2.6 ×10−9 2.6 ×10−9

Table 12 Numerical results for
Example 4 with β = 4

5 by RBF
method

GA (c = 2) GA (c = 2) IMQ (c = 2)
N ‖e‖2 ‖e‖∞ ‖e‖∞

3 1.2 ×10−2 2 ×10−2 4.2 ×10−3

6 1.0 ×10−4 1.7 ×10−4 1.3 ×10−5

9 8.8 ×10−7 1.4 ×10−6 1.5 ×10−7

12 1.7 ×10−9 3.3 ×10−9 1.1 ×10−9

14 9.4 ×10−11 2.7 ×10−10 2.4 ×10−10

Table 13 ‖e‖∞ for Example 4
using the MLS method N m = 1 and β = 1

3 m = 1 and β = 4
5

3 1.3 ×10−3 1.2 ×10−3

11 1.6 ×10−5 1.7 ×10−5

14 2.9 ×10−6 2.4 ×10−6

16 1.9 ×10−6 1.0 ×10−6

for β = 1
3 and β = 1

4 and for different N ’s. We can see that as the values of N increase, the
results of the RBF approximation gradually converge to the real solution. To compare this
approach, we also solved the Example 4 using the MLS method, and the numerical results
are shown in Table 13. Table 14 presents the estimation of error by RBF for Example 4 with
β = 4

5 . Figures13 and 14 display the behavior of the absolute error function for β = 4
5 and

β = 1
3 on the interval [0, 1]. The computational efficiency of example 1 using the presented

method and the MLS scheme is depicted in semi-logarithmic representation in Fig. 15. As
we can see, the approximation improves with increasing N and that the RBF approximation
is very powerful and yields good results. The convergence of the proposed method is much
higher than that of the MLS method. Figure16 illustrates the comparison between the exact
and approximate solutions for β = 4

5 . In this example, the approximate solution agrees well
with the analytical solution. It is clear that the method provides accurate numerical solutions
for a class of nonlinear Volterra integral equations of the third kind.

Example 5 Consider the following class of nonlinear third-kind VIE

tβu(t) = tβ f (t) +
∫ t

0
sβ−1k(t, s)G(u(s))ds, t ∈ I , (19)
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Table 14 Estimation of error by
RBF (IMQ) for Example 4 (β = 4

5 , N = 14, c = 2)

t Exact Approx | Error |
0.1 0.0100000000000 0.01000000000011 1.19 × 10−13

0.2 0.0400000000000 0.04000000000220 2.20 × 10−12

0.3 0.0900000000000 0.09000000000617 6.17 × 10−12

0.4 0.1600000000000 0.16000000001337 1.33 × 10−11

0.5 0.2500000000000 0.25000000002768 2.76 × 10−11

0.6 0.3600000000000 0.36000000005125 5.12 × 10−11

0.7 0.4900000000000 0.49000000007789 7.78 × 10−11

0.8 0.6400000000000 0.64000000011783 1.17 × 10−10

0.9 0.8100000000000 0.81000000018653 1.86 × 10−10

1 1 1.00000000022551 2.25 × 10−10

Fig. 13 The absolute error function |e(t)| for various values of N for Example 4 by RBF method

where G(u) = (u)2, k(t, s) = ts, β = 1
2 . The exact solution is u(t) = 3

2 t3 and f (t) is
defined accordingly. Table 15 displays ‖e‖∞ and ‖e‖2 for different N ’s, with β = 1

2 . We
can see that when the values of N increase, the results of the MLS approximation converge
progressively towards the real solution. To compare the presented method, we also solve the
example 5 utilizing the MLS method, and the numerical results are displayed in Table 16.
In Table 17, we summarize the estimation of error by RBF for example 5 with β = 1

2 , and
Figs. 17 and 18 depict the behavior of the absolute error function for β = 1

2 on the interval
[0, 1]. The computational efficiency of example 5 for β = 1

2 using the current method and
the MLS scheme are drawn in semi-logarithmic representation in Fig. 19. As we can see, the

123



117 Page 26 of 34 E. Aourir et al.

Fig. 14 The absolute error function for Example 4 by RBF method

new approach is very fast, and the algorithm of the suggested approach is simpler than the
MLS method. Figure20 graphically shows the comparison between exact and approximate
solutions for β = 1

2 . It turns out that the proposed method gives good results and performs
well for the considered class of Voterra integral equations of the third kind without significant
loss of accuracy.

Example 6 Consider a class of nonlinear VIEs of the third kind of the form

tβu(t) = tβ f (t) +
∫ t

0
sβ−1k(t, s)G(u(s))ds, t ∈ I , (20)

123



Numerical solutions of a class of linear and nonlinear... Page 27 of 34 117

Fig. 15 |e(t)| for β = 4
5 and β = 1

3 and for various values of N for Example 4

Table 15 Numerical results for
Example 5 with β = 1

2 using the
RBF method

GA (c = 2) GA (c = 2) IMQ (c = 2)
N ‖e‖2 ‖e‖∞ ‖e‖∞

3 3.1 ×10−2 5.8 ×10−2 1.4 ×10−2

5 1.6 ×10−3 2.8 ×10−3 4.0 ×10−4

7 6.4 ×10−5 1.1 ×10−4 1.3 ×10−5

9 1.9 ×10−6 3.4 ×10−6 4.4 ×10−7

11 4.8 ×10−8 8.3 ×10−8 1.5 ×10−8

13 1.7 ×10−11 3.0 ×10−11 5.1 ×10−10
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Fig. 16 The exact solution and
RBF solution of Example 4 with
β = 4

5

Table 16 ‖e‖∞ for Example 5
with different values of m, N and
β = 1

2 using the MLS method

N m = 1 m = 2

3 3.3 ×10−3 1.1 ×10−3

7 7.8 ×10−4 1.9 ×10−5

11 4.3 ×10−5 3.4 ×10−6

16 4.7 ×10−6 5.6 ×10−7

Table 17 Estimation of error by
RBF (IMQ) for Example 5 (β = 1

2 , N = 14, c = 2)

t Exact Approx | Error |
0.1 0.0015000000000 0.0014999999038 9.61 × 10−11

0.2 0.0120000000000 0.0120000000271 2.71 × 10−11

0.3 0.0405000000000 0.0405000000153 1.53 × 10−11

0.4 0.0960000000000 0.0959999999813 1.86 × 10−11

0.5 0.1875000000000 0.1874999999989 1.00 × 10−12

0.6 0.3240000000000 0.3240000000225 2.25 × 10−11

0.7 0.5145000000000 0.5144999999784 2.15 × 10−11

0.8 0.7680000000000 0.7679999999713 2.86 × 10−11

0.9 1.0935000000000 1.0935000001230 1.23 × 10−10

1 1.5000000000000 1.4999999998967 1.03 × 10−10
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Fig. 17 The absolute error function |e(t)| for various values of N for Example 5 by RBF method

Fig. 18 The absolute error for Example 5 by RBF method

where β = 1
4 , G(u) = eu , k(t, s) = s

3
4 cos(1+ t2), the exact solution is given by u(t) = e−t

and

f (t) = e−t + (Ei1(−1) cos(t + 1)2 − Ei1
(−e−t) cos(t + 1)2)t−1/4.

Table 18 displays numerical tests in terms of ‖eN ‖2 and ‖eN ‖∞ at various numbers of N for
GA and IMQ with β = 1

4 . The comparison of the maximum absolute error of the presented
technique with the MLS method is given in Table 19. Table 20 summarizes the estimation
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Fig. 19 |e(t)| for various values of N and β = 1
2 for Example 5

Fig. 20 The exact solution and
RBF solution of Example 5 with
β = 1

2

of error by RBF, and Figs. 21 and 22 depict the behavior of the absolute error function for
β = 1

4 on the interval [0, 1]. These graphs indicate that the suggested approach is able to
produce highly accurate numerical results. The computational efficiency of example 6 for
β = 1

4 using the presented technique and the MLS scheme is graphically plotted in semi-
logarithmic representation in Fig. 23. Figure24 illustrates the curves of exact and approximate
solutions for β = 1

4 . The current approach yields accurate numerical solutions for this class
of nonlinear VIEs of the third kind.
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Table 18 Numerical results for
Example 6 with β = 1

4 by RBF
method

GA (c = 2) GA (c = 2) IMQ (c = 2)
N ‖e‖2 ‖e‖∞ ‖e‖∞

3 8.5 ×10−3 1.4 ×10−2 2.2 ×10−3

6 7.9 ×10−5 1.3 ×10−4 1.3 ×10−5

9 4.7 ×10−7 7.8 ×10−7 8.1 ×10−8

12 1.6 ×10−9 2.6 ×10−9 5.7 ×10−10

14 3.0 ×10−11 5.0 ×10−11 2.0 ×10−11

Fig. 21 The absolute error function |e(t)| for various values of N for Example 6 by RBF method

Fig. 22 The absolute error for Example 6 by RBF method
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Fig. 23 |e(t)| for various values of N for Example 6 by RBF method

Table 19 ‖e‖∞ for Example 6
with β = 1

4 by MLS method
N m = 1 m = 2 m = 3

4 1.8 ×10−4 3.2 ×10−5 2.8 ×10−5

8 2.9 ×10−5 2.9 ×10−6 1.6 ×10−7

12 1.1 ×10−6 4.0 ×10−7 8.0 ×10−8

16 4.7 ×10−7 3.4 ×10−8 4.0 ×10−9

Table 20 Estimation of error by RBF (GA) for Example 6

(β = 1
4 , N = 16, c = 2)

t Exact Approx | Error |
0.1 0.9048374180359595 0.9048374180360144 5.48 × 10−14

0.2 0.8187307530779818 0.8187307530787781 7.96 × 10−13

0.3 0.7408182206817178 0.7408182206811732 5.44 × 10−13

0.4 0.6703200460356393 0.6703200460358724 2.33 × 10−13

0.5 0.6065306597126334 0.6065306597126331 2.35 × 10−16

0.6 0.5488116360940264 0.5488116360938166 2.09 × 10−13

0.7 0.4965853037914095 0.4965853037918538 4.44 × 10−13

0.8 0.4493289641172215 0.4493289641166333 5.88 × 10−13

0.9 0.4065696597405991 0.4065696597405734 2.56 × 10−14

1 0.3678794411714423 0.3678794411718371 3.94 × 10−13
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Fig. 24 The exact solution and
RBF solution of Example 6 with
β = 1

4

7 Conclusion

In this current paper, a numerical scheme based on the RBF approach has been used for
the approximate solution of a class of VIEs of the third kind. The algorithm of the scheme
can be easily extended to other classes of Volterra integral equations of the third kind. The
proposed schemeproved to be simple, computationally interesting, and attractive. Themethod
is based on the zeros of Legendre–Gauss–Lobatto collocation points. The precision of the
current method has been clearly proven by a series of numerical experiments. These verify
the validity of the current method, which is efficient, accurate, and reliable for a class of VIEs
of the third kind. Moreover, by comparing the RBF method with exact solutions and with the
MLS collocation method, we show that RBF methods have good reliability and efficiency.
The proposed scheme can produce highly accurate solutions with low memory requirements
and high computing power. With the proposed method, high convergence rates and good
accuracy can be achieved using relatively few data points. The presented method can easily
be developed for other classes of integro-differential equations.
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