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Abstract
In this paper, a relaxed two-step modulus-based matrix synchronous multisplitting iteration
method for solving the linear complementarity problems is constructed. The convergence
conditions of the proposed method are analyzed with the convergence range of the relaxation
parameters. Some parallel numerical experiments under OpenACC framework are given to
show that the proposed method can accelerate the convergence rate of the existing method
significantly.
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1 Introduction

Focus on the numerical algorithms for linear complementarity problems (LCP). Thedefinition
of LCP is as follows: given matrix M ∈ R

n×n and vector q ∈ R
n , finding z ∈ R

n , satisfying
the following constraints

r = Mz + q ≥ 0, z ≥ 0, and zT r = 0,

where for two s×t matrices K = (ki j ) and T = (ti j ) the order K ≥ (>)T means ki j ≥ (>)ti j
for any i and j . The LCP has extremely wide applications in fields such as contact problems,
network equilibriumproblems, free boundary problems and so on; seeCottle andPang (1992),
Murty (1988) and the references therein.

The modulus-based matrix splitting (MMS) iterative method constructed based on LCP’s
equivalent modulus equation by introducing matrix splitting technology had become a
research hotspot in recent years. In 2010, Bai first proposed the MMS iteration method
in Bai (2010), which involves equivalently transforming LCP into the following modulus
equations:

(� + M)x = (� − M)|x | − γ q, (1)

where � is a positive diagonal matrix, γ > 0 and the absolute operation is taken compo-
nentwise. Once the solution x ∈ R

n of (1) is obtained, the solution of LCP is computed by
z = 1

γ
(x+|x |). The type ofMMS iteration methods is more convenient and efficient than the

projected relaxation (Cryer 1971) and themodifiedmodulusmethods (Dong and Jiang 2009).
Furthermore, researchers had promoted and accelerated the MMS method in different ways,
such as Fang (2022), Fang et al. (2023), Fang and Zhu (2019), Huang andMa (2018), Ke and
Ma (2014), Ke et al. (2018), Ren et al. (2019), Song et al. (2022), Wu et al. (2018), Zhang
(2011), Zheng et al. (2021), Zheng et al. (2017), Zheng et al. (xxxx), Zheng and Vong (2021),
Zheng et al. (2019). On the other hand, by high-performance computers, the parallel methods
had been studied by introducing synchronous multisplitting techniques into (1). In Bai and
Zhang (2013b), the modulus-based synchronous multisplitting (MSM) iteration method was
first introduced. The idea of the MSM method is to solve a simple linear equation system by
evenly distributing workload, combining different matrix splittings at every iteration in each
worker. By combining different acceleration techniques, the MSM method had also been
improved in subsequent researches, such as Bai and Zhang (2013a), Wu and Li (2019), Xu
et al. (2020), Zhang (2014), Zhang (2015).

Among numerous acceleration technologies ofMMS andMSM, the two-stepmethod is an
important one,whose idea is to use two different splittings of the systemmatrixM to construct
two linear systemswhich need to be solved in each iteration. The advantage of this approach is
that it can fully utilize the elements’ information of the systemmatrix to achieve acceleration.
The two-step methods for solving LCP can be mainly divided into two categories: serial
and parallel, see Zhang (2011) and Zhang (2015) for details, respectively. The two-step
method also has important applications in the iterative solution of linear equations. In a
recent literature (Bai xxxx), Bai had discussed in detail the the two-step MMS paradigm for
linear equations, where a TMSI paragigm was introduced, which can be seen as a result of
combining the techniques of two-step splitting and relaxation.

In this paper, we further focuses on the acceleration of two-step parallel methods for solv-
ing LCP. Inspired by the TMSI paradigm in Bai (xxxx), we will introduce relaxed technology
on the two-stepMSM (TMSM) given in Zhang (2015) and construct a relaxed two-step paral-
lel method in Sect. 2. Next, we provide convergence analysis of the proposedmethod to obtain
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the selection range of relaxed parameters in Sect. 3, where the given convergence results can
generalize and improve the corresponding ones in Zhang (2015). In Sect. 4, numerical exam-
ples are given to show that the proposedmethod can converge faster than the existingmethods.
Finally, the conclusions are presented in the last section.

Next, we provide some notations, definitions, and results that need to be used in subsequent
discussions.

Use e to denote an n × 1 vector whose entries are all equal to 1 and diag(x) to denote an
n×n diagonal matrix whose main diagonal is x ∈ R

n . Let M = (mi j ) ∈ R
n×n . The absolute

of M is denoted as |M | = (|mi j |). The comparison matrix of M is denoted as 〈M〉 = (m′
i j ),

defined as

m′
i j =

{ |mii |, if i = j,
−|mi j |, if i �= j .

The spectral radius of M is denoted as ρ(M). The diagonal matrix formed by the diagonal
elements of M is denoted as DM , the upper triangular matrix formed by the strictly upper
triangular part is denoted as −UM , and the lower triangular matrix formed by the strictly
lower triangular part is denoted as −LM . Note that we have M = DM − LM − UM . The
following are the definitions of some special matrices and the definitions of matrix splittings
(Bai 1999; Berman and Plemmons 1994; Frommer and Szyld 1992):

• if mi j ≤ 0 for i �= j , M is called a Z -matrix;
• if M is a nonsingular Z -matrix and M−1 ≥ 0, M is called a nonsingular M-matrix;
• if |mii | >

∑
j �=i |mi j | for any i ∈ {1, . . . , n}, M is called a strictly diagonal dominant

(s.d.d.) matrix;
• if 〈M〉 is a nonsingular M-matrix, M is called an H -matrix;
• if M is an H -matrix with positive diagonal entries, M is called an H+-matrix;
• if F is nonsingular, M = F − G is called a splitting of M ;
• if 〈F〉 − |G| is a nonsingular M-matrix, M = F − G is called an H -splitting of M ;
• if 〈F〉 − |G| = 〈M〉, M = F − G is called an H -compatible splitting of M ;
• ifM = Fi −Gi is a splitting ofM for 1 ≤ i ≤ �, {Fi ,Gi , Ei }�i=1 is called amultisplitting

ofM , where Ei ∈ R
n×n is a nonnegative diagonalweightmatrix satisfying

∑�
i=1 Ei = I ;

• If M = F (1)
i − G(1)

i = F (2)
i − G(2)

i are two splitting of M for 1 ≤ i ≤ �,

{F (1)
i ,G(1)

i , F (2)
i ,G(2)

i , Ei }�i=1 is called a two-step multisplitting of M , where the defi-
nition of Ei is the same as the one given above.

2 Newmethod

Wereview theTMSMmethodgiven inZhang (2015) first. LetM = F (1)−G(1) = F (2)−G(2)

be two splittings of M . Then, the LCP can be equivalently transformed into a system of fixed-
point equations {

(� + F (1))x = G(1)x + (� − M)|x | − γ q,

(� + F (2))x = G(2)x + (� − M)|x | − γ q,
(2)

where� is a positive diagonal parametermatrix and γ is a positive constant; see Zhang (2011)
formore details. Let {F (1)

i ,G(1)
i , F (2)

i ,G(2)
i , Ei }�i=1 be a two-stepmultisplittings ofM . Based

on (2), in order to reduce communication cost between processors in a high-performance
computer environment with multiple processors and make full use of the information of
previous iteration, the TMSM iteration method was proposed in Zhang (2015) as follows:
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Method 1 (Zhang 2015) Given x (0) ∈ R
n and ε > 0, for i = 1, 2, . . . , �, compute x (k+1,i) ∈

R
n by {

(� + F (1)
i )x (k+ 1

2 ,i) = G(1)
i x (k) + (� − M)|x (k)| − γ q,

(� + F (2)
i )x (k+1,i) = G(2)

i x (k+ 1
2 ,i) + (� − M)|x (k+ 1

2 ,i)| − γ q.

Then, calculate the weight combination of the updates in � processors

x (k+1) =
�∑

i=1

Ei x
(k+1,i) and z(k+1) = 1

γ
(|x (k+1)| + x (k+1))

for k = 0, 1, 2, . . . until ‖min{z(k+1), Mz(k+1) + q}‖ < ε.

To obtain fast convergence, in the i th worker, consider mixing the local update x (k+1,i) with
the old approach vector x (k) before the combination. By introducing relaxed parameters, we
proposed the relaxed TMSM method as follows:

Method 2 Given an initial vector x (0) ∈ R
n and ε > 0, for i = 1, 2, . . . , �, compute

x (k+1,i) ∈ R
n by⎧⎪⎨

⎪⎩
(� + F (1)

i )x (k+ 1
3 ,i) = G(1)

i x (k) + (� − M)|x (k)| − γ q,

(� + F (2)
i )x (k+ 2

3 ,i) = G(2)
i x (k+ 1

3 ,i) + (� − M)|x (k+ 1
3 ,i)| − γ q,

x (k+1,i) = λ(k,i)x (k+ 2
3 ,i) + (1 − λ(k,i))x (k),

(3)

where λ(k,i) is a scalar. Then, calculate the weight combination of the updates in � processors

x (k+1) =
�∑

i=1

Ei x
(k+1,i) and z(k+1) = 1

γ
(|x (k+1)| + x (k+1))

for k = 0, 1, 2, . . . until ‖min{z(k+1), Mz(k+1) + q}‖ < ε.

For Method 2, we have the next comments.

• If we take λ(k,i) ≡ 1, then Method 2 reduces to Method 1, which implies that the scope
of the TMSMmethod is extended. Furthermore, one may chose some relaxed parameters
λ(k,i) to make Method 2 converge faster than Method 1.

• In applications, one can specially chose the splittings as those in Zhang (2015) to obtain
the classes of relaxed symmetricMSMaccelerated overrelaxation (RSMSMAOR),MSM
overrelaxation (RSMSMSOR) and MSMGauss-Seidel (RSMSMGS) iteration methods.

3 Convergence analysis

Some useful lemmas are presented first.

Lemma 3 (Frommer and Mayer 1989) If M is an H-matrix, |M−1| ≤ 〈M〉−1.

Lemma 4 (Hu 1982) Let F ∈ R
n×n be an s.d.d. matrix. Then, ∀G ∈ R

n×n,

‖F−1G‖∞ ≤ max
1≤ j≤n

(|G|e) j
(〈F〉e) j .
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Lemma 5 (Berman andPlemmons1994)Let M bea Z-matrix. Then, the following statements
are equivalent:

• M is a nonsingular M-matrix;
• There exists a positive diagonal matrix �, such that M� is an s.d.d. matrix with positive

diagonal entries;
• For any splitting M = F − G satisfying F−1 ≥ 0 and G ≥ 0, it holds ρ(F−1G) < 1.

Next, the main convergence theorem of the Method 2 is given.

Theorem 6 For i = 1, 2, . . . , �, assume that:

(I) A = F (1)
i − G(1)

i = F (2)
i − G(2)

i are H-splittings of M;

(II) there exists a positive diagonal matrix � such that 〈M〉�, (〈F (1)
i 〉 − |G(1)

i |)� and

(〈F (2)
i 〉 − |G(2)

i |)� are s.d.d. matrices.

Then, Method 2 is convergent for any initial vector x (0) ∈ R
n provided

�e > DMe − 1

2
min
1≤i≤�
s=1,2

[
�−1(〈M〉 + 〈F (s)

i 〉 − |G(s)
i |)�e

]
, (4)

and

0 < λ(k,i) <
2

1 + ‖�−1P(2)
i P(1)

i �‖∞
, (5)

where

P(s)
i = (� + 〈F (s)

i 〉)−1(|G(s)
i | + |� − M |), s = 1, 2. (6)

Proof Let z∗ be the solution of the LCP. By Zhang (2015), x∗ = γ
2 (z∗ − �−1r) satisfies the

implicit fixed-point equations{
(� + F (1)

i )x∗ = G(1)
i x∗ + (� − M)|x∗| − γ q,

(� + F (2)
i )x∗ = G(2)

i x∗ + (� − M |x∗| − γ q.
(7)

Denote the errors in the kth step by

δ(k) = x (k) − x∗, δ(k,i) = x (k,i) − x∗.

For s = 1, 2, since (〈F (s)
i 〉 − |G(s)

i |)� are s.d.d. matrices, we have

(� + 〈F (s)
i 〉)�e ≥ 〈F (s)

i 〉�e ≥ (〈F (s)
i 〉 − |G(s)

i |)�e > 0,

which implies that (� + 〈F (s)
i 〉)D are s.d.d. matrices and � + F (s)

i are H -matrices. By
subtracting (7) from the first and second equations of (3), with Lemma 3 we have

|δ(k+ 1
3 ,i)| ≤ |(� + F (s)

i )−1|(|G(s)
i | + |� − M |)|δ(k)| ≤ P(1)

i |δ(k)|.

Similarly, we can get |δ(k+ 2
3 ,i)| ≤ P(2)

i |δ(k+ 1
3 ,i)|. Then, with the third equation of (3), we

have

|δ(k+1,i)| ≤ |λ(k,i)||δ(k+ 2
3 ,i)| + |1 − λ(k,i)||δ(k)| ≤ (λ(k,i)P(2)

i P(1)
i + |1 − λ(k,i)|I )|δ(k)|.
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Note that x (k+1) = ∑�
i=1 Ei x (k+1,i). We obtain

|δ(k+1)| ≤
�∑

i=1

Ei (λ
(k,i)P(2)

i P(1)
i + |1 − λ(k,i)|I )|δ(k)|. (8)

Now we estimate the infinite norm of �−1P(s)
i �. By Lemma 4, we have

‖�−1P(s)
i �‖∞ ≤ max

1≤ j≤n

[(� + 〈F (s)
i 〉)�e] j

[(|G(s)
i | + |� − M |)�e] j

. (9)

Since 〈M〉� is an s.d.d. matrix, it holds that �−1(〈M〉 + 〈F (s)
i 〉 − |G(s)

i |)�e > 0.
Case 1: If � ≥ DM , we have

(� + 〈F (s)
i 〉)�e − (|G(s)

i | + |� − M |)�e

= (� + 〈F (s)
i 〉 − |G(s)

i | − |� − M |)�e

≥ (〈M〉 + 〈F (s)
i 〉 − |G(s)

i |)�e

> 0.

Case 2: If DMe > �e > DMe − 1
2 min1≤i≤�

s=1,2

[
�−1(〈M〉 + 〈F (s)

i 〉 − |G(s)
i |)�e

]
, we have

DM�e > ��e >
[1
2
(|M | − 〈F (s)

i 〉 + |G(s)
i |)]�e

and

(� + 〈F (s)
i 〉)�e − (|G(s)

i | + |� − M |)�e

= (� + 〈F (s)
i 〉 − |G(s)

i | − |� − M |)�e

≥ (2� − |M | + 〈F (s)
i 〉 − |G(s)

i |)�e

> 0.

Then by (9), we have ‖�−1P(s)
i �‖∞ < 1, which implies that

‖�−1P(2)
i P(1)

i �‖∞ ≤ ‖�−1P(2)
i �‖∞‖�−1P(1)

i �‖∞ < 1.

By direct computation, we have

λ(k,i)‖�−1P(2)
i P(1)

i �‖∞ + |1 − λ(k,i)| < 1

for λ(k,i) satisfying (5). Then, we have the next inequality:

ρ
( �∑
i=1

Ei (λ
(k,i)P(2)

i P(1)
i + |1 − λ(k,i)|I ))

= ρ
(
�−1

�∑
i=1

Ei (λ
(k,i)P(2)

i P(1)
i + |1 − λ(k,i)|I )�)

= ρ
( �∑
i=1

Ei (λ
(k,i)�−1P(2)

i P(1)
i D + |1 − λ(k,i)|I ))
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≤ max
1≤l≤n

�∑
i=1

e(s)
l ‖λ(k,i)�−1P(2)

i P(1)
i � + |1 − λ(k,i)|I‖∞

≤ max
1≤l≤n

�∑
i=1

e(s)
l (λ(k,i)‖�−1P(2)

i P(1)
i �‖∞ + |1 − λ(k,i)|)

< 1,

where e(s)
l is the lth diagonal entry of Ei . Hence, we can have the conclusion that {x (k)}∞k=1

converges by (8), proving the claim. ��
Remark 1 In the convergence theorems of Zhang (2015), all splittings of M are assumed to
be H -compatible splittings, and the positive diagonal matrix � in should satisfy

� ≥ DM . (10)

By Theorem 6, we have the next comments:

• It is well known that an H -compatible splitting is an H -splitting but not vice versus,
which implies that the assumption on the matrix splittings in Theorem 6 is weaker than
that of Zhang (2015).

• Note that by the proof of Theorem 6, we have �−1(〈M〉 + 〈F (s)
i 〉 − |G(s)

i |)�e > 0. So
(4) provides a larger convergence domain than (10).

• Compared to Zhang (2015), an extra assumption besides (5) is Assumption (I). In fact,
for the commonly used multisplittings, Assumption (II) is easy to be satisfied. Consider
the AOR multisplittings in the numerical examples of Zhang (2015):{

F (1)
i = 1

α
(DM − βLMi ),G

(1)
i = F (1)

i − M,

F (2)
i = 1

α
(DM − βUMi ),G

(2)
i = F (2)

i − M,

where −LMi and −UMi are the strictly low-triangular and the strictly upper-triangular
parts of DM − Ei MEi , respectively,

Ei = Diag(0, 0, . . . , Iti , 0, 0, . . . , 0) ∈ R
n×n,

the size ti = φq+1 if i ≤ φr , and ti = φq otherwise,withφq andφr being twononnegative
integers satisfying n = φq� + φr and 0 ≤ φr ≤ �. The type of multisplittings can make
the computational workload be almost evenly distributed to the � processors; see Bai and
Zhang (2013b), Zhang (2015) for more details. By simple computation, we have

〈F (1)
i 〉 − |G(1)

i | = 〈F (2)
i 〉 − |G(2)

i | = 1 − |1 − α|
α

DM − |LM +UM |.
Then, we can get that, if

0 < β ≤ α <
2

1 + ρ(D−1
M |LM +UM |) , (11)

� given by

� = diag
[(1 − |1 − α|

α
DM − |LM +UM |)−1

e
]

(12)

can satisfy the Assumption (II) of Theorem 6.
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Remark 2 In a recent work (Bai xxxx), a paradigm of two-step matrix splitting iteration
methods for solving linear equations was constructed. If we take � = 1, Method 1 reduces
to its serial version, whose idea is similar to a special case of the TMSI paradigm given in
Bai (xxxx), with the mathematical problem being changed to the LCP. It had been shown in
Bai (xxxx) that to find the theoretical optimal relaxation parameter is very difficult even in
the case of linear equations. Note that in Theorem 6, the convergence range of λ(k,i) is given
by (5) without analyzing the optimal one theoretically.

4 Numerical examples

In this section, three examples are given to illustrate the efficiency of Method 2.

Example 1 (Dong and Jiang 2009) Consider the LCP arising from finite difference discretiza-
tion on the equidistant grid of a free boundary value problem about the flow of water through
a porous dam, where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S −I
−I S −I

−I S −I
. . .

. . .
. . .

−I S −I
−I S

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×n,

n = m2, S = tridiag(−1, 4,−1) ∈ R
m×m and I ∈ R

m×m is the identity matrix.

Example 2 (Bai 2010) Consider the LCP, where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S −I −I
S −I −I

. . .
. . .

. . .

S −I −I
S −I

S

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×n,

where n = m2, S = tridiag(−1, 4,−1) ∈ R
m×m and I ∈ R

m×m is the identity matrix.

Example 3 (Bai 2010) Consider the LCP, where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

T −0.5I
−1.5I T −0.5I

−1.5I T −0.5I
. . .

. . .
. . .

−1.5I T −0.5I
−1.5I T

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
n×n,

where n = m2, T = tridiag(−1.5, 4,−0.5) ∈ R
m×m and I ∈ R

m×m is the identity matrix.

The numerical tests are performed on a Dell PowerEdge R740, using one NVIDIA Tesla
V100S-32GBGPU. The programming language is C, accelerated using OpenACC (NVIDIA
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2023) with CUDA Driver Version 12, where the parallel levels are set to “worker=1”, “vec-
tor=1”, and “gang=20, 21, . . . , 29”, respectively. With � workers, we use the notations T�, E�

and I T� to represent the total computation time (in seconds), the speedup and the iteration
steps, respectively, where E� = T1/(�T�). Let x (0) = e and ε = 10−6. With SOR splitting,
Method 2 is compared with Method 1, that is the RSMSMSOR versus the SMSMSOR. The
positive diagonal matrices � are chosen as � = DM in both two methods. For each case, the
parameter α used in the SOR splittings is chosen as the experimentally optimal one satisfying
(11), while the positive diagonal matrix � is always set as I , which can satisfy Assumption
(II) of Theorem 6.

The numerical results of three examples are shown in Tables 1, 2 and 3, respectively. As
Example 1 is a ill-conditioned problem that would cost a lot of computational time, the size
is set to m = 128 and m = 256, while the sizes of Examples 2 and 3, well-conditioned,
are set to be m = 1024 and m = 2048. For the choice of the relaxation parameters, λ(k,i)

is set to be λ(k,i) ≡ λ, where λ is the optimal parameter obtained experimentally, where
λ = 1.9, 1.2, 1.5 for Examples 1, 2, 3, respectively.

In terms of iteration steps, for Example 2 and Example 3, when the � < 128, the iter-
ation steps of each case are relatively stable and not significantly different, while when
� ≥ 128 there is a significant increase in iteration steps, which is related to the number of
workers exceeding the maximum parallel efficiency limit of 80. On the other hand, for the
ill-conditioned problem Example 1, the threshold for significant changes in iteration steps
is reduced to � = 32. From the comparisons between the SMSMSOR and RSMSMSOR,
it can be seen that with relaxation technology, the iteration steps of the RSMSMSOR are
significantly less than the SMSMSOR. The specific comparisons of iteration steps are shown
in Fig. 1.

In terms of computational time, as � increases, the computational time becomes less and
less due to the effects of parallel computing. By the comparisons between the SMSMSORand
RSMSMSOR, it can be seen that the computational time of the RSMSMSOR is significantly
less than those of the SMSMSOR. The percentages of the time saved by the RSMSMSOR
compared to the SMSMSOR are also shown in Tables 1, 2, 3, where “SAVE” is defined by

SAV E = T SMSMSOR
� − T RSMSMSOR

�

T SMSMSOR
�

× 100%.

The specific comparisons of the computational time are shown in Fig. 2,which implies that the
introduction of relaxation technology has a significant acceleration effect on the SMSMSOR.

In terms of parallel efficiency, when � < 128, all the values of the speedup exceed 0.9,
while when � ≥ 128, the low bound of the values of the speedup is larger than 0.6, which is
also a satisfied result. This indicates that the numerical experiments based on the OpenACC
framework fully utilize the hardware resources of GPU devices during the implementation
process to achieve high parallel efficiency.

5 Conclusions

By introducing the relaxation technology, a relaxed two-step modulus-based synchronous
multisplitting iteration method has been constructed for solving the LCP. We also provide
the convergence analysis and demonstrate the selection range of the relaxation parameter. Par-
allelly numerical experiments based on OpenACC framework have showed that the proposed
method can effectively accelerate the existing methods. Specially, for different examples, the
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Fig. 1 The comparisons of the iterations steps

Fig. 2 The comparisons of the computational time

computational time can be reduced by a range from 17% to 48%. However, how to select the
optimal relaxation parameter λ(k,i) is still a challenging problem, which is a very meaningful
research work in the future.
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