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Abstract
We consider the Alternating Direction Implicit (ADI) method to compute the numerical solu-
tion of a continuous Sylvester equation AX + XB = C , based on the recently developed
inexact ADI iteration, and we propose classical acceleration techniques to enhance its con-
vergence rate. An extrapolated variant (EADI) and a block successive overrelaxation variant
(block SOR-ADI) of the ADI iterative method are described. These relaxation approaches
are similar to what is used in Gauss-Seidel and Jacobi methods for linear systems, and, to our
knowledge, novel, especially the block SOR-ADI scheme. Convergence properties of these
two relaxed variants are analyzed when the matrix A is positive definite and the matrix B
is positive semi-definite (not necessarily Hermitian matrices), or conversely. Our numerical
experiments suggest that these new schemes are computationally attractive. The convergence
rate of the ADI method is usually increased, particularly with the block SOR-ADI variant.
A comparison with the well-known Hermitian and skew-Hermitian splitting (HSS) method
emphasizes the efficiency of the proposed methods.
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1 Introduction

Given matrices A ∈ C
m×m , B ∈ C

n×n and C ∈ C
m×n , we will focus on the problem of

solving the matrix equation

AX + XB = C (1.1)

in the variable X ∈ C
m×n , which is called a continuous Sylvester equation. In the special

case B = AH andC = CH , where K H denotes the conjugate transpose of K , the continuous
Sylvester equation (1.1) reduces to the Lyapunov equation. It is well-known that this equation
has a unique solution for X if and only if A and −B do not have common eigenvalues (see,
e.g., Horn and Johnson 1991; Lancaster and Tismenetsky 1985).

Throughout this paper, we will assume that A and B in (1.1) are positive definite and
positive semi-definite, respectively, or vice versa. Recall the general (weaker) definition of
positive (semi-)definiteness, which says that a matrix K ∈ C

n×n is said to be positive (semi-
)definite if its Hermitian part 12 (K+K H ) is positive (semi-)definite. In general, this condition
implies that the real part of zH K z is positive (non-negative), for all non-zero vectors z ∈ C

n .
A Sylvester equation, in general, and a Lyapunov equation, in particular, are formulated in

various applications. These arise in systems theory and control,matrix eigen-decompositions,
model reduction, numerical solution of matrix differential Riccati equations, image pro-
cessing, among many others. The importance of these applications motivated the extensive
theoretical study of Sylvester equations along with the development of practical algorithms
to compute approximate solutions; see, e.g., (Benner et al. 2009; Kürschner et al. 2014; Li
et al. 2018; Liu et al. 2020; Smith 1968; Simoncini 2016; Tian et al. 2020; Wachspress 1988;
Xiong and Lam 2006) and a large literature therein.

A possible approach to deal with the Sylvester equation (1.1) consists in vectorizing the
unknown matrix X and translating the matrix equation into a linear system A x = c, where
x and c are the column-stacking vectors of the matrices X and C , respectively, and A is the
Kronecker sum of the matrices A and BT , that is, A = Im ⊗ A + BT ⊗ In , with symbol ⊗
denoting the standard Kronecker product. Either direct or iterative methods can be applied
to solve this linear system. Another approach is to treat the Sylvester equation (1.1) in its
original form using an iterative method directly applied to the matrices A, B and C .

When matrices A and B are large, the dimension of the coefficient matrix A in the linear
system A x = c will be considerably larger and, in general, data storage and computational
time become difficult issues. For this reason, the first approach is mainly used in problems
of small or medium dimension.

Following the second approachmentioned above, theAlternatingDirection Implicit (ADI)
method is a popular two-step iterative procedure to obtain a solution to the Sylvester equation
(1.1). In this paper we will consider ADI-like methods which, in fact, are analogues to the
classical ADI iteration method introduced by Peaceman and Rachford in the context of
solving partial differential equations, see (Peaceman and Rachford 1955; Simoncini 2016).
A variant of ADI, called factored ADI, was formulated to construct the solution X in factored
form, see (Benner et al. 2009; Li andWhite 2002). The effectiveness of factored ADI depends
on whether X is well-approximated by a low rank matrix. This is known to be true under
various assumptions about A and B.
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In the last two decades, the development of iterative methods based on the concept of
matrix splitting have attracted several scholars. In particular, the widely known HSS iteration
method proposed in Bai et al. (2003) for solving positive definite, non-Hermitian linear
systems, makes use of the Hermitian and skew-Hermitian splitting of the coefficient matrix
and it is a resource that motivated several HSS-type iteration methods for solving linear
systems, see, e.g., (Bai et al. 2007, 2006, 2007; Benzi 2009; Liu et al. 2018). In Bai (2011),
for the first time, a variant of the HSS iteration method, which is an alternating direction
implicit method in the spirit analogous to the ADI iteration method, was applied to solve the
Sylvester equation (1.1). Numerous other efficient and robust algorithms were proposed in
the same spirit, see, e.g., (Li and He 2022; Li et al. 2018; Liu et al. 2022; Wang et al. 2013;
Zheng and Ma 2014).

Sylvester equations can also be solved using direct methods like Bartels-Stewart and
Hessenberg-Schur methods, see (Bartels and Stewart 1972; Golub et al. 1979). The Bartels-
Stewart method is based on the reduction of the matrices A and B to real Schur form (quasi-
triangular form) using theQRalgorithm for eigenvalues, followedby the use of directmethods
to solve several linear systems for the columns of X . In the Hessenberg-Schur method the
matrix A is reduced to Hessenberg form and only matrix B is decomposed into the quasi-
triangular Shur form. This method is faster than the Bartels-Stewart method. These direct
methods are O(m3 + n3) and therefore it is only beneficial to use ADI when matrix–vector
multiplication and linear solvers involving A and B can be applied cheaply.

In some particular cases (when A or B is invertible), the Sylvester equation may be rewrit-
ten into a Steinmatrix equation, after a suitable transformation, e.g., theCaley transformation,
X = ̂AXB + ̂C, with ̂A = −A−1, ̂C = A−1C . An extensive amount of iterative methods
based on the Smith method were studied and developed for solving the Stein matrix equation
in recent years, like (rational) Krylov methods (see Li et al. 2013; Sadkane 2012; Zhou et al.
2009). Despite the lack of a rigorous error analysis, the Smith iteration exhibits very good
numerical and computational properties and, when the same shift parameter is used at every
iteration, it is equivalent to the ADI iteration.

Wepropose two relaxation strategies to the classicalADI iterative scheme - an extrapolated
variant (EADI) and a block successive overrelaxation variant (block SOR-ADI). These are
not strategies for solving inexactly the arising linear systems, but strategies that include in
each iteration the usage of a new parameter ω to improve the approximation obtained and
thus to accelerate the convergence rate. We based our work in the results presented in Liu
et al. (2020).

The new schemes EADI and block SOR-ADI are described in Sections 3 and 4, respec-
tively, after a brief summary of the ADI iteration scheme and some of its convergence
properties in Sect. 2. Our numerical experiments, shown in Section 5, suggest that these
new schemes can increase the convergence rate of the ADI iterative method and thus be
considered attractive solvers.

2 ADI iteration

The method of alternating directions (ADI) is described below. It is a two-step iteration
process that alternately updates the column and row spaces of an approximate solution to
the Sylvester equation (1.1). An initial guess X (0) is required, as well as shift parameters α

and β. An intimate connection between this iterative process and Smith’s algorithm (Smith
1968) was mentioned in Wachspress (1988).
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ADI iteration. Given an initial approximation X (0) and two positive constants α and β,
repeat the steps

{

(α I + A)X (k+ 1
2 ) = X (k)(α I − B) + C

(

solve for X (k+ 1
2 )

)

X (k+1)(β I + B) = (β I − A)X (k+ 1
2 ) + C

(

solve for X (k+1)
) , (2.1)

for k = 0, 1, 2, . . . , until
{

X (k)
}

converges.
The choice of the shift parameters (α, β) strongly determines the convergence rate of

the ADI scheme. Some algorithms use different shifts, say {(αk, βk)}Nk=0 in N iterations,
see (Benner et al. 2009; Lu and Wachspress 1991; Wachspress 1988, 2009). Following the
strategy adopted in Liu et al. (2020), here we decided to use two fixed shifts (α, β) in every
iteration of ADI.

The two steps in (2.1) require the solution of two linear systems involvingmatrices α I + A
and β I + B. The assumption that matrices A and B are both positive semi-definite, even
though one of the matrices is also positive definite, allows us to adequately choose shifts
α and β so that the matrices α I + A and β I + B are reasonably diagonally dominant.
This diagonal dominance property guarantees that both incomplete factorization and splitting
iteration are applicable, stable and efficient, asmentioned inBai et al. (2006). Furthermore, the
convergence speedofKrylov subspace iterationmethods such asGMREScanbe considerably
accelerated for some adequate preconditioner for these classes of matrices, see (Bai 2016).

When it concerns to analyze the theoretical convergence of the ADI iteration (2.1), it is
common to rewrite this iteration in the matrix–vector form,

x(k+1) = H x(k) + G c, (2.2)

where H ,G ∈ C
mn×mn and x, c ∈ C

mn×1. The matrices H = H (α, β) and G = G (α, β)

are defined by
{

H = [

(β I + B)−T (α I − B)T
] ⊗ [

(β I − A)(α I + A)−1
]

G = (α + β)
[

(β I + B)−T ⊗ (α I + A)−1
] (2.3)

where x and c are the column-stacking vectors of the matrices X and C , respectively, and
⊗ is the symbol for the standard Kronecker product. To derive these expressions, use direct
substitution in (2.1) and recall that vectorizing UXV column-wise gives (V T ⊗ U )x, for
any square matrices U , V and conformable matrix X . The matrix H is called the iteration
matrix of the scheme (2.2) and we will denote its spectral radius by ρ(H ).

Suppose that A is a positive definite matrix and B is a positive semi-definite matrix, in the
weaker sense (recall the definition from the Introduction). We now present a sufficient condi-
tion for convergence of theADI iterative process (2.1) in this case. Assume that equation (1.1)
has a unique solution X∗ and let

{

X (k)
}

, k = 0, 1, 2, . . ., be the sequence of approximations
to X∗ obtained with the iterative scheme (2.1). Let λ j , j = 1, . . . ,m, be the eigenvalues of
A and μi , i = 1, . . . , n, the eigenvalues of B. Then, by the assumptions of definiteness,

Re(λ j ) > 0, j = 1, . . . ,m, and Re(μi ) ≥ 0, i = 1, . . . , n,

where Re(x), for x ∈ C, denotes the real part of x . According to (Liu et al. 2020, Theorem
1), for positive constants α and β, if

−min
j

Re(λ j ) <
α − β

2
< min

i
Re(μi ),

then ρ(H ) < 1, or, equivalently, the sequence
{

X (k)
}

converges to the exact solution X∗.
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3 Extrapolated ADI iteration

Extrapolation is a commonly used acceleration technique in the study of iterative methods.
In this section, we introduce an extrapolated ADI iteration (EADI) for solving the Sylvester
equation (1.1). To improve the approximation computed in each iteration of the ADI method,
this EADI iteration incorporates an extra step (refinement step), using a new parameter ω,
at a low computational cost. Following similar ideas to what is used in stationary iterative
methods, the parameter ω is fixed in every iteration, the same way that shifts (α, β) are also
fixed. The EADI iteration is defined as follows.
EADI iteration. Given an initial approximation X (0), positive constants α, β (shift param-
eters) and ω (extrapolation parameter), repeat the steps

⎧

⎪

⎨

⎪

⎩

(α I + A)X (k+ 1
2 ) = X (k)(α I − B) + C

(

solve for X (k+ 1
2 )

)

˜X (k)(β I + B) = (β I − A)X (k+ 1
2 ) + C

(

solve for ˜X (k)
)

X (k+1) = (1 − ω)X (k) + ω˜X (k)

, (3.1)

for k = 0, 1, 2, . . . , until
{

X (k)
}

converges.
According to the formulation (2.2), the first two steps of the EADI iteration (3.1) can be

rewritten in the matrix–vector form

x̃(k) = H x(k) + G c, (3.2)

where H and G are the matrices defined in (2.3). Then, from the third step of (3.1), we
obtain

x(k+1) = [(1 − ω)I + ωH ] x(k) + ωG c. (3.3)

Thus, the iteration matrix of the EADI single-step iterative formula (3.3), denoted byHω =
Hω(α, β, ω), is defined by

Hω = (1 − ω)I + ωH . (3.4)

The following result gives inclusion intervals for the parameters α, β and ω for which the
convergence of the EADI iterative procedure (3.1) is ensured.

Theorem 3.1 Let matrices A and B in equation (1.1) be positive definite and positive semi-
definite, respectively, or vice versa (using the weaker definition), and let α, β, ω be three
positive constants. Let λ j , j = 1, . . . ,m, be the eigenvalues of A, μi , i = 1, . . . , n, the
eigenvalues of B and ρ(H ) the spectral radius of H in (2.3). If

− min
j

Re(λ j ) <
α − β

2
< min

i
Re(μi ) and 0 < ω <

2

1 + ρ(H )
, (3.5)

then the sequence
{

X (k)
}

, k = 0, 1, 2 . . . , generated by the EADI iteration (3.1) converges
to the exact solution X∗ of (1.1).

Proof We will show that the given conditions imply that ρ(Hω) < 1, a necessary and
sufficient condition for the convergence of the sequence

{

X (k)
}

.
As it has been observed at the end of Sect. 2, the first condition on the shift parameters

α and β guarantees the convergence of the ADI iterative expression (2.2), which means that
ρ(H ) < 1.
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Now notice that given an eigenvalue λ of H , (1 − ω) + ωλ is an eigenvalue of Hω and
thus

ρ(Hω) = max
λ∈λ(H )

|(1 − ω) + ωλ|. (3.6)

For λ = a + ib, a, b ∈ R, i2 = −1, we have |a| ≤ |λ| < 1, |b| ≤ |λ| < 1 and

|1 − ω + ωλ|2 = |1 − ω(1 − a) + ωbi |2 = 1 − 2ω(1 − a) + ω2(1 − a)2 + ω2b2

= 1 − [

2ω(1 − a) − ω2 (

1 − 2a + |λ|2)] .

So, if 2ω(1−a) > ω2(1−2a+|λ|2), we will have |1 − ω + ωλ|2 < 1 and thus ρ(Hω) < 1.
Observe that, sinceω > 0, by assumption, and 1−2a+|λ|2 > 0, that condition is equivalent
to

0 < ω <
2(1 − a)

1 − 2a + |λ|2 . (3.7)

To complete the proof it only remains to verify that 0 < ω <
2

1 + ρ(H )
, the condition

stated in the theorem, implies (3.7). In fact,

2

1 + ρ(H )
≤ 2

1 + |λ| ≤ 2(1 − a)

1 − 2a + |λ|2 .

given that the inequality 1−2a+|λ|2 ≤ (1+|λ|)(1−a) is equivalent to (a+|λ|)(1−|λ|) ≥ 0
which is always true when |a| ≤ |λ| < 1, since this condition implies a + |λ| ≥ 0 and
1 − |λ| > 0.

We have proved that the restrictions (3.5) on the range of the values α, β and ω imply that
ρ(Hω) < 1 and, therefore, ensure the convergence of the EADI iteration, under the stated
assumptions on positiveness of the matrices A and B. ��

Observe that when 0 < ρ(H ) < 1 we will have 1 <
2

1 + ρ(H )
< 2 and thus, in

practice, the choice 0 < ω < 1 will always permit convergence (although it might not be the
optimal choice).

We would like to acknowledge that the convergence condition 0 < ω <
2

1 + ρ(H )
in Theorem 3.1 can also be directly derived from Theorem 1 in Cao (1998). We thank an
anonymous referee for this useful observation.

4 Block SOR-ADI iteration

In this section, motivated by the work presented in Bai et al. (2007); Bai and Ng (2012) by
Bai, Golub and Ng, we will describe a block successive overrelaxation version of the ADI
iterative scheme (block SOR-ADI) and derive convergence conditions for this new version.

First we notice that if the sequence
{

X (k)
}

, k = 0, 1, 2 . . . , obtained using (2.1), converges
to the exact solution X∗ of the equation (1.1), then we have

{

(α I + A)X∗ − X∗(α I − B) = AX∗ + X∗B = C
X∗(β I + B) − (β I − A)X∗ = AX∗ + X∗B = C

.
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From (2.1) we are able to define the fixed-point matrix equations
{

(α I + A)X = Y (α I − B) + C
Y (β I + B) = (β I − A)X + C

(4.1)

and can establish that if X∗ is the exact solution of the equation (1.1), then it is the fixed
point of both equations above. The reverse is also true. Thus, analogously to (Bai et al. 2007,
Theorem 3.1) we have the following result.

Theorem 4.1 The fixed-point matrix equations in (4.1) and the original matrix equation (1.1)
are
equivalent equations.

Adopting a matrix–vector formulation, the two equations in (4.1) can be represented by

Wz = b (4.2)

where

W =
[

I ⊗ (α I + A) −(α I − B)T ⊗ I
−I ⊗ (β I − A) (β I + B)T ⊗ I

]

, z =
[

x
y

]

, b =
[

c
c

]

, (4.3)

for x, y and c representing the column-stacking vectors of the matrices X , Y and C , respec-
tively. We will show that, under the conditions considered in Theorem 3.1, the coefficient
matrix W = W (α, β) is nonsingular and, thus, the use of the Gauss-Seidel method can be
considered.

Theorem 4.2 Let matrices A and B and parameters α and β satisfy the assumptions and
conditions given in Theorem 3.1. The coefficientmatrixW in the equation (4.3) is nonsingular.

Proof The positive definiteness or semi-definiteness assumptions on A and B and the fact
that α, β > 0 imply that matrices I ⊗ (α I + A) and (β I + B)T ⊗ I are positive definite and
hence nonsingular. Recall the eigenvalue property of the Kronecker product.

Applying the mixed-product and inversion properties of the Kronecker operator, we can
decompose W into a matrix product,

W =
[

I O
−I ⊗ [

(β I − A)(α I + A)−1
]

I

] [

I ⊗ (α I + A) −(α I − B)T ⊗ I
O S

]

with matrix S, the Schur complement of W , given by

S =
[

(β I + B)T ⊗ I
]

−
{

(α I − B)T ⊗ [

(β I − A)(α I + A)−1]
}

.

Thereby, we obtain

S =
[

(β I + B)T ⊗ I
] {

I −
[

(β I + B)−T ⊗ I
] [

(α I − B)T ⊗ [

(β I − A)(α I + A)−1]
]}

=
[

(β I + B)T ⊗ I
] {

I −
[

(β I + B)−T (α I − B)T
]

⊗ [

(β I − A)(α I + A)−1]
}

=
[

(β I + B)T ⊗ I
]

(I − H ) ,

whereH is the iterationmatrix of the ADI scheme, defined in (2.3). Under the given assump-
tions, ρ(H ) < 1. Thus, since both matrices (β I + B)T ⊗ I and (I − H ) are nonsingular,
W is also nonsingular. ��
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In what follows, we will describe a block SOR-ADI iterative method to solve the block
2×2 linear system (4.2) and establish its convergence properties. First, it is suitable to present
the block Jacobi and the block Gauss-Seidel iterations. Let the decomposition

W =
[

I ⊗ (α I + A) O
O (β I + B)T ⊗ I

]

−
[

O (α I − B)T ⊗ I
I ⊗ (β I − A) O

]

= MJ − NJ

be the block Jacobi splitting of W . Thus,

M−1
J =

[

I ⊗ (α I + A)−1 O
O (β I + B)−T ⊗ I

]

and the block Jacobi iterative scheme is defined by

z(k+1) = TJ z(k) + M−1
J b, (4.4)

where the iteration matrix TJ = TJ (α, β) obtained is

TJ = M−1
J NJ =

[

O (α I − B)T ⊗ (α I + A)−1

(β I + B)−T ⊗ (β I − A) O

]

. (4.5)

The block Gauss-Seidel splitting of W ,

W =
[

I ⊗ (α I + A) O
−I ⊗ (β I − A) (β I + B)T ⊗ I

]

−
[

O (α I − B)T ⊗ I
O O

]

= MGS − NGS,

leads to the block Gauss-Seidel iterative scheme

z(k+1) = TGSz(k) + M−1
GSb, (4.6)

where the iteration matrix TGS = TGS(α, β) is defined by TGS = M−1
GSNGS . Since,

M−1
GS =

[

I ⊗ (α I + A)−1 O
(β I + B)−T ⊗ [

(β I − A)(α I + A)−1
]

(β I + B)−T ⊗ I

]

,

we obtain

TGS =
[

O (α I − B)T ⊗ (α I + A)−1

O H

]

, (4.7)

where H is the iteration matrix of the ADI method.
In practice, to improve the convergence rate of the Gauss-Seidel iteration, it is common to

consider a variant of the method which incorporates a successive overrelaxation technique.
Using a new parameter ω 	= 0 (relaxation parameter), in the block Gauss-Seidel iteration we
consider the linear system

ωWz = ωb,

equivalent to (4.3), and the coefficient matrix decomposition

ωW =
[

I ⊗ (α I + A) O
−ωI ⊗ (β I − A) (β I + B)T ⊗ I

]

−
[

(1 − ω)I ⊗ (α I + A) ω(α I − B)T ⊗ I
O (1 − ω)(β I + B)T ⊗ I

]

= MSOR − NSOR .
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The iterative equation obtained, called the block SOR iteration, is

z(k+1) =
TSORz(k) + ωM−1

SORb,

(4.8)

where

M−1
SOR =

[

I ⊗ (α I + A)−1 O
ω(β I + B)−T ⊗ [

(β I − A)(α I + A)−1
]

(β I + B)−T ⊗ I

]

and the iteration matrix TSOR = TSOR(α, β, ω) is given by

TSOR = M−1
SORNSOR =

[

(1 − ω)I ⊗ I ω(α I − B)T ⊗ (α I + A)−1

ω(1 − ω)(β I + B)−T ⊗ (β I − A) (1 − ω)I ⊗ I + ω2H

]

.

(4.9)

Observe that with the choiceω = 1 the block SORmethod reduces to the block Gauss-Seidel
method with TSOR = TGS .

Recasting z(k) =
[

x(k)

y(k)

]

and b =
[

c
c

]

from (4.2), we can express the block SOR iteration

(4.8) as
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x(k+1) = (1 − ω)x(k) + ω
[

(α I − B)T ⊗ (α I + A)−1
]

y(k) + ω
[

I ⊗ (α I + A)−1
]

c

y(k+1) = ω(1 − ω)
[

(β I + B)−T ⊗ (β I − A)
]

x(k) + (1 − ω)y(k) + ω2H y(k)+
+ω2(β I + B)−T ⊗

[

(β I − A)(α I + A)−1
]

c + ω
[

(β I + B)−T ⊗ I
]

c

(4.10)

and the following step is to go back to the matrix-matrix formulation with the matrices X
and Y in (4.1). Prior to this transformation, notice that we can writeH as a mixed-product,

H =
[

(β I + B)−T ⊗ (β I − A)
] [

(α I − B)T ⊗ (α I + A)−1
]

,

and y(k+1) in (4.10) can be simplified to

y(k+1) = (1 − ω)y(k) + ω
[

(β I + B)−T ⊗ (β I − A)
]

{

(1 − ω)x(k) + ω
[

(α I − B)T ⊗ (α I + A)−1
]

y(k)

+ ω
[

I ⊗ (α I + A)−1] c
}

+ ω
[

(β I + B)−T ⊗ I
]

c

= (1 − ω)y(k) + ω
[

(β I + B)−T ⊗ (β I − A)
]

x(k+1) + ω
[

(β I + B)−T ⊗ I
]

c.

The scheme (4.10) can be transformed into the following matrix-matrix version which is
called the block SOR-ADI iteration. Recall that for square matrices U , V and vector x, the
matrix-stacking of the vector (V T ⊗ U )x can be given by UXV , where X is the matrix-
stacking (column-wise) of the vector x.

Block SOR-ADI iteration. Given initials approximations X (0) and Y (0) and positive con-
stants α, β (shift parameters) and ω (relaxation parameter), repeat the steps

{

X (k+1) = (1 − ω)X (k) + ω(α I + A)−1
[

Y (k)(α I − B) + C
]

Y (k+1) = (1 − ω)Y (k) + ω
[

(β I − A)X (k+1) + C
]

(β I + B)−1 (4.11)

for k = 0, 1, 2, · · · , until
{

X (k)
}

and
{

Y (k)
}

converge.
An interesting observation is that this scheme of the block SOR-ADI iteration can be

expressed as a certain combination of the ADI iteration and the extrapolated ADI iteration,
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so it is expectable that the convergence rate will be improved. In this context, observe that
(4.11) is equivalent to

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(α I + A)X (k+ 1
2 ) = Y (k)(α I − B) + C

(

solve for X (k+ 1
2 )

)

X (k+1) = (1 − ω)X (k) + ωX (k+ 1
2 )

Y (k+ 1
2 )(β I + B) = (β I − A)X (k+1) + C

(

solve for Y (k+ 1
2 )

)

Y (k+1) = (1 − ω)Y (k) + ωY (k+ 1
2 )

, (4.12)

for k = 0, 1, 2, · · · , until
{

X (k)
}

and
{

Y (k)
}

converge.
For both efficiency and numerical accuracy purposes, the scheme (4.12) is the approach to

follow in a computational implementation of the SOR-ADI iteration (4.11), since the explicit
computation of a matrix inverse should usually be avoided in favour of the computation of
the solution of the equivalent linear system with multiple right-hand sides.

We can establish a relation between the eigenvalues of the block Jacobi iteration matrix
TJ = TJ (α, β), the ADI iteration matrix H = H (α, β) and the block Gauss-Seidel
iteration matrixTGS = TGS(α, β). In case of convergence, these results allow us to compare
the convergence rates. We state these relations in the following theorem.

Theorem 4.3 Let matrices A and B and parameters α and β satisfy the assumptions and
conditions given in Theorem 3.1. The following statements are true:

(a) TGS and H have the same set of non-zero eigenvalues.
(b) If λ is an eigenvalue of TJ , then so is −λ.
(c) If λ is an eigenvalue of TJ , then λ2 is an eigenvalue of H .
(d) Conversely, if μ 	= 0 is an eigenvalue of H and λ2 = μ, then λ is an eigenvalue of TJ .

Thus, as a consequence, since ρ(H ) < 1,

ρ(H ) = ρ(TGS) = (

ρ(TJ )
)2

< 1.

This means that block Jacobi iteration (4.4), block Gauss-Seidel iteration (4.6) and ADI
iteration (2.1) are all convergent methods. The block Gauss-Seidel iteration is twice as fast
as the block Jacobi iteration.

Proof (a) If TGSz = μz with z =
[

u
v

]

, then from (4.7) we have

(α I − B)T ⊗ (α I + A)−1v = μu and H v = μv.

Thus, μ is also an eigenvalue of H with eigenvector v.

Conversely, ifH v = μv,μ 	= 0, define u = (α I −B)T ⊗(α I + A)−1v/μ and z =
[

u
v

]

.

We then obtain TGSz = μz.

(b) Let λ be an eigenvalue of TJ and z =
[

u
v

]

the corresponding eigenvector. From the

eigenvector equation TJ z = λz, we have

(α I − B)T ⊗ (α I + A)−1v = λu and (β I + B)−T ⊗ (β I − A)u = λv.

It is simple to verify that TJ z̄ = −λ z̄ for z̄ =
[

u
−v

]

and, thus, −λ is an eigenvalue of

TJ with eigenvector z̄.
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Statements (c) and (d) follow directly from (a), as a corollary of Theorem 4.5 (see below),
since
TSOR = TGS for ω = 1.

The assumptions on positive definiteness or semi-definiteness of the matrices A and B
and the condition on α and β imply that ρ(H ) < 1, which says that the ADI iteration is
convergent. Thus,

ρ(H ) = ρ(TGS) = (

ρ(TJ )
)2

< 1

and all the three methods are convergent. ��
The following concept is an important property in the SOR convergence theory.

Definition 4.4 We say that a matrix T has block Property A if T is a block diagonal matrix
or there exists a permutation matrix P such that

PT PT =
[

T11 T12
T21 T22

]

where T11 and T22 are block diagonal matrices.

The block consistently ordered property generalizes block Property A. See, for instance,
(Young 1971).

Matrix W in (4.3) has block Property A. The (1, 1) block is a block diagonal matrix and
for the (2, 2) block it is not difficult to verify that there is a permutation matrix P ′ such that

P ′ [(β I + B)T ⊗ I
]

P ′T = I ⊗ (β I + B)T .

So P =
[

I O
O P ′

]

is a permutation matrix that drives W into the desired block Property A

structure. Recall that, in general, if U and V are square matrices, then U ⊗ V and V ⊗ U
are even permutation similar, meaning that there exists a permutation matrix Q such that
V ⊗U = Q(U ⊗ V )QT .

It is then possible to apply a classical result in matrix iterative analysis that relates the
eigenvalues of the block Jacobi and the block SOR iteration matrices, TJ and TSOR .

Theorem 4.5 Let ω 	= 0. If λ is an eigenvalue of TJ and μ satisfies

(μ + ω − 1)2 = μω2λ2, (4.13)

then μ is an eigenvalue of TSOR. Conversely, if μ 	= 0 is an eigenvalue of TSOR and λ

satisfies (4.13), then λ is an eigenvalue of TJ .

Proof Since matrix W in (4.3) satisfies Property A, the result follows directly from existing
literature. See Theorem 4.5 in Varga (2000). ��

The convergence result for the block SOR-ADI iteration (4.11) follows from Theorems
4.3 and 4.5.

Theorem 4.6 Let matrices A and B and parameters α and β satisfy the assumptions and
conditions given in Theorem 3.1. Letω 	= 0 be the relaxation parameter in the block SOR-ADI
iteration (4.11).

(1) Suppose that all the eigenvalues ofTJ are real. The block SOR-ADI iteration is convergent
if and only if 0 < ω < 2.
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(2) Suppose that some eigenvalues ofTJ are complex. If for some positive number τ ∈ (0, 1)
and each eigenvalue μ = a + ib of TJ , the point (a, b) lies in the interior of the ellipse

Eτ =
{

(u, v) : u2 + v2

τ 2
= 1

}

and ω satisfies

0 < ω <
2

1 + τ
, (4.14)

then the block SOR-ADI iteration is convergent. Conversely, if the block SOR-ADI iter-
ation is convergent, then, for some τ ∈ (0, 1), all the eigenvalues of TJ lie inside the
ellipse Eτ . Furthermore, if some eigenvalue lies on Eτ and if the block SOR-ADI iteration
is convergente, then (4.14) holds.

Proof Observe that the block SOR-ADI iteration (4.11) is convergent if and only if the block
SOR iteration (4.8) is convergent. Another important observation here is that the assumptions
considered imply that matrices (α I + A) and (β I + B)T are nonsingular and, thus, matrixW
in (4.3) not only satisfies Property A, but, in addition, all the diagonal blocks in this special
block structure are invertible. Furthermore, block Property A is a sufficient condition for
block consistently ordering.

(1) From Theorem 4.3, we have ρ(TJ ) < 1 and, by Theorem 2.2 in Young (1971), Chapter
6, this condition is equivalent to 0 < ω < 2 and ρ(TSOR) < 1.

(2) This result follows directly fromTheorem4.1 inYoung (1971), Chapter 6. Sinceρ(TJ ) <

1, τ ∈ (0, 1).

��
To get the most benefit from overrelaxation, we would like to find the value of ω that

minimizes ρ(TSOR). A detailed discussion that the Jacobi spectral radius determines the
smallest SOR spectral radius can be found in (Varga 2000, Section 4.3) and in (Young 1971,
Section 6.4). The optimal value of ω is

ωopt = 2

1 +
√

1 − (ρ(TJ ))
2

which gives the smallest spectral radius ρ(TSOR) = ωopt − 1.

5 Numerical examples

In this section we compare the computational performance of the three methods, ADI, EADI
and block SOR-ADI, exhibiting some numerical examples. We also compare our methods
with the Hermitian and skew-Hermitian splitting (HSS) method (Bai 2011), though some
numerical examples presented in Liu et al. (2020) already show that the ADI method can
outperform the HSS method. All the algorithms were implemented inMatlab (R2020b) in
double precision (unit roundoff ε = 2.2 10−16) on a LAPTOP-KVSVAUU8 with an Intel(R)
Core(TM) i5-8250U CPU @ 1.60GHz and 8 GB RAM, under Windows 10 Home. See
Appendix A for details on the implementations (Algorithms 1, 2 and 3 for ADI, EADI and
SOR-ADI, respectively, and 4 for HSS). No parallel Matlab operations were used.

InMatlab oneway to solve the linear system AX = B (multiple right-hand sides) is with
X = inv(A)∗ B. A better way, from the point of view of both execution time and numerical
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accuracy, is to use the matrix backslash operator X = A\B. When A is square, this produces
the solution using Gaussian elimination, without explicitly forming the inverse A−1. The call
Ad = decomposition(A) creates reusablematrix decompositions (LU , LDL , Cholesky,
QR, and more) that enables us to solve linear systems more efficiently. The decomposition
type is automatically chosen based on the properties of the input matrix A. For example,
after computing Ad = decomposition(A) the call X = Ad\B returns the same vector
as X = A\B, but is typically much faster. This decomposition function is well-suited to
solving problems that require repeated solutions, since the decomposition of the coefficient
matrix does not need to be performed multiple times.

In each iteration, ourmethods require the solution ofmultiple linear systemswith the same
coefficient matrices, (A+ α I ) and (B + β I ). Using the above built-inMatlab functions in
our implementations, the efficiency and accuracy will be improved by not forming explicitly
the inverses (A + α I )−1 and (B + β I )−1.

In all our numerical experiments we chose as initial approximations the null matrices, that
is, X (0) = O , for ADI and EADI iterations, and X (0) = Y (0) = O , for the block SOR-ADI
iteration. The stopping criterion used was

‖ R(k) ‖F
‖ C ‖F

≤ tol, (5.1)

where R(k) = C − AX (k) − X (k)B is the residual attained at iteration k, tol is the desired
accuracy, usually set to 10−6, and ‖ · ‖F denotes the Frobenius norm.

In our first example, we consider the two-dimensional convection-diffusion equation

− (uxx + uyy) + σ(x, y)ux + τ(x, y)uy = f (x, y) (5.2)

posed on the unit square (0, 1) × (0, 1) with Dirichlet-type boundary conditions. The coeffi-
cients σ and τ represent the velocity components along the x and y directions, respectively,
and here we take the case when σ and τ are constant. See (Chen and Sheu 2000, p. 371).
Different finite discretization schemes for the Laplacian operator uxx + uyy and for the
first derivatives ux and uy lead to different linear systems which are naturally equivalent to
standard Sylvester equations (with different discretization errors).

In Starke andNiethammer (1991) it is described how to obtain a general Sylvester equation
AX+XB = C for any values of the coefficients σ and τ using the second-order finite central
differences operator. When σ and τ are constant, A and B are tridiagonal Toeplitz matrices
defined by

A = tridiag

(

−1 + τh

2
, 2,−1 − τh

2

)

and B = tridiag

(

−1 + σh

2
, 2,−1 − σh

2

)

(5.3)

for a uniform n × n grid with step size h = 1/(n + 1). The matrix A corresponds to the
discretization in the y-direction and the matrix B in the x-direction. If τ = σ then A = B.

A class of Sylvester equations, which arises from the discretization of various differential
equations and boundary value problems using finite differences or Sinc-Galerkin schemes,
can be found in Bai (2011); Wang et al. (2013); Zheng and Ma (2014).

Example 5.1 Here we consider the Sylvester equation (1.1) with matrices A, B ∈ R
n×n

defined by (5.3). The parameters τ and σ depend on the properties of the associated
convection-diffusion problem with homogeneous Dirichlet boundary conditions. The func-
tion f is defined by f (x, y) = ex+y and different values of τ , σ and h = 1

n+1 are tested.
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Table 1 Performance of ADI, EADI, SOR-ADI and HSS methods for the Example 5.1

h = 1
n+1 ADI EADI SOR-ADI HSS

α = β iter tCPU wext iter tCPU wsor iter tCPU α = β iter tCPU

0.04 0.5 42 0.003 1.05 37 0.002 0.95 26 0.002 0.75 23 0.05

τ = 10; 0.02 0.5 42 0.01 1.15 32 0.006 0.90 21 0.004 0.5 30 0.02

σ = 100 0.01 0.25 64 0.03 1.02 30 0.02 0.94 25 0.01 0.31 51 0.09

0.005 0.15 104 0.17 1.02 50 0.10 0.98 54 0.10 0.15 104 0.87

0.0025 0.05 273 3.10 1.01 128 1.42 0.98 90 1.10 0.075 210 22.2

0.04 2.5 35 0.005 1.25 28 0.004 0.92 25 0.003 0.625 26 0.005

τ = 1; 0.02 0.75 34 0.01 1.25 26 0.01 0.90 24 0.008 0.5 30 0.02

σ = 100 0.01 0.35 49 0.03 1.05 26 0.01 0.97 30 0.01 0.26 51 0.09

0.005 0.15 104 0.19 1.03 51 0.08 0.98 54 0.12 0.15 104 0.91

0.0025 0.05 273 3.17 1.01 128 1.46 0.98 90 1.10 0.06 194 14.6

0.04 1.75 21 0.002 0.95 20 0.001 0.99 20 0.002 0.45 32 0.01

τ = 50; 0.02 0.5 38 0.006 0.95 32 0.008 0.97 28 0.005 0.37 38 0.03

σ = 0.1 0.01 0.25 70 0.05 0.99 65 0.05 0.99 56 0.04 0.18 77 0.14

The equation in this example was solved using ADI, EADI, block SOR-ADI and HSS
methods. The summary of our experiments in terms of the number of iterations (iter) and the
CPU time in seconds (tCPU) is presented in Table 1 for different instances of the parameters
τ and σ and the order n of the matrices.

The values assigned to the shift parameters α and β, the same for ADI, EADI and SOR-
ADI, followed froma fewnumerical tries starting from the values presented in (Liu et al. 2020,
Tables 1, 2, 3) (see αexp in those tables) which were obtained through a search procedure for
similar matrices A and B. The choice of these parameters for the HSSmethodwasmade from
analogous experiments. The extrapolation parameter in the EADI method and the relaxation
parameter in the SOR-ADI method are denoted byωext andωsor , respectively, and the values
chosen for these parameters were also settled from some numerical experiments.

In what respects to the number of iterations and the CPU time required by EADI and
SOR-ADI methods to converge, given the residual tolerance (5.1), we observe a reduction in
both indicators when compared to the ADI method. This reduction is more significative in
the block SOR-ADI method, in particular in the case τ = 50 and σ = 0.1. We can consider
that the block SOR-ADI is the method which exhibits the best performance among the three
methods (followed by the EADI method) - the number of iterations is sometimes less than a
half, or even a third, of the number of iterations needed by the ADI method.

The comparison of the three methods ADI, EADI and block SOR-ADI with the HSS
method shows that HSS is the slowest method in terms of the CPU time required. When
compared with EADI and SOR-ADI, in addition to the number of iterations required being
greater in most cases (about twice as much in half the cases) the computational cost of each
HSS iteration is considerably higher and increases with n.

We nowpresent a second example. This example is not connected to a practical application
and it was devised only for testing purposes.
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Table 2 Performance of ADI, EADI, SOR-ADI and HSS methods for the Example 5.2

m; n ADI EADI SOR-ADI HSS

α = β iter tCPU wext iter tCPU wsor iter tCPU α = β iter tCPU

40; 100 0.75 37 0.01 0.85 23 0.008 0.96 23 0.008 1.5 21 0.01

r = 4; 500; 103 0.75 37 1.62 0.85 23 1.03 0.96 24 1.09 1.5 21 2.28

s = 3 103; 103 0.75 37 2.60 0.85 23 2.65 0.96 23 2.60 1.5 21 5.26

103; 5 × 103 0.75 37 65.03 0.85 23 39.01 0.96 24 41.30 1.5 21 110.5

40; 100 1.5 40 0.01 0.35 7 0.003 0.92 17 0.007 3.8 12 0.006

r = 10; 500; 103 1.5 40 1.93 0.35 7 0.38 0.92 17 0.85 3.8 12 1.38

s = 3 103; 103 1.5 40 4.80 0.35 7 1.10 0.92 17 2.12 3.8 12 3.14

103; 5 × 103 1.5 40 70.5 0.35 7 13.08 0.92 17 32.15 3.8 12 87.1

Example 5.2 Consider the problem of finding the solution of the Sylvester equation (1.1)
with pentadiagonal Toeplitz matrices A ∈ R

m×m and B ∈ R
n×n given by

A = pentadiag (−0.5,−1, r ,−1,−0.5) and B = pentadiag (−1,−0.5, s,−0.5,−1) ,

(5.4)

where r and s are two non-zero real parameters, and matrix C is randomly generated from
values uniformly distributed in [0, 10].

We considered different values for r and s and, in each case, different orders m and n of
the matrices A and B, respectively. Table 2 contains the number of iterations and CPU time
required by the four methods ADI, EADI, block SOR-ADI and HSS.

This is an interesting example. In the case r = 4 and s = 3, regardless of the order of
the matrices A and B, the number of iterations is always the same (with residual tolerance
tol = 10−6) for the four methods. We observe that both EADI and block SOR-ADI methods
are more efficient than the ADI method—the number of iterations and the CPU time required
are significantly reduced (a reduction of about 40%)—and their performance is approximately
the same. The HSS method requires less iterations than the other three methods (only 2 or 3
iterations less than EADI and block SOR-ADI) but it is about twice or three times slower.

In the case r = 10 and s = 3, again the number of iterations is constant for any order
of the matrices A and B, but here we found a significant superiority of the EADI method in
relation to block SOR-ADI and ADI methods (although very satisfactory, this contradicts the
general pattern which is that block SOR-ADI method is almost always more efficient than
EADI). The HSS method requires more iterations than the EADI method and less iterations
than the block SOR-ADI method, but in both cases the CPU time is greater.

6 Conclusion

We considered the problem of solving the continuous Sylvester equation AX+XB = C and,
combining a classical method with classical acceleration techniques in a way that we have
not seen directly presented in the literature before, we developed two iterative methods to
solve this equation. These methods are variants of the ADI iterative method - an extrapolated
variant (EADI) and a block successive overrelaxation variant (block SOR-ADI). We showed
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that these variants are closely related to each other, although their formulations did not
anticipate this observation. Under certain assumptions of definiteness on matrices A and B,
we established sufficient conditions for convergence of these two methods. The preliminary
numerical examples provided show, as expected, that these schemes may be advantageous
when compared to the basic ADI method. The convergence rate can be improved by the
EADI method and, more significantly, by the block SOR-ADI method. Our experiments
also show that these new methods are more efficient than the Hermitian and skew-Hermitian
splitting (HSS) method. Even in the few cases when the number of iterations required by the
HSS method is smaller, the significant higher computational cost of each iteration leads to a
greater CPU time.

As future work, instead of using two fixed shifts throughout the whole iteration, we plan to
incorporate in the proposedmethods EADI and SOR-ADI heuristic shift-parameter strategies
to compute different shifts (close to optimal) to be used in every step. We will be able to
answer the question if the speed-up by our methods is also obtained when different ADI
shifts are used, and compare the performance with existing ADI algorithms that follow the
same approach, see (Benner et al. 2009; Li and White 2002; Wachspress 2009). Another
interesting and related experiment would be to see if adding the refinement step of EADI to
the factored ADI method (Benner et al. 2009) could improve its convergence rate.
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Appendix A. Implementation details

Algorithm 1 ADI – Alternating Direction Implicit method
Input: Matrices A, B, C (orders m × m, n × n and m × n),

initial approximations X0, shift parameters α and β, relative residual tolerance tol,
maximum number of iterations maxit

Output: Solution X of the Sylvester equation AX + XB = C

dA = decomposition(A + α ∗ eye(m)) � decompositions of (α I + A) and (β I + B)

dB = decomposition(B + β ∗ eye(n)) � reduces the execution time of the backslash operator

Aβ = β ∗ eye(m) − A
Bα = α ∗ eye(n) − B

X = X0
R = C − A ∗ X − X ∗ B � initial residual R = C − AY − Y B
normR = norm(R,‘fro’) � Frobenious norms of R and C
normC = norm(C,‘fro’)

iter = 0 � number of iterations counter
while

(

(normR/normC) > tol and iter < maxit
)

do
X = dA\(X ∗ Bα + C)

X = (Aβ ∗ X + C)/dB

R = C − A ∗ X − X ∗ B
normR = norm(R,‘fro’)

iter = iter + 1
end while

if iter >= maxit then
disp(‘Maximum number of iterations exceed.’)

end if
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Algorithm 2 EADI – Extrapolated Alternating Direction Implicit method
Input: Matrices A, B, C (orders m × m, n × n and m × n),

initial approximations X0, shift parameters α and β, relative residual tolerance tol,
maximum number of iterations maxit

Output: Solution X of the Sylvester equation AX + XB = C

dA = decomposition(A + α ∗ eye(m)) � decompositions of (α I + A) and (β I + B)

dB = decomposition(B + β ∗ eye(n)) � reduces the execution time of the backslash operator

Aβ = β ∗ eye(m) − A
Bα = α ∗ eye(n) − B
ω1 = 1 − ω

X = X0
R = C − A ∗ X − X ∗ B � initial residual R = C − AY − Y B
normR = norm(R,‘fro’) � Frobenious norms of R and C
normC = norm(C,‘fro’)

iter = 0 � number of iterations counter
while

(

(normR/normC) > tol and iter < maxit
)

do
X = dA\(X ∗ Bα + C)

Y = (Aβ ∗ X + C)/dB
X = ω1 ∗ X + ω ∗ Y

R = C − A ∗ X − X ∗ B
normR = norm(R,‘fro’)

iter = iter + 1
end while

if iter >= maxit then
disp(‘Maximum number of iterations exceed.’)

end if
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Algorithm 3 SOR - ADI – block successive overrelaxation ADI method
Input: Matrices A, B, C (orders m × m, n × n and m × n),

initial approximations X0 and Y0, shift parameters α and β, relative residual tolerance tol,
relaxation parameter ω, maximum number of iterations maxit

Output: Solution Y of the Sylvester equation AX + XB = C

dA = decomposition(A + α ∗ eye(m)) � decompositions of (α I + A) and (β I + B)

dB = decomposition(B + β ∗ eye(n)) � reduces the execution time of the backslash operator

Aβ = β ∗ eye(m) − A
Bα = α ∗ eye(n) − B
ω1 = 1 − ω

X = X0; Y = Y0
R = C − A ∗ Y − Y ∗ B � initial residual R = C − AY − Y B
normR = norm(R,‘fro’) � Frobenious norms of R and C
normC = norm(C,‘fro’)

iter = 0 � number of iterations counter
while

(

(normR/normC) > tol and iter < maxit
)

do
X = ω1 ∗ X + ω ∗ (dA\(Y ∗ Bα + C))

Y = ω1 ∗ Y + ω ∗ ((Aβ ∗ X + C)/dB)

R = C − A ∗ Y − Y ∗ B
normR = norm(R,‘fro’)

iter = iter + 1
end while

if iter >= maxit then
disp(‘Maximum number of iterations exceed.’)

end if
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Algorithm 4 HSS – Hermitian and skew-Hermitian splitting iteration
Input: Matrices A, B, C (orders m × m, n × n and m × n),

initial approximation X0, shift parameters α and β, relative residual tolerance tol,
maximum number of iterations maxit

Output: Solution X of the Sylester equation AX + XB = C

� Hermitian and skew-Hermitian splittings of A and B
H1 = (A + A’)/2
S1 = (A − A’)/2
H2 = (B + B’)/2
S2 = (B − B’)/2

� schur forms of H1, H2, S1 and S2 (diagonalizable)
[Q1,D1] = schur(full(H1)) � H1 = Q1D1Q

∗
1

[Q2,D2] = schur(full(H2)) � H2 = Q2D2Q
∗
2

[Q3,D3] = schur(full(S1))
[Q3,D3] = rsf2csf(Q3,D3) � S1 = Q3D3Q

∗
3

[Q4,D4] = schur(full(S2))
[Q4,D4] = rsf2csf(Q4,D4) � S2 = Q4D4Q

∗
4

� diagonal elements of D1 + α In , D2 + β Im , D3 + α In and D4 + β Im
D1 = diag(D1) + α; D2 = diag(D2) + β

D3 = diag(D3) + α; D4 = diag(D4) + β

X = X0
R = C − A ∗ X − X ∗ B

normR = norm(R,‘fro’); normC = norm(C,‘fro’) � Frobenious norms of R and C
iter = 0 � number of iterations counter
while

(

(normR/normC) > tol and iter < maxit
)

do
% First step
R = Q1’ ∗ R ∗ Q2
Z = R./(D1 + D2.’) � solve (α I + D1)Z + Z(β I + D2) = R
X = X + Q1 ∗ Z ∗ Q2’ � update X ; X ← X + Q1ZQ

∗
2

% Second step
R = C − A ∗ X − X ∗ B
R = Q3’ ∗ R ∗ Q4
Z = R./(D3 + D4.’) � solve (α I + D3)Z + Z(β I + D4) = R
X = X + Q3 ∗ Z ∗ Q4’ � update X ; X ← X + Q3ZQ

∗
4

R = C − A ∗ X − X ∗ B
normR = norm(R,‘fro’)

iter = iter + 1
end while

if iter >= maxit then
disp(‘Maximum number of iterations exceed.’)

end if
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