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Abstract
Failure mode and effect analysis (FMEA) is a reliability analysis and risk management tech-
nique used to analyze the potential causes of system failure modes and their impact on system
performance and has been used in many fields. However, the traditional FMEA model often
ignores the weight of risk factors and their internal relationship in an uncertain setting. To
compensate for the above shortcomings, this article proposes a new FMEA model for risk
prioritization by combining the Hamy mean operator, logarithmic percentage change-driven
objective weighting (LOPCOW)model, and additive ratio assessment (ARAS)method under
interval-valued Fermatean fuzzy (IVFF) environment. To begin with, novel IVFF opera-
tions based on Aczel–Alsina norms are defined. Then, some novel Hamy mean operators are
proposed based on the definedoperations including the IVFFAczel–AlsinaHamymean (IVF-
FAAHAM) operator, IVFF Aczel–Alsina weighted Hamy mean (IVFFAAWHAM) operator
and their dual forms. The corresponding properties of these operators are also investigated.
Further, the IVFF-LOPCOW method is proposed to find the weight of risk criteria and an
improved ARAS method is propounded based on the presented operators for attaining the
ranking of failure modes. Afterward, a novel FMEA model based on the integrated IVFF-
LOPCOW-ARASmethodology is constructed, which can effectively determine the weight of
experts and risk factors, as well as consider the interrelationship in the course of risk analysis.
Lastly, a case about the risks in the R&D project of an industrial robot offline programming
system is utilized to test the feasibility of the proposed FMEA model. The stability and
advantages of the model are also investigated through sensitivity and comparison studies,
respectively.
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1 Introduction

Failure mode and effect analysis (FMEA) is a reliability model and quality control method
that can prevent potential failures and risks in systems, project development, and quality
service processes. FMEA not only reduces risks in product development but also indirectly
improves product quality. It can identify the most dangerous liabilities from potential faults,
as well as carry out preventive work and design adjustment plans in advance. Owing to its
significant superiority for risk and reliability analysis in the field of engineering development,
FMEA has been applied by researchers from different fields in many industrial engineering
fields, such as decision analysis (Ma et al. 2023; Sarwar et al. 2023), risk assessment (Chen
et al. 2023), manufacturing industry (Dhalmahapatra et al. 2022), and product development
(Wang et al. 2018).

FMEA expert group evaluates potential failure modes from three aspects: severity (S),
detection difficulty (D), and occurrence (O), and then analyzes and identifies potential failure
modes by calculating the risk priority number of the failure mode (Huang et al. 2020b; Liu
et al. 2013). The traditional risk priority number (RPN) calculation method can directly and
conveniently obtain the RPN of the failure mode by multiplying the aforementioned three
factors. However, the traditional RPN calculation method does not consider the importance
of the Risk factor, which will result in ambiguous results, and different failure modes will
also be difficult to determine the risk level of failure modes due to the same RPN value.
Furthermore, because of the limitations and uncertainties of human cognition, the complexity
of the assessment environment, and the subjective impact of expert assessment, it is difficult
for FMEA experts to give an accurate assessment of the risk factors through experience and
knowledge. To effectively solve such problems, some uncertain technologies, such as Fuzzy
sets (FSs) (Zadeh 1965), intuitionistic FSs (IFSs) (Atanassov 1986), and interval-valued
intuitionistic FSs (IVIFSs) (Atanassov and Gargov 1989), have been proposed. The theory of
FSs originated by Zadeh is utilized to help decision experts portray uncertainty and ambiguity
effectively in the evaluation procedure. Henceforth, the expanded forms including the IFSs,
Pythagorean FSs (PFSs) (Yager 2014; Yager and Abbasov 2013), and Fermatean FSs (FFSs)
(Senapati and Yager 2020) are propounded to depict the uncertain assessment information
with less restrictive conditions. In view of the merits of the mentioned notions in processing
uncertainty, they have been applied to draw uncertain risk assessment information and further
construct different kinds of FMEA modes with uncertain circumstances (Huang and Xiao
2021; Huang et al. 2020a; Lai et al. 2022; Liang and Li 2023; Liu et al. 2019; Shahri et al.
2021; Yu et al. 2023). However, the aforementioned uncertain conceptions also possess some
constraints that fail to describe the risk information more comprehensively.

Recently, an innovative information representation model called IVFF sets have been pro-
pounded by (Rani andMishra 2022) as a combination of interval-valued and FFSs. IVFF sets
can express the uncertain risk assessment information more comprehensively than IVIFSs
and interval-valued Pythagorean FSs (IVIFSs) (He et al. 2021). Since it is pioneered to pro-
cess uncertainty and vagueness in practical application, the studies on IVFFSs have been
investigated frommultiple perspectives; e.g., information aggregation, information measure,
decisionmethodology, and applications in real life (Akram et al. 2022; Luqman and Shahzadi
2023; Palanikumar and Iampan 2022; Qin et al. 2023; Sergi et al. 2022). In addition, Liu
et al. (2022) introduced the notion of an interval-valued hesitant Fermatean fuzzy set and
then built the corresponding theoretical system including distance measures and aggrega-
tion operators. Further, the extended complex proportional assessment (COPRAS) method
is also presented for selecting the optimal desalination technology. Rani et al. (2022a) pro-
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pounded the improved score function for IVFF sets to make up for the deficiencies of the
extant functions and propounded a novel COPRAS methodology using the improved score
function and Einstein operators. Hezam et al. (2023) built up a novel assessment framework
for choosing autonomous smart wheelchairs by utilizing a Dombi operators-based combined
compromise solution method under the IVFF environment. Seikh and Mandal (2023) also
proposed a hybrid group decision method based on the Dombi operators and preference
ranking organization method for enrichment evaluation II (PROMETHEE II) and stepwise
weight assessment ratio analysis (SWARA) methods to select an appropriate capable organi-
zation for managing the biomedical waste. However, the IVFF sets are not utilized by experts
to cope with FMEA problems yet. Meanwhile, the extant aggregation operators for IVFF
sets neglect the interrelationship among the input data. Therefore, this study will present a
novel FMEA model based on a decision approach with an IVFF environment to unfold risk
analysis.

Information aggregation is a vital branch in the field of decision analysis. Researchers
proposed a lot of aggregation functions to fuse multiple uncertain and fuzzy data and further
achieve the goal of dimensionality reduction. In the procedure of decision analysis, experts
often need to aggregate the assessment information offered by multiple experts and then
unfold the exploration stage according to collective group assessment. Especially, the inter-
relationship among the assessment criteria needs to be taken into account for attaining a
more reasonable fusion outcome in some realistic applications. The Hamy mean is a famous,
stronger, and flexible aggregation function to ponder the correlation among aggregation data
(Hara et al. 1998). Research on it has been acquired to fuse diverse different uncertain infor-
mation and applied them to settle different problems (Liu et al. 2020; Rong et al. 2020; Wu
et al. 2018; Xu et al. 2021). The fundamental to propose a new operator is first to define the
operational laws for fuzzy numbers. Based on the literature overview, we can find the cur-
rent IVFF aggregation operator is propounded based on the Archimedean norms. Recently,
the Aczel–Alsina norms have been utilized to construct operational rules and define novel
aggregation operators because of their flexibility and generalization advantages (Aczél and
Alsina 1982; Rong et al. 2022; Senapati et al. 2022a, b, c, 2023). However, the Aczel–Alsina
norms are not used to define operations for IVFF numbers (IVFFNs) and the Hamy mean
fails to be investigated over IVFF circumstances.

The implementation process of FMEA is to rank the potential failure modes based on
some criteria with the help of experts’ risk assessment opinions and preferences. Thus, it is
viewed as a typical multiple criteria decision-making (MCDM) problem in effect. To effec-
tively and scientifically address the MCDM problems, some powerful models are applied to
deal with diverse actual applications and provide much decision support for departments and
managers. As a common and efficient decisionmethod, the additive ratio assessment (ARAS)
method originated based on the utility degree theory, which can settle decision and assess-
ment issues effectively (Zavadskas et al. 2010). ARAS is a compensatory approach that can
determine the order of a set of alternatives over the criteria by a simple relative procedure.
Recently, ARAS has been applied to various applications with uncertain information and
attained some excellent outcomes for managers. For instance, Rani et al. (2022b) developed
an expanded version of the ARAS method based on Heronian mean operators within FFSs
to assess the food waste treatment technology, wherein the criteria weight is computed by
the improved Fermatean fuzzy method based on the removal effects of criteria (MEREC)
algorithm. Mishra et al. (2021) prioritized and assessed the electric vehicle charging sta-
tion with the aid of the similarity degree-based ARAS method and a combination weight
determination technique under the single neutrosophic circumstance. Mishra et al. (2022)
propounded a new low-carbon tourism strategy assessment framework by integrating the
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ARAS method and similarity measure-based weight computation algorithm with interval-
valued intuitionistic fuzzy information. Further, Mishra et al. (2023) presented an integrated
assessment method named full consistency method FUCOM-ARAS based on some novel
dual probabilistic linguistic Dombi power aggregation operators to select the optimal medical
equipment supplier using the dual probabilistic linguistic evaluation information. FUCOM
was employed to acquire the subjective weight information of the assessment criteria. More
extensions and research of the ARAS method can refer to the following achievements (Estiri
et al. 2021; Fan et al. 2023; Karimi and Nikkhah-Farkhani 2022; Mentes and Akyildiz 2023;
Muttakin et al. 2022). Up to now, ARAS has not been utilized in FMEA model to deal with
risk problems under IVFF setting.

1.1 Motivations of the research

By means of the aforementioned discussion and literature investigation, the motivations of
this study are summarized as follows:

FMEA is a powerful reliability analysis and riskmanagement technique and has awidespread
application in various fields. IVFF set is a novel extension of previous works like IFS, PFS,
IVIFS, and IVPFS that can articulate uncertainty more efficiently. However, the extant works
show that there is no study to combine FMEA and IVFF set for unfold risk analysis.
The existing aggregation operators such as the Einstein operator, Hamacher operator, and
Dombi operator can be used to aggregate IVFF information effectively. Nevertheless, these
operators fail to think about the flexibility and interrelationship concurrently. Besides, the
Aczel–Alsina operations have not been extended for IVFFNs. Hence, it is important to define
IVFF Aczel–Alsina operations and propose the Hamy mean operators for making up the
mentioned defects.
The logarithmic percentage change-driven objective weighting (LOPCOW) is a novel criteria
weight determination method that considers the percentage effect among criteria. It has been
successfully applied in several real-life problem instances. But so far, it has not been proposed
to estimate the criteria importance degree within IVFF sets.
ARAS model possesses higher robustness and stability for determining an optimal solution
in the course of decision analysis. However, the previous research shows that there is no
investigation for the combination of ARAS and FMEA to the application of uncertain risk
analysis. Besides, the prior extensions of ARAS fail to ponder the correlation among the risk
criteria.

1.2 Contributions of the research

Given the aforementioned motivations, this research propounds a hybrid group FMEA risk
assessment approach within IVFF information for evaluators to prioritize the risk factors by
considering the interrelationship among the risk criteria. Accordingly, the contributions and
originalities of our study are summarized as follows:

(1) Some novel operational laws for IVFFNs are defined based on the Aczel–Alsina norms.
(2) A series of Hamy mean operators based on the defined operations are propounded to

ponder the correlation among the input decision data, including IVFF Aczel–Alsina
Hamy mean (IVFFAAHAM) operator, IVFF Aczel–Alsina weighted Hamy mean
(IVFFAAWHAM) operator, IVFF Aczel–Alsina dual Hamy mean (IVFFAADHAM)
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operator and their dual extensions. The valuable properties and special cases of these
novel operators are explored at length.

(3) The LOPCOWmethod is proposed based on the score function for the determination of
risk criteria weight with IVFF information.

(4) An improved IVFF-ARAS method based on the propounded Hamy mean operator is
developed to determine the rank of failure modes.

1.3 Organization of the research

In a nutshell, the remaining sections of this study are organized as below. Section 2 succinctly
looks back at several fundamental conceptions of the IVFF set, Aczel–Alsina norms, and
Hamy mean operator. Section 3 propounds some novel Hamy mean operators based on the
IVFFAczel–Alsina operations. Section 4 proposes a novel FMEAmodel based on the hybrid
LOPCOW-ARAS methodology under the IVFF environment. The case study that analyzes
the risks in an R&D project of an industrial robot offline programming system is conducted
to verify the applicability of the proposed FMEA mode in Sect. 5. In addition, the analysis
of results involving parameter discussion and comparison study is also implemented. We
summarize this study and discuss the limitations of the proposed model and future research
directions in Sect. 6.

2 Prerequisites

The notion of IVFFSs emerged from the FFSs, which generalizes the membership and non-
membership grades from exact numbers to interval numbers. In the following, we present
some fundamental ideas about the IVFF sets.

Definition 2.1 (Senapati and Yager 2020). Let Y be a non-empty universe of discourse. An
FFS ˜F in Y can be represented as:

˜F � {〈

y, φ
˜F (y), ξ

˜F (y)
〉|y ∈ Y

}

. (1)

wherein φ
˜F , ξ

˜F : Y → [0, 1], signify the grade of membership and the grade of non-

membership of the object y ∈ Y to ˜F , respectively, with the condition 0 ≤ (

φ
˜F (y)

)3 +
(

ξ
˜F (y)

)3 ≤ 1, ∀y ∈ Y . The indeterminacy grade of an element y ∈ Y is indicated as π
˜F

(y) � 3
√

1 − (

φ
˜F (y)

)3 − (

ξ
˜F (y)

)3
. For the sake of simplicity,

(

φ
˜F (y), ξ

˜F (y)
)

is defined as
a Fermatean fuzzy number (FFN), represented by α̃ � (φα̃ , ξα̃), where φα̃ , ξα̃ ∈ [0, 1],
πα̃ � 3

√

1 − (φα̃)3 − (ξα̃)3, and 0 ≤ (φα̃)3 + (ξα̃)3 ≤ 1.

Definition 2.2 (Jeevaraj 2021;Rani and Mishra 2022). It is supposed that I nt[0, 1] be the
set of all closed subintervals of the interval [0, 1]. The mathematical definition of an IVFFS
H on the universe Y can be defined as:

H �
{〈

y,
[

φ
l f
H (y), φ

u f
H (y)

]

,
[

ξ
l f
H (y), ξ

u f
H (y)

]〉

: y ∈ Y
}

, (2)

wherein 0 ≤ φ
l f
H (y) ≤ φ

u f
H (y) ≤ 1, 0 ≤ ξ

l f
H (y) ≤ ξ

u f
H (y) ≤ 1, and 0 ≤

(

φ
u f
H (y)

)3
+

(

ξ
u f
H (y)

)3 ≤ 1. Here, φH (y) �
[

φ
l f
H (y), φ

u f
H (y)

]

and ξH (y) �
[

ξ
l f
H (y), ξ

u f
H (y)

]

stand

for the interval-valued membership and non-membership degrees of y ∈ Y , respectively.
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The function πH (y) �
[

π
l f
H (y), π

u f
H (y)

]

denotes the interval-valued Fermatean fuzzy

hesitant grade of object y ∈ Y to H , where π
l f
H (xi ) � 3

√

1 −
(

φ
u f
H (y)

)3 −
(

ξ
u f
H (y)

)3

and π
u f
H (xi ) � 3

√

1 −
(

φ
l f
H (y)

)3 −
(

ξ
l f
H (y)

)3
. For convenience, an IVFFN is denoted by

ψ �
([

φ
l f
ψ , φ

u f
ψ

]

,
[

ξ
l f
ψ , ξ

u f
ψ

])

, which fulfills
(

φ
u f
ψ

)3
+
(

ξ
u f
ψ

)3 ≤ 1. Some special cases of

IVFF sets are defined as:

(i) If φ
l f
H (y) � φ

u f
H (y) and ξ

l f
H (y) � ξ

u f
H (y), ∀y ∈ Y , then an IVFF set reduces to an

FFS.
(ii) If φ

u f
H (y) + ξ

u f
H (y) ≤ 1, then an IVFF set reduces to an IVIF set.

(iii) If
(

φ
u f
H (y)

)2
+
(

ξ
u f
H (y)

)2 ≤ 1, then an IVFF set yields to an IVPF set.

Definition 2.3 (Rani and Mishra 2022). Let ψ1 �
([

φ
l f
1 , φ

u f
1

]

,
[

ξ
l f
1 , ξ

u f
1

])

and

ψ2 �
([

φ
l f
2 , φ

u f
2

]

,
[

ξ
l f
2 , ξ

u f
2

]) be two IVFFNs. Then, the basic relations between the two

IVFFNs ψ1 and ψ2 are given below:

(i) ψ1 � ψ2 iff φ
l f
1 � φ

l f
2 , φ

u f
1 � φ

u f
2 , ξ

l f
1 � ξ

l f
2 , and ξ

u f
1 � ξ

u f
2 ;

(ii) ψ1 ≺ ψ2 iff φ
l f
1 ≤ φ

l f
2 , φ

u f
1 ≤ φ

u f
2 , ξ

l f
1 ≥ ξ

l f
2 , and ξ

u f
1 ≥ ξ

u f
2 .

Definition 2.4 (Rani and Mishra 2022). Let ψ � ([

φl f , φu f
]

,
[

ξ l f , ξu f
])

, ψ1 �
([

φ
l f
1 ,

φ
u f
1

]

,
[

ξ
l f
1 , ξ

u f
1

])

, and ψ2 �
([

φ
l f
2 , φ

u f
2

]

,
[

ξ
l f
2 , ξ

u f
2

])

be three IVFFNs and λ > 0. The

following operations are defined as:

(i) ψ1 ∪ ψ2 �
([

max
{

φ
l f
1 , φ

l f
2

}

, max
{

φ
u f
1 , φ

u f
2

}]

,
[

min
{

ξ
l f
1 , ξ

l f
2

}

, min
{

ξ
u f
1 , ξ

u f
2

}])

;

(ii) ψ1 ∩ ψ2 �
([

min
{

φ
l f
1 , φ

l f
2

}

, min
{

φ
u f
1 , φ

u f
2

}]

,
[

max
{

ξ
l f
1 , ξ

l f
2

}

, max
{

ξ
u f
1 , ξ

u f
2

}])

;

(iii)

ψ1 ⊕ ψ2 �
([

3

√

(

φ
l f
1

)3
+
(

φ
l f
2

)3 −
(

φ
l f
1

)3(

φ
l f
2

)3
,

3

√

(

φ
u f
1

)3
+
(

φ
u f
2

)3 −
(

φ
u f
1

)3(

φ
u f
2

)3
]

,
[

ξ
l f
1 ξ

l f
2 , ξ

u f
1 ξ

u f
2

]

)

;

(iv)

ψ1 ⊗ ψ2 �
(

[

φ
l f
1 φ

l f
2 , φ

u f
1 φ

u f
2

]

,

[

3

√

(

ξ
l f
1

)3
+
(

ξ
l f
2

)3 −
(

ξ
l f
1

)3(

ξ
l f
2

)3
,

3

√

(

ξ
u f
1

)3
+
(

ξ
u f
2

)3 −
(

ξ
u f
1

)3(

ξ
u f
2

)3
])

;

(v) λψ �
([

3

√

1 −
(

1 − (

φl f
)3
)λ

,
3

√

1 −
(

1 − (

φu f
)3
)λ
]

,

[

(

ξ l f
)λ

,
(

ξu f
)λ
]

)

;

(vi) ψλ �
(

[

(

φl f
)λ

,
(

φu f
)λ
]

,

[

3

√

1 −
(

1 − (

ξ l f
)3
)λ

,
3

√

1 −
(

1 − (

ξu f
)3
)λ
])

.

123



The FMEA model based on LOPCOW-ARAS methods with interval-valued Page 7 of 43 25

Definition 2.5 (Rani and Mishra 2022). Let ψ � ([

φl f , φu f
]

,
[

ξ l f , ξu f
])

be an IVFFN.
Then the score function ℘(ψ) and accuracy function 
(ψ) are defined as:

℘(ψ) � 1

2

(

(

φl f
)3

+
(

φu f
)3 −

(

ξ l f
)3 −

(

ξu f
)3
)

, 
(ψ) ∈ [−1, 1], (3)


(ψ) � 1

2

(

(

φl f
)3

+
(

φu f
)3

+
(

ξ l f
)3

+
(

ξu f
)3
)

, 
(ψ) ∈ [0, 1]. (4)

Definition 2.6 (Rani and Mishra 2022). Letψ1 andψ2 be two IVFFNs. Then the comparison
rules are given as:

If ℘(ψ1) > ℘(ψ2), then ψ1 � ψ2;
If ℘(ψ1) < ℘(ψ2), then ψ1 ≺ ψ2;
If ℘(ψ1) � ℘(ψ2), then
If 
(ψ1) > 
(ψ2), then ψ1 � ψ2;
If 
(ψ1) < 
(ψ2), then ψ1 ≺ ψ2;
If 
(ψ1) � 
(ψ2), then ψ1 ∼ ψ2.

Definition2.7 (Rani and Mishra2022).Letψ j �
([

φ
l f
j , φ

u f
j

]

,
[

ξ
l f
j , ξu f

j

])

( j � 1(1)p)be a

family of IVFFNs. Then, the interval-valued Fermatean fuzzyweighted averaging (IVFFWA)
and interval-valued Fermatean fuzzy weighted geometric (IVFFWG) operators are given as:

I V F FW A
(

ψ1, ψ2, . . . , ψp
) � p⊕

j�1
ω j ψ j

�
⎛

⎝

⎡

⎣
3

√

√

√

√1 −
p
∏

j�1

(

1 −
(

φ
l f
j

)3
)ω j

, 3

√

√

√

√1 −
p
∏

j�1

(

1 −
(

φ
u f
j

)3
)ω j

⎤

⎦,

⎡

⎣

p
∏

j�1

(

ξ
l f
j

)ω j
,

p
∏

j�1

(

ξ
u f
j

)ω j

⎤

⎦

⎞

⎠,

(5)
I V F FW G

(

ψ1, ψ2, . . . , ψp
) � p⊗

j�1

(

ψ j
)ω j

�
⎛

⎝

⎡

⎣

p
∏

j�1

(

φ
l f
j

)ω j
,

p
∏

j�1

(

φ
u f
j

)ω j

⎤

⎦,

⎡

⎣
3

√

√

√

√1 −
p
∏

j�1

(

1 −
(

ξ
l f
j

)3
)ω j

, 3

√

√

√

√1 −
p
∏

j�1

(

1 −
(

ξ
u f
j

)3
)ω j

⎤

⎦

⎞

⎠,

(6)

wherein ω � (

ω1, ω2, . . . , ωp
)T be the weights of ψ j ( j � 1(1)p), satisfying ω j ∈ [0, 1]

and
∑p

j�1 ω j � 1.

Definition 2.8 (Aczél and Alsina 1982). Suppose that a and b are two arbitrary, non-negative
real numbers (x , y > 0), then the t-norm and s-norm of Aczel–Alsina can be described as
follows:

T �
AA(a, b) � exp

{

−
(

(− ln a)� + (− ln b)�
) 1

�
}

, � > 0, (7)

S�
AA(a, b) � 1 − exp

{

−
(

(− ln(1 − a))� + (− ln(1 − b))�
) 1

�
}

, � > 0. (8)

Definition 2.9 (Hara et al. 1998). Suppose cε(ε � 1, 2, . . . , p) is a set of non-negative real
numbers, κ � 1, 2, . . . , p. If:

H M (κ)
(

c1, c2, . . . , cp
) �

∑

1≤ε1≤···≤εκ≤p

(

κ
∏

j�1
cε j

) 1
κ

Cκ
p

, (9)
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then H M (κ) is named as the Hamy mean, where (ε1, ε2, . . . , εk) traverses all the κ-tuple
combinations of (1, 2, . . . , p), and Cκ

p is the binomial coefficient.

Furthermore, a dual form of HM (i.e., dual Hamy mean (DHM), was developed by Wu
et al. (2018) in the following.

Definition 2.10 (Wu et al. 2018). Suppose cε(ε � 1, 2, . . . , p) is a set of non-negative real
numbers, and κ � 1, 2, . . . , p. If:

DH M (κ)(c1, c2, . . . , cn) �

⎛

⎜

⎜

⎜

⎝

∏

1≤ε1≤···≤εκ≤p

⎛

⎜

⎜

⎜

⎝

κ
∑

j�1
cε j

κ

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

1
Cκ

p

, (10)

then DH M (κ) is named as the dual Hamy mean.

3 Interval-valued Fermatean fuzzy Aczel-Alsina Hamymean operators

The current sectionfirst defines the novel operations for IVFFNs.Then, a series ofHamymean
operators based on the defined operations are propounded. We also discuss some valuable
properties of the presented operators.

3.1 Aczel–Alsina operation for IVFFNs

Definition 3.1 Let ψ1 �
([

φ
l f
1 , φ

u f
1

]

,
[

ξ
l f
1 , ξ

u f
1

])

and ψ2 �
([

φ
l f
2 , φ

u f
2

]

,
[

ξ
l f
2 , ξ

u f
2

])

be two IVFFNs, λ, � ≥ 0 and then the interval-valued Fermatean fuzzy Aczel–Alsina
operational laws are defined as :
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(i)
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⎟

⎟
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⎟
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⎠
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(11)

(ii)

ψ1 ⊗ ψ2 �
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(12)

(iii)
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Theorem 3.1 Let ψ1 �
([

φ
l f
1 , φ

u f
1

]

,
[

ξ
l f
1 , ξ

u f
1

])

and ψ2 �
([

φ
l f
2 , φ

u f
2

]

,
[

ξ
l f
2 , ξ

u f
2

])

be

two IVFFNs and λ, λ1, λ2 ≥ 0. Then, the following properties can be obtained:

(1) ψ1 ⊕ ψ2 � ψ2 ⊕ ψ1.

(2) ψ1 ⊗ ψ2 � ψ2 ⊗ ψ1.

(3) λ(ψ1 ⊕ ψ2) � λψ1 ⊕ λψ2.

(4) λ1ψ1 ⊕ λ2ψ1 � (λ1 + λ2)ψ1.

(5) (ψ1 ⊗ ψ2)
λ � (ψ1)

λ ⊗ (ψ2)
λ.

(6) (ψ1)
λ1 ⊗ (ψ1)

λ2 � (ψ1)
λ1+λ2 .

Proof It is trivial via Definition 3.1.

3.2 Interval-valued Fermatean fuzzy Aczel–Alsina Hamymean operators

This part proposes the definition of the IVFFHAM operator and the IVFFWHAM operator,
as well as discusses the related theorems.

Definition 3.2 Let ψ j �
([

φ
l f
j , φ

u f
j

]

,
[

ξ
l f
j , ξ

u f
j

])

( j � 1(1)p) be a family of IVFFNs.

Then the mathematical definition of the IVFFHAM operator can be portrayed as:

I V F F AAH AM (κ)
(

ψ1, ψ2, . . . , ψp
) �

⊕
1≤ε1≤···≤εκ≤p

(

κ⊗
j�1

ψε j

) 1
κ

Cκ
p

, (15)

wherein (ε1, ε2, . . . , εk) traverses all the κ-tuple combinations of (1, 2, . . . , p), and Cκ
p �

p!
κ!(p−κ)! is the binomial coefficient with the constraint of 1 ≤ ε1 ≤ ε2 ≤ · · · ≤ εκ ≤ p.

Theorem 3.2 Suppose that ψ j �
([

φ
l f
j , φ

u f
j

]

,
[

ξ
l f
j , ξ

u f
j

])

( j � 1(1)p) is a family of

IVFFNs, the fusion outcome attained by the IVFFHAM operator is still an IVFFN and
represented as:

I V F F H AM (κ)
(

ψ1, ψ2, . . . , ψp
)
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Proof. Based on the Aczel–Alsina operation laws of IVFFNs, one has:
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Then:
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.

Hence, we can prove that Eq. (16) holds. Furthermore, we need to prove that the fusion
outcomes attained by the IVFFHAMoperator are IVFFNs. Based on the definition of IVFFS,

we have 0 ≤ φ
l f
ε j , φ

u f
ε j , ξ

l f
ε j , ξ

u f
ε j ≤ 1 and 0 ≤

(

φ
u f
ε j

)3
+
(

ξ
u f
ε j

)3 ≤ 1. Then, we can acquire

that the interval-valued membership and non-membership grades of the IVFFHAM operator

belong to [0, 1].Besides, because
(

φ
u f
ε j

)3 ≤ 1−
(

ξ
u f
ε j

)3
holds, we can get that the sum of the

interval lower bound of membership grade and the interval lower bound of non-membership
grade is less than or equal to 1. Consequently, the proof of Theorem 3.2 is finished.

In view of Theorem 3.2, we explore a series of meanwhile properties of the IVFFHAM
operator.
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Property 3.1 (Idempotency) Let ψ j �
([

φ
l f
j , φ

u f
j

]

,
[

ξ
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j , ξ

u f
j

])

( j � 1(1)p) be a family of
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, for all j � 1, 2, · · · , p, then one has:

I V F F AAH AM (κ)
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⎛

⎜

⎝

∑

1≤ε1≤···≤εκ≤p

⎛

⎝− ln

⎛

⎝1 − exp

⎧

⎨

⎩

−
[
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− ln
(

1 − (

ξu f
)3
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⎫
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⎠
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⎟

⎟

⎟

⎟
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⎟
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⎠
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⎛

⎜

⎜
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⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3

√

√

√

√

√

√
1 − exp

⎧

⎪

⎨

⎪

⎩

−
⎡

⎣

(

− ln

(

1 − exp

{

−
[

(

− ln
(

(

φl f
)3
))�] 1

�
}))�⎤

⎦

1
�
⎫

⎪

⎬

⎪

⎭

3

√

√

√

√

√

√
1 − exp

⎧

⎪

⎨

⎪

⎩

−
⎡

⎣

(

− ln

(

1 − exp

{

−
[

(

− ln
(

(

φu f
)3
))�] 1

�
}))�⎤

⎦

1
�
⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3

√

√

√

√

√

√
exp

⎧

⎪

⎨

⎪

⎩

−
⎡

⎣

(

− ln

(

1 − exp

{

−
[

(

− ln
(

1 − (

ξ l f
)3
))�] 1

�
}))�⎤

⎦

1
�
⎫

⎪

⎬

⎪

⎭

,

3

√

√

√

√

√

√
exp

⎧

⎪

⎨

⎪

⎩

−
⎡

⎣

(

− ln

(

1 − exp

{

−
[

(

− ln
(

1 − (

ξ l f
)3
))�] 1

�
}))�⎤

⎦

1
�
⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

�
([

φl f , φu f
]

,
[

ξ l f , ξu f
])

� ψ.

Property 3.2 (Monotonicity) Let ψ j �
([

φ
l f
j , φ

u f
j

]

,
[

ξ
l f
j , ξ

u f
j

])

and ψ j �
([

φ
l f
j , φ

u f
j

]

,
[

ξ
l f
j , ξ

u f
j

])

be two collections of IVFFNs. If φ
l f
j ≥ φ

l f
j , φ

u f
j ≥ φ

u f
j , ξ

l f
j ≤ ξ

l f
j , and

ξ
u f
j ≥ ξ

u f
j , then we have:

I V F F AAH AM (κ)
(

ψ1, ψ2, . . . , ψp
) ≥ I V F F AAH AM (κ)

(

ψ1, ψ2, . . . , ψ p
)

.

Proof. Sinceφ
l f
j > φ

l f
j , wehave

∑κ
j�1

(

− ln

(

(

φ
l f
ε j

)3
))�

≤ ∑κ
j�1

(

− ln

(

(

φ
l f
ε j

)3
))�

.

Further, we can deduce:

1 − exp

⎧

⎪

⎨

⎪

⎩

−
⎡

⎣

1

κ

κ
∑

j�1

(

− ln

(

(

φl f
ε j

)3
))�

⎤

⎦

1
�
⎫

⎪

⎬

⎪

⎭

≤ 1 − exp

⎧

⎪

⎨

⎪

⎩

−
⎡

⎣

1

κ

κ
∑

j�1

(

− ln

(

(

φ
l f
ε j

)3
))�

⎤

⎦

1
�
⎫

⎪

⎬

⎪

⎭

,
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and

1

Cκ
p

∑

1≤ε1≤···≤εκ≤p

⎛

⎜

⎝
− ln

⎛

⎜

⎝
1 − exp

⎧

⎪

⎨

⎪

⎩

−
⎡

⎣

1

κ

κ
∑

j�1

(

− ln

(

(

φl f
ε j

)3
))�

⎤

⎦

1
�
⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎠

⎞

⎟

⎠

�

≥ 1

Cκ
p

∑

1≤ε1≤···≤εκ≤p

⎛

⎜

⎝
− ln

⎛

⎜

⎝
1 − exp

⎧

⎪

⎨

⎪

⎩

−
⎡

⎣

1

κ

κ
∑

j�1

(

− ln

(

(

φ
l f
ε j

)3
))�

⎤

⎦

1
�
⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎠

⎞

⎟

⎠

�

.

Furthermore:

3

√

√

√

√

√

√

√

√

√

1 − exp

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−

⎡

⎢

⎢

⎣

1

Cκ
p

⎛

⎜

⎜

⎝

∑

1≤ε1≤···≤εκ≤p

⎛

⎜

⎜

⎝

− ln

⎛

⎜

⎜

⎝

1 − exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
⎡

⎣

1

κ

κ
∑

j�1

(

− ln

(

(

φ
l f
ε j

)3
))�

⎤

⎦

1�
⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

�⎞
⎟

⎟

⎠

⎤

⎥

⎥

⎦

1�
⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

≥ 3

√

√

√

√

√

√

√

√

√

1 − exp

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−

⎡

⎢

⎢

⎣

1

Cκ
p

⎛

⎜

⎜

⎝

∑

1≤ε1≤···≤εκ≤p

⎛

⎜

⎜

⎝

− ln

⎛

⎜

⎜

⎝

1 − exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
⎡

⎣

1

κ

κ
∑

j�1

(

− ln

(

(

φ
l f
ε j

)3
))�

⎤

⎦

1�
⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

�⎞
⎟

⎟

⎠

⎤

⎥

⎥

⎦

1�
⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

.

The unequal relation for the non-membership grade can be attained in the same manner
as:

3

√

√

√

√

√

√

√

√

√

exp

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩
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⎡

⎢

⎢

⎣

1

Cκ
p

⎛

⎜

⎜

⎝

∑

1≤ε1≤···≤εκ≤p

⎛

⎜

⎜

⎝

− ln

⎛

⎜

⎜

⎝

1 − exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
⎡

⎣

1

κ

κ
∑

j�1

(

− ln

(

1 −
(

ξ
l f
ε j

)3
))�

⎤

⎦

1�
⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

�⎞
⎟

⎟

⎠

⎤

⎥

⎥

⎦

1�
⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

≤ 3

√

√

√

√

√

√

√

√

√

exp

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−

⎡

⎢

⎢

⎣

1

Cκ
p

⎛

⎜

⎜

⎝

∑

1≤ε1≤···≤εκ≤p

⎛

⎜

⎜

⎝

− ln

⎛

⎜

⎜

⎝

1 − exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
⎡

⎣

1

κ

κ
∑

j�1

(

− ln

(

1 −
(

ξ
l f
ε j

)3
))�

⎤

⎦

1�
⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

�⎞
⎟

⎟

⎠

⎤

⎥

⎥

⎦

1�
⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

.

Hence, we have I V F F AAH AM (κ)
(

ψ1, ψ2, . . . , ψp
)

> I V F F AAH AM (κ)
(

ψ1,
ψ2, . . . , ψ p

)

. Furthermore, employing the score function of IVFFN, we can obtain that
I V F F AAH AM (κ)

(

ψ1, ψ2, . . . , ψp
) � I V F F AAH AM (κ)

(

ψ1, ψ2, . . . , ψ p
)

holds

when φ
l f
j � φ

l f
j , φ

u f
j � φ

u f
j , ξ

l f
j � ξ

l f
j , and ξ

u f
j � ξ

u f
j . Based on the above illus-

trations, we can prove that the monotonicity property I V F F AAH AM (κ)
(

ψ1, ψ2, . . . ,
ψp
) ≥ I V F F AAH AM (κ)

(

ψ1, ψ2, . . . , ψ p
)

always holds.

Property 3.3 (Boundness): Let ψ j �
([

φ
l f
j , φ

u f
j

]

,
[

ξ
l f
j , ξ

u f
j

])

( j � 1(1)p) be a family of

IVFFNs. If ψmin � min1≤ j≤p
{

ψ j
}

and ψmax � max1≤ j≤p
{

ψ j
}

, then we have:

ψmin ≤ I V F F AAH AM (κ)
(

ψ1, ψ2, . . . , ψp
) ≤ ψmax.

Proof. Employing the monotonicity of the IVFFHAM operator, we have:

ψmin ≤ I V F F AAH AM (κ)
(

ψ1, ψ2, . . . , ψp
) ≥ I V F F AAH AM (κ)(ψmin, ψmin, . . . , ψmin),

ψmin ≤ I V F F AAH AM (κ)
(

ψ1, ψ2, . . . , ψp
) ≤ I V F F AAH AM (κ)(ψmax, ψmax, . . . , ψmax).
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Further, based on the Idempotency of the IVFFHAM operator, we have:

I V F F AAH AM (κ)(ψmin, ψmin, . . . , ψmin) � ψmin,

I V F F AAH AM (κ)(ψmax, ψmax, . . . , ψmax) � ψmax.

Hence, we can attain that the boundness property ψmin ≤ I V F F AAH AM (κ)
(

ψ1, ψ2,
. . . , ψp

) ≤ ψmax holds.

Property 3.4 (Commutativity) Let ψ j �
([

φ
l f
j , φ

u f
j

]

,
[

ξ
l f
j , ξ

u f
j

])

and ψ j �
([

φ
l f
j , φ

u f
j

]

,
[

ξ
l f
j , ξ

u f
j

])

be two collections of IVFFNs. If
(

ψ1, ψ2, · · · , ψ p
)

is any permutation of
(

ψ1,

ψ2, · · · , ψp
)

, then:

I V F F AAH AM (κ)
(

ψ1, ψ2, . . . , ψp
) � I V F F AAH AM (κ)

(

ψ1, ψ2, . . . , ψ p
)

.

Proof Since
(

ψ1, ψ2, · · · , ψ p
)

is any permutation of
(

ψ1, ψ2, · · · , ψp
)

holds, then we
have:

⊕
1≤ε1≤···≤εκ≤p

(

κ⊗
j�1

ψε j

) 1
κ

Cκ
p

�
⊕

1≤ε1≤···≤εκ≤p

(

κ⊗
j�1

ψε j

) 1
κ

Cκ
p

.

Therefore, the property I V F F AAH AM (κ)
(

ψ1, ψ2, . . . , ψp
) � I V F F AAH AM (κ)

(

ψ1, ψ2, . . . , ψ p
)

always keeps.
Next, several special cases of the proposed IVFFAAHAMoperator are acquired as follows:

(1) When � � 1, then the IVFFAAHAM operator can be generated into the IVFFHAM
operator.

(2) When � � 1 and κ � 1, then the IVFFAAHAM operator can be reduced to the IVFFA
operator (Rani and Mishra 2022).

(3) When � � 1 and κ � p, then the IVFFAAHAM operator can be yielded to the IVFFG
operator (Rani and Mishra 2022).

(4) When κ � 1, then the IVFFAAHAM operator can be simplified into the IVFFAAA
operator.

(5) When κ � p, then the IVFFAAHAM operator can be generated into the IVFFAAG
operator.

We can find that the IVFFAAHAMoperator fails to take into account the importance of the
fused data, thus the novel weighted Hamymean operator by utilizing the IVFF Aczel–Alsina
operations is presented in the following.

Definition 3.3 Let ψ j �
([

φ
l f
j , φ

u f
j

]

,
[

ξ
l f
j , ξ

u f
j

])

( j � 1(1)p) be a family of IVFFNs,

and ω � (

ω1, ω2, . . . , ωp
)T be the weights of ψ j ( j � 1(1)p), satisfying ω j ∈ [0, 1]

and
∑p

j�1 ω j � 1. Then, the mathematical definition of the IVFFAAWHAM operator can
be portrayed as:

I V F F AAW H AM (κ)
(

ψ1, ψ2, . . . , ψp
) �

⊕
1≤ε1≤···≤εκ≤p

(

κ⊗
j�1

ωε j ψε j

) 1
κ

Cκ
p

, (17)
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wherein (ε1, ε2, . . . , εk) traverses all the κ-tuple combinations of (1, 2, . . . , p), and Cκ
p �

p!
κ!(p−κ)! is the binomial coefficient with the constraint of 1 ≤ ε1 ≤ ε2 ≤ · · · ≤ εκ ≤ p.

According to the introduced Aczel–Alsina operation laws of IVFFNs, the aggregation
results of the IVFFWHAM operator are expressed as follows.

Theorem 3.3 Suppose that ψ j �
([

φ
l f
j , φ

u f
j

]

,
[

ξ
l f
j , ξ

u f
j

])

( j � 1(1)p) is a family of

IVFFNs, the fusion outcome attained by the IVFFWHAM operator is still an IVFFN and
represented as:

I V F FW H AM(κ)
(

ψ1, ψ2, . . . , ψp
)
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⎜

⎜

⎜
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⎜
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⎢

⎢
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⎢
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⎢

⎢

⎢
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√
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⎪

⎨
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⎪

⎪

⎪

⎩

−

⎡

⎢

⎢
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⎜

⎜
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⎛
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⎜

⎝
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⎣
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⎪
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⎪

⎪
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⎠
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⎪
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⎪
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√
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⎨
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⎪
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⎢
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⎜

⎜

⎝
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⎛
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⎜

⎝
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⎛
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⎜

⎝

1 − exp
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⎣
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(18)

Proof Analogous with Theorem 3.2, so we omitted it here.
In addition, the IVFFWHAMoperator fulfills the property ofmonotonicity and boundness

but fails to meet the property of idempotency. Thus, the proof is omitted here.

3.3 Interval-valued Fermatean fuzzy Aczel–Alsina dual Hamymean operators

In the following subsection, the novel dual Hamy mean operators including the IVFFDHAM
operator and the IVFFWDHAM operator are propounded based on the IVFF Aczel–Alsina
operations.

Definition 3.4 Let ψ j �
([

φ
l f
j , φ

u f
j

]

,
[

ξ
l f
j , ξ

u f
j

])

( j � 1(1)p) be a family of IVFFNs.

Then, the mathematical definition of the IVFFDHAM operator can be portrayed as:

IVFFAADHAM(κ)
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ψ1, ψ2, . . . , ψp
) �
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Cκ

p

, (19)

wherein (ε1, ε2, . . . , εk) traverses all the κ-tuple combinations of (1, 2, . . . , p), and Cκ
p �

p!
κ!(p−κ)! is the binomial coefficient with the constraint of 1 ≤ ε1 ≤ ε2 ≤ · · · ≤ εκ ≤ p.
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Theorem 3.4 It is assumed that ψ j �
([
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l f
j , φ

u f
j

]

,
[

ξ
l f
j , ξ

u f
j

])

( j � 1(1)p) is a collection

of IVFFNs, the aggregation resultant attained by the IVFFDHAM operator is still an IVFFN
and represented as:
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(20)

Proof On the basis of the Aczel–Alsina operation laws of IVFFNs, one has:
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Accordingly:
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Hence, we can prove that Eq. (20) holds. Furthermore, we need to prove that the fusion
outcomes attained by the IVFFDHAM operator are IVFFNs. Based on the definition of

IVFFS, we have 0 ≤ φ
l f
ε j , φ

u f
ε j , ξ

l f
ε j , ξ

u f
ε j ≤ 1 and 0 ≤

(

φ
u f
ε j

)3
+
(

ξ
u f
ε j

)3 ≤ 1. Then, we

can acquire the interval-valued membership and non-membership grades of the IVFFHAM

operator belong to [0, 1]. Moreover, since
(

φ
u f
ε j

)3 ≤ 1−
(

ξ
u f
ε j

)3
holds, then we can get that

the sum of the interval lower bound of the membership grade and the interval lower bound of
the non-membership grade is less than or equal to 1. Consequently, the proof of Theorem 3.4
is finished.
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A series of meanwhile properties of the IVFFDHAM operator are explored using Theo-
rem 3.4.

Property 3.5 (Idempotency) Let ψ j �
([

φ
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j , φ
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j

]

,
[

ξ
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j , ξ

u f
j

])

( j � 1(1)p) be a set of

IVFFNs. If ψ j � ψ � ([
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]

,
[

ξ l f , ξu f
])

, for all j � 1, 2, · · · , p, then one has:
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) � ψ.
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ξ
l f
j , ξ

u f
j

])

be two collections of IVFFNs. If
(

ψ1, ψ2, · · · , ψ p
)

is any permutation of
(

ψ1,

ψ2, · · · , ψp
)

. Then:

IVFFAADHAM(κ)
(

ψ1, ψ2, . . . , ψp
) � IVFFAADHAM(κ)

(

ψ1, ψ2, . . . , ψ p
)

.

In what follows, several special cases of the proposed IVFFAADHAM operator are
acquired as follows:

(1) When� � 1, then the IVFFAADHAM operator can be generated into the IVFFDHAM
operator.

(2) When � � 1 and κ � 1, then the IVFFAADHAM operator lessens into the IVFFG
operator (Rani and Mishra 2022).

(3) When � � 1 and κ � p, then the IVFFAADHAM operator reduces into the IVFFA
operator (Rani and Mishra 2022).

(4) When κ � 1, then the IVFFAADHAM operator can be simplified into the IVFFAAG
operator.

(5) When κ � p, then the IVFFAADHAM operator can be generated into the IVFFAAA
operator.

We found that the IVFFAADHAM operator fails to take into account the importance of
the fused data. Thus, the novel weighted dual Hamy mean operator by utilizing the IVFFAA
operations is presented in the following.

Definition 3.5 Let ψ j �
([

φ
l f
j , φ

u f
j

]

,
[

ξ
l f
j , ξ

u f
j

])

( j � 1(1)p) be a family of IVFFNs

and ω � (

ω1, ω2, . . . , ωp
)T be the weights of ψ j ( j � 1(1)p) that satisfy ω j ∈ [0, 1]

and
∑p

j�1 ω j � 1. Then, the mathematical definition of the IVFFAAWHAM operator can
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be portrayed as:

I V F F AAW DH AM (κ)
(

ψ1, ψ2, . . . , ψp
) �

⎛

⎜

⎜

⎝

⊗
1≤ε1≤···≤εκ≤p

⎛

⎜

⎜

⎝

κ⊕
j�1

ωε j ψε j

κ

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

1
Cκ

p

, (21)

wherein (ε1, ε2, . . . , εk) traverses all the κ-tuple combinations of (1, 2, . . . , p), and Cκ
p �

p!
κ!(p−κ)! is the binomial coefficient with the constraint of 1 ≤ ε1 ≤ ε2 ≤ · · · ≤ εκ ≤ p.

Theorem 3.5 Suppose that ψ j �
([

φ
l f
j , φ

u f
j

]

,
[

ξ
l f
j , ξ

u f
j

])

( j � 1(1)p) is a family of

IVFFNs, the fusion outcome attained by the IVFFHAM operator is still an IVFFN and
represented as:
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⎛
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⎟

⎟

⎟

⎟
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⎟
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⎟
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⎟

⎟

⎟
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⎟
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⎟

⎠

.

(22)

Proof Analogous with Theorem 3.2, so it is omitted here.
In addition, the IVFFWDHAM operator fulfills the property of monotonicity and bound-

ness but fails to the property of idempotency. Thus, the proof is omitted here.

4 An innovative FMEAmodel based on IVFF-LOPCOW-ARAS

In this section, an innovative multiple criteria group decision-making (MCGDM) methodol-
ogy named IVFF-LOPCOW-ARAS is presented by combining the proposed IVFFWHAM
operator, IVFFWDHAM operator, LOPCOW and ARAS methods under the IVFF environ-
ment. In the proposed IVFF-LOPCOW-ARAS method, weights of experts are determined
by a similarity degree-based method, while criterion weights are determined by the LOP-
COW method. Then, an enhanced ARAS approach is introduced based on the proposed
IVFFWHAM and IVFFWDHAM operators. The most advantageous of the proposed IVFF-
LOPCOW-ARAS approach is that it takes into consideration the correlation among the IVFF
assessment data. Specifically, the presented IVFF-LOPCOW-ARAS method is portrayed in
Fig. 1. The concrete procedures of the developed method are expounded below.
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Fig. 1 A schematic diagram of the propounded FMEA model based on IVFF-LOPCOW-ARAS

4.1 Establishment of integrated IVFF decisionmatrix

It is supposed that the MCGDM problem is made up of q schemes denoted as D � {

D1,
D2, · · · , Dq

}

and p assessment criteria indicated as C � {

C1, C2, · · · , C p
}

. The decision
committee consists of γ experts who are denoted as E � {

E1, E2, · · · , Eγ

}

. Let Q(r) �
(

χ
(r)
i j

)

q×p
be the IVFF assessment matrices given by expert Er in the following:
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Q(r) �
(

χ
(r)
i j

)

q×p
�

⎛

⎜

⎜

⎜

⎜

⎝

χ
(r)
11 χ

(r)
12 · · · χ

(r)
1p

χ
(r)
21 χ

(r)
22 · · · χ

(r)
2p

...
...

. . .
...

χ
(r)
q1 χ

(r)
q2 · · · χ

(r)
qp

⎞

⎟

⎟

⎟

⎟

⎠

, ∀r � 1(1)γ ,

wherein χ
(r)
i j �

([

φ
l f (r)
i j , φ

u f (r)
i j

]

,
[

ξ
l f (r)
i j , ξ

u f (r)
i j

])

denotes the assessment (i.e. judgment)

of the scheme Di (i � 1, 2, · · · , q) over the evaluation criterion C j ( j � 1, 2, · · · , p)

provided by the expert Er (r � 1, 2, · · · , γ ).

Step 1. Work out the weight of decision experts:
The weights of the experts are a key attention for the procedure of fusing the assessment

information. In this step, the correlation coefficient-based approach is employed to determine
the weight of the experts.

(a) Compute the score matrices of experts as:

℘̃(r) �
(

℘̃
(

χ
(r)
i j

))

q×p
�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

℘̃
(

χ
(r)
11

)

℘̃
(

χ
(r)
12

)

· · · ℘̃
(

χ
(r)
p1

)

℘̃
(

χ
(r)
21

)

℘̃
(

χ
(r)
22

)

· · · ℘̃
(

χ
(r)
p2

)

...
...

. . .
...

℘̃
(

χ
(r)
q1

)

℘̃
(

χ
(r)
q2

)

· · · ℘̃
(

χ
(r)
qp

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ∀r � 1(1)γ , (23)

where ℘̃
(

χ
(r)
i j

)

� 1
2

(

1
2

(

(

φ
l f (r)
i j

)3
+
(

φ
u f (r)
i j

)3 −
(

ξ
l f (r)
i j

)3 −
(

ξ
u f (r)
i j

)3
)

+ 1

)

(i � 1(1)q ,

j � 1(1)p, r � 1(1)γ ).

(b) Attain the averaging score matrices of experts as:

˜℘̃ �
(

˜℘̃
(

χi j

))

q×p
�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

˜℘̃
(

χ11

)

˜℘̃
(

χ12

) · · · ˜℘̃
(

χp1

)

˜℘̃
(

χ21

)

˜℘̃
(

χ22

) · · · ˜℘̃
(

χp2

)

...
...

. . .
...

˜℘̃
(

χq1

)

˜℘̃
(

χq2

)

· · · ˜℘̃
(

χqp

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (24)

where ˜℘̃
(

χi j

)

� 1
γ

∑γ
r�1 ℘̃

(

χ
(r)
i j

)

(i � 1(1)q , j � 1(1)p).

(c)Work out the correlation coefficient between scorematrices and averaging scorematrix
by:

CCr �
∑q

i�1

∑p
j�1 ℘̃

(

χ
(r)
i j

)

˜℘̃
(

χi j

)

√

∑p
j�1

(

℘̃
(

χ
(r)
i j

))2
√

∑p
j�1

(

˜℘̃
(

χi j

))2
, ∀r � 1(1)γ , (25)

(d) The weight of the experts can be calculated by:

θr � CCr
∑γ

l�1 CCl
, ∀r � 1(1)γ , (26)
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where θr represents the weight of every expert with θr ≥ 0 and
∑γ

r�1 θr � 1.
Step 2. Attain the integrated evaluation matrices:
The assessment values of the experts are fused by utilizing the IVFFWHAM operator or

IVFFWDHAM operator to acquire the integrated IVFF evaluation matrices A �
(

χi j

)

m×n
,

wherein:

χi j �
([

φ
l f
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u f
i j
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,
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i j , ξ
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4.2 Computation of criterion weights

The weight of risk criterion provides a crucial role in the course of risk factor prioritization
ranking. As one of the latest and most powerful weight determination approaches, LOPCOW
was proposed by Ecer and Pamucar (2022) to compute the risk criteria importance based
on percentage values of criteria. Owing to its advantages that offer simple and effective
attainment of risk criterion weights, it has been applied to ascertain the importance of criteria
in various actual applications. For instance, Ulutas et al. (2023) built a hybrid decision
model by fusing MEREC, PSI, LOPCOW and multiple criteria ranking by alternative trace
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method to recommend the most effective natural fiber insulation material. Ecer et al. (2023)
introduced a novel integrated decision framework named VIKOR-LOPCOW for selecting
suitable unmanned aerial vehicles to support sustainable agricultural development. Demir
et al. (2023) utilized theLOPCOWmethod to determine theweight of criteria in the evaluation
of open datamanagement systems used in the development of e-government. Niu et al. (2022)
proposed an extended Fermatean cubic fuzzy LOPCOW method and further constructed a
hybrid group decision method. Owing to the applications and merits of the LOPCOWmodel,
we propound the IVFF-LOPCOW method to objectively ascertain risk criterion weights in
this study. Let ω � (

ω1, ω2, · · · , ωp
)T be the weight vector of the risk criteria, which meets

ω j ∈ [0, 1] as well as
∑p

j�1 ω j � 1. The detailed steps of the IVFF-LOPCOW approach
are illustrated in the following:
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Step 2. Compute the score of the normalized group evaluation matrix:
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Step 3. Calculative the standard deviation:
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Step 4. Compute the percentage values for each criterion:
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Step 5. Find final weights of the criteria:

ω j � PVj
∑p

l�1 PVl
, ∀ j � 1(1)p. (32)

4.3 Prioritization of the schemes

The IVFF-ARAS method is presented to determine the prioritization of the considered
schemes:

Step 1. Determine the best assessment value of the schemes:
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Step 2. Discover the weighted normalized group assessment matrix R �
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∀i � 1(1)q , j � 1(1)p. (34)

Step 3. Figure out the score index of the weighted normalized group assessment value:
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Step 4. Determine the comprehensive performance value of each scheme:

Ti �
p
∑

j�1

℘̃
(

ςi j

)

, ∀i � 1(1)q. (36)

Step 5. Ascertain the utility grade of the assessment schemes:

�i � Ti

T0
, ∀i � 1(1)q , (37)

where �i (0 ≤ �i ≤ 1) is the utility grade of the scheme Di , while T0 is the utility grade of
the optimal performance value η0.

Step 6. Attain the priority of the assessed schemes:
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{

Di

∣

∣
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∣
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�i , i � 1, 2, · · · , q

}

. (38)

where the considered options are ranked in ascending order of the utility grade�i to determine
the most satisfactory option.

5 Case study

The current section employed a case about the risk assessment in the R&D project of an
industrial robot offline programming system to validate the feasibility and practicability of
the novel FMEA model based on the IVFF-LOPCOW-ARAS methodology. Further, we
explore the characteristics and advantages of the proposed FMEA model employing the
parameters analysis and comparison study.
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5.1 Decision analysis

The rapid development of Industry 4.0 has provided an opportunity for the transformation
of the manufacturing industry. Enterprises can optimize the disposal of various links in their
production process and improve their competitiveness by utilizing information and intelli-
gent technology. As an important part of the manufacturing process, industrial robots provide
scientific and technological support for the rapid development of the industry as well as the
digital transformation of enterprises. In the development process of industrial robots, the
offline programming system of industrial robots, as a core link in the research and manu-
facturing of industrial robots, is related to the quality and service life of robots. Therefore,
identifying and analyzing potential risks in the development process of industrial robot offline
programming systems has certain auxiliary value for improving the efficiency and quality
of system development. A new energy vehicle company optimizes the offline programming
system for industrial robots in the production chain to improve production efficiency. Con-
sidering the high costs involved in the system development process, the R&D department
invited professionals to analyze and evaluate potential risks during the research and develop-
ment process to reduce the cost and time consumption of research and development. First, the
department invited three experts who come from the fields of system R&D and machinery
manufacturing to consist of the FMEA team denoted as {E1, E2, E3}. Then, based on the
industrial robot offline programming system research and development project and the enter-
prise’s new product research and development report, the FMEA team carries out the risk
identification of a new energy vehicles company’s industrial robot offline programming sys-
tem research after consultation and discussion carefully and further determined the potential
risk factors denoted as {RF1, RF2, RF3, RF4, RF5}. The detailed explanations of these risk
factors are shown in Table 1. This study applies the risk severity (O), risk frequency (S), and
risk detectability (D) in the FMEA model as risk criteria to rank potential risks. Considering
the uncertainty in the risk assessment process, this paper applies the proposed FMEA model

Table 1 Risks in the R&D project of industrial robot offline programming system

Risk categories Risk descriptions

Demand risk
(RF1)

It refers to the risks caused by incomplete requirement information, unprofessional
requirement analysts, frequent changes in requirements, and incomplete budget
requirement assessment during the research and development process

Design risk
(RF2)

It refers to the risks caused by factors such as unreasonable system architecture design,
overly complex software operation interfaces, lack of professional technical
personnel, and lack of copyright awareness among developers during the research
and development process

Development risk
(RF3)

It refers to the risks caused by factors such as non-standard code writing, incomplete
source code preservation mechanism, and unstable system operation during the
research and development process

Testing risks
(RF4)

It refers to the risks caused by factors such as the inability to conduct testing due to
functional limitations during the research and development process, insufficient
reserved testing time, lack of complete testing process instructions, and incomplete
functional testing

Launch risk
(RF5)

It refers to the risks caused by factors such as complex system functions, insufficient
preparation for system launch, and unstable system response speed during the
research and development process
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Table 2 Linguistic variables and
their corresponding IVFF
elements (Seikh and Mandal
2023)

Linguistic variables IVFF numbers

Absolute-high-importance (AHI) ([0.85, 0.95], [0.05, 0.15])

Very-high-importance (VHI) ([0.75, 0.85], [0.15, 0.25])

High-importance (HI) ([0.65, 0.75], [0.25, 0.35])

Equal-importance (EI) ([0.5, 0.5], [0.5, 0.5])

Low-importance (LI) ([0.25, 0.35], [0.65, 0.75])

Very-low-importance (VLI) ([0.15, 0.25], [0.75, 0.85])

Absolutely-low-importance (ALI) ([0.05, 0.15], [0.85, 0.95])

Table 3 Linguistic risk assessment matrix given by the three experts

Risk factors O S D

E1 E2 E3 E1 E2 E3 E1 E2 E3

RF1 HI EI LI LI LI EI EI LI LI

RF2 VHI AHI HI AHI VHI VHI LI VLI VLI

RF3 VHI LI HI VHI AHI AHI EI LI LI

RF4 AHI VHI HI HI HI EI VHI HI VHI

RF5 EI EI LI VHI HI VHI HI VHI HI

based on IVFF-LOPCOW-ARAS to evaluate and analyze the potential risks in the devel-
opment process of industrial robot offline programming systems. The risk implementation
procedures are presented in Table 1.

First of all, the risk factors and the risk criteria are determined based on experts’ discussions
and the FMEA model. The experts in the FMEA team are invited to assess the risk factors
by utilizing the linguistic terms displayed in Table 2. In the risk assessment procedure, each
risk factor RFi is evaluated by the risk criteria O, S, and D. Hence, the risk assessment
information of the potential five risk factors was assessed based on the three risk criteria
and attained by the FMEA team using the linguistic terms displayed in Table 3. Further, the
linguistic assessment information given by the FMEA team was shifted into IVFFNs, which
were listed by the FMEA team in Tables 4, 5 and 6.

Based on the IVFF risk assessment matrices, we use the correlation coefficient-based
approach to ascertain the importance degree of the experts. First, the scorematrices of experts’
risk assessment matrices and the averaging score matrix are attained by Eqs. (23) and (24),
respectively. Then the correlation coefficients between score matrices and averaging score
matrix are computed by Eq. (25) and listed as follows: CC1 � 4.9674, CC2 � 4.9612.
Further, the importance degrees of expert are acquired byEq. (26) and the results are displayed
as: θ1 � 0.3339, θ2 � 0.3334, and θ3 � 0.3327. Lastly, the integrated IVFF risk evaluation

matrix A �
(

χi j

)

m×n
can be determined by the IVFFWHAMoperator or the IVFFWDHAM

operator displayed in Eq. (27). The computational outcome of integrated IVFF risk evaluation
matrix is listed in Table 7.

In what follows, we shall identify the importance grade of the risk criteria by the proposed
IVFF-LOPCOW method. We first normalize the integrated IVFF risk evaluation matrix by
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Table 4 IVFF risk assessment
matrix given by the expert E1

Risk
factors

O S D

RF1 ([0.65, 0.75],
[0.25, 0.35])

([0.25, 0.35],
[0.65, 0.75])

([0.50, 0.50],
[0. 50, 0.50])

RF2 ([0.75, 0.85],
[0.15, 0.25])

([0.85, 0.95],
[0.05, 0.15])

([0.25, 0.35],
[0.65, 0.75])

RF3 ([0.75, 0.85],
[0.15, 0.25])

([0.75, 0.85],
[0.15, 0.25])

([0.50, 0.50],
[0. 50, 0.50])

RF4 ([0.85, 0.95],
[0.05, 0.15])

([0.65, 0.75],
[0.25, 0.35])

([0.75, 0.85],
[0.15, 0.25])

RF5 ([0.50, 0.50], [0.
50, 0.50])

([0.75, 0.85],
[0.15, 0.25])

([0.65, 0.75],
[0.25, 0.35])

Table 5 IVFF risk assessment
matrix given by the expert E2

Risk
factors

O S D

RF1 ([0.50, 0.50], [0.
50, 0.50])

([0.25, 0.35],
[0.65, 0.75])

([0.25, 0.35],
[0.65, 0.75])

RF2 ([0.85, 0.95],
[0.05, 0.15])

([0.75, 0.85],
[0.15, 0.25])

([0.15, 0.25],
[0.75, 0.85])

RF3 ([0.25, 0.35],
[0.65, 0.75])

([0.85, 0.95],
[0.05, 0.15])

([0.25, 0.35],
[0.65, 0.75])

RF4 ([0.75, 0.85],
[0.15, 0.25])

([0.65, 0.75],
[0.25, 0.35])

([0.65, 0.75],
[0.25, 0.35])

RF5 ([0.50, 0.50], [0.
50, 0.50])

([0.65, 0.75],
[0.25, 0.35])

([0.75, 0.85],
[0.15, 0.25])

transforming the cost-type risk criteria to benefit-type criteria using Eq. (28). Then we get the
score values of the integrated IVFF risk evaluation matrix by Eq. (29). Further, the standard
deviation and percentage values for each risk criteria are attained by Eqs. (30) and (31),
severally. The final weight of risk criteria could be figured out by Eq. (32). The mentioned
computational outcomes of criteria weight are shown in Table 8.

In light of the results of the integrated risk assessment matrix and criterion weights, we
present the improved ARAS method based on the IVFFAAHAM operators to determine the
prioritization of the potential risks under the IVFF environment. First, the optimal risk assess-
ment values for each risk criterion were identified by Eq. (33) and showed as η0 �([0.8752,
0.9231], [0.1438 0.2172]), ([0.9138, 0.9627], [0.0685, 0.1489]), ([0.8630, 0.9138], [0.1489,
0.2246]. Then, we found the weighted normalized group risk assessment matrix with the aid
of Eq. (34). The results are displayed in Table 9.

Next, the score of the weighted normalized group risk assessment matrix is obtained
via Eq. (35) and listed in Table 10. Furthermore, the comprehensive assessment value Ti

is determined by Eq. (36) as T0 � 2.3985, T1 � 1.4632, T2 � 1.9564, T3 � 1.9654,
T4 � 2.2230, and T5 � 2.0347. The utility degree of each risk factor is computed by
Eq. (37) as �1 � 0.610, �2 � 0.8157, �3 � 0.8194, �4 � 0.9268, and �5 � 0.8483.
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Table 6 IVFF risk assessment
matrix given by the expert E3

Risk
factors

O S D

RF1 ([0.25, 0.35],
[0.65, 0.75])

([0.50, 0.50], [0.
50, 0.50])

([0.25, 0.35],
[0.65, 0.75])

RF2 ([0.65, 0.75],
[0.25, 0.35])

([0.75, 0.85],
[0.15, 0.25])

([0.15, 0.25],
[0.75, 0.85])

RF3 ([0.65, 0.75],
[0.25, 0.35])

([0.85, 0.95],
[0.05, 0.15])

([0.25, 0.35],
[0.65, 0.75])

RF4 ([0.65, 0.75],
[0.25, 0.35])

([0.50, 0.50], [0.
50, 0.50])

([0.75, 0.85],
[0.15, 0.25])

RF5 ([0.25, 0.35],
[0.65, 0.75])

([0.75, 0.85],
[0.15, 0.25])

([0.65, 0.75],
[0.25, 0.35])

Table 7 Integrated IVFF risk evaluation matrix

Risk
factors

O S D

RF1 ([0.7123, 0.7352], [0.4217,
0.4533])

([0.5921, 0.6621], [0.4856,
0.5698])

([0.5922, 0.6621], [0.4855,
0.5697])

RF2 ([0.8752, 0.9230], [0.1438,
0.2173])

([0.8948, 0.9409], [ 0.1081,
0.1805])

([0.4691, 0.5718], [0.5766,
0.6756])

RF3 ([0.7871, 0.8447], [0.2820,
0.3637])

([0.9138, 0.9627], [0.0685,
0.1489])

([0.5922, 0.6621], [0.4855,
0.5697])

RF4 ([0.8752, 0.9231], [0.1438,
0.2472])

([0.7977, 0.8381], [0.2682,
0.3187])

([0.8630, 0.9138], [0.1489,
0.2246])

RF5 ([0.6831, 0.7031], [0.4374,
0.4716])

([0.8630, 0.9138], [0.1489,
0.2246])

([0.8435, 0.8948], [0.1805,
0.2540])

Table 8 Calculation outcomes of
risk criteria weights Risk factors O S D

RF1 0.6477 0.5496 0.5497

RF2 0.8609 0.8856 0.4475

RF3 0.7550 0.9129 0.5497

RF4 0.8609 0.7611 0.8478

RF5 0.6195 0.8478 0.8236

Standard deviations (ϑ j) 0.1021 0.1313 0.1613

Percentage values (PVj) 200.1753 180.9881 141.4066

Final weights (ωj) 0.3831 0.3463 0.2706
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Table 9 Weighted normalized IVFF risk evaluation matrix

Risk
factors

O S D

η0 ([0.8210, 0.8768], [0.2446,
0.330])

([0.860, 0.9247], [0.1522,
0.2625])

([0.7863, 0.8462], [0.2917,
0.3806])

RF1 ([0.6527, 0.6752], [0.5342,
0.5629])

([0.5322, 0.5981], [0.6021,
0.6737])

([0.5190, 0.5837], [0.6266,
0.6949])

RF2 ([0.8209, 0.8768], [0.2446,
0.330])

([0.8374, 0.8944], [0.2096,
0.3005])

([0.4082, 0.5004], [0.7004,
0.7759])

RF3 ([0.7273, 0.7876], [0.3988,
0.4797])

([0.860, 0.9247], [0.1522,
0.2625])

([0.5190, 0.5837], [0.6266,
0.6949])

RF4 ([0.8210, 0.8768], [0.2446,
0.330])

([0.7318, 0.7743], [0.3979,
0.4480])

([0.7863, 0.8462], [0.7648,
0.8230])

RF5 ([0.6243, 0.6437], [0.5485,
0.5794])

([0.8013, 0.860], [0.9984,
0.9955])

([0.2917, 0.3806], [0.3304,
0.4122])

Table 10 The score of the
weighted normalized group risk
assessment matrix

Risk factors O S D

Optimal performance value (η0) 0.7942 0.8513 0.7530

RF1 0.5638 0.4602 0.4393

RF2 0.7942 0.8166 0.3456

RF3 0.6749 0.8513 0.4393

RF4 0.7942 0.6758 0.7530

RF5 0.5376 0.7724 0.7246

Finally, the prioritization order of the risk factors can be ascertained by Eq. (38) as RF4 �
RF5 � RF3 � RF2 � RF1.

5.2 Sensitivity analysis

The stability and robustness of the FMEAmodel are very important for the experts to improve
efficiency during the process of risk analysis. Hence, this part investigates the stability of
the risk prioritization outcomes obtained by the introduced FMEA model based on IVFF-
LOPCOW-ARAS. In the proposedmodel, the twoparameters κ and�, whichwere used in the
IVFFAAWHAM operator and the IVFFAAWDHAM operator, need to be further discussed.
Also, their influences on the final risk priority raking outcomes have to be revealed.

The first sensitivity analysis discusses the impact of the parameter � on the prioritization
of the risk factors. The risk ranking results of the risk factors obtained using diverse values of
� are attained and displayed in Table 11. From these outcomes, it was found that the utility
grade of risk factors RFi increases with the increase of the parameter �. In addition, we can
observe that the risk ranking outcomes obtained from different values of � are all the same.
This implies that the proposed FMEA model based on IVFF-LOPCOW-ARAS is stable and
robust in terms of the parameter �.
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Table 11 Utility grades and rankings of the risk factors obtained by different values of the parameter �

Parameter
�

Utility grade of risk factors Rankings

RF1 RF2 RF3 RF4 RF5

� � 1 0.5571 0.8092 0.7804 0.9012 0.8060 RF4 � RF5 � RF3 � RF2 � RF1
� � 3 0.610 0.8157 0.8194 0.9268 0.8483 RF4 � RF5 � RF3 � RF2 � RF1
� � 5 0.6184 0.8150 0.8335 0.9332 0.8573 RF4 � RF5 � RF3 � RF2 � RF1
� � 7 0.6201 0.8126 0.8375 0.9368 0.8611 RF4 � RF5 � RF3 � RF2 � RF1
� � 9 0.6199 0.8103 0.8383 0.9390 0.8629 RF4 � RF5 � RF3 � RF2 � RF1
� � 11 0.6192 0.8082 0.8382 0.9404 0.8638 RF4 � RF5 � RF3 � RF2 � RF1
� � 13 0.6184 0.8066 0.8378 0.9413 0.8643 RF4 � RF5 � RF3 � RF2 � RF1
� � 15 0.6178 0.8054 0.8373 0.9420 0.8646 RF4 � RF5 � RF3 � RF2 � RF1

Table 12 Utility grades and rankings of the risk factors obtained by different values of the parameter κ

Parameter
κ

Utility grade of risk factors Rankings

RF1 RF2 RF3 RF4 RF5

κ � 1 0.570 0.7884 0.8082 0.9004 0.7774 RF4 � RF3 � RF2 � RF5 � RF1
κ � 2 0.610 0.8157 0.8194 0.9268 0.8483 RF4 � RF5 � RF3 � RF2 � RF1
κ � 3 0.4565 0.7742 0.6788 0.8764 0.7811 RF4 � RF5 � RF2 � RF3 � RF1

The second sensitivity analysis discusses the impact of the parameter κ on the prioritization
of the risk factors. The parameter κ stands for the number of risk criteria with mutual rela-
tionships between them. Hence, we explored the impact of considering the interrelationships
between different quantity criteria on the final ranking of the risk factors. The corresponding
utility grade and priority of the risk factors concerning diverse values of the parameter κ

are portrayed in Table 12. From Table 12, it was discovered that although the rankings of
the risk factors obtained by different values of κ are not consistent, the most important risk
factor was “testing risks” (RF4). This implies that RF4 is the most important thing con-
cerned by the managers. They should strengthen risk monitoring and early warning here to
further reasonably avoid accidents caused by risks. The main reason why the risk ranking
obtained for κ � 2 is different from the other two situations is because this case considers
the pairwise relationship between the risk criteria. It is important to take into account the
correlation among the criteria during the procedure of risk analysis because different risk
factors may need to consider multiple influences concerning the risk criteria. Besides, the
managers can select an appropriate value of the parameter κ according to a requirement of
practical applications.

5.3 Comparison analysis

The comparative analysis with some previous IVFF aggregation operators and methods is
carried out to reflect the superiority and strength of the proposed FMEA model based on
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IVFF-LOPCOW-ARAS for risk assessment and risk factors prioritization. The compared
method includes the IVFFWA operator-based method (Rani and Mishra 2022), IVFFHWA
operator-based method (Luqman and Shahzadi 2023), IVFFHWG operator-based method
(Luqman and Shahzadi 2023), IVFF-WASPAS method (Rani and Mishra 2022), and IVFF-
COPRAS method (Rani et al. 2022a). Based on the fused risk assessment information and
the importance of the risk criteria, the aforesaid methods are adopted to determine the priori-
tization of the potential risk factors, the utility degree or score and ranking of the risk factors
are attained and displayed in Table 13.

In light of the comparison outcomes, we can derive that the most important risk that needs
to be taken seriously is “testing risks” (RF4). It was attained by the mentioned approaches.
This implies that the introduced FMEA model based on IVFF-LOPCOW-ARAS is efficient
for risk analysis. In addition, the risk rankings of the potential risk factors are not the same.
Further analysis of the extant methods with our approach is discussed and summarized in the
following:

• Comparison with the aggregated operator-based methods. The methods based on the
IVFFWA operator (Rani and Mishra 2022), the IVFFHWA operator (Rani and Mishra
2022), and the IVFFHWA operator (Luqman and Shahzadi 2023) are commonly used
methods in decision analysis procedures. Although the aggregated operator-basedmethods
could obtain the comprehensive score of the potential risk factors directly, they neglected
the utility value and the correlation of the risk criteria in ascertaining a final utility grade
of the risk factors. The inconsistency ranking outcome will be present when the criteria
possess the inherent interrelationship. Nevertheless, the proposed IVFF-LOPCOW-ARAS
methodology can not only obtain the utility grade of risk factors based on the improved
ARAS method but also think over the interconnection among the considered risk criteria.
It improves the rationality and accuracy of the final risk ranking result.

• Comparison with the IVFF-WASPAS method (Rani andMishra 2022). The IVFF-WASPAS
method was presented based on the IVFFWA operator and the IVFFWG operator. The
IVFFWA operator and the IVFFWG operator were defined based on algebraic operations,
which not only lacked flexibility but also overlooked the inherent interrelationships among
risk criteria. Besides, the final risk ranking determined by the IVFF-WASPASmethod took
into account theweighted sum andweighted productmeasures, which failed to consider the
influence of the optimal preference on the other risk preferences. In the proposed method,
the flexibility and interrelationship among the risk criteria are taken into consideration
by the proposed IVFF Hamy mean operators. The IVFF-ARAS method is propounded to
rapidly acquire a reasonable ranking of the potential risk factors.

• The comparison with the IVFF-COPRAS method (Rani et al. 2022a). This method was
proposed based on the IVFFEWA operators and the CRITIC method using a novel score
function. Although the IVFF-COPRASmethod can attain the ranking of risk factors based
on the utility degree of risk factors, it ignores the interrelationship among the risk criteria.
Because the IVFF-COPRAS approach was propounded based on the IVFF Einstein oper-
ators, it assumed that the fused IVFF information is independent of each other. Hence,
the proposed IVFF-LOPCOW-ARASmethodology is more flexible and universal than the
IVFF-COPRAS method.

Based upon the aforesaid comparison discussions and analysis, the important features of
the compared methods are summarized in Table 14. The proposed FMEA model based on
IVFF-LOPCOW-ARAS provides an efficient and feasible risk analysis model for experts or
risk managers. It not only thinks about the correlation among the risk criteria but also offers a

123



The FMEA model based on LOPCOW-ARAS methods with interval-valued Page 35 of 43 25

Ta
bl
e
13

D
ec
is
io
n
re
su
lts

ob
ta
in
ed

by
di
ff
er
en
td

ec
is
io
n
ap
pr
oa
ch
es

Pa
ra
m
et
er

�
A
ss
es
sm

en
ti
nd
ex

of
ri
sk

fa
ct
or
s

R
an
ki
ng
s

R
F 1

R
F 2

R
F 3

R
F 4

R
F 5

IV
FF

W
A
op
er
at
or

(R
an
ia
nd

M
is
hr
a
20

22
)

0.
18

22
0.
64

0
0.
61

36
0.
65

78
0.
55

95
R

F
4

�
R

F
2

�
R

F
3

�
R

F
5

�
R

F
1

IV
FF

H
W
A
op
er
at
or

(L
uq
m
an

an
d
Sh

ah
za
di

20
23

)
0.
23

84
0.
62

03
0.
59

86
0.
66

05
0.
55

70
R

F
4

�
R

F
2

�
R

F
3

�
R

F
5

�
R

F
1

IV
FF

H
W
G
op
er
at
or

(L
uq
m
an

an
d
Sh

ah
za
di

20
23

)
0.
02

45
0.
19

39
0.
22

28
0.
32

13
0.
23

10
R

F
4

�
R

F
5

�
R

F
3

�
R

F
2

�
R

F
1

IV
FF

-W
A
SP

A
S
(R
an
ia
nd

M
is
hr
a
20

22
)

0.
17

45
0.
51

99
0.
53

31
0.
64

90
0.
51

78
R

F
4

�
R

F
3

�
R

F
2

�
R

F
5

�
R

F
1

IV
FF

-C
O
PR

A
S
(R
an
ie
ta
l.
20

22
a)

33
.6
7%

95
.2
2%

91
.5
5%

10
0%

84
.6
3%

R
F
4

�
R

F
2

�
R

F
3

�
R

F
5

�
R

F
1

P
ro

po
un

de
d

m
et

ho
d

0.
61

0
0.
81

57
0.
81

94
0.
92

68
0.
84

83
R

F
4

�
R

F
2

�
R

F
3

�
R

F
5

�
R

F
1

123



25 Page 36 of 43 Y. Rong et al.

Ta
bl
e
14

Fe
at
ur
es

co
m
pa
ri
so
n
fr
om

di
ff
er
en
ta
pp

ro
ac
he
s

M
et
ho
ds

M
C
D
M

pr
oc
ed
ur
e

W
ei
gh

to
f
ex
pe
rt
s

W
ei
gh

to
f

cr
ite
ri
a

Fl
ex
ib
ili
ty

in
fu
si
on

pr
oc
es
s

C
on

si
de
r
co
rr
el
at
io
n

am
on

g
cr
ite

ri
a

O
pt
im

al
op

tio
n

St
an
da
rd
s

IV
FF

W
A
op
er
at
or

(R
an
ia
nd

M
is
hr
a

20
22

)

M
C
D
M

N
o

L
in
ea
r
m
od
el

N
o

N
o

R
F
4

M
et
ho
d
ba
se
d
on

IV
FF

W
A
op

er
at
or

IV
FF

H
W
A
op
er
at
or

(L
uq

m
an

an
d

Sh
ah
za
di

20
23

)

M
C
D
M

N
o

A
ss
um

e
Y
es

N
o

R
F
4

M
et
ho
d
ba
se
d
on

IV
FF

H
W
A

op
er
at
or

IV
FF

H
W
G
op
er
at
or

(L
uq

m
an

an
d

Sh
ah
za
di

20
23

)

M
C
D
M

N
o

A
ss
um

e
Y
es

N
o

R
F
4

M
et
ho
d
ba
se
d
on

IV
FF

H
W
G

op
er
at
or

IV
FF

-W
A
SP

A
S
(R
an
i

an
d
M
is
hr
a
20

22
)

M
C
D
M

N
o

L
in
ea
r
m
od
el

N
o

N
o

R
F
4

IV
FF

-W
A
SP

A
S

m
et
ho

d

IV
FF

-C
O
PR

A
S
(R
an
i

et
al
.2

02
2a
)

M
C
D
M

N
o

C
R
IT
IC

N
o

N
o

R
F
4

IV
FF

-C
O
PR

A
S

m
et
ho
d
ba
se
d
on

IV
FF

E
W
A

op
er
at
or

Pr
op

ou
nd

ed
m
et
ho

d
G
ro
up

C
or
re
la
tio

n
co
ef
fic
ie
nt
-b
as
ed

m
et
ho

d

L
O
PC

O
W

m
et
ho

d
Y
es

Y
es

R
F
4

IV
FF

-A
R
A
S

m
et
ho
d
ba
se
d
on

IV
FF

-L
O
PC

O
W

m
et
ho

d

123



The FMEA model based on LOPCOW-ARAS methods with interval-valued Page 37 of 43 25

novel IVFF criteria weight determinationmodel under an uncertain environment. Concretely,
the merits of the proposed FMEA model novel can be summarized as follows:

(1) The propounded novel FMEA model within IVFF sets can effectively deal with the
uncertainty and ambiguity that arise in the process of risk analysis.

(2) The novel FMEA model is presented based on a group decision methodology that
takes into account the situation of completely unknown weight information. Hence, the
proposed FMEAmodel based on IVFF-LOPCOW-ARAS is more universal and feasible
than the prior FMEA model.

(3) In the proposed FMEA model, the importance of FMEA members is determined by
the correlation coefficient-based method with IVFF information, which affords a more
reliable weight outcome and makes the integrated risk assessment information more
reasonable.

(4) The developed FMEA model can seize the interrelationship among the considered risk
criteria in the course of determining the prioritization of risk factors.

6 Conclusions

The FMEA methodology is a synthetic and powerful tool that has been applied to var-
ious applications for evaluating and prioritizing potential failure modes. Nevertheless, the
existing extensions of FMEApossess several deficiencies during the procedure of risk assess-
ment and ranking. To surmount the mentioned shortcomings and enhance the efficiency of
the classical FMEA model, this study introduced the innovative FMEA model based on
IVFF-LOPCOW-ARAS by combining the proposed IVFFWHAM operator, IVFFWDHAM
operator, LOPCOW,andARASmethods under the IVFFenvironment. In the proposedFMEA
model, IVFFNs were utilized by the FMEA team to articulate the uncertain preference and
evaluations for the potential risk factors over each risk criterion. Then, the weights of the
FMEA team members were determined by a correlation coefficient-based method, while the
risk criterion weights were obtained by the improved IVFF-LOPCOW method. Further, the
enhanced ARAS approach with the proposed IVFFWHAM and IVFFWDHAM operators
was presented for the assessment and prioritization of risk factors. It can simultaneously take
into consideration the correlation between risk factors as well as the flexibility of the integra-
tion process. Next, the actual practicability and feasibility of the presented FMEA framework
were confirmed by an application to assess the risks in the R&D project of industrial robot
offline programming systems. Lastly, the sensitivity and comparison studies were performed
to expound the stability and preponderance of the FMEA model based on IVFF-LOPCOW-
ARAS.

The benefits of the presented FMEA model were investigated by comparing it with other
similar approaches. However, the current work has someweaknesses that need to be explored.
First, the FMEA model prioritizes the risk factors through the three risk criteria, which pos-
sess certain boundedness for different applications. Thus, it is an interesting work to consider
other risk criteria from different perspectives to unfold the risk analysis more comprehen-
sively. Then, the psychological characteristics of the FMEA team were neglected in the
proposed FMEA framework. This might lead to a biased risk-ranking outcome. Therefore,
the establishment of a new FEMAmodel by combining the behavioral decision theory is also
a distinguished topic for practical application risk management.

Further research will be devoted to the following directions. First, the mentioned weak-
nesses of the proposedmethod should be addressed to fill the gaps in the FMEAmodel. Then,
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the presented FMEAmodel can be applied to other uncertain and ambiguous risk assessment
and prioritization problems with IVFF information. Further, some novel extensions of clas-
sical FMEA mode should be investigated under diverse uncertain and vague environments,
such as linguistic Z-numbers (Chai et al. 2023; Liu et al. 2023), R numbers (Liu et al. 2021;
Zhao et al. 2022), probabilistic double hierarchy linguistic term sets (Wang et al. 2022; Xian
et al. 2023), and so forth. In addition, it is also an interesting research direction to build a
novel FMEA framework by incorporating the consensus-reaching process and social network
large-scale group decision framework with complex linguistic information (Gai et al. 2023;
Gou et al. 2021; Ji et al. 2023; Sun et al. 2023).
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Appendix: List of abbreviations

ARAS Additive ratio assessment

COPRAS COmplex proportional assessment

FFSs Fermatean FSs

FMEA Failure modes and effects analysis

FSs Fuzzy sets

FUCOM Full consistency method

IFSs Intuitionistic FSs

IVFF Interval-valued Fermatean fuzzy

IVFFAAHAM Interval-valued Fermatean fuzzy Aczel–Alsina Hamy mean

IVFFAAHAM Interval-valued Fermatean fuzzy Aczel–Alsina dual Hamy mean

IVFFAAWHAM Interval-valued Fermatean fuzzy Aczel–Alsina weighted Hamy
mean

IVFFAAWHAM Interval-valued Fermatean fuzzy Aczel–Alsina weighted dual
Hamy mean
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IVFFWA Interval-valued Fermatean Fuzzy weighted averaging

IVFFWG Interval-valued Fermatean Fuzzy weighted geometric

IVIFSs Interval-valued intuitionistic FSs

IVPFSs Interval-valued pythagorean FSs

LOPCOW Logarithmic percentage change-driven objective weighting

MCDM Multi-criteria decision-making

MCGDM Multi-criteria group decision-making

MEREC MEthod based on the removal effects of criteria

PSI Preference selection index

VIKOR Vsekriterijumska optimizacija I KOmpromisno Resenje
(VIKOR)

CRITIC CRiteria interaction through inter-criteria correlation

PFSs Pythagorean FSs

PROMETHEE II Preference ranking organization method for enrichment
evaluations II

RPN Risk priority number

SWARA Step wise weight assessment ratio analysis

WASPAS Weighted aggregated sum product assessment

References

Aczél J, Alsina C (1982) Characterizations of some classes of quasilinear functions with applications to
triangular norms and to synthesizing judgements. Aequationes Mathematicae 25(1):313–315. https://
doi.org/10.1007/BF02189626

Akram M, Shah SMU, Al-Shamiri MMA, Edalatpanah SA (2022) Fractional transportation problem under
interval-valued Fermatean fuzzy sets. Aims Math 7(9):17327–17348. https://doi.org/10.3934/math.20
22954

Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96. https://doi.org/10.1016/S0165-
0114(86)80034-3

AtanassovK,GargovG (1989) Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst 31(3):343–349. https://
doi.org/10.1016/0165-0114(89)90205-4

Chai J, SuY, LuS (2023) Linguistic Z-number preference relation for group decisionmaking and its application
in digital transformation assessment of SMEs. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2022.11
8749

Chen Z-S, Chen J-Y, Chen Y-H, Yang Y, Jin L, Herrera-Viedma E, Pedrycz W (2023) Large-group failure
mode and effects analysis for risk management of angle grinders in the construction industry. Inform Fus
97:1. https://doi.org/10.1016/j.inffus.2023.101803

Demir G, Riaz M, Almalki Y (2023) Multi-criteria decision making in evaluation of open government data
indicators: an application in G20 countries. AimsMath 8(8):18408–18434. https://doi.org/10.3934/math.
2023936

Dhalmahapatra K, Garg A, Singh K, Xavier NF, Maiti J (2022) An integrated RFUCOM-RTOPSIS approach
for failure modes and effects analysis: a case of manufacturing industry. Reliab Eng Syst Saf. https://doi.
org/10.1016/j.ress.2022.108333

Ecer F, Pamucar D (2022) A novel LOPCOW-DOBI multi-criteria sustainability performance assessment
methodology: an application in developing country banking sector. Omega Int J Manag Sci. https://doi.
org/10.1016/j.omega.2022.102690

123

https://doi.org/10.1007/BF02189626
https://doi.org/10.3934/math.2022954
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/0165-0114(89)90205-4
https://doi.org/10.1016/j.eswa.2022.118749
https://doi.org/10.1016/j.inffus.2023.101803
https://doi.org/10.3934/math.2023936
https://doi.org/10.1016/j.ress.2022.108333
https://doi.org/10.1016/j.omega.2022.102690


25 Page 40 of 43 Y. Rong et al.

Ecer F, Ogel IY, Krishankumar R, Tirkolaee EB (2023) The q-rung fuzzy LOPCOW-VIKOR model to assess
the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era. Artif
Intell Rev. https://doi.org/10.1007/s10462-023-10476-6

Estiri M, Heidary Dahooie J, Hosseini F, Khajeheian D (2021) Proposing a new model for shopping centre
attractiveness assessment by a Combination of Structural Equation Modelling (SEM) and Additive Ratio
ASsessment (ARAS). Curr Issue Tour 24(11):1542–1560. https://doi.org/10.1080/13683500.2020.18
15667

Fan J, Han D, Wu M (2023) Picture fuzzy additive ratio assessment method (ARAS) and VIseKriterijumska
Optimizacija I Kompromisno Resenje (VIKOR) method for multi-attribute decision problem and their
application. Complex Intell Syst. https://doi.org/10.1007/s40747-023-01007-5

Gai T, Cao M, Chiclana F, Zhang Z, Dong Y, Herrera-Viedma E, Wu J (2023) Consensus-trust driven bidi-
rectional feedback mechanism for improving consensus in social network large-group decision making.
Group Decis Negot 32(1):45–74. https://doi.org/10.1007/s10726-022-09798-7

Gou X, Xu Z, Liao H, Herrera F (2021) Consensus model handling minority opinions and noncooperative
behaviors in large-scale group decision-making under double hierarchy linguistic preference relations.
IEEE Trans Cybern 51(1):283–296. https://doi.org/10.1109/tcyb.2020.2985069

Hara Y, Uchiyama M, Takahasi SE (1998) A refinement of various mean inequalities. J Inequal Appl
2(4):387–395

He J, Huang Z, Mishra AR, Alrasheedi M (2021) Developing a new framework for conceptualizing the
emerging sustainable community-based tourism using an extended interval-valued Pythagorean fuzzy
SWARA-MULTIMOORA. Technol Forecast Social Change. https://doi.org/10.1016/j.techfore.2021.12
0955

Hezam IM, Rani P, Mishra AR, Alshamrani A (2023) Assessment of autonomous smart wheelchairs for
disabled persons using hybrid interval-valued Fermatean fuzzy combined compromise solution method.
Sustain Energy Technol Assessm 57:1. https://doi.org/10.1016/j.seta.2023.103169

HuangG,XiaoL,ZhangG (2020a) Improved failuremode and effect analysiswith interval-valued intuitionistic
fuzzy rough number theory. Eng Appl Artif Intel 95:1. https://doi.org/10.1016/j.engappai.2020.103856

Huang J, You J-X, Liu H-C, Song M-S (2020b) Failure mode and effect analysis improvement: a systematic
literature review and future research agenda. Reliab Eng Syst Saf. https://doi.org/10.1016/j.ress.2020.10
6885

Huang G, Xiao L (2021) Failure mode and effect analysis: An interval-valued intuitionistic fuzzy cloud
theory-based method. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2020.106834

Jeevaraj S (2021) Ordering of interval-valued Fermatean fuzzy sets and its applications. Expert Syst Appl.
https://doi.org/10.1016/j.eswa.2021.115613

Ji F, Wu J, Chiclana F, Wang S, Fujita H, Herrera-Viedma E (2023) The overlapping community driven
feedback mechanism to support consensus in social network group decision making. Ieee T Fuzzy Syst.
https://doi.org/10.1109/TFUZZ.2023.3241062

Karimi H, Nikkhah-Farkhani Z (2022) Performance appraisal of knowledge workers using augmented additive
ratio assessment (A-ARAS) method: a case study. IEEE Trans Eng Manage 69(5):2285–2295. https://
doi.org/10.1109/tem.2020.3009134

Lai H, Liao H, Long Y, Zavadskas EK (2022) A hesitant Fermatean fuzzy CoCoSo method for group decision-
making and an application to blockchain platform evaluation. Int J Fuzzy Syst 24(6):2643–2661. https://
doi.org/10.1007/s40815-022-01319-7

Liang D, Li F (2023) Risk assessment in failure mode and effect analysis: improved ORESTE method with
hesitant Pythagorean fuzzy information. IEEE Trans Eng Manage 70(6):2115–2137. https://doi.org/10.
1109/tem.2021.3073373

Liu H-C, Liu L, Liu N (2013) Risk evaluation approaches in failure mode and effects analysis: a literature
review. Expert Syst Appl 40(2):828–838. https://doi.org/10.1016/j.eswa.2012.08.010

Liu H-C, You J-X, Duan C-Y (2019) An integrated approach for failure mode and effect analysis under
interval-valued intuitionistic fuzzy environment. Int J Prod Econ 207:163–172. https://doi.org/10.1016/
j.ijpe.2017.03.008

Liu Z, Xu H, Liu P, Li L, Zhao X (2020) Interval-valued intuitionistic uncertain linguistic multi-attribute
decision-making method for plant location selection with partitioned Hamy mean. Int J Fuzzy Syst
22(6):1993–2010. https://doi.org/10.1007/s40815-019-00736-5

Liu P, Zhu B, Seiti H, Yang L (2021) Risk-based decision framework based on R-numbers and best-worst
method and its application to research and development project selection. Inf Sci 571:303–322. https://
doi.org/10.1016/j.ins.2021.04.079

Liu P, Rani P, Mishra AR (2022) COPRASmethod based on interval-valued hesitant Fermatean fuzzy sets and
its application in selecting desalination technology. Appl Soft Comput. https://doi.org/10.1016/j.asoc.
2022.108570

123

https://doi.org/10.1007/s10462-023-10476-6
https://doi.org/10.1080/13683500.2020.1815667
https://doi.org/10.1007/s40747-023-01007-5
https://doi.org/10.1007/s10726-022-09798-7
https://doi.org/10.1109/tcyb.2020.2985069
https://doi.org/10.1016/j.techfore.2021.120955
https://doi.org/10.1016/j.seta.2023.103169
https://doi.org/10.1016/j.engappai.2020.103856
https://doi.org/10.1016/j.ress.2020.106885
https://doi.org/10.1016/j.asoc.2020.106834
https://doi.org/10.1016/j.eswa.2021.115613
https://doi.org/10.1109/TFUZZ.2023.3241062
https://doi.org/10.1109/tem.2020.3009134
https://doi.org/10.1007/s40815-022-01319-7
https://doi.org/10.1109/tem.2021.3073373
https://doi.org/10.1016/j.eswa.2012.08.010
https://doi.org/10.1016/j.ijpe.2017.03.008
https://doi.org/10.1007/s40815-019-00736-5
https://doi.org/10.1016/j.ins.2021.04.079
https://doi.org/10.1016/j.asoc.2022.108570


The FMEA model based on LOPCOW-ARAS methods with interval-valued Page 41 of 43 25

Liu F, LiaoH,WuX,Al-Barakati A (2023) Evaluating Internet hospitals by a linguistic Z-number-based gained
and lost dominance score method considering different risk preferences of experts. Inf Sci 630:647–668.
https://doi.org/10.1016/j.ins.2023.02.061

Luqman A, Shahzadi G (2023) Multi-attribute decision-making for electronic waste recycling using interval-
valued Fermatean fuzzy Hamacher aggregation operators. Granular Comput. https://doi.org/10.1007/s4
1066-023-00363-4

Ma Q-X, Zhu X-M, Bai K-Y, Zhang R-T, Liu D-W (2023) A novel failure mode and effect analysis method
with spherical fuzzy entropy and spherical fuzzy weight correlation coefficient. Eng Appl Artif Intel.
https://doi.org/10.1016/j.engappai.2023.106163

Mentes A, Akyildiz H (2023) Criticality analysis of probabilistic damage stability of ships with aggregation
operators and additive ratio assessment. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2022.113577

Mishra AR, Rani P, Saha A (2021) Single-valued neutrosophic similarity measure-based additive ratio
assessment framework for optimal site selection of electric vehicle charging station. Int J Intell Syst
36(10):5573–5604. https://doi.org/10.1002/int.22523

Mishra AR, Chandel A, Saeidi P (2022) Low-carbon tourism strategy evaluation and selection using interval-
valued intuitionistic fuzzy additive ratio assessment approach based on similarity measures. Environ Dev
Sustain 24(5):7236–7282. https://doi.org/10.1007/s10668-021-01746-w

Mishra AR, Rani P, Hezam IM, Deveci M (2023) Dual probabilistic linguistic full consistency additive ratio
assessment model for medical equipment supplier selection. Int J Fuzzy Syst. https://doi.org/10.1007/s4
0815-023-01526-w

Muttakin F, Wang J-T, Mulyanto M, Leu J-S (2022) Evaluation of feature selection methods on psychosocial
education data using additive ratio assessment. Electronics. https://doi.org/10.3390/electronics11010114

Niu W, Rong Y, Yu L, Huang L (2022) A novel hybrid group decision making approach based on EDAS and
regret theory under a fermatean cubic fuzzy environment. Math Basel. https://doi.org/10.3390/math10
173116

Palanikumar M, Iampan A (2022) Spherical Fermatean interval valued fuzzy soft set based on multi criteria
group decision making. Int J Innov Comput Inform Control 18(2):607–619

Qin H, Peng Q, Ma X, Zhan J (2023) A new multi-attribute decision making approach based on new score
function and hybrid weighted score measure in interval-valued Fermatean fuzzy environment. Complex
Intell Syst. https://doi.org/10.1007/s40747-023-01021-7

Rani P, Mishra AR (2022) Interval-valued fermatean fuzzy sets with multi-criteria weighted aggregated sum
product assessment-based decision analysis framework. Neural Comput Appl 34(10):8051–8067. https://
doi.org/10.1007/s00521-021-06782-1

Rani P, Mishra AR, Deveci M, Antucheviciene J (2022a) New complex proportional assessment approach
using Einstein aggregation operators and improved score function for interval-valued Fermatean fuzzy
sets. Comput Ind Eng 169:1. https://doi.org/10.1016/j.cie.2022.108165

Rani P, Mishra AR, Saha A, Hezam IM, Pamucar D (2022b) Fermatean fuzzy Heronian mean operators and
MEREC-based additive ratio assessment method: an application to food waste treatment technology
selection. Int J Intell Syst 37(3):2612–2647. https://doi.org/10.1002/int.22787

Rong Y, Pei Z, Liu Y (2020) Hesitant fuzzy linguistic hamy mean aggregation operators and their application
to linguistic multiple attribute decision-making. Math Probl Eng. https://doi.org/10.1155/2020/3262618

Rong Y, Yu L, Niu W, Liu Y, Senapati T, Mishra AR (2022) MARCOS approach based upon cubic Fermatean
fuzzy set and its application in evaluation and selecting cold chain logistics distribution center. Eng Appl
Artif Intel. https://doi.org/10.1016/j.engappai.2022.105401

Sarwar M, Ali G, Chaudhry NR (2023) Decision-making model for failure modes and effect analysis based
on rough fuzzy integrated clouds. Appl Soft Comput 136:1. https://doi.org/10.1016/j.asoc.2023.110148

Seikh MR, Mandal U (2023) Interval-valued Fermatean fuzzy Dombi aggregation operators and SWARA.
Expert Syst Appl. https://doi.org/10.1016/j.eswa.2023.120082

Senapati T, Yager RR (2020) Fermatean fuzzy sets. J Amb Intel Hum Comp 11(2):663–674. https://doi.org/
10.1007/s12652-019-01377-0

Senapati T, Chen G,Mesiar R, Yager RR, Saha A (2022a) Novel Aczel-Alsina operations-based hesitant fuzzy
aggregation operators and their applications in cyclone disaster assessment. Int JGenSyst 51(5):511–546.
https://doi.org/10.1080/03081079.2022.2036140

Senapati T,ChenG,YagerRR (2022b)Aczel-Alsina aggregation operators and their application to intuitionistic
fuzzy multiple attribute decision making. Int J Intell Syst 37(2):1529–1551. https://doi.org/10.1002/int.
22684

Senapati T, Mishra AR, Saha A, Simic V, Rani P, Ali R (2022c) Construction of interval-valued Pythagorean
fuzzy Aczel-Alsina aggregation operators for decision making: a case study in emerging IT software
company selection. Sadhana Acad Proc Eng Sci 47(4):1. https://doi.org/10.1007/s12046-022-02002-1

123

https://doi.org/10.1016/j.ins.2023.02.061
https://doi.org/10.1007/s41066-023-00363-4
https://doi.org/10.1016/j.engappai.2023.106163
https://doi.org/10.1016/j.oceaneng.2022.113577
https://doi.org/10.1002/int.22523
https://doi.org/10.1007/s10668-021-01746-w
https://doi.org/10.1007/s40815-023-01526-w
https://doi.org/10.3390/electronics11010114
https://doi.org/10.3390/math10173116
https://doi.org/10.1007/s40747-023-01021-7
https://doi.org/10.1007/s00521-021-06782-1
https://doi.org/10.1016/j.cie.2022.108165
https://doi.org/10.1002/int.22787
https://doi.org/10.1155/2020/3262618
https://doi.org/10.1016/j.engappai.2022.105401
https://doi.org/10.1016/j.asoc.2023.110148
https://doi.org/10.1016/j.eswa.2023.120082
https://doi.org/10.1007/s12652-019-01377-0
https://doi.org/10.1080/03081079.2022.2036140
https://doi.org/10.1002/int.22684
https://doi.org/10.1007/s12046-022-02002-1


25 Page 42 of 43 Y. Rong et al.

Senapati T, Simic V, Saha A, Dobrodolac M, Rong Y, Tirkolaee EB (2023) Intuitionistic fuzzy power Aczel-
Alsinamodel for prioritization of sustainable transportation sharing practices. EngAppl Artif Intel 119:1.
https://doi.org/10.1016/j.engappai.2022.105716

Sergi D, Sari IU, Senapati T (2022) Extension of capital budgeting techniques using interval-valued Fermatean
fuzzy sets. J Intell Fuzzy Syst 42(1):365–376. https://doi.org/10.3233/jifs-219196

Shahri MM, Jahromi AE, HoushmandM (2021) Failure mode and effect analysis using an integrated approach
of clustering and MCDM under pythagorean fuzzy environment. J Loss Prevent Process Ind. https://doi.
org/10.1016/j.jlp.2021.104591

Sun J, Gong Z, Zhang D, Xu Y, Wei G (2023) A robust ordinal regression feedback consensus model with
dynamic trust propagation in social network group decision-making. Inform Fus. https://doi.org/10.1016/
j.inffus.2023.101952

Ulutas A, Balo F, Topal A (2023) Identifying the most efficient natural fibre for common commercial building
insulation materials with an integrated PSI, MEREC, LOPCOW and MCRAT Model. Polymers. https://
doi.org/10.3390/polym15061500

Wang Z, Gao J-M, Wang R-X, Chen K, Gao Z-Y, Jiang Y (2018) Failure mode and effects analysis using
Dempster-Shafer theory andTOPSISmethod: application to the gas insulatedmetal enclosed transmission
line (GIL). Appl Soft Comput 70:633–647. https://doi.org/10.1016/j.asoc.2018.06.015

Wang X, Xu Z, Gou X (2022) The Interval probabilistic double hierarchy linguistic EDAS method based on
natural language processing basic techniques and its application to hotel online reviews. Int JMach Learn
Cybern 13(6):1517–1534. https://doi.org/10.1007/s13042-021-01463-w

Wu S, Wang J, Wei G, Wei Y (2018) Research on construction engineering project risk assessment with some
2-tuple linguistic neutrosophic Hamy mean operators. Sustain Basel

Xian S, Qing K, Li C, Luo M, Liu R (2023) Probabilistic double hierarchy linguistic Maclaurin symmetric
mean-MultiCriteria Border Approximation area Comparison method for multi-criteria group decision
making and its application in a selection of traditional Chinese medicine prescriptions. Artif Intell Med.
https://doi.org/10.1016/j.artmed.2023.102558

XuW,ShangX,Wang J (2021)Multiple attribute group decision-making based on cubic linguistic Pythagorean
fuzzy sets and power Hamymean. Complex Intell Syst 7(3):1673–1693. https://doi.org/10.1007/s40747-
020-00255-z

Yager RR (2014) Pythagorean membership grades in multicriteria decision making. IEEE T Fuzzy Syst
22(4):958–965. https://doi.org/10.1109/tfuzz.2013.2278989

Yager RR, Abbasov AM (2013) Pythagorean membership grades, complex numbers, and decision making.
Int J Intell Syst 28(5):436–452. https://doi.org/10.1002/int.21584

Yu J, Xu Y, Yu Y, Wu S (2023) Failure mode and effect analysis using the hesitant intuitionistic fuzzy hybrid
GRP approach with ordered comprehensive weights. Qual Reliab Eng Int 39(1):328–352. https://doi.
org/10.1002/qre.3241

Zadeh LA (1965) Fuzzy sets. Information and Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65
)90241-X

Zavadskas EK, Turskis Z, Vilutiene T (2010) Multiple criteria analysis of foundation instalment alternatives
by applying Additive Ratio Assessment (ARAS) method. Arch Civil Mech Eng 10(3):123–141. https://
doi.org/10.1016/s1644-9665(12)60141-1

Zhao Q, Ju Y, Dong P, Santibanez Gonzalez EDR (2022) A hybrid decision making aided framework for
multi-criteria decision making with R-numbers and preference models. Eng Appl Artif Intel. https://doi.
org/10.1016/j.engappai.2022.104777

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1016/j.engappai.2022.105716
https://doi.org/10.3233/jifs-219196
https://doi.org/10.1016/j.jlp.2021.104591
https://doi.org/10.1016/j.inffus.2023.101952
https://doi.org/10.3390/polym15061500
https://doi.org/10.1016/j.asoc.2018.06.015
https://doi.org/10.1007/s13042-021-01463-w
https://doi.org/10.1016/j.artmed.2023.102558
https://doi.org/10.1007/s40747-020-00255-z
https://doi.org/10.1109/tfuzz.2013.2278989
https://doi.org/10.1002/int.21584
https://doi.org/10.1002/qre.3241
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/s1644-9665(12)60141-1
https://doi.org/10.1016/j.engappai.2022.104777


The FMEA model based on LOPCOW-ARAS methods with interval-valued Page 43 of 43 25

Authors and Affiliations

Yuan Rong1 · Liying Yu1 · Yi Liu2 · Vladimir Simic3,4 · Harish Garg5

B Liying Yu
yuliying@shu.edu.cn

Yuan Rong
rongyuanry@163.com

Yi Liu
liuyiyl@126.com

Vladimir Simic
vsima@sf.bg.ac.rs

Harish Garg
harishg58iitr@gmail.com

1 School of Management, Shanghai University, Shanghai 200444, China
2 Numerical Simulation Key Laboratory of Sichuan Provincial Universities, Data Recovery Key

Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641000, China
3 University of Belgrade, Faculty of Transport and Traffic Engineering, Vojvode Stepe 305,

11010 Belgrade, Serbia
4 Yuan Ze University, College of Engineering, Department of Industrial Engineering and

Management, Taoyuan City 320315, Taiwan
5 Department of Mathematics, Thapar Institute of Engineering and Technology (Deemed University),

998 147004, Patiala, Punjab, India

123


	The FMEA model based on LOPCOW-ARAS methods with interval-valued Fermatean fuzzy information for risk assessment of R&D projects in industrial robot offline programming systems
	Abstract
	1 Introduction
	1.1 Motivations of the research
	1.2 Contributions of the research
	1.3 Organization of the research

	2 Prerequisites
	3 Interval-valued Fermatean fuzzy Aczel-Alsina Hamy mean operators
	3.1 Aczel–Alsina operation for IVFFNs
	3.2 Interval-valued Fermatean fuzzy Aczel–Alsina Hamy mean operators
	3.3 Interval-valued Fermatean fuzzy Aczel–Alsina dual Hamy mean operators

	4 An innovative FMEA model based on IVFF-LOPCOW-ARAS
	4.1 Establishment of integrated IVFF decision matrix
	4.2 Computation of criterion weights
	4.3 Prioritization of the schemes

	5 Case study
	5.1 Decision analysis
	5.2 Sensitivity analysis
	5.3 Comparison analysis

	6 Conclusions
	Acknowledgements
	Appendix: List of abbreviations
	References




