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Abstract
The first thing springs to mind for understanding, forecasting, and improving the behavior
of a complex system is a data-based model. This paper presents a sequential designing-
modeling technique when the input factors do not have the same influence. The power of the
combination of the design of experiments approach and modeling approach is investigated.
The proposed technique adds the input factors to the process and designs and models them
one after the other. At each step, one input factor is added based on its significance (impact),
while each remaining input factor is set at its highest-influencing point (value). Ranking
the factors in terms of significance and determining the point that has the highest effect for
each factor are investigated. A comparison study between the new proposed sequential-stages
technique (SeqST) and the classical single-stage technique (SinST) is given. Themain results
show that: (i) the performance of the SeqST is better than the performance of the SinST under
different experimental conditions and scenarios, (ii) when there is a small number of training
points in an experiment, there is a larger difference between the performance of the SeqST
and the SinST than there is when there is a large number, (iii) when there are huge gaps
between the importance of the factors in an experiment, there is a larger difference between
the performance of the SeqST and the SinST than there is when there are small gaps, (iv)
the SeqST has a much better performance using the correct order of the importance of the
factors, and (v) the SeqST has a much better performance using a descending order of the
numbers of the training points in the follow-up stages. In conclusion, for experiments with
few trials and/or big gaps between the factors’ importance, it is highly recommended to use
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the SeqST with the ascending order of the factors’ importance and a decreasing order of the
numbers of training points in the follow-up stages. This study gives a benchmark that guide
experimenters to effectively designing and modeling their experiments.

Keywords Design of experiment · Modeling · Sequential stages’ experiment · Single-stage
experiment · Latin hypercube design · Mass centers

Mathematics Subject Classification 62K05 · 62K15

1 Introduction

The first thing springs to mind for understanding, forecasting, and improving the behavior of
complex experiments for real-life phenomena, industrial applications, and scientific inves-
tigations is a data-based model. Designing and modeling a studied experiment are the two
key stages for this purpose. The significant purpose of the first stage, designing the experi-
ment, is the selection of a representative dataset that provide precise information and correct
understanding about the most significant features and behavior of the phenomenon under
the experimentation (cf. Elsawah 2021a). Modeling the collected representative dataset, i.e.,
screening the relationship between input factors and their responses, is the second stage that
can be used to estimate unknown parameters and predict the behavior of the studied phe-
nomenon and thus guide the investigators to improve the inputs or experimental conditions
for optimizing the corresponding outputs (cf. Elsawah 2021b). This logical idea is a classi-
cal methodology that is extremely used in computer and physical experiments (cf. Elsawah
2023a, b). For example, it is used in the industry in designing the process, reducing the process
time, improving the quality of the products by reducing variability and increasing reliability,
and reducing the overall costs (cf. Elsawah 2022a).

Efficient designing and modeling methods are able to capture maximum valuable (accu-
rate) information about the behavior of a given experiment, and thus, an efficient model can
be established based on the optimal representative dataset to screen the relationship between
the inputs and their corresponding responses that can be used to estimate significant unknown
parameters without bias and with minimum variance and forecast the future behavior of the
studied phenomenon.Whereas non-efficient designing or/and modeling methods cannot pro-
duce useful and correct information nor provide accurate estimation or prediction (Elsawah
2022b). The practice demonstrated that effectively designing and modeling experiments are
significant hard problems experimenters may face in many real-life applications. Despite the
fact that many approaches have been offered, the challenge faced by the experimenters is
still daunting.

The significant problem in improving the designing and modeling methods is that the
researchers are improving the methods of each stage independently. On one hand, the idea of
design of experiment approach (Fisher 1935) and the corresponding approaches and devel-
opments are used to improve the first stage, designing the experiments, and many efficient
methods are given to optimally select representative datasets. On the second hand, the power
of the modeling approach and its corresponding methods such as machine learning (Samuel
1959) are used to improve the second stage, modeling the experiments. However, these two
approaches are complementary and not alternative and their power can be merged to support
each other. The combination of design of experiment and modeling has recently attracted the
attention of researchers (cf. Lujan-Moreno et al. 2018; Salmaso et al. 2022).
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Even though there is obvious link between the design of experiment and modeling, there
are surprisingly few papers on addressing the potential usefulness of a combination of the
two concepts. For instance, Staelin (2003) used the principles of design of experiment to
identify optimal or nearly optimal initial parameter settings in an example of support vector
machines; Packianather et al. (2000) applied the Taguchi design approach to optimize the
design parameters in an example of neural networks; Sukthomya and Tannock (2005), Ortiz-
Rodriguez et al. (2006), and Balestrassi et al. (2009) all reached the conclusion that the
design of experiment approach allows for gaining a profound understanding of the effects
of parameters on the network performance and hence enables better parameter adjustments.
The existing work compares or combines the two concepts in specific areas of interest or for
specific problem investigations (cf. for example Mohamed et al. 2023; Prasath et al. 2021,
2022), but a paper producing a generalizable assessment of how the two methodologies can
be applied jointly to develop a new efficient designing-modeling approach has not been put
forward so far and the work in this topic is limited. Readers who are interested in learning
more new approaches for designing or modeling experiments may refer to Sikirica et al.
(2023), Iordanis et al. (2022), Zhang et al. (2022) and Elsawah (2017a, b).

Consider an explicit function for an experiment with p input factors X1, X2, . . . , X p

and only one output factor Y and the experimenter wants to estimate the true model
Y = F(X1, X2, . . . , X p) that gives the relationship between the p input factors and
their corresponding responses. The classical modeling technique estimates the model Y =
F(X1, X2, . . . , X p) in one step based on a selected representative dataset that is an n× p data
matrix by selecting n different values from the range of each input factor Xi , i = 1, . . . , p.
However, the accuracy of the approximate model ̂Y = ̂F(X1, X2, . . . , X p) in many cases
is not good, especially when there is no or little prior information about the true model.
Therefore, the logical idea is that: The weight of importance of each input factor needs to be
taken into the consideration and a closer look at the sub-models between the most important
input factors and their corresponding responses need to be investigated. This paper presents
a sequential designing-modeling technique (SeqST) that takes the weight of the importance
of each input factor into consideration. The power of the combination of the sequential design
of experiment approach and sequential modeling approach is investigated. The input factors
are added to the proposed technique and modeled sequentially, one input factor is added at
each stage, according to their importance (i.e., expected influence on the output), while each
remaining input factor keeps fixed at a given point (value) that has the highest influence based
on a prior knowledge or an initial experiment (cf. Sect. 3 for more details). Based on this
simple introduction of the new proposed SeqST, the following logical questions may arise:
How to rank the importance of the input factors in order? How to find the point of the highest
influence for each factor? What is the effect of the total number of training points on the
performance of the SeqST? What is the effect of the number of training points in each stage
on the performance of the SeqST? What is the effect of the order of the importance of the
input factors on the performance of the SeqST? What is the effect of the gap between the
importance of the input factors on the performance of the SeqST? This paper tries to answer
these interesting questions to investigate the performance of the proposed SeqST for differ-
ent scenarios that give benchmarks to guide the experimenters to effectively designing and
modeling their experiments. The power of the new proposed SeqST is measured by compar-
ing its performance with the performance of the classical modeling technique, single-stage
technique (SinST).

The rest of this paper is organized as follows. Section 2 gives the new proposed SeqST.
Measuring the importance of each factor and finding the point with the highest influence for
each factors are discussed in Sect. 3. Section 4 gives an illustrative example based on the
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discussions in Sects. 2 and 3. The performance of the new proposed SeqST is compared with
the performance of the SinST using linear and non-linear models in Sect. 5. Section 6 gives
further investigations for the performance of the proposed SeqST using different scenarios of
the number of training points and the order of the importance of the input factors. We close
through the conclusion and future work in Sect. 7.

2 The new proposed sequential stages designing-modeling technique

Consider an experiment with p input factors X1, X2, . . . , X p and only one output factor
Y and the experimenter wants to find the meta-model ̂Y = ̂F(X1, X2, . . . , X p) that gives
the relationship between the p input factors and their corresponding responses. This paper
presents a step-by-step technique for incorporating design of experiment approach into mod-
eling approach and adapting it to address some drawbacks of the existing techniques. Due
to the limitation of the space and for a clear explanation, the new proposed SeqST uses
the regression model from the modeling approach, which is the most basic strategy in the
modeling approach and its success is more conducive to the proliferation of other advanced
models. However, many different models can be used to extend this study. The new proposed
SeqST is given by the following steps:

• Preparation stage: Rank the p inputs X1, X2, . . . , X p according to their importance,
i.e., influence on the output. Let X1:p ≫ X2:p ≫ · · · ≫ X p:p is the corresponding
importance order of the p input factors, where X1:p is the input with the highest impor-
tance and X p:p is the input with the lowest importance. Determine the most important
level (value) of each input factor, i.e., the value for each factor that has the highest impor-
tance. Let x∗

1:p, x∗
2:p, . . . , and x∗

p:p are the p highest influence levels of the p input factors
X1:p, X2:p, . . . , and X p:p, respectively. It is worth mentioning that the importance (or
influence) of the input factors and their levels that have the highest influences can be
given based on expert knowledge or prior information by investigating an initial small
experiment. If there is no prior information, Sect. 3 investigates a theoretical method to
estimate the importance of each factor and the point with the highest influence for each
factor.

• First designing-modeling stage:Generate the first-stage dataset (design) that is an n1× p

data matrix U1 =
[

D1, X∗
2:p, . . . , X∗

p:p
]

, where D1 =
(

x (1)
1:p, . . . , x

(n1)
1:p

)T
is an optimal

design from the experimental design viewpoint over the domain of the highest importance
input factor X1:p and X∗

k:p = (x∗
k:p, . . . , x∗

k:p)T is a vector that all of its n1 values are fixed
to the highest importance level value x∗

k:p of the kth input factor Xk:p for k = 2, . . . , p.
Calculate the first-stage observed output vector via a physical experiment or exact output
vector via a computer experiment, say Y1 = F(U1). Find the first-stage meta-model ̂F1
that is the approximate model for the relationship between theD1 in the first-stage design
U1 and the corresponding first-stage observed output factor Y1 = F(U1).

• Second designing-modeling stage: Generate the second-stage design that is an n2 × p

data matrix U2 =
[

D2, X∗
3:p, . . . , X∗

p:p
]

, where D2 =
(

x (1)
1:p . . . x (n2)

1:p
x (1)
2:p . . . x (n2)

2:p

)T

is an

optimal design from the experimental design viewpoint over the domain of the first
two highest importance input factors X1:p and X2:p, and X∗

k:p = (x∗
k:p, . . . , x∗

k:p)T is
a vector that all of its n2 values are fixed to the highest importance level value x∗

k:p of
the kth input factor Xk:p for k = 3, . . . , p. Calculate the second-stage observed output
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vector via a physical experiment or exact output factor via a computer experiment, say
Y2 = F(U2). Find the second-stage meta-model ̂F2 that is the approximate model for
the relationship between the D2 in the second-stage design U2 and the corresponding
second-stage observed output factor Y2 = F(U2).

• Third designing-modeling stage: Generate the third-stage design that is an n3 × p data

matrix U3 =
[

D3, X∗
4:p, . . . , X∗

p:p
]

, where D3 =
⎛

⎜

⎝

x (1)
1:p . . . x (n3)

1:p
x (1)
2:p . . . x (n3)

2:p
x (1)
3:p . . . x (n3)

3:p

⎞

⎟

⎠

T

is an optimal

design from the experimental design viewpoint over the domain of the first three highest
influence inputs X1:p, X2:p and X3:p, and X∗

k:p = (x∗
k:p, . . . , x∗

k:p)T is a vector that all
of its n3 values are fixed to the highest influence level value x∗

k:p of the kth input for
k = 4, . . . , p.Calculate the third-stage observed output vector via a physical experiment
or exact output vector via a computer experiment, say Y3 = F(U3). Find the third-
stage meta-model ̂F3 that is the approximate model for the relationship between the D3

in the third-stage design U3 and the corresponding third-stage observed output vector
Y3 = F(U3).

• P-th designing-modeling stage Repeat the above systematic strategy up to the last stage
as follows. Generate the pth-stage design that is an n p × p data matrix Up = [

Dp
]

,

where Dp =

⎛

⎜

⎜

⎝

x (1)
1:p . . . x

(n p)

1:p
...

...
...

x (1)
p:p . . . x

(n p)
p:p

⎞

⎟

⎟

⎠

T

is an optimal design from the experimental design

viewpoint over the domain of all the p inputs X1:p, X2:p, . . . , X p:p. Calculate the pth-
stage observed output vector via a physical experiment or exact output vector via a
computer experiment, say Yp = F(Up). Find the pth-stage meta-model ̂Fp that is the
approximate model for the relationship between the Dp in the pth-stage design Up and
the corresponding pth-stage observed output vector Yp = F(Up).

• Final Meta-Model: To define the overall meta-model, we use the idea of the weighted
average for the coefficients of the factors in the meta-models ̂F1, . . . , ̂Fp. For instance
as given in Fig. 1, for an experiment with three factors without interactions and the
three meta-models are polynomial models as follows: ̂F1 = β1 + a11X1 + a12X2

1,
̂F2 = β2 + a21X1 + a22X2

1 + b21X2 + b22X2
2 and ̂F3 = β3 + a31X1 + a32X2

1 + b31X2 +
b32X2

2 + c31X3 + c32X2
3 . Therefore, the overall meta-model is the weighted average that

is given as follows:

̂F = 1

3

3
∑

k=1

βk +
(

3
∑

k=1

ak1
3

)

X1 +
(

3
∑

k=1

ak2
3

)

X2
1 +

(

3
∑

k=2

bk1
2

)

X2

+
(

2
∑

k=2

bk2
2

)

X2
2 + c31X3 + c32X

2
3 .

Now comes to mind the following logical question: How to select the optimal design
(dataset) from the experimental design viewpoint for each stage over the domain of the
input factors in each stage? An efficient way for selecting optimal representative training
datasets for the new proposed SeqST is to make use of the techniques of experimental design
approach. The optimality selection of experimental points (design) from an experimental
region that provides valuable information about a given experiment is the most significant
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Fig. 1 The main idea of the weighted average to get the final meta-model

Fig. 2 Number of papers published per year. Data obtained from the Google Scholar database in the week of
March 4, 2013 (cf. Fig. 1a in Viana 2013)

hard problem investigators may face, especially when there is no prior information about
the model structure between the inputs and the corresponding outputs. An intuitive idea
to overcome the mentioned problem is to scatter the representative training points in an
intelligentmanner to cover the experimental regionwell, which is called a space-filling design
(cf. Elsawah 2022c). Among strategies coined for computer experiments, Latin hypercube
designs (LHDs) (Mckay et al. 1979; Iman and Conover 1980) have become very popular.
Other strategies include orthogonal arrays (Owen 1992), and Hammersley designs (Diwekar
and kalagnanam 1997; Hammersley 1960). To illustrate their popularity, Fig. 1a in Viana
(2013) (cf. Fig. 2) shows an approximate number of publications that referred to at least
one of these three techniques. An LHD spreads its representative training points everywhere
in the region with as few gaps or holes as possible (cf. Fig. 3), and thus, it gives a good
representation of the experimental region with even fewer points. LHDs play an important
role in computer simulation (cf. Husslage et al. 2011; Fang et al. 2006; Elsawah and Gong
2023). Therefore, LHDs is used in this study. It is pertinent to point out that the new proposed
SeqST can be carried out utilizing uniform designs, which are a class of optimal space-filling
designs that are currently extensively used in a variety of practical applications (cf. Elsawah
and Vishwakarma 2022).
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Fig. 3 Latin hypercube 20 points in two dimensions and three dimensions

3 On the importance of the input factors and their points

The following logical question comes to mind after reading the preparation stage of the new
proposedSeqST: If there is no prior information, how to determine the order of the importance
of the factors and the points with the highest influence for each factor? This section tries to
provide an answer to this significant question for computer experiments. Consider a computer
experiment with p independent input factors Xi ∈ [LBi ,UBi ], 1 ≤ i ≤ p and x∗

k is the
point with the highest influence for the kth factor Xk, 1 ≤ k ≤ p. From physics point of
view, the points x∗

k with the highest influence can be defined as the Mass Centers (MCs). The
MC is a point that causes a rigid body to maintain its equilibrium state. Within a solid Q with
volume V , if the mass distribution is continuous with density ρ, the integral of the weighted
position coordinates of the points connected to the center of mass R can be expressed as
follows:

∫∫∫

Q
ρ(r)(r − R) dV = 0, (1)

where r is the vector representing the position of a point with respect to a fixed origin and
the solution of coordinate R is given as follows:

R = 1

M

∫∫∫

Q
ρ(r)r dV , (2)

where M is the total mass of the solid. For further details, the reader may refer to Mark
(2009). If the body is formed by a function from mathematics viewpoint, its volume has
a uniform density distributed state with a constant ρ(r). Therefore, for a function with p
factors F(X1, X2, . . . , X p), (2) can be rewritten as follows:

R = 1

M

∫

· · ·
∫

· · ·
∫

p integrals

F(X1, X2, . . . , X p) dV . (3)

The point x∗
k with the highest influence for the factor Xk is defined as the point that divides

the function into two parts with same mass, ML = MR (cf. Fig. 4). Therefore, from (3), we
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Fig. 4 The mass centers of a function

get

1

R

∫

· · ·
∫

· · ·
∫

p integrals

F(X1, X2, . . . , X p) dVL = 1

R

∫

· · ·
∫

· · ·
∫

p integrals

F(X1, X2, . . . , X p) dVR .

(4)
From (4), the point x∗

k with the highest influence for the factor Xk is the solution of the
following equation:

∫ UBp

LBp

. . .

∫ x∗
k

LBk
. . .

∫ UB1

LB1
F(X1, . . . , Xk, . . . , X p) dX1 . . . dXk . . . dX p

=
∫ UBp

LBp

. . .

∫ UBk

x∗
k

. . .

∫ UB1

LB1
F(X1, . . . , Xk, . . . , X p) dX1 . . . dXk . . . dX p.

(5)

Using the calculated points x∗
k , 1 ≤ k ≤ p with the highest impacts, the importance of the

factor Xk can be measured by its corresponding area as follows:

A(Xk) =
∣

∣

∣

∣

∫ UBk

LBk
F(x∗

1 , x
∗
2 , . . . , Xk, . . . , x

∗
p) dXk

∣

∣

∣

∣

. (6)

The p areas A(xk), 1 ≤ k ≤ p need to be calculated and sorted in a decreasing order as
follows:

A(X1:p) > A(X2:p) > · · · > A(X p:p),

where X1:p is the input with the highest importance and X p:p is the input with the lowest
importance.
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4 An illustrative example

The above-mentioned steps and discussions in Sects. 2 and 3 are used and explained using
LHDs, polynomial regression models, and the following computer experiment:

Y =F(X1, X2, X3)=200+5X2
1+100X1+ 1

25
X2
2+50X2+ 1

175
X2
3+X3, 0≤ Xi ≤1, 1≤ i≤3.

Based on (5), the points with the highest impacts for the factors X1, X2, and X3 are calculated
as follows x∗

1 = 0.5470, x∗
2 = 0.5225, and x∗

3 = 0.5005, respectively. Based on (6), the
corresponding areas for the factors X1, X2, and X3 are calculated as follows A(X1) = 51.67,
A(X2) = 25.01, and A(X3) = 0.5019, respectively. Therefore, the order of the importance
of the input factors is given as follows X1 ≫ X2 ≫ X3. Table 1 gives LHDs with 11,
16, and 20 points for the first, second, and third stages, respectively, and their corresponding
outputs. From Table 1 and the proposed SeqST in Sect. 2, we get

• The first meta-model ̂F1 gives the following relationship between the LHD D1 = [X1]
and the corresponding output Y1 = F(U1):

̂F1 = 278.3730 + 30.4786X1.

• The second meta-model ̂F2 gives the following relationship between the LHD D2 =
[X1 X2] and the corresponding output Y2 = F(U2):

̂F2 = 278.1910 + 31.5193X1 + 1.6511X2
1 + 15.1802X2 + 0.0123X2

2 .

• The third meta-model ̂F3 gives the following relationship between the LHD D3 =
[X1 X2 X3] and the corresponding output Y3 = F(U3):

̂F3 = 275.0492 + 29.9669X1 + 1.5248X2
1 + 15.8355X2

+0.0124X2
2 + 0.2970X3 + 0.0018X2

3 .

Therefore, the overall meta-model is the weighted average that is given as follows:

̂FSeqST = 277.2204 + 30.6549X1 + 15.5078X2 + 0.2970X3 + 1.5880X2
1

+0.0123X2
2 + 0.0018X2

3 .

To test the performance of this meta-model, the SinST is used to find another meta-model
using an LHD U with the same number of points in the three stages of the SeqST, i.e.,
n = n1 + n2 + n3 = 11 + 16 + 20 = 47. Table 2 gives an LHD U = [X1 X2 X3]
and the corresponding output Y = F(U). From Table 2, the meta-model that describes the
relationship between U and Y = F(U) is given as follows:

̂FSinST = 277.2204 + 28.9878X1 + 14.4962X2 + 0.2900X3

+1.4974X2
1 + 0.0120X2

2 + 0.0017X2
3 .

Figure 5 gives all the 47 values of F(Utest), ̂FSeqST (Utest) and ̂FSinST (Utest) and the absolute
differences between each two of them using an LHDUtest with 47 points as a testing dataset.
The results show that the values of ̂FSeqST (Utest) are closer to F(Utest) than the values of
̂FSinST (Utest).Moreover, the mean square error (MSE),MSE = 1

n

∑n
i=1(Fi − ̂Fi )2, of these

two meta-models are given as follows:

MSESeqST = 1.0875 × 103 < MSESinST = 1.6838 × 103.

Therefore, the SeqST is much better than the SinST.
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Table 2 The single-stage design and its corresponding observed outputs for the SinST for the illustrative
example

n X1 X2 X3 Y = F(U) n X1 X2 X3 Y = F(U)

1 0.4700 0.4770 0.7960 272.7220 25 0.4610 0.3460 0.6810 265.1510

2 0.9060 0.7380 0.5440 332.1120 26 0.7850 0.0460 0.7300 284.6150

3 0.2400 0.7770 0.5740 263.7330 27 0.7510 0.2950 0.4220 293.0740

4 0.7070 0.2170 0.4490 284.4700 28 0.9370 0.0280 0.2120 299.7660

5 0.9350 0.1410 0.3190 305.2530 29 0.3020 0.1550 0.5200 238.9340

6 0.4370 0.1830 0.7590 254.5380 30 0.8240 0.9560 0.3570 333.9830

7 0.9780 0.3280 0.1300 319.0950 31 0.8770 0.1210 0.0070 297.6070

8 0.4920 0.8420 0.9280 293.4340 32 0.6010 0.6050 0.8430 292.9440

9 0.9820 0.5890 0.2510 332.7590 33 0.1420 0.4220 0.8890 236.2810

10 0.3580 0.6600 0.3640 269.7720 34 0.2260 0.2530 0.2140 235.7230

11 0.8460 0.3760 0.8130 307.7530 35 0.0420 0.4670 0.2930 227.8860

12 0.2700 0.1930 0.1150 237.1770 36 0.5480 0.6300 0.2720 288.1210

13 0.6770 0.7020 0.0610 305.1390 37 0.3970 0.0100 0.3900 241.3430

14 0.2010 0.4350 0.1510 242.2310 38 0.4230 0.2730 0.0900 256.9080

15 0.3790 0.9740 0.4930 287.8450 39 0.0750 0.7980 0.7190 248.1550

16 0.1190 0.5060 0.5880 237.8710 40 0.6440 0.6400 0.9910 299.4560

17 0.7380 0.6960 0.6400 312.0270 41 0.8550 0.5540 0.3380 317.2380

18 0.5130 0.9830 0.9460 302.6880 42 0.2820 0.8220 0.9020 270.6050

19 0.1630 0.5530 0.1860 244.2760 43 0.0060 0.0990 0.6770 206.2350

20 0.1910 0.9280 0.4810 266.1780 44 0.3270 0.3170 0.6090 249.7410

21 0.5720 0.5110 0.6350 285.0590 45 0.5950 0.4000 0.9600 282.2200

22 0.8070 0.7630 0.8630 323.0040 46 0.6380 0.8620 0.0280 308.9410

23 0.0860 0.8830 0.0810 252.8990 47 0.6910 0.9140 0.4370 317.6490

24 0.0480 0.0770 0.7860 209.4360

Fig. 5 All the 47 values of F(Utest), ̂FSeqST (Utest) and ̂FSinST (Utest) (down) and the absolute differences
between each two of them (up) using an LHD Utest with 47 points as a testing dataset for the illustrative
example
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5 The performance assessment of the new proposed SeqST

To evaluate the performance of our proposed methodology, we consider the following four
examples, two linearmodels and two non-linearmodels. The first linearmodel is the so-called
the pullulan production model. Although pullulan has been produced commercially since
1978, the production mechanism on the genetic level is still far from being fully understood.
As a result, only empirical models can be built to optimize pullulan production. One of these
models is derived by Goksungur et al. (2005) as follows:

Y1 = −29.851 + 1.189X1 + 0.057X2 + 5.086X3 − 0.011X2
1 − 0.0000607X2

2 − 1.3633X2
3

−0.000296X1X2 + 0.0263X1X3.

This model predicts the final concentration of pullulan (g/L) as a function of the initial
substrate concentration (X1), the speed of agitation (X2), and the airflow rate (X3). The
ranges of variation of the independent variables are X1 ∈ [30 70] g/L, X2 ∈ [200 600] rpm,
and X3 ∈ [1 3] vvm. The range of variation of the dependent variable Y1 is [4.96 17]. The
second linear model is the so-called the Goldprice model that has been studied by Andre
et al. (2000) and Ranjan et al. (2008). The Goldprice function is given by

Y2 = [

1 + (X1 + X2 + 1)2
(

19 − 14X1 + 3X2
1 − 14X2 + 6X1X2 + 3X2

2

)]

× [

30 + (2X1 − 2X2)
2 (

18 − 32X1 + 12X2
1 + 48X2 − 36X1X2 + 27X2

2

)]

,

where the two input factors X1 and X2 are defined on the domain [−2 2] × [−2 2].
The non-linear model is an equation selected for its very different topology and non-

linearity compared to the first two models. The first non-linear model is given as follows:

Y3 = ln(X1)(sin X2 + 4)

exp(X3)
+ ln(X1)exp(X3),

where the ranges of variation of the independent variables are X1 ∈ [0.1 10], X2 ∈
[−π/2 π/2], and X3 ∈ [0 1] leading to a variation of the dependent variable Y in the
range of [−13.82 13.82]. The second non-linear model is given as follows:

Y4 = exp(X1) + sin(X2) + X7
3,

where the range of variation of the independent variables is [0 1].
A comparison study between the mean squared error (MSE), MSE = 1

n

∑n
i=1(Fi − ̂Fi )2,

and mean absolute error (MAE), MAE = 1
n

∑n
i=1 |Fi − ̂Fi |, of the meta-models using

the new proposed SeqST and the classical SinST is given based on the above-mentioned
four models using the LHDs as training and testing datasets, the polynomial models as the
fitting models, and the medians of the ranges of the input factors as the points with the
highest impacts. To have a fair comparison study between the SeqST and SinST, the number
of representative training points for SinST is selected to be equal to the total number of
representative training points in all the p stages of the SeqST, i.e., n = n1 + n2 + · · · + n p.

Since the representative training datasets and the representative testing datasets (LHDs) are
not deterministic for a given n, the minimum, mean, median, and 95% confidence interval
(95%CI) of the MSEs and MAEs of the approximate meta-models of the above-mentioned
four models using the SeqST and SinST based on about 5000 different randomly generated
representative training datasets and representative testing datasets are given in Table 3 to
investigate the behavior of the SeqST for any randomly generated representative datasets.
From Table 3, we get the following:
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Table 3 The simulation results for the performance of the SeqST and SinST using the above-mentioned
models Y1, Y2, Y3 and Y4 via 5000 repetitions

Method Criterion Minimum Mean Median 95% CI

The first linear model: The pullulan production model (Y1)

SeqST MSE 20.091 23.101 23.049 [23.074 23.128]

MAE 3.8911 4.0641 4.0626 [4.0626 4.0656]

SinST MSE 22.848 25.682 25.648 [25.658 25.706]

MAE 4.1542 4.3504 4.3497 [4.3489 4.3519]

The second linear model: The Goldprice model (Y2)

SeqST MSE 7.7708E+8 5.2088E+9 5.0384E+9 [5.1527E+9 5.2648E+9]

MAE 14290 30862 28500 [30621 31104]

SinST MSE 8.0513E+8 5.2943E+9 5.0967E+9 [5.2401E+9 5.3484E+9]

MAE 15360 35140 31708 [34853 35428]

The first non-linear model (Y3)

SeqST MSE 1.2137 2.2219 1.8711 [ 2.0348 2.409]

MAE 0.85987 1.1416 1.0907 [ 1.1318 1.1514]

SinST MSE 2.55 4.1431 4.0419 [4.1264 4.1598]

MAE 1.2682 1.6338 1.6167 [ 1.6303 1.6373]

The second non-linear model (Y4)

SeqST MSE 0.22297 0.31334 0.29591 [0.30076 0.32591]

MAE 0.39099 0.46239 0.45811 [0.45988 0.4649]

SinST MSE 0.3105 0.43789 0.43689 [0.4369 0.43888]

MAE 0.45426 0.55088 0.55035 [0.55018 0.55158]

• The new proposed SeqST is better than the classical SinST for all the four models, where
the values of theMSE andMAEvia the SeqST are smaller than their values via the SinST.
The SeqST is better than the SinST for 5000 different training and testing datasets, where
the minimum, mean, and median of about 5000 MSE and MAE values via the SeqST are
less than their values via the SinST for all the cases.

• The gaps among the impacts of the input factors for Y3 > (i.e., greater than) the gaps
among the impacts of the input factors for Y4 > the gaps among the impacts of the
input factors for Y1 > the gaps among the impacts of the input factors for Y2. The
performance of the SeqST for Y3 � (i.e., better than) the performance of the SeqST for
Y4 � the performance of the SeqST for Y1 � the performance of the SeqST for Y2, where
the percentage differences between the minimum, mean, and median of the MSEs (and
MAEs) for the SeqST and SinST for Y3 > that for Y4 > that for Y1 > that for Y2. That
is, when there are significant gaps among the impacts of the input factors, the accuracy
of the SeqST increases.

6 Further interesting investigation for the performance of the SeqST

After the above-mentioned results come to mind the following new logical questions: What
is the effect of the order of the importance of the input factors on the accuracy of the new
proposed SeqST? What is the effect of the gaps among the importance of the input factors on
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the accuracy of the new proposed SeqST? What is the effect of the total number of points on
the accuracy of the new proposed SeqST? What is the effect of the number of points in each
stage on the accuracy of the new proposed SeqST? The answers of these questions provide
benchmarks for the optimality use of the new proposed SeqST. This section tries to answer
these questions and other interesting questions based on computer experiments.

Let the following non-linear model:

Y5 = −e−(X1+0.5)2 − 2e−(X2−0.5)2 − 4e−(X3+3)2 , 0 ≤ Xi ≤ 1, 1 ≤ i ≤ 3.

Figure 6 investigates the importance of the three input factors for the model Y5. From Fig. 6
and based on the area under each curve, we get that X2 ≫ X1 ≫ X3 is the order of the
importance of Y5. To check the effect of the number of points in each stage and the order of
the importance of the input factors on the accuracy of the SeqST, different numbers of points
in each stage are used as follows: 10 ≤ ni ≤ 100, 1 ≤ i ≤ 3 and n1+n2+n3 = 120. Figures
7, 8, and 9 give theMSEvalues of the SeqST for themodelY5 using different number of points
in each stage based on the following three different order of importance: X2 ≫ X1 ≫ X3

(correct order), X1 ≫ X2 ≫ X3 (wrong order), and X3 ≫ X2 ≫ X1 (wrong order),
respectively. Figure 10 gives a comparison study between the SeqST and SinST based on
different number of points in each stage from the three stages of Y5, where the number of
points in the SinST n is equal to the number of points in the three stages of the SeqST, i.e.,
n = n1 + n2 + n3. From Figs. 7, 8, 9 and 10, we conclude that:

• The MSE values using the correct order of the importance are less than the MSE values
using the wrong order of the importance for any number of points in each stage, where the
ranges of MSE values are about (0.06 0.073), (0.24 0.65), and (0.43 0.63) for X2 ≫
X1 ≫ X3 (correct order), X1 ≫ X2 ≫ X3 (wrong order), and X3 ≫ X2 ≫ X1

(wrong order), respectively. Therefore, it is recommended to carefully check the order of
the importance before using the new proposed SeqST.

• The new proposed SeqST is better than the classical SinST for any number of points,
where theMSEvalues for the SeqST are less than theMSEvalues for the SinST.However,
the SeqST is much better than the SinST for a small number of points (cf. Fig. 10).
Therefore, it is recommended to use the new proposed SeqST for small number of points
(experiments with a few trials).

Moreover, from the discussions about the models Y1, Y2, Y3, and Y4 in Sect. 5, it is
observed that: When there are significant gaps among the impacts of the input factors, the
accuracy of the new proposed SeqST increases. The following discussion tries to give more
investigations for this interesting observation using two different types of gaps among the
impacts of the input factors. The first type is the power gap that is investigated using the
following model:

Y6 = Xα1
1 + Xα2

2 + Xα3
3 , 0 ≤ Xi ≤ 1, 1 ≤ αi ≤ 8, 1 ≤ i ≤ 3, 3 ≤ α1 + α2 + α3 ≤ 10.

The second type is the coefficient gap that is investigated using the following model:

Y7 = β1X1+β2X2+β3X3, 0 ≤ Xi ≤ 1, 1 ≤ βi ≤ 18, 1 ≤ i ≤ 3, 3 ≤ β1+β2+β3 ≤ 20.

Figures 11 and 12 give the differences of the medians of the MSE values using the new
proposed SeqST and the medians of the MSE values using the classical SinST based on
about 5000 different randomly generated representative training datasets and representative
testing datasets for different powers and coefficients of the models Y6 and Y7, respectively.
The order is taken here as: X1 ≫ X2 ≫ X3. That is, the correct power that is consistent
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Fig. 6 The importance of the inputs for the model Y5

Fig. 7 The MSE for order X2 ≫ X1 ≫ X3 (correct order) for the model Y5

with this order is α1 < α2 < α3; however, the correct coefficient that is consistent with this
order is β1 > β2 > β3. From Figs. 11 and 12, we get

• When there are big gaps among the impacts of the input factors, the performance of the
new proposed SeqST is much better than the performance of the classical SinST. Keep
in mind that 0 ≤ Xi ≤ 1, i.e., when there are big gaps among the powers, α1, α2, and
α3, we have small gaps among the impacts of the input factors, X1, X2, and X3, and
vice versa. However, when there are big gaps among the coefficients, β1, β2, and β3,
we have big gaps among the the impacts of the input factors, X1, X2, and X3, and vice
versa. Therefore, it is recommended to use the new proposed SeqST for experiments with
large gaps among the impacts of their input factors.

• For small powers α1 and α2 and large power α3 (i.e., correct order of the importance),
the performance of the new proposed SeqST is much better than its performance for
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Fig. 8 The MSE for order X1 ≫ X2 ≫ X3 (wrong order) for the model Y5

large power α3 (i.e., wrong order of the importance). For large coefficients β1 and β2

and small coefficient β3 (i.e., correct order of the importance), the performance of the
SeqST is much better than its performance for large coefficient β3 (i.e., wrong order of
the importance). Therefore, we get the same conclusion that is mentioned above: It is
recommended to carefully check the importance order before using the new proposed
SeqST.

To provide a more investigation to the effect of the number of points in each stage on the
accuracy of the new proposed SeqST, let the following model:

Y8 = X4
1 + 1

2
X4
2 + 1

3
X4
3, 0 ≤ Xi ≤ 1, 1 ≤ i ≤ 3.

Figure 13 investigates the importance of the three input factors for the models Y8. From
Fig. 13 and based on the area under each curve, we get that X1 ≫ X2 ≫ X3 is the order
of the importance of Y8. Table 4 gives the MSE values and MAE values for Y8 based on
the correct order of the importance and different number of training points in each stage.
Moreover, Table 4 gives the MSE values and MAE values for the above-mentioned Y4 and
Y5. From Table 4, we conclude that: n1 > n2 > n3 is the best selection of the number of
the training points in the three stages. Therefore, it is recommended to use the new proposed
SeqST with a descending order of the numbers of training points in its stages.

7 Conclusion and future work

This paper gives a new sequential stage technique (SeqST) for designing and modeling
experiments when the input factors are not equally important. In the new proposed SeqST, the
input factors are added to the process andmodeled sequentially according to their importance,
one input factor is added at each stage, while each remaining input factor keeps fixed at a
given point that has the highest influence. A comparison study between the new proposed
SeqST and the classical single-stage technique (SinST) is investigated. The effects of: the
order of the importance of the input factors, the number of the training points in each stage, the
total number of the training points, and the gaps among the influences of the input factors, on
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Fig. 9 The MSE for order X3 ≫ X2 ≫ X1 (wrong order) for the model Y5

Fig. 10 The MSESeqST–MSESinST for the model Y5

the performance of the new proposed SeqST are investigated. This study gives a benchmark
that guide experimenters to effectively designing and modeling their experiments. The main
results show that:

• The performance of the new proposed SeqST is better than the performance of the
classical SinST under different experimental conditions and scenarios.

• The deviation between the performance of the new proposed SeqST and the classical
SinST for small number of training points is larger than that when there are a large
number of training points.

• The deviation between the performance of the new proposed SeqST and the SinST for
experiments with large gaps among the impacts of their factors is larger than that when
there are small gaps among the impacts of their factors.

• The new proposed SeqST has a good performance using the correct order of the impor-
tance of the input factors.

• The new proposed SeqST has a good performance using a descending order of the
numbers of the training points in its stages.
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Fig. 11 The Median MSE SeqST–Median MSE SinST for the model Y6

Fig. 12 The Median MSE SeqST–Median MSE SinST for the model Y7

Therefore, we conclude that the new proposed SeqST is highly recommended to be used
with the correct order of the importance of the input factors using a descending order of the
training points in its stages for experiments with a few trials and/or large gaps between the
importance of their factors.

During this work, the following interesting new ideas for future work have been arisen.
The first author is working on them, and some theoretical and simulation results are obtained.
However, more time and effort are needed to crystallize them in high-quality research papers
with significant results.

• This paper is a good first stone toward more future work in this regard. For instance, there
is a significant need to theoretically study the behavior of the new proposed SeqST more
deeply. In this study, theLHDs are used as training and testing datasets and the polynomial
model is used as the fitting model. The logical questions are that: What is the effect of
the type of training and testing datasets on the performance of the new proposed SeqST?
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Fig. 13 The importance of the inputs for the model Y8

Table 4 The MSE and MAE for different number of points

n1 n2 n3 MSE MAE

Y8 = X4
1 + 1

2 X
4
2 + 1

3 X
4
3, 0 ≤ Xi ≤ 1, 1 ≤ i ≤ 3

30 50 70 0.2349 0.2365

50 50 50 0.2318 0.2324

70 50 30 0.2239 0.2240

Y4 = exp(X1) + sin(X2) + X7
3, 0 ≤ Xi ≤ 1, 1 ≤ i ≤ 3

30 50 70 6.1417 × 107 6.4111 × 107

50 50 50 6.0332 × 107 6.2526 × 107

70 50 30 5.9626 × 107 5.9955 × 107

Y5 = −e−(X1+0.5)2 − 2e−(X2−0.5)2 − 4e−(X3+3)2 , 0 ≤ Xi ≤ 1, 1 ≤ i ≤ 3

30 50 70 15.9514 16.0475

50 50 50 15.6240 15.8654

70 50 30 15.2965 15.7727

What is the effect of the type of fitting model on the performance of the new proposed
SeqST? Is the new proposed SeqST still applicable to implicit functional relationships in
engineering without prior information? In the future work, the performance of the new
proposed SeqST under various types of optimal experimental designs, such as uniform
designs, orthogonal arrays, D-optimal designs, and various types of machine learning
modeling techniques, will be investigated.

• Elsawah 2022d (cf. its Sect. 5) presented a mixture factor-weight WD (MFWWD) as a
new criterion for constructing new uniform mixture factor-weight experimental designs
(training and testing datasets) when the input factors are not equally important. A com-
parison study between the classical SinST using the new uniform mixture factor-weight
experimental designs and the new proposed SeqST using classical uniform designs in all
of its stages will be investigated in the future work.
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