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Abstract
In this paper, we not only study asymptotical stability of a class of linear impulsive neutral
delay differential equations(INDDEs), but also study stability and asymptotical stability of
nonlinear INDDEs. Asymptotical stability of zero solution of linear INDDEs is studied by the
properties of simple autonomous linear neutral delay differential equations(NDDEs) without
impulsive perturbations. Base on this idea, numerical methods of INDDEs are constructed.
The constructed numericalmethods preserve asymptotical stability of linear INDDEs if corre-
sponding methods are A-stable. Moreover, some stability and asymptotical stability criteria
are established for nonlinear INDDEs, respectively. The constructed numerical methods
which can preserve stability and asymptotical stability of the exact solutions under these
criteria are obtained. Some numerical examples are given to confirm the theoretical results.

Keywords Impulsive neutral delay differential equations · Runge–Kutta method · Stability ·
Asymptotical stability

Mathematics Subject Classification 65L03 · 65L05 · 65L07

1 Introduction

Impulsive differential equations arise widely in the study of medicine, biology, economics,
engineering, and so forth. In recent years, INDDEs are attracting more and more attention.
In papers Anguraj and Karthikeyan (2009) and Cuevasa et al. (2009), existence uniqueness
and continuous dependence of INDDEs are investigated. In papers Li and Rogovchenko
(2015, 2016) and Li and Deng (2017), oscillation of first-order, second-order, even-order of
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INDDEs are studied, respectively. In papers Li and Deng (2017) and Li and Rogovchenko
(2020), stability of first-order, third-order INDDEs are studied, respectively. Mean square
exponential input-to state stability of stochastic Markovian reaction diffusion systems with
impulsive perturbations has also been studied in paper Xue et al. (2023).

On the other hand, stability and asymptotical stability of numerical methods for NDDEs
without impulsive perturbations have beenwidely studied (see Liu 1999; Enright andHayashi
1998; Engelborghs et al. 2001; Wang and Li 2008 etc). Wang and Li (2008) studied stability
and asymptotic stability of θ -methods for nonlinear NDDEs with constant delay and pro-
portional delay. Enright and Hayashi (1998) estabilished sufficient conditions for order of
convergence results about continuous Runge–Kutta methods for NDDEs with state depen-
dent delays. But to the best of our knowledge, up to now, there are few articles referring to
stability of numerical methods for INDDEs.

The aim of this paper is to provide asymptotical stability criteria for the exact solutions
and the numerical solutions of INDDEs. Applying asymptotical stability of NDDEs without
impulsive perturbations, asymptotical stability criteria are obtained for the exact solutions
of linear INDDEs and nonlinear INDDEs, respectively. Numerical schemes for INDDEs are
constructed based on the relationship between INDDEs and NDDEs. Moreover, we proved
that some numerical methods can preserve asymptotical stability of linear and nonlinear
INDDEs, respectively. The rest of this paper is organized as follows. In Sect. 2, asymptotical
stability of zero solution of linear INDDEs is studied by the properties of simple linearNDDEs
with constant coefficients. Base on this idea, numerical methods of INDDEs are constructed.
The constructed numerical methods furnished A-stable Runge–Kutta methods can preserve
asymptotical stability of linear INDDEs. In Sect. 3, some stability and asymptotical stability
criteria are established for nonlinear INDDEs by the properties of nonlinear NDDEs. Under
these stability and asymptotical stability criteria, the constructednumericalmethods furnished
by implicit Euler method or 2-stage Lobatto IIIC method are stability and asymptotical
stability. In Sect. 4, we provide some numerical examples to confirm our theoretical results.

2 Linear INDDEs

In this section, we consider the following scalar linear INDDE:
⎧
⎪⎨

⎪⎩

x ′(t) = ax(t) + bx(t − τ) + cx ′(t − τ), t ≥ 0, t �= kτ, k ∈ N,

x(t) = λx(t−), t = kτ, k ∈ N,

x(t) = φ(t), t ∈ [−τ, 0),

(2.1)

where τ is a positive constant, a, b, c and λ are complex constants, the initial function φ(t)
is continuous differentiable on [−τ, 0), x ′(t) denotes the right-hand derivative of x(t) and
N = {0, 1, 2, · · · }.

In the following of this paper, always assume λ �= 1 and λ �= 0. When λ = 1, INDDE
(2.1) is changed into NDDE without impulsive perturbations. When λ = 0, the solution x(t)
of INDDE (2.1) satisfies x(kτ) = 0 for all k ∈ N.
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2.1 Relations between INDDEs and NDDEs

Theorem 2.1 Assume that x(t) is the solution of (2.1) and y(t) = λ{t/τ }x(t), t ∈ [−τ,∞),
then y(t) is the solution of the following equation without impulsive perturbations

{
y′(t) = αy(t) + β y(t − τ) + cy′(t − τ), t ≥ 0,

y(t) = �(t), t ∈ [−τ, 0], (2.2)

where α = a + ln λ
τ

, β = b − c ln λ
τ

, { t
τ
} = t

τ
− � t

τ
�, �·� denotes the greatest integer function

and

�(t) =
{

λ( t
τ
+1)φ(t), t ∈ [−τ, 0),

λφ(0−), t = 0.

On the other hand, if y(t) is the solution of (2.2) and x(t) = λ−{t/τ }y(t), t ∈ [−τ,∞), then
x(t) is the solution of (2.1).

Proof We will prove that y(t) is continuous if x(t) is the solution of (2.1). Obviously,

y(t) = λ{t/τ }x(t) = λt/τ−k x(t) (2.3)

is continuous on [kτ, (k + 1)τ ), k = −1, 0, 1, 2, . . .. Therefore,

y(0−) = lim
t→0− λt/τ+1x(t) = λx(0−) = λφ(0−),

y(0) = x(0) = λx(0−) = λφ(0−).

Hence y(0) = y(0−), which implies that y(t) is continuous at t = 0. It follows from

y(kτ) = λ{ kτ
τ

}x(kτ) = x(kτ) = λx(kτ−),

y(kτ−) = lim
t→kτ− λ{ t

τ
}x(t) = λx(kτ−),

that y(t) is continuous at t = kτ , k = 1, 2, . . .. Consequently, y(t) is continuous on [−τ,∞).
Next, we will prove that y(t) is the solution of (2.2) if x(t) is the solution of (2.1). For

t ∈ [kτ, (k + 1)τ ), k = 0, 1, 2, . . ., we can obtain that

y′(t) = λt/τ−k x(t)
ln λ

τ
+ λt/τ−k x ′(t)

= y(t) ln λ

τ
+ λt/τ−k x ′(t),

and

y′(t − τ) = λ(t−τ)/τ−(k−1)x(t − τ)
ln λ

τ
+ λ(t−τ)/τ−(k−1)x ′(t − τ)

= y(t − τ) ln λ

τ
+ λt/τ−k x ′(t − τ),

123



8 Page 4 of 24 G.-L. Zhang et al.

which implies that

y′(t)

= y(t) ln λ

τ
+ λt/τ−k [

ax(t) + bx(t − τ) + cx ′(t − τ)
]

= y(t) ln λ

τ
+ ay(t) + by(t − τ) + cλt/τ−k x ′(t − τ)

=
(

a + ln λ

τ

)

y(t) + by(t − τ) + c

[

y′(t − τ) − y(t − τ) ln λ

τ

]

=
(

a + ln λ

τ

)

y(t) +
(

b − c ln λ

τ

)

y(t − τ) + cy′(t − τ)

= αy(t) + β y(t − τ) + cy′(t − τ).

Finally, we will prove that x(t) is the solution of (2.1) if y(t) is the solution of (2.2). For
t ∈ [kτ, (k + 1)τ ), k = 0, 1, 2, · · · , we can obtain that

x ′(t) = −λ−(t/τ−k)y(t)
ln λ

τ
+ λ−(t/τ−k)y′(t)

= − x(t) ln λ

τ
+ λ−(t/τ−k)y′(t),

and

x ′(t − τ) = −λ−[(t−τ)/τ−(k−1)]y(t − τ)
ln λ

τ
+ λ−[(t−τ)/τ−(k−1)]y′(t − τ)

= − x(t − τ) ln λ

τ
+ λ−(t/τ−k)y′(t − τ),

which implies that

x ′(t)

= − x(t) ln λ

τ
+ λ−(t/τ−k)

[(

a + ln λ

τ

)

y(t) +
(

b − c ln λ

τ

)

y(t − τ) + cy′(t − τ)

]

= − x(t) ln λ

τ
+

(

a + ln λ

τ

)

x(t) +
(

b − c ln λ

τ

)

x(t − τ) + cλ−(t/τ−k)y′(t − τ)

= ax(t) +
(

b − c ln λ

τ

)

x(t − τ) + c

[

x ′(t − τ) + x(t − τ) ln λ

τ

]

= ax(t) + bx(t − τ) + cx ′(t − τ).

Obviously, it follows from

x(kτ) = λ−{ kτ
τ

}y(kτ) = y(kτ),

x(kτ−) = lim
t→kτ− λ{ x

τ
}x(t) = λ−1y(kτ−),

that x(kτ) = λx(kτ−), k = 0, 1, 2, . . .. Hence x(t) is the solution of (2.1). 
�

2.2 Asmpotical stability of linear INDDEs

By (Bellen et al. 1988, Theorem 2.1) and Theorem 2.1 of present paper, we can obtain the
following results.
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Theorem 2.2 Assume that

|αc̄ − β̄| + |αc + β| < −2�(α).

Then the solution y(t) of NDDE (2.2) tends to zero as t → ∞. Hence if
∣
∣
∣
∣
∣

(

a + ln λ

τ

)

c̄ −
(

b − c ln λ

τ

)∣
∣
∣
∣
∣
+

∣
∣
∣
∣

(

a + ln λ

τ

)

c +
(

b − c ln λ

τ

)∣
∣
∣
∣ < −2�

(

a + ln λ

τ

)

,

then the solution x(t) of INDDE (2.1) tends to zero as t → ∞.

Maybe some readers are interested in linear INDDE as the following form.
⎧
⎪⎨

⎪⎩

x ′(t) = ax(t) + bx(t − τ) + cx ′(t − τ), t ≥ 0, t �= kτ, k ∈ Z
+,

x(t) = λx(t−), t = kτ, k ∈ Z
+,

x(t) = φ(t), t ∈ [−τ, 0],
(2.4)

where Z
+ = {1, 2, . . .}. In fact, on interval [−τ, τ ), the Eq. (2.4) is a delay differential

equations without impulsive perturbations. If the solution x(t), t ∈ [0, τ ) is seen as initial
function, the Eq. (2.4) can be seen the same as (2.1) for t ≥ τ . So the asymptotically stable
results of Theorem 2.2 can be extended as follows.

Corollary 2.3 If
∣
∣
∣
∣
∣

(

a + ln λ

τ

)

c̄ −
(

b − c ln λ

τ

)∣
∣
∣
∣
∣
+

∣
∣
∣
∣

(

a + ln λ

τ

)

c +
(

b − c ln λ

τ

)∣
∣
∣
∣ < −2�

(

a + ln λ

τ

)

,

then the solution x(t) of INDDE (2.4) tends to zero as t → ∞.

In fact, all the stable and asymptotically stable results of INDDE in this paper can be
extended similarly, we do not introduce in detail for concise.

2.3 Stability analysis of numerical methods for linear INDDEs

Based on the relations between INDDE (2.1) and NDDE (2.2), the numerical method for
linear INDDE (2.1) can be constructed as follows

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yn+1 = yn + ∑s
i=1 wi z

(i)
n+1, n ∈ N

z(i)
n+1 = α

(
yn + h

∑s
j=1 ai j z

( j)
n+1

)
+ β

(
yn−m + h

∑s
j=1 bi j z

( j)
n−m+1

)

+ c
∑s

j=1 ci j z
( j)
n−m+1

xn = λ−{ tn
τ

}yn,

(2.5)

where tn = nh, n ∈ N, h = τ
m and m is a positive integer. Here, the vector w =

[w1, w2, . . . , ws]T and the matrix A = [ai j ]s
i, j=1 define a Runge–Kutta method for ODEs.

For ∀n ∈ N, yn is an approximation to y(tn) of (2.2), xn is an approximation to x(tn) of (2.1),
yn + h

∑s
j=1 ai j z

( j)
n+1 is an approximation to y(tn + ci h), yn−m + h

∑s
j=1 bi j z

( j)
n−m+1 is an

approximation to y(tn−m + ci h),
∑s

j=1 ci j z
( j)
n−m+1 is an approximation to y′(tn−m + ci h),

where ci = ∑s
j=1 ai j , i = 1, 2, . . . , s.

Usually, bi j = b j (ci ) and ci j = b′
j (ci ), where b j (θ), j = 1, 2, . . . , s, are polynomials

which define the natural continuous extension of the Runge–Kutta method, i.e. polynomials
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such that the approximate solution yh defined on the whole interval of integration is given
by

yh(tn + θh) = yh(tn) + h
s∑

j=1

b j (θ)z( j)
n+1, n ∈ N, θ ∈ [0, 1].

Put B = [bi j ]s
i, j=1 and C = [ci j ]s

i, j=1. Let α̃ = hα, β̃ = hβ and denote by
{yn(m;α, β, c)}∞n=0 can be described by quadrupple {w, A, B, C}. So the numerical method
(2.5) for linear INDDE (2.1) can be rewritten as follows

⎧
⎪⎨

⎪⎩

yn+1 = yn + hwT zn+1, n ∈ N

zn+1 = α(yne + h Azn+1) + β(yn−me + h Bzn−m+1) + cCzn−m+1

xn = λ−{ tn
τ

}yn,

(2.6)

where zn stands for [z(1)
n , z(2)

n , . . . , z(s)
n ]T and e = [1, 1, . . . , 1]T .

A-stable Runge–Kutta methods for ODEs can be extended to asympotically stable numer-
ical method for INDDEs. By (Bellen et al. 1988, Theorem 3.4), we can obtain the following
theorem.

Theorem 2.4 Assume that the Runge–Kutta method {w, A} for ODE is A-stable. Then the
corresponding method (2.6) for INDDE (2.1) with B = A and C = I , which satisfies
∣
∣
∣
∣
∣

(

a + ln λ

τ

)

c̄ −
(

b − c ln λ

τ

)∣
∣
∣
∣
∣
+

∣
∣
∣
∣

(

a + ln λ

τ

)

c +
(

b − c ln λ

τ

)∣
∣
∣
∣ < −2�

(

a + ln λ

τ

)

.

Then the numerical solution xn of (2.6) tends to zero as n → ∞.

3 Nonlinear INDDEs

In this section, we will consider the following nonlinear INDDE:
⎧
⎪⎨

⎪⎩

x ′(t) = f (t, x(t), x(t − τ), x ′(t − τ)), t ≥ 0, t �= kτ, k ∈ N

x(t) = λx(t−), t = kτ, k ∈ N

x(t) = φ(t), t ∈ [−τ, 0),

(3.1)

and the same equation with another initial function:
⎧
⎪⎨

⎪⎩

x̃ ′(t) = f (t, x̃(t), x̃(t − τ), x̃ ′(t − τ)), t ≥ 0, t �= kτ, k ∈ N

x̃(t) = λx̃(t−), t = kτ, k ∈ N

x̃(t) = φ̃(t), t ∈ [−τ, 0),

(3.2)

where λ �= 1, λ �= 0, τ > 0, φ and φ̃ are continuous functions on [−τ, 0), lim
t→0− φ(t) and

lim
t→0− φ̃(t) exist, x ′(t) denotes the right-hand derivative of x(t). Let 〈·, ·〉 be a given inner

product on C
d and ‖ · ‖ the corresponding norm. Assume that the function f : [0,∞) ×

C
d × C

d × C
d → C

d is continuous in t and satisfies the following conditions: for arbitrary
x, u, v, x1, x2, u1, u2, v1, v2 ∈ C

d and ∀t ∈ [0,+∞),

�(〈x1 − x2, f (t, x1, u, v) − f (t, x2, u, v)〉) ≤ R(t)‖x1 − x2‖2 (3.3)
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‖ f (t, x, u1, v) − f (t, x, u2, v)‖ ≤ β(t)‖u1 − u2‖ (3.4)

‖ f (t, x, u, v1) − f (t, x, u, v2)‖ ≤ γ (t)‖v1 − v2‖ (3.5)

‖U (t, x, u1, v, w) − U (t, x, u2, v, w)‖ ≤ σ(t)‖u1 − u2‖ (3.6)

where R(t), β(t), γ (t) and σ(t) are continuous real functions and

U (t, x, u, v, w) = f (t, x, u, f (t − τ, u, v, w)).

3.1 Relations between INDDEs and NDDEs

Assume that the scalar function α : [−τ,∞) → C satisfies the following conditions:

(1) for any t ∈ [0,∞), α(t) = α(t − τ);
(2) α(t) is infinite smooth on [0, τ );
(3) α(0) = 1 and α(0−) = λ;
(4) inf t∈[0,τ ) |α(t)| ≥ m > 0.

Theorem 3.1 Assume that x(t) is the solution of (2.1) and y(t) = α(t)x(t), t ∈ [−τ,+∞).
Then y(t) is the solution of

{
y′(t) = F(t, y(t), y(t − τ), y′(t − τ)), t ≥ 0,

y(t) = �(t), t ∈ [−τ, 0], (3.7)

where

F(t, y, u, v) = α′(t)y

α(t)
+ α(t) f (t,

y

α(t)
,

u

α(t)
,

v

α(t)
− α′(t)u

α2(t)
)

and

�(t) =
{

α(t)φ(t), t ∈ [−τ, 0),
α(0−)φ(0−), t = 0.

On the other hand, assume that y(t) is the solution of (3.7) and x(t) = y(t)
α(t) , t ∈

[−τ,+∞). Then x(t) is the solution of (2.1).

Proof (i) Because α(t) and x(t) are continuous on [kτ, (k + 1)τ ), y(t) is continuous on
[kτ, (k + 1)τ ), where k = 0, 1, . . .. Obviously, we have

y(kτ) = y(kτ+) = α(kτ+)x(kτ+)

= α(kτ)λx(kτ−) = α(0)λx(kτ−)

= λx(kτ−)

and

y(kτ−) = α(kτ−)x(kτ−) = λx(kτ−).

So y(kτ) = y(kτ+) = y(kτ−), k = 0, 1, 2, . . .. Hence y(t) is continuous on [−τ,∞).
Obviously, for t ∈ [kτ, (k + 1)τ ), k = 0, 1, . . ., we can obtain that

x ′(t) = (
y(t)

α(t)
)′ = y′(t)

α(t)
− α′(t)y(t)

α2(t)

⇒ x ′(t − τ) = y′(t − τ)

α(t)
− α′(t)y(t − τ)

α2(t)
,

123



8 Page 8 of 24 G.-L. Zhang et al.

which implies

y′(t) = α′(t)x(t) + α(t)x ′(t)
= α′(t)x(t) + α(t) f (t, x(t), x(t − τ), x ′(t − τ))

= α′(t)y(t)

α(t)
+ α(t) f

(

t,
y(t)

α(t)
,

y(t − τ)

α(t − τ)
,

y′(t − τ)

α(t − τ)
− α′(t − τ)y(t − τ)

α2(t − τ)

)

= α′(t)y(t)

α(t)
+ α(t) f

(

t,
y(t)

α(t)
,

y(t − τ)

α(t)
,

y′(t − τ)

α(t)
− α′(t)y(t − τ)

α2(t)

)

= F(t, y(t), y(t − τ), y′(t − τ)).

(ii) Assume that y(t) is the solution of (3.7). For t ∈ [kτ, (k + 1)τ ), k = 0, 1, . . .,

x ′(t) = (
y(t)

α(t)
)′ = y′(t)

α(t)
− α′(t)y(t)

α2(t)

= 1

α(t)

(
α′(t)y(t)

α(t)
+ α(t) f

(

t,
y(t)

α(t)
,

y(t − τ)

α(t)
,

y′(t − τ)

α(t)
− α′(t)y(t − τ)

α2(t)

))

− α′(t)y(t)

α2(t)

= f

(

t,
y(t)

α(t)
,

y(t − τ)

α(t)
,

y′(t − τ)

α(t)
− α′(t)y(t − τ)

α2(t)

)

= f (t, x(t), x(t − τ), x ′(t − τ)).

Obviously,

x(kτ) = y(kτ)

α(kτ)
= y(kτ)

α(0)
= y(kτ)

and

x(kτ−) = lim
t→kτ−

y(t)

α(t)
= y(kτ)

α(kτ−)
= y(kτ)

α(τ−)
= y(kτ)

λ
.

So x(kτ) = λx(kτ−), k = 0, 1, · · · . Obviously, we have x(t) = y(t)
α(t) = φ(t), t ∈ [−τ, 0).

Hence x(t) is the solution of (3.1). 
�

3.2 Asymptotical stability of INDDEs

Theorem 3.2 Assume that IDDEs (3.1) and (3.2) fulfill the inequalities (3.3)-(3.6), and
R(t) ≤ 0 for ∀t ≥ 0,

�
(

α′(t)
α(t)

)

+ R(t)

ω2 < 0,
ωσ(t) − ωγ (t)

[
�

(
α′(t)
α(t)

)
+ R(t−τ)

ω2

]

−
[
�

(
α′(t)
α(t)

)
+ R(t)

ω2

] ≤ 1, (3.8)

then

‖x(t) − x̃(t)‖ ≤ max{λ‖φ(0−) − φ̃(0−)‖
m

, κ}, (3.9)

where ω = supt∈[−τ,0) |α(t)|
inf t∈[−τ,0) |α(t)| , ζ = supt∈[−τ,0) |α′(t)

α(t) |, δφ(s) = ‖φ(s − τ) − φ̃(s − τ)‖, δφ̇(s) =
‖φ′(s − τ) − φ̃′(s − τ)‖ and

κ = sup
0≤s<τ

ω2(β(s) + 2ζγ (s))δφ(s) + ω2γ (s)δφ̇(s)

−
(
�

(
α′(t)
α(t)

)
+ R(t)

ω2

) .
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Moreover, assume that

�
(

α′(t)
α(t)

)

+ R(t)

ω2 ≤ R0 < 0, ∀t ≥ 0, (3.10)

and

ωγ (t)
(
�

(
α′(t)
α(t)

)
+ R(t−τ)

ω2

)

�
(

α′(t)
α(t)

)
+ R(t)

ω2

= r(t) ≤ ξ̄ < 1, ∀t ≥ 0, (3.11)

ωσ(t)

−
(
�

(
α′(t)
α(t)

)
+ R(t)

ω2

) ≤ k(1 − r(t)), k < 1, ∀t ≥ 0, (3.12)

then we have

lim
t→∞ ‖x(t) − x̃(t)‖ = 0.

Proof We will apply inequalities (3.3)-(3.6) to prove that the function F : [0,∞) ×
C

d × C
d × C

d → C
d satisfies the following conditions respectively: for arbitrary

y, u, v, y1, y2, u1, u2, v1, v2 ∈ C
d and ∀t ∈ [0,+∞),

�(〈y1 − y2, F(t, y1, u, v) − F(t, y2, u, v)〉) ≤
(

�
(

α′(t)
α(t)

)

+ R(t)

ω2

)

‖y1 − y2‖2 (3.13)

‖F(t, y, u1, v) − F(t, y, u2, v)‖ ≤ ω (β(t) + ζγ (t)) ‖u1 − u2‖ (3.14)
‖F(t, y, u, v1) − F(t, y, u, v2)‖ ≤ ωγ (t)‖v1 − v2‖ (3.15)
‖V (t, y, u1, v, w) − V (t, y, u2, v, w)‖ ≤ ωσ(t)‖u1 − u2‖ (3.16)

where V (t, y, u, v, w) = F(t, y, u, F(t − τ, u, v, w)).

First of all, we will prove inequality (3.13) as follows
�〈y1 − y2, F(t, y1, u, v) − F(t, y2, u, v)〉

= �〈y1 − y2,
α′(t)y1
α(t)

+ α(t) f

(

t,
y1

α(t)
,

u

α(t)
,

v

α(t)
− α′(t)u

α2(t)

)

− α′(t)y2
α(t)

− α(t) f

(

t,
y2

α(t)
,

u

α(t)
,

v

α(t)
− α′(t)u

α2(t)

)

〉

= �〈y1 − y2,
α′(t)
α(t)

(y1 − y2)〉 + |α(t)|2�〈 y1
α(t)

− y2
α(t)

, f

(

t,
y1

α(t)
,

u

α(t)
,

v

α(t)
− α′(t)u

α2(t)

)

− f

(

t,
y2

α(t)
,

u

α(t)
,

v

α(t)
− α′(t)u

α2(t)

)

〉

≤ �
(

α′(t)
α(t)

)

‖y1 − y2‖2 + |α(t)|2R(t)‖ y1
α(t)

− y2
α(t)

‖2

which implies, if R(t) ≤ 0 for ∀t ,

�〈y1 − y2, F(t, y1, u, v) − F(t, y2, u, v)〉 ≤ [�
(

α′(t)
α(t)

)

+ R(t)

ω2 ]‖y1 − y2‖2, (3.17)

and if R(t) ≤ R̂ and R̂ > 0 for ∀t ,

�〈y1 − y2, F(t, y1, u, v) − F(t, y2, u, v)〉 ≤ [�
(

α′(t)
α(t)

)

+ ω2 R̂]‖y1 − y2‖2. (3.18)
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Second, the inequality (3.14) can be proved as follows

‖F(t, y, u1, v) − F(t, y, u2, v)‖

= ‖α′(t)y

α(t)
+ α(t) f

(

t,
y

α(t)
,

u1
α(t)

,
v

α(t)
− α′(t)u1

α2(t)

)

−
[

α′(t)y

α(t)
+ α(t) f

(

t,
y

α(t)
,

u2
α(t)

,
v

α(t)
− α′(t)u2

α2(t)

)]

‖

≤ ( sup
−τ≤t<0

|α(t)|)‖ f

(

t,
y

α(t)
,

u1
α(t)

,
v

α(t)
− α′(t)u1

α2(t)

)

− f

(

t,
y

α(t)
,

u2
α(t)

,
v

α(t)
− α′(t)u2

α2(t)

)

‖

≤ ( sup
−τ≤t<0

|α(t)|)‖ f

(

t,
y

α(t)
,

u1
α(t)

,
v

α(t)
− α′(t)u1

α2(t)

)

− f

(

t,
y

α(t)
,

u2
α(t)

,
v

α(t)
− α′(t)u1

α2(t)

)

‖

+ ( sup
−τ≤t<0

|α(t)|)‖ f

(

t,
y

α(t)
,

u2
α(t)

,
v

α(t)
− α′(t)u1

α2(t)

)

− f

(

t,
y

α(t)
,

u2
α(t)

,
v

α(t)
− α′(t)u2

α2(t)

)

‖

≤
(

sup
−τ≤t<0

|α(t)|
) [

β(t)‖ u1
α(t)

− u2
α(t)

‖ + γ (t)‖ v

α(t)
− α′(t)u1

α2(t)
−

(
v

α(t)
− α′(t)u2

α2(t)

)

‖
]

≤ ω(β(t) + γ (t)ζ )‖u1 − u2‖

Third, the inequality (3.15) can be proved as follows

‖F(t, y, u, v1) − F(t, y, u, v2)‖
= ‖α′(t)y

α(t)
+ α(t) f

(

t,
y

α(t)
,

u

α(t)
,

v1

α(t)
− α′(t)u

α2(t)

)

−
[

α′(t)y

α(t)
+ α(t) f

(

t,
y

α(t)
,

u

α(t)
,

v2

α(t)
− α′(t)u

α2(t)

)]

‖

≤
(

sup
−τ≤t<0

|α(t)|
)

γ (t)‖ v1

α(t)
− α′(t)u

α2(t)
−

(
v2

α(t)
− α′(t)u

α2(t)

)

‖

≤ ωγ (t)‖v1 − v2‖
Finally, the inequality (3.16) can be proved as follows

‖V (t, y, u1, v, w) − V (t, y, u2, v, w)‖
= ‖F(t, y, u1, F(t − τ, u1, v, w)) − F(t, y, u2, F(t − τ, u2, v, w))‖

=
(

sup
−τ≤t<0

|α(t)|
)

‖ f

(

t,
y

α(t)
,

u1

α(t)
, f

(

t − τ,
u1

α(t)
,

v

α(t)
,

w

α(t)
− α′(t)v

α2(t)

))

− f

(

t,
y

α(t)
,

u2

α(t)
, f

(

t − τ,
u2

α(t)
,

v

α(t)
,

w

α(t)
− α′(t)v

α2(t)

))

‖

=
(

sup
−τ≤t<0

|α(t)|
)

‖U

(

t,
y

α(t)
,

u1

α(t)
,

v

α(t)
,

w

α(t)
− α′(t)v

α2(t)

)

− U

(

t,
y

α(t)
,

u2

α(t)
,

v

α(t)
,

w

α(t)
− α′(t)v

α2(t)

)

‖

≤
(

sup
−τ≤t<0

|α(t)|
)

σ(t)‖ u1

α(t)
− u2

α(t)
‖

≤ ωσ(t)‖u1 − u2‖
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By the condition (3.8) and (Wang et al. 2009, Theorem 3.1), (Wang and Li 2004, Theorem
1), we can obtain that

‖y(t) − ỹ(t)‖ ≤ max{‖�(0) − �̃(0)‖, κ̂},
which implies (3.9) holds, where

κ̂ = sup
0≤s≤τ

(ωβ(s) + ωζγ (t))‖�(s − τ) − �̃(s − τ)‖ + ωγ (s)‖�′(s − τ) − �̃′(s − τ)‖
−

[
�

(
α′(t)
α(t)

)
+ R(t)

ω2

] .

Moreover, by the condition (3.10)-(3.12) and (Wang et al. 2009, Theorem 3.2), (Wang and
Li 2004, Theorem 4), we can obtain that

lim
t→∞ ‖y(t) − ỹ(t)‖ = 0,

which implies

lim
t→∞ ‖x(t) − x̃(t)‖ = 0.


�

Due to the difference in (3.17) and (3.18), similar to Theorem 3.2, by (Wang et al. 2009,
Theorem 3.2) or (Wang and Li 2004, Theorem 4), we can obtain the following theorem.

Theorem 3.3 Assume that IDDEs (3.1) and (3.2) fulfill the inequalities (3.3)-(3.6), R(t) ≤ R̂,
R̂ > 0, and for ∀t ≥ 0,

�
(

α′(t)
α(t)

)

+ ω2 R̂ < 0,
ωσ(t) − ωγ (t)

[
�

(
α′(t)
α(t)

)
+ ω2 R̂

]

−
[
�

(
α′(t)
α(t)

)
+ ω2 R̂

] ≤ 1, (3.19)

then

‖x(t) − x̃(t)‖ ≤ max{λ‖φ(0−) − φ̃(0−)‖
m

, κ̄}, (3.20)

where

κ̄ = sup
0≤s<τ

ω2(β(s) + 2ζγ (s))δφ(s) + ω2γ (s)δφ̇(s)

−
[
�

(
α′(t)
α(t)

)
+ ω2 R̂

] .

Moreover, assume that

�
(

α′(t)
α(t)

)

+ ω2 R̂ ≤ R̄ < 0, ωγ (t) ≤ ξ̄ < 1, ∀t ≥ 0, (3.21)

ωσ(t)

−
[
�

(
α′(t)
α(t)

)
+ ω2 R̂

] ≤ k̄(1 − ωγ (t)), k̄ < 1, ∀t ≥ 0, (3.22)

then we have

lim
t→∞ ‖x(t) − x̃(t)‖ = 0.
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3.3 Special cases

In this subsection, we only introduce three special cases and some sufficient conditions for
stability and asymptotical stability of (3.1) and (3.2) are obtained from them. Many different
functions can be chosen as α(t) (see Zhang et al. 2015), which implies many special cases
can be obtained.

Special case I. Obviously, α1(t) = λ{ t
τ
}, t ∈ [−τ,∞). By Theorem 3.2, when α(t) =

α1(t) = λ{ t
τ
}, we can obtain the following theorem.

Theorem 3.4 Assume that x(t) is the solution of (2.1) and y1(t) = λ{ t
τ
}x(t), t ∈ [−τ,+∞).

Then y1(t) is the solution of
{

y′
1(t) = F1(t, y1(t), y1(t − τ), y′

1(t − τ)), t ≥ 0,

y1(t) = �1(t), t ∈ [−τ, 0], (3.23)

where

F1(t, y, u, v) =
(
ln λ

τ

)

y + λ{ t
τ
} f

(

t, λ−{ t
τ
}y, λ−{ t

τ
}u, λ−{ t

τ
}
(

v − u ln λ

τ

))

and

�1(t) =
{

λ
t
τ
+1φ(t), t ∈ [−τ, 0),

λφ(0−), t = 0.

On the other hand, assume that y(t) is the solution of (3.23) and x(t) = λ−{ t
τ
}y(t), t ∈

[−τ,+∞). Then x(t) is the solution of (2.1).

Theorem 3.5 Assume that IDDEs (3.1) and (3.2) fulfill the inequalities (3.3)-(3.6), and
R(t) ≤ 0 for ∀t ≥ 0,

ln |λ|
τ

+ R(t)

ω2
1

< 0,
ω1σ(t) − ω1γ (t)

(
ln |λ|

τ
+ R(t−τ)

ω2
1

)

−
(

ln |λ|
τ

+ R(t)
ω2
1

) ≤ 1,

then

‖x(t) − x̃(t)‖ ≤ max{λ‖φ(0−) − φ̃(0−)‖
m1

, κ1},

where ω1 = max{|λ|, 1
|λ| }, m1 = min{1, |λ|}, ζ1 = | ln λ

τ
| and

κ1 = sup
0≤s<τ

ω2
1(β(s) + 2ζγ (s))δφ(s) + ω2

1γ (s)δφ̇(s)

−
(

ln |λ|
τ

+ R(t)
ω2
1

) .

Moreover, assume that

ln |λ|
τ

+ R(t)

ω2
1

≤ R1 < 0, ∀t ≥ 0,
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and

ω1γ (t)

(
ln |λ|

τ
+ R(t−τ)

ω2
1

)

ln |λ|
τ

+ R(t)
ω2
1

= r1(t) ≤ ξ̄1 < 1, ∀t ≥ 0,

ω1σ(t)

−
(

ln |λ|
τ

+ R(t)
ω2
1

) ≤ k1(1 − r1(t)), k1 < 1, ∀t ≥ 0,

then we have

lim
t→∞ ‖x(t) − x̃(t)‖ = 0.

Theorem 3.6 Assume that IDDEs (3.1)and (3.2) fulfill the inequalities (3.3)–(3.6), R(t) ≤ R̂,
R̂ > 0, and for ∀t ≥ 0,

ln |λ|
τ

+ ω2
1 R̂ < 0,

ω1σ(t) − ω1γ (t)
(
ln |λ|

τ
+ ω2

1 R̂
)

−
(
ln |λ|

τ
+ ω2

1 R̂
) ≤ 1,

then

‖x(t) − x̃(t)‖ ≤ max{λ‖φ(0−) − φ̃(0−)‖
m1

, κ̌1},

where

κ̌1 = sup
0≤s<τ

ω2
1(β(s) + 2ζ1γ (s))δφ(s) + ω2

1γ (s)δφ̇(s)

−
(
ln |λ|

τ
+ ω2

1 R̂
) .

Moreover, assume that

ln |λ|
τ

+ ω2
1 R̂ < 0, ω1γ (t) ≤ ξ̄1 < 1, ∀t ≥ 0,

and

ω1σ(t)

−
(
ln |λ|

τ
+ ω2

1 R̂
) ≤ k̄1(1 − ω1γ (t)), k̄1 < 1, ∀t ≥ 0,

then we have

lim
t→∞ ‖x(t) − x̃(t)‖ = 0.

Special Case II: When λ ∈ R and λ > 0, α2(t) = 1 + (λ − 1){ t
τ
}, t ∈ [−τ,∞). By

Theorem 3.2, when α(t) = α2(t), we can obtain the following theorem.

Theorem 3.7 Assume that x(t) is the solution of (2.1) and y2(t) = α2(t)x(t), t ∈
[−τ,+∞). Then y2(t) is the solution of

{
y′
2(t) = F2(t, y2(t), y2(t − τ), y′

2(t − τ)), t ≥ 0,

y2(t) = �2(t), t ∈ [−τ, 0], (3.24)
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where

F2(t, y, u, v) = (λ − 1)y

τα2(t)
+ α2(t) f

(

t,
y

α2(t)
,

u

α2(t)
,

v

α2(t)
− (λ − 1)u

τα2
2(t)

)

and

�2(t) =
{ [1 + (λ − 1)( t

τ
+ 1)]φ(t), t ∈ [−τ, 0),

λφ(0−), t = 0.

On the other hand, assume that y(t) is the solution of (3.24) and x(t) = y2(t)
1+(λ−1){ t

τ
} , t ∈

[−τ,+∞). Then x(t) is the solution of (2.1).

Theorem 3.8 When λ ∈ R, λ > 0 and λ �= 1, assume that IDDEs (3.1) and (3.2) fulfill the
inequalities (3.3)–(3.6), R(t) ≤ 0, for ∀t ≥ 0,

λ − 1

τ + (λ − 1)τ { t
τ
} + R(t)

ω2
2

< 0,
ω2σ(t) − ω2γ (t)

(
λ−1

τ+(λ−1)τ { t
τ
} + R(t−τ)

ω2
2

)

−
(

λ−1
τ+(λ−1)τ { t

τ
} + R(t)

ω2
2

) ≤ 1,

then

‖x(t) − x̃(t)‖ ≤ max{λ‖φ(0−) − φ̃(0−)‖
m2

, κ2},

where ω2 = max{λ, 1
λ
}, m2 = min{1, λ}, ζ2 = max{| λ−1

τ
|, | λ−1

λτ
|} and

κ2 = sup
0≤s<τ

ω2
2[β(s) + 2ζγ (s)]δφ(s) + ω2

2γ (s)δφ̇(s)

−
(

λ−1
τ+(λ−1)τ { t

τ
} + R(t)

ω2
2

) .

Moreover, assume that

λ − 1

τ + (λ − 1)τ { t
τ
} + R(t)

ω2
2

≤ R2 < 0, ∀t ≥ 0,

and

ω1γ (t)

(
λ−1

τ+(λ−1)τ { t
τ
} + R(t−τ)

ω2
2

)

λ−1
τ+(λ−1)τ { t

τ
} + R(t)

ω2
2

= r2(t) ≤ ξ2 < 1, ∀t ≥ 0,

ω1σ(t)

−
(

λ−1
τ+(λ−1)τ { t

τ
} + R(t)

ω2
2

) ≤ k2(1 − r2(t)), k2 < 1, ∀t ≥ 0,

then we have

lim
t→∞ ‖x(t) − x̃(t)‖ = 0.
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Theorem 3.9 When λ ∈ R and λ > 0, assume that IDDEs (3.1) and (3.2) fulfill the
inequalities (3.3)–(3.6), R(t) ≤ R̂, R̂ > 0, and for ∀t ≥ 0,

λ − 1

τ + (λ − 1)τ { t
τ
} + ω2

2 R̂ < 0,

and

ω2σ(t) − ω2γ (t)
(

λ−1
τ+(λ−1)τ { t

τ
} + ω2

2 R̂
)

−
(

λ−1
τ+(λ−1)τ { t

τ
} + ω2

2 R̂
) ≤ 1,

then

‖x(t) − x̃(t)‖ ≤ max{λ‖φ(0−) − φ̃(0−)‖
m2

, κ̌2},

where

κ̌2 = sup
0≤s<τ

ω2
2 (β(s) + 2ζ2γ (t)) δφ(s) + ω2

2γ (s)δφ̇(s)

−
(

λ−1
τ+(λ−1)τ { t

τ
} + ω2

2 R̂
) .

Moreover, assume that

λ − 1

τ + (λ − 1)τ { t
τ
} + ω2

2 R̂ ≤ R̄2 < 0, ω2γ (t) ≤ ξ̄2 < 1, ∀t ≥ 0,

ω2σ(t)

−
(

λ−1
τ+(λ−1)τ { t

τ
} + ω2

2 R̂
) ≤ k̄2(1 − ω2γ (t)), k̄2 < 1, ∀t ≥ 0,

then we have

lim
t→∞ ‖x(t) − x̃(t)‖ = 0.

Because λ−1
τ+(λ−1)τ { t

τ
} ≤ λ−1

τ
for all λ > 0, ∀t ∈ R, by Theorem 3.9, we can obtain the

following corollary.

Corollary 3.10 When λ ∈ R, λ > 0 and λ �= 1, assume that IDDEs (3.1) and (3.2) fulfill the
inequalities (3.3)–(3.6), R(t) ≤ 0, for ∀t ≥ 0,

λ − 1

τ
+ R(t)

ω2
2

< 0,
ω2σ(t) − ω2γ (t)

(
λ−1
τ

+ R(t−τ)

ω2
2

)

−
(

λ−1
τ

+ R(t)
ω2
2

) ≤ 1,

then

‖x(t) − x̃(t)‖ ≤ max{λ‖φ(0−) − φ̃(0−)‖
m2

, κ2}.

Moreover, assume that

λ − 1

τ
+ R(t)

ω2
2

≤ Ř2 < 0, ∀t ≥ 0,
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and

ω1γ (t)

(
λ−1
τ

+ R(t−τ)

ω2
2

)

λ−1
τ

+ R(t)
ω2
2

= ř2(t) ≤ ξ̌2 < 1, ∀t ≥ 0,

ω1σ(t)

−
(

λ−1
τ

+ R(t)
ω2
2

) ≤ ǩ2(1 − ř2(t)), ǩ2 < 1, ∀t ≥ 0,

then we have

lim
t→∞ ‖x(t) − x̃(t)‖ = 0.

Corollary 3.11 When λ ∈ R and λ > 0, assume that IDDEs (3.1) and (3.2) fulfill the
inequalities (3.3)–(3.6), R(t) ≤ R̂, R̂ > 0, and for ∀t ≥ 0,

λ − 1

τ
+ ω2

2 R̂ < 0,

and

ω2σ(t) − ω2γ (t)
(

λ−1
τ

+ ω2
2 R̂

)

−
(

λ−1
τ

+ ω2
2 R̂

) ≤ 1,

then

‖x(t) − x̃(t)‖ ≤ max{λ‖φ(0−) − φ̃(0−)‖
m2

, κ2}.

Moreover, assume that

λ − 1

τ
+ ω2

2 R̂ < 0, ω2γ (t) ≤ ξ̃2 < 1, ∀t ≥ 0,

ω2σ(t)

−
(

λ−1
τ

+ ω2
2 R̂

) ≤ k̃2(1 − ω2γ (t)), k̃2 < 1, ∀t ≥ 0,

then we have

lim
t→∞ ‖x(t) − x̃(t)‖ = 0.

Special Case III:Whenλ ∈ R andλ > 0,α(t) = α3(t) = −{ t
τ
}2+λ{ t

τ
}+1, t ∈ [−τ,∞).

By Theorem 3.2, we can obtain the following theorem.

Theorem 3.12 Assume that x(t) is the solution of (2.1) and y3(t) = (−{ t
τ
}2 + λ{ t

τ
} +

1)x(t), t ∈ [−τ,+∞). Then y3(t) is the solution of
{

y′
3(t) = F3(t, y3(t), y3(t − τ), y′

3(t − τ)), t ≥ 0,

y3(t) = �3(t), t ∈ [−τ, 0], (3.25)

where

F3(t, y, u, v) = [−2{ t
τ
} + λ]y

τα3(t)
+ α3(t) f (t,

y

α3(t)
,

u

α3(t)
,

v

α3(t)
− (λ − 1)u

τα2
3(t)

)
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and

�3(t) =
{ [−( t

τ
+ 1)2 + λ( t

τ
+ 1) + 1]φ(t), t ∈ [−τ, 0),

λφ(0−), t = 0.

On the other hand, assume that y3(t) is the solution of (3.25) and x(t) =
y3(t)

−{ t
τ
}2+λ{ t

τ
}+1

, t ∈ [−τ,+∞). Then x(t) is the solution of (2.1).

Theorem 3.13 When λ ∈ R and λ > 0, assume that IDDEs (3.1) and (3.2) fulfill the
inequalities (3.3)–(3.6), R(t) ≤ 0, for ∀t ≥ 0,

−2{ t
τ
} + λ

−{ t
τ
}2τ + λτ { t

τ
} + τ

+ R(t)

ω2
3

< 0,

and

ω3σ(t) − ω3γ (t)

(
−2{ t

τ
}+λ

−{ t
τ
}2τ+λτ { t

τ
}+τ

+ R(t−τ)

ω2
3

)

−
(

−2{ t
τ
}+λ

−{ t
τ
}2τ+λτ { t

τ
}+τ

+ R(t)
ω2
3

) ≤ 1,

then

‖x(t) − x̃(t)‖ ≤ max{λ‖φ(0−) − φ̃(0−)‖
m3

, κ3},

where m3 = min{1, λ}, ζ3 = supt∈[−τ,0) |α′
3(t)

α3(t)
| = max{| λ−2

λτ
|, λ

τ
},

ω3 =
⎧
⎨

⎩

λ
4 + 1

λ
, 0 < λ ≤ 1,

λ2

4 + 1, 1 < λ ≤ 2,
λ, λ > 2,

and

κ3 = sup
0≤s<τ

ω2
3(β(s) + 2ζ3γ (s))δφ(s) + ω2

3γ (s)δφ̇(s)

−
[

−2{ t
τ
}+λ

−{ t
τ
}2τ+λτ { t

τ
}+τ

+ R(s)
ω2
3

] .

Moreover, assume that

−2{ t
τ
} + λ

−{ t
τ
}2τ + λτ { t

τ
} + τ

+ R(t)

ω2
3

≤ R3 < 0, ∀t ≥ 0,

and

ω3γ (t)

(
−2{ t

τ
}+λ

−{ t
τ
}2τ+λτ { t

τ
}+τ

+ R(t−τ)

ω2
3

)

−2{ t
τ
}+λ

−{ t
τ
}2τ+λτ { t

τ
}+τ

+ R(t)
ω2
3

≤ ξ̄3 < 1, ∀t ≥ 0,

ω3σ(t)

−
(

−2{ t
τ
}+λ

−{ t
τ
}2τ+λτ { t

τ
}+τ

+ R(t)
ω2
3

) ≤ k3(1 − ω3γ (t)), k3 < 1, ∀t ≥ 0,

then we have

lim
t→∞ ‖x(t) − x̃(t)‖ = 0.
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Because
−2{ t

τ
}+λ

−{ t
τ
}2τ+λτ { t

τ
}+τ

≤ λ
τ
for all λ > 0, ∀t ∈ R, by Theorem 3.13, we can obtain the

following corollary.

Corollary 3.14 When λ ∈ R and λ > 0, assume that IDDEs (3.1) and (3.2) fulfill the
inequalities (3.3)–(3.6), R(t) ≤ 0, for ∀t ≥ 0,

λ

τ
+ R(t)

ω2
3

< 0,

and

ω3σ(t) − ω3γ (t)

(
λ
τ

+ R(t−τ)

ω2
3

)

−
(

λ
τ

+ R(t)
ω2
3

) ≤ 1,

then

‖x(t) − x̃(t)‖ ≤ max{λ‖φ(0−) − φ̃(0−)‖
m3

, κ3}.

Moreover, assume that

λ

τ
+ R(t)

ω2
3

≤ R3 < 0, ∀t ≥ 0,

and

ω3γ (t)

(
λ
τ

+ R(t−τ)

ω2
3

)

λ
τ

+ R(t)
ω2
3

≤ ξ̄3 < 1, ∀t ≥ 0,

ω3σ(t)

−
(

λ
τ

+ R(t)
ω2
3

) ≤ k3(1 − ω3γ (t)), k3 < 1, ∀t ≥ 0,

then we have

lim
t→∞ ‖x(t) − x̃(t)‖ = 0.

3.4 Numerical methods for nonlinear INDDEs (3.1) and (3.2)

The numerical method for nonlinear INDDE (3.1) can be constructed as follows
⎧
⎨

⎩

Y i
n+1 = ȳ(tn) + h

∑s
j=1 ai j F

(
t j−
n+1, Y j

n+1, Y j
n−m+1, z′ (t j−

n−m+1

))
, i = 1, 2, . . . , s,

ȳ(tn + θh) = ȳ(tn) + h
∑s

i=1 bi (θ)F
(

t i−
n+1, Y i

n+1, Y i
n−m+1, z′ (t i−

n−m+1

))
, n ∈ N,

(3.26)

and

x̄n = ȳ(tn)

α(tn)
, n ∈ N, (3.27)
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where Y i
n−m+1 = �(t i

n−m+1) if t i
n−m+1 ≤ 0, i = 1, 2, · · · , s,

z′(t i
n−m+1) =

⎧
⎪⎨

⎪⎩

�′(t i
n−m+1), t i

n−m+1 ≤ 0,

F(t i
n−m+1, Y i

n−m+1,�
i
n−2m+1,�

′(t i
n−2m+1)), 0 ≤ t i

n−m+1 ≤ τ,

F(t i
n−m+1, Y i

n−m+1, Y i
n−2m+1, z′(t i

n−2m+1)), τ ≤ t i
n−m+1,

tn = nh, n ∈ N, h = τ
m and m is a positive integer.

Similarly, the numerical method for (3.2) can be constructed as follows
{

Ȳ i
n+1 = ¯̃y(tn) + h

∑s
j=1 ai j F(t j−

n+1, Ȳ j
n+1, Ȳ j

n−m+1, z̃′(t j−
n−m+1)), i = 1, 2, · · · , s,

¯̃y(tn + θh) = ¯̃y(tn) + h
∑s

i=1 bi (θ)F(t i−
n+1, Ȳ i

n+1, Ȳ i
n−m+1, z̃′(t i−

n−m+1)), n ∈ N,

(3.28)

and

¯̃xn =
¯̃y(tn)

α(tn)
, n ∈ N, (3.29)

where

z̃′(t i
n−m+1) =

⎧
⎪⎨

⎪⎩

�̃′(t i
n−m+1), t i

n−m+1 ≤ 0,

F(t i
n−m+1, Y i

n−m+1, �̃
i
n−2m+1, �̃

′(t i
n−2m+1)), 0 ≤ t i

n−m+1 ≤ τ,

F(t i
n−m+1, Y i

n−m+1, Y i
n−2m+1, z̃′(t i

n−2m+1)), τ ≤ t i
n−m+1.

Theorem 3.15 Under the condition of (3.8), the constructed numerical methods (3.26)–
(3.27) and (3.28)–(3.29) furnished by backward Euler method with linear interpolation (2-
stage Lobatto IIIC method with linear interpolation) are stable, in the following sense,

‖x̄n − ¯̃xn‖ ≤ max{λ‖φ(0−) − φ̃(0−)‖
m

, κ}.
Moreover, under the condition of Theorem 3.2, the constructed numerical method (3.26)–

(3.27) and (3.28)–(3.29) furnished by backward Euler method with linear interpolation (or
2-stage Lobatto IIIC method with linear interpolation) are also asymptotically stable, that
is,

lim
n→+∞ ‖x̄n − ¯̃xn‖ = 0.

Proof By (Wang et al. 2009, Theorem 4.8), RVCRK formulae (3.26) and (3.28) furnished
by backward Euler method with linear interpolation (or 2-stage Lobatto IIIC method with
linear interpolation) are RN-stable, that is

‖ȳ(tn) − ¯̃y(tn)‖ ≤ max{‖�(0) − �̃(0)‖, κ}.
Moreover, (Wang et al. 2009, Theorem 4.9), under the condition of Theorem 3.2, the

RVCRK formulae (3.26) and (3.28) furnished by backward Euler method with linear inter-
polation (or 2-stage Lobatto IIIC method with linear interpolation) are also asymptotically
stable, that is,

lim
n→+∞ ‖ȳ(tn) − ¯̃y(tn)‖ = 0.

Because the relation between the numerical solutions INDDE and NDDE without impulsive
perturbations, that is (3.27) and (3.29), the theorem holds. 
�
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Similar to Theorem 3.15, we can obtain the following result.

Theorem 3.16 Under the condition of (3.19), the constructed numerical methods (3.26)–
(3.27) and (3.28)–(3.29) furnished by backward Euler method with linear interpolation (or
2-stage Lobatto IIIC method with linear interpolation) are stable, in the following sense

‖x̄n − ¯̃xn‖ ≤ max{λ‖φ(0−) − φ̃(0−)‖, κ̄}
m

.

Moreover, under the condition of Theorem 3.3, the constructed numerical method (3.26)–
(3.27) and (3.28)–(3.29) furnished by backward Euler method with linear interpolation (or
2-stage Lobatto IIIC method with linear interpolation) are also asymptotically stable, that
is

lim
n→+∞ ‖x̄n − ¯̃xn‖ = 0.

The following results are provided to analysis the difference between the linear equations
and nonlinear equations.

Remark 3.17 1. Themeanings of asymptotic stability of the exact solutions of linear INDDE
(2.1) and nonlinear INDDE (3.1) are different. The defintions of asymptotic stability of
the exact solutions of linear INDDE (2.1) and nonlinear INDDE (3.1) are provided as
follows.

(1) The exact solution x(t) of linear INDDE (2.1) is said to be asymptotically stable if

lim
t→∞ x(t) = 0.

(2) For ∀ε > 0, if there exists a constant δ > 0 such that ‖�−�̃‖ ≤ δ and ‖�′−�̃′‖ ≤ δ

imply that

‖x(t) − x̃(t)‖ < ε,

then we call the exact solution x(t) of nonlinear INDDE (3.1) and x̃(t) of (3.2) are
stable.

(3) The exact solution x(t) of nonlinear INDDE (3.1) and x̃(t) of (3.2) are said to be
asymptotically stable, if they are stable and fulfil

lim
t→∞ ‖x(t) − x̃(t)‖ = 0.

2. The meanings of asymptotic stability of numerical method (2.5) for linear equation (2.1)
and numerical method (3.26)–(3.27) for nonlinear equation (3.1) are also different. The
asymptotic stability of numerical method (2.5) and numerical method (3.26)–(3.27) are
given as follows.

(1) Numerical method (2.5) for linear INDDE (2.1) is said to be asymptotically stable if
xn obtained from (2.5) satisfies

lim
n→∞ xn = 0.

(2) For ∀ε > 0, if there exists a constant δ > 0 such that ‖�−�̃‖ ≤ δ and ‖�′−�̃′‖ ≤ δ

imply that x̄n obtained from (3.26)–(3.27) and ¯̃xn obtained from (3.28)–(3.29) satisfy

‖x̄n − ¯̃xn‖ < ε,
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x2, INDDE (4.1) whose  initial function is constant 0.9

Fig. 1 The numerical methods (2.5) for (4.1) furnished by implicit Euler method with the stepsize h = 1
10

then we call numerical methods (3.26)–(3.27) for nonlinear INDDE (3.1) and (3.28)-
(3.29) for (3.2) are stable.

(3) Numerical methods (3.26)–(3.27) for nonlinear INDDE (3.1) and (3.28)–(3.29) for
(3.2) are said to be asymptotically stable, if they are stable and fulfil

lim
n→∞ ‖x̄n − ¯̃xn‖ = 0.

3. For linear equations, the constructed numerical methods furnished by A-stable Runge–
Kutta methods can preserve asymptotic stability of the exact solutions. But, for nonlinear
equations, the constructed numerical methods furnished by implicit Euler method (or
2-stage Lobatto IIIC method) can preserve asymptotic stability of the exact solutions.

4 Numerical experiments

Example 4.1 Consider the following scalar linear INDDE:
⎧
⎪⎨

⎪⎩

x ′(t) = −x(t) + 2x(t − 1) − 1
4 x ′(t − 1), t ≥ 0, t �= k, k ∈ N,

x(k) = x(k−)
e ,

x(t) = φ(t), t ∈ [−1, 0).

(4.1)

By Theorem 2.1, assume that y(t) = e−{t}x(t), t ≥ −1, then x(t) is the solution of INDDE
(4.1) if and only if y(t) is the solotion of the following equation:

{
y′(t) = −2y(t) + 7

4 y(t − 1) − 1
4 y′(t − 1), t ≥ 0, t �= k, k ∈ N,

x(t) = �(t), t ∈ [−1, 0], (4.2)

where

�(t) =
{
e−(t+1)φ(t), t ∈ [−1, 0),
φ(0−)

e , t = 0.

By Theorem 2.2, both the solution x(t) of (4.1) and the solution y(t) of (4.2) tend to zeros
as t → ∞. By Theorem 2.4, the numerical methods (2.5) for (4.1) furnished by A-stable
Runge-Kutta methods are stable and asymptotically stable (see Figs. 1 and 2).
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x2, INDDE (4.1) whose  initial function is constant 0.9

Fig. 2 The numerical methods (2.5) for (4.1) furnished by Lobatto IIIC method with the stepsize h = 1
10

Fig. 3 The numerical methods (2.5) for (4.3) furnished by implicit Euler method and Lobatto IIIC method,
respectively, with the stepsize h = 1

10

Example 4.2 Consider the following scalar nonlinear INDDE:

⎧
⎪⎨

⎪⎩

x ′(t) = ax(t) + b cos(x ′(t − 1)) sin2(x(t − 1)), t ≥ 0, t �= k, k ∈ N,

x(k) = λx(k−),

x(t) = φ(t), t ∈ [−1, 0),

(4.3)

where a, b and λ are real constants. It is easy to prove that the first equation of (4.3) satisfies
inequalities (3.3)–(3.6) with R(t) = �(a), β(t) = 2|b|, γ (t) = |b|, σ(t) = (|a| + 2)|b|.
(i) When a = 1/10, b = 1/30, λ = 1

e , by Theorem 3.6, the solution of (4.3) is stable
and asymptotically stable. By Theorem 3.16, the numerical methods (3.26)–(3.27) for
(4.3) furnished by backward Euler method (2-stage Lobatto IIIC method) are stable and
asymptotically stable (See Fig. 3).

(ii) When a = 1/50, b = 1/50, λ = 1
3 , by Theorem 3.6, Theorem 3.9 or Corollary 3.11

the solution of (4.3) is stable and asymptotically stable. By Theorem 3.16, the numerical
methods (3.26)–(3.27) for (4.3) furnished by backward Euler method (2-stage Lobatto
IIIC method) are stable and asymptotically stable.
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Table 1 The errors between the numerical solutions obtained from (2.5) and the exact solution of (4.1) at
t = 10

m The implicit Euler 2-Lobatto IIIC

AE RE AE RE

10 0.0090740168 0.0337160014 1.3427387777e−04 4.9891649809e−04

20 0.0046057353 0.0171133667 3.5550581855e−05 1.3209398655e−04

40 0.0023229857 0.0086314352 9.1563539956e−06 3.4021927024e−05

80 0.0011669682 0.0043360623 2.3219666386e−06 8.6276458479e−06

Ratio 1.9811503945 1.9811503945 3.8676520087 3.8676520087

Table 2 The errors between the numerical solutions obtained from (3.26)–(3.27) and the exact solution of
(4.3) when a = 1/10, b = 1/30, λ = 1

e , t = 6

m The implicit Euler 2-Lobatto IIIC

AE RE AE RE

10 9.0752467510e−04 0.1988466569 2.4198037644e−05 0.0053022129

20 4.4587961799e−04 0.0976961551 6.2382599550e−06 0.0013669118

40 2.2092011816e−04 0.0484055455 1.5845179520e−06 3.4719557106e−04

80 1.0994864767e−04 0.0240907180 3.9931665023e−07 8.7497255698e−05

Ratio 2.0209817161 2.0209817161 3.9280180709 3.9280180709

(iii) When a = −50, b = 1/50, λ = e, by Theorem 3.5, Theorem 3.8, Corollary 3.10,
Theorem 3.13 or Corollary 3.14, the solution of (4.3) is bound and asymptotically stable.
By Theorem 3.15, the numerical methods (3.26)–(3.27) for (4.3) furnished by backward
Euler method (2-stage Lobatto IIIC method) are stable and asymptotically stable.

Tables 1 and 2 roughly illuminate that the constructed method furnished by backward
Euler method is convergent of order 1 and by 2-stage Lobatto IIIC method is convergent of
order 2.

5 Future work

The special case of (2.1) and (3.1) (when λ = 0) and the general case of (2.1) and (3.1)
(when the impulsive interval does not equal to the delay τ ) will be studied in the future.

Data Availability The datasets generated during the current study are available from the corresponding author
on reasonable request.
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