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Abstract
The operator splitting method has been effectively applied to jump-diffusion models, and
it is also easy to implement because the differential and complementarity restrictions are
decoupled and solved separately. Despite their ubiquity, these operator-splitting approaches
for jump-diffusionmodels have no stability and error analysis. In this direction, we performed
a priori stability analysis for the implicit–explicit backward difference operator splitting
techniques (IMEX-BDF-OS). After the stability analysis, we established the error estimates
for IMEX-BDF1-OS and IMEX-BDF2-OS techniques. To validate the theoretical results,
numerical evidence of the pricing of American options under Kou’s and Merton’s jump-
diffusion models has been shown.

Keywords Operator splitting · Jump-diffusion · American options · Linear
complementarity problems · Stability analysis · Error analysis

Mathematics Subject Classification 65M06 · 65M12 · 65M15

1 Introduction

One of the most extensively used models in option pricing is the Black–Scholes (BS). The
stock price in the classical Black–Scholes model is a standardWiener process that is continu-
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ous in time. Jumps can occur at any time, and the log-normal distribution characteristic of the
stock price cannot capture these jumps in the classical Black–Scholes model. Several models
have been developed in the literature to overcome the above problem. Merton’s (1976) and
Kou’s (2002) jump-diffusion models are the most frequently applied models among them.
For the jump-amplitudes, Merton recommended a log-normally distributed process, whereas
Kou proposed a log-double-exponentially distributed process.

To evaluate the price of theAmerican option under the jump-diffusion process, the solution
of a linear complementarity problem having a non-local integral operator is required. In
order to, many methods have been proposed in the literature to solve the discretized linear
complementarity problem arising in American option pricing.

For these types of problems, Kwon and Lee (2011) proposed a three-time levels implicit
numerical method combined with an operator splitting technique to approximate the value
of American options where the underlying asset acts in accordance with a jump-diffusion
model. Huang et al. (2013) proposed the finite difference technique under the jump-diffusion
model on a piecewise uniform grid with the help of a penalty approach for pricing the
American put options. Huan et al. (2011) analyzed a number of techniques with penalty
approach for pricing American options under a regime switching stochastic process. Salmi
and Toivanen (2011, 2014) proposed an iterative method and a family of implicit–explicit
time discretization techniques for option pricing problems. To handle the different boundary
conditions and non-smooth initial conditions for numerous underlying claims, Chen et al.
(2012) presented a spectral element method, Pindza et al. (2014) established a robust spec-
tral technique, Company et al. (2021) proposed a front-fixing exponential time differencing
(FF-ETD) technique, Kumar and Deswal (2021) provided a wavelet-based approximation
approach for examining the sensitivity and value of American options determined by LCPs.
Wang et al. (2019) show the stability and error estimations of the variable step-size IMEX
BDF2 approach applied to the abstract partial integro-differential equation with nonsmooth
initial data, which demonstrates the jump-diffusion option pricing model in finance. They
gave the stability analysis and derived the consistency error and the global error bounds for
the variable step-size IMEX BDF2 method up to the second order for the European style
option and explored the possibilities for the American style option.

In recentworks,Kadalbajoo et al. (2015a, b, 2016) examined the efficiency of themeshfree
method to deal with option pricing problems based on the local radial basis function for
numerically solving the multi-dimensional option pricing problem and solved the PIDE that
occurs when the underlying asset act in accordance with the jump-diffusion process using
an RBF-based approach. Saib et al. (2012) come up with a differential quadrature rule based
on RBF for spatial discretization along with integration with respect to exponential time
to work under the jump-diffusion model, Yousuf et al. (2018) solved the complex PIDE
systems and Thakoor et al. (2018) devised a compact-RBF scheme with the use of local
mesh refinement scheme which helps to achieve the higher order accuracy. Dehghan et al.
(2018) presented a new class of radial basis function and explored its efficiency in option
pricing problems. Haghi et al. (2018) introduced a new combination of an RBF-based finite
difference method, and Bastani et al. (2013) presented an RBF-based collocation method for
pricing American options. Some other mesh free works for option pricing problems can be
found in Mollapourasl et al. (2018); Rad and Parand (2017) and reference therein.

Further, Akbari et al. (2019) also used a compact finite difference scheme to evaluate the
option value under the exponential jump-diffusionmodels, Patel andMehra (2018) presented
a fourth-order compact method to evaluate the option value under the Kou’s and Merton’s
jump-diffusion models, other authors (Chen et al. 2019; Düring and Pitkin 2019; Thakoor
et al. 2013) also used the compact finite difference schemes for option pricing models. To
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solve parabolic PIDEs with non-smooth payoff function, Wang et al. (2021) developed an
IMEXmidpoint formulawith variable spatial step sizes and variable time steps. In del Carmen
Calvo-Garrido and Vázquez (2015), the authors show the effects of jump-diffusion models
for the house price evolution in the pricing of fixed-rate mortgages with prepayment and
default options. Tour et al. (2020) introduced a spectral element method to evaluate the price
of the option. The mesh-free moving least-squares approximation is used in Shirzadi et al.
(2020) to evaluate the price of multi-asset options under the jump-diffusion processes.

Tomitigate the iterative procedure, we employed the Backward difference IMEXmethod-
ology with the association of the operator splitting approach to evaluate the price of an
American option. Operator splitting technique has been used proficiently for several Black–
Scholes models (Chen and Shen 2020; Cho et al. 2022; Ikonen and Toivanen 2009; Kazmi
2019; Li et al. 2019; Patel and Mehra 2017; Xu et al. 2022). In recent research, Chen et al.
(2019) developed a new OS technique for pricing the value of American options under the
time-fractional Black–Scholes models, Boen and In’t Hout (2020) present the operator split-
ting strategies for two-assetMerton jump-diffusionmodel.OS techniques are durable to apply
since the differential equation and complementarity conditions are disentangled and rapidly
solved on their own. But beyond their omnipresence, these operator-splitting approaches still
lack some mathematical support. Recently, Chen and Shen (2020) had established the stabil-
ity results for BDF1 operator splitting (BDF1-OS) and BDF2 operator splitting (BDF2-OS)
methods along with error analysis of BDF1-OS method for Black–Scholes model. Through-
out this paper, we primarily concentrated on the stability and error analysis of the operator
splittingmethod for the jump-diffusionmodel and undergo careful investigation of the related
numerical techniques. We showed the stability and error estimates for IMEX-BDF1-OS and
IMEX-BDF2-OS techniques to solve LCPs arising in the American option pricing under the
jump-diffusion model.

The rest of the manuscript is structured in the following manner. We started with intro-
ducing the jump-diffusion model, describing the basic notations, symbols, and presumptions
used throughout this paper and the construction of the LCP and its associated character-
istics. In Sect. 3, we put forward the operator splitting methods, and in Sect. 4, we verify
their stability analysis. In Sect. 5, we have shown the error estimates for IMEX-BDF1-OS,
IMEX-BDF2-OS methods. In Sect. 6, we put forth some numerical outcomes to verify our
theoretical results and associated discussions.

2 The Jump–Diffusionmodel

Consider an asset with price S and the stochastic differential equation (SDE) that represents
the fluctuation of the stock price.

dS

S
= (ν − κλ)dτ + σdZ + (η − 1)dq, (2.0.1)

where τ is the time to maturity, dZ is an enhancement of standard Gauss–Wiener process, ν
is drift rate, σ is nonzero constant volatility and λ is taken as the intensity of the independent
Poisson process dq , where

dq =
{
0 if probability is 1 − λdτ,
1 if probability is λdτ.

κ is expected relative jump size that is κ = E(η − 1), where E[·] represent the expectation
operator and η − 1 is an impulse function producing jump from S to Sη. To put it in another
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way, the arrival of a jump is stochastic, and this is a feature of the stochastic differential
equation for S. As a result, there are two sources of uncertainty. To begin with, the term
dZ denotes typical Brownian motion, and the term dq denotes exceptional and infrequent
events. Geometric Brownian motion and pure jump-diffusion are two particular examples of
Eq. (2.0.1). If the Poisson event does not occur (dq = 0), then Eq. (2.0.1) is equivalent to
the usual stochastic process of geometric Brownian motion assumed in the Black–Scholes
model.

If, on the other hand, the Poisson event occurs, then Eq. (2.0.1) can be written as

dS

S
� η − 1.

In this situation, most of the time, the path of S is continuous, but finite positive or negative
jumps may appear at discrete points in time. We assume that the jumps and Brownian motion
are independent.

Let V (S, τ ) represent the value of the American option, which depends on the asset price
S with current time τ . As we can exercise the American option at any time up to the life of
the option, and we can formulate it as the linear complementarity problem (LCP) based on
the stochastic differential Eq. (2.0.1)

⎧⎪⎪⎨
⎪⎪⎩

∂V
∂τ

+ LV ≤ 0, (S, τ ) ∈ [0,∞) × [0, T )

V (S, τ ) − 	(S) ≥ 0, (S, τ ) ∈ [0,∞) × [0, T )

( ∂V
∂τ

+ LV ) (V (S, τ ) − 	(S)) = 0 (S, τ ) ∈ [0,∞) × [0, T )

V (S, T ) = 	(S) S ∈ [0,∞).

(2.0.2)

The spatial operator L can be defined as:

LV (S, τ ) = 1

2
σ 2S2

∂2V

∂S2
+ (r − λκ)S

∂V

∂S
− (r + λ)V + λ

∞∫
0

V (Sη)g(η)dη, (2.0.3)

where S is the stock price of any asset at time τ with constant volatility σ �= 0 and interest
rate r , and the probability density function of the jump with amplitude η is given by g(η).

Here, g(η) follow the given properties: g(η) ≥ 0, ∀ η and
∞∫
0
g(η)dη = 1.

The option value V (S, T ) at the time of maturity T is termed as pay-off function. For the
put option, the pay-off function is given by:

	(S) = max(K − S, 0) (2.0.4)

with the strike price K .
For the Merton’s jump-diffusion model, g(η) represent the log-normal density

g(η) := 1√
2πσJη

exp− (ln η − μJ )
2

2σ 2
J

,

where κ := E (η − 1) = exp

(
μJ + σ 2

J
2

)
− 1, and μJ and σ 2

J are the mean and the variance

of jump in return, respectively.
Under the Kou’s model g(η) follows the log-double-exponential density

g(η) := 1

η

(
pη1e

−η1 ln(η)H(ln(η)) + qη2e
−η2 ln(η)H(− ln(η))

)
,
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where H(·) represents a Heaviside function with p > 0, q = 1 − p, η1 > 1, η2 > 0 and κ

is given by κ := pη1
η1−1 + qη2

η1+1 − 1.
Further, since the problem (2.0.2) is degenerate and backward in time so we can transform

it into a non-degenerate and forward in time problemby using the transformations x = ln( S
K ),

y = ln(η), t = T − τ and v(x, t) := V (Kex , T − τ), i.e.
⎧⎪⎪⎨
⎪⎪⎩

∂v
∂t − Lv ≥ 0 (x, t) ∈ R × J ,

v(x, t) − 	(Kex ) ≥ 0 (x, t) ∈ R × J ,

( ∂v
∂t − Lv) (v(x, t) − 	(Kex )) = 0 (x, t) ∈ R × J ,

v(x, 0) = 	(Kex ) x ∈ R,

(2.0.5)

where J = (0, T ] and the spatial operator can be defined as

Lv(x, t) = 1

2
σ 2 ∂2v

∂x2
+

(
r − σ 2

2
− d − λκ

)
∂v

∂x
− (r + λ)v + λ

∞∫
−∞

v(y, t) f (y − x)dy.

(2.0.6)

We have,L = D+I, whereD represents the differential operator and I is used as an integral
operator, such that

Dv(x, t) = 1

2
σ 2 ∂2v

∂x2
+

(
r − σ 2

2
− d − λκ

)
∂v

∂x
− (r + λ)v, (2.0.7)

Iv(x, t) = λ

∞∫
−∞

v(y, t) f (y − x)dy. (2.0.8)

After applying the given transformation, we can write the function f (y) as:

f (y) :=
{

1√
2πσJ

exp(− (y−μJ )2

2σ 2
J

) Merton’s model,

pη1e−η1 yH(y) + qη2e−η2 yH(−y) Kou’s model.

To approximate the integral term on truncated domain �, we used the composite trapezoidal
rule.

For evaluational purposes, we localized the problem (2.0.5) on a bounded domain � :=
(x L , x R) with x L and x R ∈ R. Now, considering u(x, t) as a solution of the following
localized problem (2.0.9)

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t − Lu ≥ 0 (x, t) ∈ � × J ,

u(x, t) − 	(Kex ) ≥ 0 (x, t) ∈ � × J ,

( ∂u
∂t − Lu) (u(x, t) − 	(Kex )) = 0 (x, t) ∈ � × J ,

u(x, 0) = 	(Kex ) x ∈ �,

(2.0.9)

with

u(x, t) = B(x, t), (x, t) ∈ �c × J̄ ,

and

B(x, t) =

⎧⎪⎨
⎪⎩

	(Kex ) : (x, t) ∈ ∂� × J̄ ,

	(Kex ) : (x, t) ∈
(
�

c ∩ �Big

)
× J̄ ,� ⊆ �Big,

0 : (x, t) ∈ �
c
Big × J̄ .
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Here, ∂� represents the boundary of �, �c = R\�, J̄ = [0, T ] and �Big is an open
connected and bounded subset of R (See, for example, Kadalbajoo et al. (2015b)).

The problems (2.0.2) and (2.0.9) are stated to have unique solutions under specific assump-
tions relating to the coefficients of the spatial operator L. Moreover, within the interior of
the domain, the localization error due to the domain truncation decreases exponentially with
respect to the domain size (see, for example, Cont and Voltchkova 2005; Garroni et al. 1992;
Matache et al. 2004).

3 Operator splittingmethods

Ikonen andToivanen (2004) introduced the operator splitting approach for pricing the value of
theAmerican put option. The primary idea behind introducing the operator splitting technique
is to derive an expression with the help of an additional variable ψ such that ψ = ut − Lu.

We can reformulate LCP (2.0.9) as⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t − Lu = ψ,

(u(x, t) − 	(Kex )) · ψ = 0,
u(x, t) − 	(Kex ) ≥ 0,
ψ ≥ 0,

(3.0.1)

in the region � × J .
Let the system (3.0.1) be initially discretized in time with uniform grid tn = nk, n =

0, 1, 2, . . . , N with temporal mesh length k and N + 1 to be the total numbers of temporal
mesh points. Where u(x, tn) abbreviated as un .

Now, we briefly discussed the IMEX-BDF-OS methods for the temporal discretization of
LCP (3.0.1).

3.1 IMEX-BDF1-OSmethod

Let us split the governing equation ut −Lu = ψ into two discrete equations on the (n+1)th
time level as (

ũn+1 − un
k

)
− Dũn+1 − λI(un) = ψn, (3.1.1)

(
un+1 − un

k

)
− Dũn+1 − λI(un) = ψn+1. (3.1.2)

Here, the discrete problem for LCP (3.0.1) is to find the pair (un+1, ψn+1) that satisfy the
discrete equations (3.1.1) and (3.1.2) as well as the constraints,⎧⎨

⎩
un+1 ≥ 	,

ψn+1 ≥ 0,
ψn+1(un+1 − 	) = 0.

(3.1.3)

We will compute the solution of (3.0.1) using the IMEX-BDF1-OS techniques in two steps.
First, we determine the intermediate approximation ũn+1 with the help of Eq. (3.1.1) under
given boundary conditions

ũn+1(x
L) = K , ũn+1(x

R) = 0,

and the known auxiliary term ψn .
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Second, we develop a relationship between un+1 and ψn+1 in (3.1.2). To do so, we restate
the Eq. (3.1.2) as a problem, combining Eq. (3.1.1) and the restrictions in (3.1.3) in order to
determine the pair (un+1, ψn+1), such that

{ un+1−ũn+1
k = ψn+1 − ψn,

ψn+1(un+1 − 	) = 0,
(3.1.4)

with the constraints

un+1 ≥ 	 and ψn+1 ≥ 0. (3.1.5)

Again, by solving the problems (3.1.4)–(3.1.5) in (un+1, ψn+1) plane, we get

(un+1, ψn+1) =
{

(	,ψn + 	−ũn+1
k ) if ũn+1 − kψn ≤ 	,

(ũn+1 − kψn, 0) otherwise.
(3.1.6)

As a result, the second step may be completed by solving the discrete equation (3.1.1) using
the modified formula (3.1.6). Using initial condition and assigning value ψ0 = 0 on the
zeroth time level, the pair (u0, ψ0) may be achieved. One can use the algorithm discussed in
Kwon and Lee (2011).

3.2 IMEX-BDF2-OSmethod

Let us assume that the values {un, ψn} and {un−1, ψn−1} are a priori, known at the points
tn and tn−1. We perform two sub-steps at discrete point tn+1. In first step, we compute an
intermediate value ũn+1 using the following BVP (3.2.1)

{ 1
k

( 3
2 ũn+1 − 2un + 1

2un−1
) − Dũn+1 − λI(Eun) = ψn,

ũn+1(x L) = K , ũn+1(x R) = 0,
(3.2.1)

where Eun = 2un − un−1.

In the second step of the operator splitting method, we project the ũn+1 on constraint
space to obtain un+1 with the following correction terms

⎧⎪⎪⎨
⎪⎪⎩

3(un+1−ũn+1)
2k = ψn+1 − ψn,

un+1 ≥ 	,

ψn+1 ≥ 0,
ψn+1(un+1 − 	) = 0.

(3.2.2)

Now, by solving the problems (3.2.1)–(3.2.2) in (un+1, ψn+1) plane, we get

(un+1, ψn+1) =
{

(	,ψn + 3
2

	−ũn+1
k ) if ũn+1 − 2k

3 ψn ≤ 	,

(ũn+1 − 2k
3 ψn, 0) otherwise.

(3.2.3)

Thus, the first step may be accomplished by solving a discrete Eq. (3.2.1), and the second step
can be performed by using the updating formula (3.2.3). The value on the previous two-time
levels is required by the implicit technique with three-time levels, as described above. Using
starting condition and assigning value ψ0 = 0, the pair (u0, ψ0) on the zeroth time level
may be achieved. Alternatively, one can also use the algorithm discussed in Kwon and Lee
(2011). We shall use the IMEX-BDF1-OS method to find the pair (u1, ψ1) at first level.
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4 Stability analysis

For theoretical convenience, let us transform the problem (3.0.1) into a problem with
homogeneous boundary conditions without loss of generality, i.e.,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂w
∂t − Lw = ψ + f , (x, t) ∈ � × J ,

(w(x, t) − w0(x)) · ψ = 0, (x, t) ∈ � × J ,

w(x, t) − w0(x) ≥ 0, (x, t) ∈ � × J ,

ψ ≥ 0, (x, t) ∈ � × J ,

w(x, 0) = w0(x), x ∈ �

w(x, t) = 0, (x, t) ∈ ∂� × J̄ ,

(4.0.1)

where w0(x) := 	(Kex ) − φ(x), w(x, t) = u(x, t) − φ(x) and f = Lφ, x ∈ R, and

φ(x) =

⎧⎪⎨
⎪⎩

x R−x
x R−x L

	(Kex
L
) + x−x L

x R−x L
	(Kex

R
) : x ∈ �,

	(Kex ) : x ∈ �
c ∩ �Big,

0 : x ∈ �
c
Big.

Alternatively, one can also find this algorithm in Kadalbajoo et al. (2015b).

Lemma 1 (Discrete Gronwall’s Lemma) Suppose that αn is a non-negative sequence, and
that the sequence βn satisfies⎧⎨

⎩
β0 ≤ δ0,

βn ≤ δ0 +
n−1∑
k=0

γk +
n−1∑
k=0

αkβk n ≥ 1,

then βn satisfies⎧⎨
⎩

β1 ≤ δ0(1 + α0) + γ0,

βn ≤ δ0
n−1∏
k=0

(1 + αk) +
n−2∑
k=0

γk
n−1∏

s=k+1
(1 + αs) + γn−1 n ≥ 2.

Moreover, if δ0 ≥ 0 and γn ≥ 0 for n ≥ 0, it follows

βn ≤
(

δ0 +
n−1∑
k=0

γk

)
exp(

n−1∑
k=0

αk), n ≥ 1.

Proof See Quarteroni and Valli (2008). �

4.1 Identities and inequalities

We will frequently use the following identities and inequalities in the stability and error
analysis.

(Dw,w) ≤ α‖w‖2, (I1)

(a, b) ≤ εa2 + 1

4ε
b2, a, b ∈ R and ε > 0, (I2)

2 (a − b, a) = ‖a‖2 − ‖b‖2 + ‖a − b‖2, (I3)
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2 (3a − 4b + c, a) = a2 + (2a − b)2 − b2 − (2b − c)2 + (a − 2b + c)2, (I4)

where α =
∣∣∣∣∣
(
r− σ2

2 −λκ
)2−(

2(r+λ)σ 2)
2σ 2

∣∣∣∣∣, and for the proof of inequality (I1), one can see

Kadalbajoo et al. (2016) and reference therein.
We shall use the following result in the analysis, for all w(·, t) ∈ L2(�), t ∈ (0, T ) such

that

w(x, t) =
{

w(x, t) : (x, t) ∈ � × [0, T ],
0 : (x, t) ∈ �c × [0, T ].

The integral operator I(w) follow the condition ‖Iw(·, t)‖ ≤ CI ‖w(·, t)‖, where CI is a

constant that is independent to t and ‖u‖ := (∫
�

|u(x)|2dx) 1
2 .

4.2 Stability analysis for IMEX-BDF1-OS

Theorem 1 Under the assumption k < 1
2(4α+1+λCI )

, the scheme is stable, ∀ 1 ≤ m ≤ T
k in

the following sense:

‖wm‖2 + 1

2

m−1∑
n=0

‖w̃n+1 − wn‖2 + k2‖ψm‖2 ≤ C

(
‖w0‖2 + k‖ψ0‖2 + k

m−1∑
n=0

‖w0‖2

+ k
m−1∑
n=0

‖ f ‖2 + k
m−1∑
n=0

‖ψn‖2
)

,

where C is a constant that depends on the parameters CI , r , σ , λ and T , but may not be the
same at each occurrence.

Proof Consider the Eq. (4.0.1)

w̃n+1 − wn

k
= Dw̃n+1 + λI(wn) + f + ψn . (4.2.1)

After taking the inner product of both sides of (4.2.1) with 4kw̃n+1 and using the identities
(I3) and (I1), we have

2‖w̃n+1‖2 − 2‖wn‖2 + 2‖w̃n+1 − wn‖2
≤ 4kα‖w̃n+1‖2 + 4kλ(I(wn), w̃n+1) + 4k( f , w̃n+1) + 4k(ψn, w̃n+1). (4.2.2)

Consider the Eq. (3.1.4), we have

wn+1 − w0 − kψn+1 = w̃n+1 − w0 − kψn . (4.2.3)

Taking the inner product of both sides of (4.2.3) with itself and using some inequalities from
Sect. 4.1, we have

‖wn+1‖2 + ‖w0‖2 − 1

2
‖wn+1‖2 − 2‖w0‖2 + k2‖ψn+1‖2 − 2k(wn+1 − w0, ψn+1)

≤ 2‖w̃n+1‖2 + 2‖w0‖2 + k2‖ψn‖2 − 2k(w̃n+1, ψn) + 2k(w0, ψn).

(4.2.4)
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Now, adding up the inequalities (4.2.2) and (4.2.4) with the use of (wn+1 − w0, ψn+1) = 0,
we get

1

2
‖wn+1‖2 − 2‖wn‖2 + 2‖w̃n+1 − wn‖2 + k2(‖ψn+1‖2 − ‖ψn‖2)
≤ 3‖w0‖2 + 4kα‖w̃n+1‖2 + 4kλ(I(wn), w̃n+1) + 4k( f , w̃n+1)

+2k(w̃n+1, ψn) + 2k(w0, ψn).

After small calculations

1

2
‖wn+1‖2 − 1

2
‖wn‖2 + 3

2
‖w̃n+1 − wn‖2 + k2(‖ψn+1‖2 − ‖ψn‖2)

≤ 3‖w0‖2 + 2k(4α + 1 + λCI )‖w̃n+1 − wn‖2

+
(
2k(4α + 1 + λCI ) + 4kλCI + 3

2

)
‖wn‖2

+8k‖ f ‖2 + 2k‖ψn‖2 + k‖w0‖2 + k‖ψn‖2.

Assuming that k < 1
2(4α+1+λCI )

, we get

1

2
‖wn+1‖2 − 1

2
‖wn‖2 + 1

2
‖w̃n+1 − wn‖2 + k2(‖ψn+1‖2 − ‖ψn‖2)

≤ 3‖w0‖2 +
(
2k(4α + 1 + λCI ) + 4kλCI + 3

2

)
‖wn‖2

+8k‖ f ‖2 + 2k‖ψn‖2 + k‖w0‖2 + k‖ψn‖2.

Taking the summation on both sides of the above inequality from n = 0 to m − 1

‖wm‖2 +
m−1∑
n=0

‖w̃n+1 − wn‖2 + 2k2‖ψm‖2

≤ ‖w0‖2 + 2k2‖ψ0‖2 + (6 + 2k)
m−1∑
n=0

||w0||2 + (4k(4α + 1 + λCI ) + 8kλCI + 3)

m−1∑
n=0

||wn ||2 + 16k
m−1∑
n=0

‖ f ‖2 + 6k
m−1∑
n=0

‖ψn‖2.

Applying the Lemma 1, we get,

‖wm‖2 +
m−1∑
n=0

‖w̃n+1 − wn‖2 + 2k2‖ψm‖2

≤ C ′
(

‖w0‖2 + 2k2‖ψ0‖2 + (6 + 2k)
m−1∑
n=0

‖w0‖2 + 16k
m−1∑
n=0

‖ f ‖2 + 6k
m−1∑
n=0

‖ψn‖2
)

.

(4.2.5)
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Further simplifying the inequality (4.2.5), we obtain the desired result,

‖wm‖2 + 1

2

m−1∑
n=0

‖w̃n+1 − wn‖2 + k2‖ψm‖2 ≤ C

(
‖w0‖2 + k‖ψ0‖2 + k

m−1∑
n=0

‖w0‖2

+k
m−1∑
n=0

‖ f ‖2 + k
m−1∑
n=0

‖ψn‖2
)

,

where C ′ is a constant that depends on the parameters CI , r , σ , λ and T . �

4.3 Stability analysis for IMEX-BDF2-OS

Theorem 2 Under the assumption k < 1
2(4α+1+λCI )

the scheme is stable, ∀ 2 ≤ m ≤ T
k in

the following sense:

‖wm‖2 + ‖wm−1‖2 + 1

2

m−1∑
n=1

‖w̃n+1‖2 + 8

9
k2‖ψm‖2

≤ C

(
‖w0‖2 + ‖w1‖2 + k

m−1∑
n=1

‖ f ‖2 + k
m−1∑
n=1

‖w0‖2 + k
m−1∑
n=1

‖ψn‖2 + k2‖ψ1‖2
)

,

where C is a constant that depends on the parameters CI , r , σ , λ and T .

Proof Consider the Eq. (3.2.1),

3w̃n+1 − 4wn + wn−1

2k
= Dw̃n+1 + λI(Ewn) + f + ψn . (4.3.1)

Taking the inner product of both sides of the Eq. (4.3.1) with 4kw̃n+1 and using the identity
(I1) and (I4), we have

‖w̃n+1‖2 − ‖wn‖2 + ‖2w̃n+1 − wn‖2 − ‖2wn − wn−1‖2 + ‖w̃n+1 − 2wn + wn−1‖2
= 4k(Dw̃n+1, w̃n+1) + 4kλ(I(Ewn), w̃n+1) + 4k( f , w̃n+1) + 4k(ψn, w̃n+1),

≤ 4kα‖w̃n+1‖2 + 4kλ(I(Ewn), w̃n+1) + 4k( f , w̃n+1) + 4k(ψn, w̃n+1). (4.3.2)

Now, consider the Eq. (3.2.2)

wn+1 − w0 − 2

3
kψn+1 = w̃n+1 − w0 − 2

3
kψn . (4.3.3)

Taking inner product of (4.3.3) from both sides with itself, we have

‖wn+1 − w0‖2 + 4

9
k2‖ψn+1‖2 − 4

3
k(wn+1 − w0, ψn+1) = ‖w̃n+1 − w0‖2 + 4

9
k2‖ψn‖2

−4

3
k(w̃n+1 − w0, ψn).

Using some inequalities from Sect. 4.1 and some calculations, we have

‖wn+1‖2 + ‖w0‖2 − 1

2
‖wn+1‖2 − 2‖w0‖2 + 4

9
k2‖ψn+1‖2 − 4

3
k(wn+1 − w0, ψn+1)

≤ 2‖w̃n+1‖2 + 2‖w0‖2 + 4

9
k2‖ψn‖2 − 4

3
k(w̃n+1, ψn) + 4

3
k(w0, ψn). (4.3.4)
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Now, multiplying the inequality (4.3.2) by 2 and adding with inequality (4.3.4) and using
(wn+1 − w0, ψn+1) = 0, we get

1

2
‖wn+1‖2−2‖wn‖2+2‖2w̃n+1 − wn‖2−2‖2wn − wn−1‖2+2‖w̃n+1 − 2wn + wn−1‖2

+ 4

9
k2‖ψn+1‖2

≤ 8kα‖w̃n+1‖2 + 8kλ(I(Ewn), w̃n+1) + 8k( f , w̃n+1) + 3‖w0‖2 + 4

9
k2‖ψn‖2

+ 20

3
k(w̃n+1, ψn) + 4

3
k(w0, ψn).

After some calculation with the help of some inequalities from Sect. 4.1, we have

‖wn+1‖2 − ‖wn‖2 + 3‖w̃n+1‖2 + 8
(‖wn‖2 − ‖wn−1‖2

) + 8

9
k2

(‖ψn+1‖2 − ‖ψn‖2
)

≤ 571

13
‖wn‖2 + 32kλCI ‖wn‖2 + 8kλCI ‖wn−1‖2 + 4k(4α + 1 + λCI )‖w̃n+1‖2

+ 32k‖ f ‖2 + 212

9
k‖ψn‖2 + (4k + 18)

3
‖w0‖2. (4.3.5)

Assuming that k < 1
2(4α+1+λCI )

, then from (4.3.5) we have

‖wn+1‖2 − ‖wn‖2 + ‖w̃n+1‖2 + 8
(‖wn‖2 − ‖wn−1‖2

) + 8

9
k2

(‖ψn+1‖2 − ‖ψn‖2
)

≤ 571

13
‖wn‖2 + 32kλCI ‖wn‖2 + 8kλCI ‖wn−1‖2 + 32k‖ f ‖2

+212

9
k‖ψn‖2 + (4k + 18)

3
‖w0‖2. (4.3.6)

Adding the Eq. (4.3.6) from n = 1 to m − 1

‖wm‖2 − ‖w1‖2 +
m−1∑
n=1

‖w̃n+1‖2 + 8‖wm−1‖2 − 8‖w0‖2 + 8

9
k2‖ψm‖2 − 8

9
k2‖ψ1‖2

≤
(
571

13
+ 32kλCI

) m−1∑
n=1

‖wn‖2 + 8kλCI
m−1∑
n=1

‖wn−1‖2 + 32k
m−1∑
n=1

‖ f ‖2

+
(
4k + 18

3

) m−1∑
n=1

‖w0‖2 + 212

9
k
m−1∑
n=1

‖ψn)‖2. (4.3.7)

‖wm‖2 +
m−1∑
n=1

‖w̃n+1‖2 + 8‖wm−1‖2 + 8

9
k2‖ψm‖2

≤ 8‖w0‖2 + ‖w1‖2 + 8

9
k2‖ψ1‖2 +

(
571

13
+ 40kλCI

) m−1∑
n=0

‖wn‖2

+32k
m−1∑
n=1

‖ f ‖2 +
(
4k + 18

3

) m−1∑
n=1

‖w0‖2 + 212k

9

m−1∑
n=1

‖ψn)‖2. (4.3.8)
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Applying the Lemma 1 on (4.3.8), we have

‖wm‖2 + ‖wm−1‖2 + 1

2

m−1∑
n=1

‖w̃n+1‖2 + 8

9
k2‖ψm‖2

≤ C

(
‖w0‖2 + ‖w1‖2 + k

m−1∑
n=1

‖ f ‖2 + k
m−1∑
n=1

‖w0‖2 + k
m−1∑
n=1

‖ψn)‖2 + k2‖ψ1‖2
)

.

(4.3.9)

�

5 Error analysis

In the last section, we have established the stability results. Now, we shall derive the corre-
sponding error estimates for IMEX-BDF1-OS and IMEX-BDF2-OS techniques by assuming
the exact solution is adequately regular. First, we established the error function and error
equation.Denoting the analytic solution at tn byw(·, tn) and similar for other related variables.

5.1 Error analysis for IMEX-BDF1-OS

We define en = w(·, tn) − wn , ẽn = w(·, tn) − w̃n , hn = ψ(·, tn) − ψn and ψ(·, tn+1) −
ψ(·, tn) ≤ ck, where c is a generic constant and independent of n.

From the continuous system (4.0.1), we have

w(·, tn+1) − w(·, tn)
k

= Dw(·, tn+1) + λI(w(tn)) + f + ψ(·, tn+1) + Rn+1, (5.1.1)

where Rn+1 is truncation error for given method.
Now, we consider the equation for IMEX-BDF1-OS,

w̃n+1 − wn

k
= D(w̃n+1) + λI(wn) + ψn + f . (5.1.2)

To get the error equation, we subtract (5.1.2) from (5.1.1) and get

ẽn+1 − en
k

= D(ẽn+1) + λI(en) + gn + Rn+1, (5.1.3)

where gn = ψ(·, tn+1) − ψn , we can obtain another error equation from (3.1.4), as follows,

en+1 − ẽn+1

k
= hn+1 − gn + ψ(tn+1) − ψ(tn), (5.1.4)

or

en+1 − ẽn+1

k
= hn+1 − gn, (5.1.5)

where gn = hn + ψ(·, tn+1) − ψ(·, tn) and let ψ is adequately smooth such that ‖gn‖ ≤
‖hn‖ + ck.
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Theorem 3 Under the assumption k < 1
2(4α+1+λCI )

, we have following error estimates for
the given method:

‖em‖2 + 1

2

m−1∑
n=0

‖ẽn+1‖2 ≤ Ck2, ∀ 1 ≤ m ≤ T

k

where C is a constant that depends on the parameters CI , r , σ , λ and T .

Proof Consider the Eq. (5.1.3)

ẽn+1 − en
k

= D(ẽn+1) + λI(en) + gn + Rn+1. (5.1.6)

Taking the inner product from both sides of (5.1.6) with 2k(ẽn+1) and using the identities
(I1) and (I3), we have

‖ẽn+1‖2 − ‖en‖2 + ‖ẽn+1 − en‖2 ≤ 2kα‖ẽn+1‖2 + 2kλCI ‖en‖‖ẽn+1‖
+2k(gn, ẽn+1) + 2k(Rn+1, ẽn+1). (5.1.7)

Consider the Eq. (5.1.5)

en+1 − khn+1 = ẽn+1 − kgn . (5.1.8)

Taking inner product of (5.1.8) from both sides, with itself :

‖en+1‖2 + k2‖hn+1‖2 − 2k(en+1, hn+1) = ‖ẽn+1‖2 + k2‖ fn‖2 − 2k(ẽn+1, gn). (5.1.9)

Now, adding up the Eqs. (5.1.7) and (5.1.9), and observing that 2k(en+1, hn+1) ≤ 0 with the
use of some inequalities from Sect. 4.1, we have

‖en+1‖2 − ‖en‖2 + ‖ẽn+1 − en‖2 + k2(‖hn+1‖2 − ‖gn‖2)
≤ k(4α + 1 + λCI )‖ẽn+1 − en‖2 + k(4α + 3λCI + 1)‖en‖2 + 4k‖Rn+1‖2.(5.1.10)

Assuming that k < 1
2(4α+1+λCI )

, we have from (5.1.10)

‖en+1‖2 − ‖en‖2 + 1

2
‖ẽn+1 − en‖2 + k2(‖hn+1‖2 − ‖gn‖2) ≤ k(4α + 3λCI + 1)‖en‖2

+4k‖Rn+1‖2.
Adding the above equation from n = 0 tom−1 and using the result ‖gn‖2 ≤ 2‖hn‖2 +2ck2

with some calculations, we have

‖em‖2 − ‖e0‖2 + 1

2

m−1∑
n=0

‖ẽn+1 − en‖2 + k2(‖hm‖2 − ‖h0‖2)

≤ k(4α + 3λCI + 1)
m−1∑
n=0

‖en‖2 + k2
m−1∑
n=0

(‖hn‖2 + ck2) + k
m−1∑
n=0

‖Rn+1‖2.

Applying the Lemma 1, we get the desired result

‖em‖2 + 1

2

m−1∑
n=0

‖ẽn+1 − en‖2 ≤ Ck2.

�
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5.2 Error analysis for IMEX-BDF2-OS

Similarly, for IMEX-BDF2-OS, the error equations are as follows;

3ẽn+1 − 4en + en−1

2k
= D(ẽn+1) + λI(Een) + gn + Rn+1, (5.2.1)

and

3(en+1 − ẽn+1)

2k
= hn+1 − gn . (5.2.2)

Theorem 4 Under the assumption k < 1
2(4α+1+λCI )

, we have following error estimates for
the given method:

‖em ||2 + 2‖em−1‖2 + 1

2

m−1∑
n=1

‖2ẽn+1 − en‖2 ≤ Ck3, ∀ 2 ≤ m ≤ T

k

where C is a constant that depends on the parameters CI , r , σ , λ and T .

Proof Consider the Eq. (5.2.1),

3ẽn+1 − 4en + en−1

2k
= Dẽn+1 + I(Een) + gn + Rn+1. (5.2.3)

Taking the inner product from both sides of the Eq. (5.2.3) with 4kẽn+1 and using the identity
(I1) and (I4), we have

‖ẽn+1‖2 − ‖en‖2 + ‖2ẽn+1 − en‖2 − ‖2en − en−1‖2 + ‖ẽn+1 − 2en + en−1‖2
≤ 4kα‖ẽn+1‖2 + 4kλCI ‖Een‖‖ẽn+1‖ + 4k(gn, ẽn+1) + 4k(Rn+1, ẽn+1).(5.2.4)

From the Eq. (5.2.2)

en+1 − 2

3
khn+1 = ẽn+1 − 2

3
kgn . (5.2.5)

Taking the inner product of (5.2.5) from both sides with itself and multiplying by three, we
obtain

3‖en+1‖2 + 4

3
k2‖hn+1‖2 − 4k(en+1, hn+1) = 3‖ẽn+1‖2 + 4

3
k2‖gn‖2 − 4k(ẽn+1, gn).

(5.2.6)

Adding up the Eqs. (5.2.4) and (5.2.6), and noting (en+1, hn+1) ≤ 0 and ‖ẽn+1 − 2en +
en−1‖2 ≥ 0, along with some calculations using some inequalities from Sect. 4.1, we get

‖en+1‖2 − ‖en‖2 + ‖ẽn+1‖2 + 4

3
k2

(‖hn+1‖2 − ‖gn‖2
) + 2

[‖en‖2 − ‖en−1‖2
]

≤ 13‖en‖2 + (4α + λCI + 1)k‖ẽn+1‖2 + 32kλCI ‖en‖2 + 8kλCI ‖en−1‖2 + 4k‖Rn+1‖2.
Assuming that k < 1

2(4α+λCI+1) , with some basic calculations, further we obtain

‖en+1‖2 − ‖en‖2 + 1

2
‖ẽn+1‖2 + 4

3
k2

(‖hn+1‖2 − ‖gn‖2
) + 2

[‖en‖2 − ‖en−1‖2
]

≤ 13‖en‖2 + 32kλCI ‖en‖2 + 8kλCI ‖en−1‖2 + 4k‖Rn+1‖2. (5.2.7)
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Summing up both sides of the Eq. (5.2.7) from n = 1 tom−1 and perform somemathematical
calculations, we get

‖em‖2 + 2‖em−1‖2 + 1

2

m−1∑
n=1

‖ẽn+1‖2 + 4

3
k2‖hm‖2

≤ ‖e1‖2 + 2‖e0‖2 + 4

3
k2‖h1‖2 + (40kλCI + 13)

m−1∑
n=0

‖en‖2 + 4k
m−1∑
n=1

‖Rn+1‖2

+4

3
k2

m−1∑
n=1

(ck2 + ck‖hn‖2).

Applying Lemma 1, we get

‖em‖2 + 2‖em−1‖2 + 1

2

m−1∑
n=1

‖ẽn+1‖2 + 4

3
k2‖hm‖2

≤ C

(
‖e1‖2 + 2‖e0‖2 + 4

3
k2‖h1‖2 + 4k

m−1∑
n=1

‖Rn+1‖2 + 4

3
k2

m−1∑
n=1

(ck2 + ck‖hn‖2)
)

.

Further simplifying the equation, we get the desired result

‖em‖2 + 2‖em−1‖2 + 1

2

m−1∑
n=1

‖ẽn+1‖2 ≤ Ck3.

�
It is important to keep in mind that the limitations on k in the aforementioned theorems are

only adequate for stability. These limitations can be marginally altered with more accurate
analysis.

6 Numerical discussion

In this section, we provided some numerical examples to reinforce our theoretical study.
In order to determine the price of the American option under Kou’s and Merton’s jump-
diffusion models, we explored the convergence behavior of both the IMEX-BDF1-OS and
IMEX-BDF2-OSnumerical techniques. To tackle the inequality constraints in theLCP for the
American option, we used the implicit–explicit backward difference approaches in conjunc-
tionwith the operator splittingmethod. For spatial discretization,we employ the second-order
central finite difference schemes

ux (xi ) ≈ ui+1 − ui−1

2h
,

uxx (xi ) ≈ ui+1 − 2ui + ui−1

h2
,

with uniform spatial mesh length h in the computational domain � := [−1.5, 1.5].
Since for the American option pricing problem, the analytical form of solution is not

available so we computed the point-wise errors at different asset prices, S = 90, 100, 110,
using the difference between successive option prices.
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Table 1 Numerical results of IMEX-BDF1-OS method under Merton’s jump-diffusion model for American
put options with specified parameters at various stock prices as given in Example

N S = 90 S = 100 S = 110
Value Error Rate Value Error Rate Value Error Rate

64 10.454172 – – 4.901017 – – 2.878383 – –

128 10.454664 4.92e−04 – 4.906693 5.68e−03 – 2.881250 2.87e−03 –

256 10.455038 3.74e−04 0.40 4.909613 2.92e−03 0.96 2.882723 1.47e−03 0.96

512 10.455287 2.48e−04 0.60 4.911114 1.50e−03 0.96 2.883477 7.54e−04 0.97

1024 10.455451 1.64e−04 0.60 4.911884 7.71e−04 0.96 2.883861 3.84e−04 0.97

Table 2 Numerical results of IMEX-BDF2-OS method under Merton’s jump-diffusion model for American
put options with specified parameters at various stock prices as given in Example 1

N S = 90 S = 100 S = 110
Value Error Rate Value Error Rate Value Error Rate

64 10.456521 – – 4.911746 – – 2.883627 – –

128 10.456092 4.29e−04 – 4.912395 6.49e−04 – 2.884030 4.03e−04 –

256 10.455851 2.41e−04 0.84 4.912602 2.07e−04 1.64 2.884177 1.47e−04 1.46

512 10.455737 1.15e−04 1.06 4.912666 6.39e−05 1.69 2.884230 5.37e−05 1.45

1024 10.455696 4.07e−05 1.49 4.912685 1.90e−05 1.74 2.884249 1.84e−05 1.54

To determine the rate of convergence (Rate) of given methods at different asset prices, we
used the double mesh principle. The rate of convergence can be computed by the formula,

Rate = log2
‖u(k, h) − u

( k
2 ,

h
2

) ‖
‖u ( k

2 ,
h
2

) − u
( k
4 ,

h
4

) ‖ ,

where u(k, h) is the computed price of the American put option with temporal mesh length
k and spatial mesh length h.

We used the piecewise cubic Hermite interpolation to analyze the pricing of the American
put option at the non-mesh points of stock prices.

Throughout all of the tests, we calculated the point-wise errors at different stock prices S
with M = 210+1 spatial discretization points, and N denotes temporal discretization points.
To perform numerical simulation, the following set of examples are taken:

Example 1 The Merton’s jump-diffusion model for the American put option along with the
parameters σ = 0.15, r = 0.04, T = 0.5, K = 100, σJ = 0.45, μJ = −0.90, λ = 0.10.

In the first numerical simulation, we showed the numerical results for the IMEX-BDF1-
OS method under Merton’s model, and the option values along with point-wise errors and
Rates at different asset prices are reported in Table 1. We can observe that the convergence
rate reached its asymptotic order when the temporal mesh is sufficiently small.

In the same lineup, we executed the same numerical simulation for the IMEX-BDF2-OS
method forMerton’s model, and the results are reported in Table 2.We see that IMEX-BDF1-
OS is linearly convergent, and the rate of convergence for the IMEX-BDF2-OS method is
near 1.5, which is similar to our error estimate showed in Sect. 5.

The American put option values for IMEX-BDF1-OS and IMEX-BDF2-OS under Mer-
ton’s jump-diffusionmodel are presented in Fig. 1, and the graphs demonstrate that the option
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Fig. 1 American put option value for IMEX-BDF1-OS (left) and IMEX-BDF2-OS (right) under the Merton’s
jump-diffusion model with parameters as provided in the Example 1

Table 3 Numerical results of IMEX-BDF1-OS method under Kou’s jump-diffusion model for American put
options with specified parameters at various stock prices as given in Example 2

N S = 90 S = 100 S = 110
Value Error Rate Value Error Rate Value Error Rate

64 10.332776 – – 4.008922 – – 1.353754 – –

128 10.333855 1.08e−03 – 4.014711 5.79e−03 – 1.355915 2.16e−03 –

256 10.334494 6.39e−04 0.76 4.017678 2.97e−03 0.96 1.357037 1.12e−03 0.95

512 10.334865 3.71e−04 0.79 4.019205 1.53e−03 0.96 1.357620 5.83e−04 0.94

1024 10.335081 2.16e−04 0.78 4.019989 7.84e−04 0.96 1.357921 3.01e−04 0.95

values are quite stable with no erroneous oscillation at or near the strike price.

Example 2 The Kou’s jump-diffusion model for American put option along with the param-
eters σ = 0.15, r = 0.04, T = 0.5, K = 100, η1 = 3.0465, η2 = 3.0775, p = 0.3445,
λ = 0.10.

Now, we executed similar simulation for IMEX-BDF1-OS and IMEX-BDF2-OS method
for Kou’s model, and numerical results are reported in Tables 3 and 4, respectively, and we
can see that IMEX-BDF1-OS is linearly convergent and for IMEX-BDF2-OS method the
error is reducing with ratio nearly three thus the discretization scheme is convergent with
rate 1.5, as shown in Table 4 that is similar to our error estimate.

The option values for IMEX-BDF1-OS and IMEX-BDF2-OS under Kou’s jump-diffusion
model for American put options are presented in Fig. 2, and the graphs demonstrate that the
option values are quite stable with no erroneous oscillation at or near the strike price.

From both examples, we showed that the pointwise errors have a convergence rate of 1.5
for IMEX-BDF2-OS and 1 for IMEX-BDF1-OS, although the order of convergence at the
early exercise border is less precise for both Merton’s and Kou’s models.
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Fig. 2 American put option value for IMEX-BDF1-OS (left) and IMEX-BDF2-OS (right) under the Kou’s
jump-diffusion model with parameters as provided in the Example 2

7 Conclusion

In this work, we established the stability and error estimates for the operator splitting method
combinedwith implicit–explicit backward difference techniques for American option pricing
problems under jump-diffusion models. The solution of the linear complementarity problem
(2.0.2) is the value of the American put option under the jump-diffusion model. We have
approximated the integral operator by a numerical quadrature rule. In contrast, the differential
operator is computed with the help of the finite difference operator analogous to the implicit–
explicit backward difference techniques. To validate our theoretical results and demonstrate
the convergence behaviors of operating splitting methods, we performed the numerical com-
putations for the American put option under both Kou’s andMerton’s jump-diffusion models
and presented the plots for the values of American put options. In our future work, we are
interested in refining the rigorous error analysis of the IMEX-BDF2-OS method up to the
second order using the variable step-size IMEX-BDF approach as suggested in Wang et al.
(2019) and explore the rigorous analysis for other classes of problems.
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