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Abstract
The shallow water equations (SWE) are a time-dependent system of non-linear partial differ-
ential equations utilized for fluid motion where the horizontal length scales are much greater
than the fluid depth. The numerical solution of the SWE usually requires complex schemes
and methods to deal with the instabilities proper to the system. This paper is concerned
with a simple method to solve the SWE, utilizing continuous linear finite elements, no-slip
closed boundary, and nested open boundary conditions, and a stabilization technique known
as numerical smoothing. First, we describe the governing equations, the finite element model,
and the chosen discretization. Then we solve a 2D test case of an elliptical paraboloid and
analyze its convergence comparing with provided analytical solutions. Finally, we apply the
model to the northern region of the Gulf of San Jorge (Argentina), optimize parameters,
and validate it with collected data from an acoustic Doppler current profiler (ADCP) of two
spatial points during one tidal M2 period.
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1 Introduction

The shallow water equations (SWE) are used to describe flow in bodies of water where the
horizontal length scales are much greater than the fluid depth and are characterized by flows
where horizontal velocities dominates the flow field. SWE have wide applications in ocean
and coastal engineering (Dinápoli et al. 2020; Valseth and Dawson 2022; Kliem et al. 2006),
and it is applied to a variety of physical phenomena such as tides in oceans (Flather and
Heaps 1975; Rizal 2000; Casulli and Walters 2000), breaking waves on shallow beaches
(if dispersion is included) (Barros et al. 2011), surges (Dube et al. 1985), dam-break wave
modeling (Zoppou and Roberts 2000), and flooding (Costabile et al. 2017).

In the present study, we apply a finite element method (FEM) to solve the SWE and
describe the current circulation in the northern region of the Gulf of San Jorge (GSJ). The
GSJ is the largest coastal embayment of the Patagonian Shelf (PS), one of the most biolog-
ically productive portions of the South Atlantic Ocean, this area is very influential to the
economic, social, and ecological health of the region (Marrari et al. 2017). Therefore, inte-
grating information referred to the circulation patterns, physical, chemical, and biological
processes and their influence on the coastal ecosystem, will contribute to a comprehensive
understanding of the Gulf and its influence on the region.

Recent studies as Palma et al. (2020) showed that the GSJ circulation is mainly shaped
by tidal forcing, and modulated by wind forcing and intrusions from the Patagonian Shelf.
The (finite difference) model utilized was based on ROMS-Agrif (Debreu et al. 2012), with a
resolution about 2km; therefore, the model proposed in this paper combines the tidal forcing
output of this model with an unstructured finite element model to acquire higher resolution
results in a particular sector of the GSJ. To validate the results, rather than an elevation
comparison, we advantageously used velocity data that were collected from two locations
by an acoustic Doppler current profiler (ADCP) to contrast with the model output.

Different numerical methods have been tested and developed with passing of the years,
finite difference schemes (FDM) (Flather and Heaps 1975; Casulli 1990), finite element
methods (FEM) (Hanert et al. 2005; Zienkiewicz and Ortiz 1995), finite volume methods
(FVM) (Chippada et al. 1998), finite spectral element (Iskandarani et al. 1995), spectral
element in time (or periodic galerkin) (Kawahara and Hasegawa 1978), and lattice boltzmann
modeling (Tubbs 2010) among others. The most used methods are FDM, FVM, and FEM.
We are particularly interested in the application of FEM in coastal wetlands and gulf regions.
The FEM provides several advantages: the boundary curves with complicated geometric
shape and the underwater topography with irregular rise-and-falls can be satisfactorily fitted;
differences in material properties between subdomains, if any, can be considered; and various
types of boundary conditions can be fulfilled. Though the main disadvantage of the FEM is
its low speed in solving a time-dependent evolution problem; in particular, the implicit FEM
has to solve a large-scale, sparse linear system of equations in each time step (Larson and
Bengzon 2013).

Finite element methods for solving the SWE have been evolving since the decade of the
70’s. One of the firsts articles to address the problem exclusively was (Brebbia and Partridge
1976), in which it is noted that the SWE have stability issues, and a stabilization technique
was needed; however, this approach did not get further tests neither implementations. The
next improvement was achieved by Lynch and Gray (1979), they developed a model that
deals with the stabilization problems transforming the original SWE into a wave equation,
this approach is nowadays widely used to solve realistic and complex shallow water flow
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problems, the work in Luettich et al. (1992) for example, employed the generalized wave
continuity equation in the advanced circulation model (ADCIRC).

The aim of this work is to apply amodel that solves the SWE in its original form, providing
a contribution to model benchmarking and the performance of simple models. A version of
linear finite elements was implemented that manages the stabilization issues with numerical
smoothing. This technique was proposed in Brebbia and Partridge (1976) and applied to the
North Sea, but to our knowledge, has not been used in other complex problems nor has been
tested enough with available analytical solutions for the SWE.

The paper is organized as follows. We first present the model equations and the finite
element discretization in Sects. 2 and 3, respectively. In Sect. 4, we test the model in an
elliptical paraboloid and in Sect. 5, a detailed explanation of the implementation in the Gulf
of San Jorge is given, where parameter optimization and validation with current velocities
are reviewed. Conclusions are discussed in Sect. 6.

2 Governing equations

We consider the following formulation of the shallowwater problem (Pinder and Gray 1977):
Let� be the two-dimensional model domain, we seek the east–west velocity u(x1, x2, t), the
south–north velocity v(x1, x2, t) and the surface elevation η(x1, x2, t) which are solutions
of the following equations:

0 = ∂η

∂t
+ ∂Hu

∂x1
+ ∂Hv

∂x2
, (1)

0 = ∂u

∂t
+ u

∂u

∂x1
+ v

∂u

∂x2
− f v + g

∂η

∂x1
− cωω2

H
cos(ζ ) + cduγ, (2)

0 = ∂v

∂t
+ u

∂v

∂x1
+ v

∂v

∂x2
+ f u + g

∂η

∂x2
− cωω2

H
sin(ζ ) + cdvγ, (3)

where H = h + η is the total depth, h is the reference depth of the fluid, f is the Coriolis
parameter, cω is the wind drag coefficient, cd is the bottom friction coefficient, g is the
gravitational acceleration, ω is the wind velocity magnitude, ζ is the angle between the x1
axis and the wind velocity vector, and γ =

√
u2+v2

H .

The initial conditions are:

η(x, 0) = η0(x), u(x, 0) = u0(x), v(x, 0) = v0(x),

for x ∈ �. The boundary conditions are:

η(x, t) = ηB(x, t), u(x, t) = uB(x, t), v(x, t) = vB(x, t),

for (x, t) ∈ ∂� × (0, T ].
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3 Finite element P1 - P1 model

A standard weak formulation leads to: η(·, t), u(·, t), v(·, t) ∈ H1(�) satisfying the previous
boundary conditions, such that

0 =
∫

�

∂η

∂t
ψη −

∫
�

hu
∂ψη

∂x1
−

∫
�

hv
∂ψη

∂x2
−

∫
�

ηu
∂ψη

∂x1
−

∫
�

ηv
∂ψη

∂x2
,

0 =
∫

�

∂u

∂t
ψu +

∫
�

u
∂u

∂x1
ψu +

∫
�

v
∂u

∂x2
ψu −

∫
�

f vψu +
∫

�

g
∂η

∂x1
ψu

−
∫

�

cωω2

H
cos(ζ )ψu +

∫
�

cdγ uψu,

0 =
∫

�

∂v

∂t
ψv +

∫
�

u
∂v

∂x1
ψv +

∫
�

v
∂v

∂x2
ψv +

∫
�

f uψv +
∫

�

g
∂η

∂x2
ψv

−
∫

�

cωω2

H
sin(ζ )ψv +

∫
�

cdγ vψv,

for all ψη ∈ H1
0 (�) and ψu, ψv ∈ L2(�).

We approximate the space L2(�) by V , where for a triangulation K = {K1, . . . , Knt }
such that � = ∪nt

	=1K	, we define:

V = {ψ : � → R | ψ |K ∈ P1(K ), ∀K ∈ K} ∩ C(�),

whereP1(K ) is the space of polynomials of degree 1 in K , andC(�) the continuous functions
from � to R. Then, for example, approximate:

η(x, t) ≈
n p∑
i=1

ηi (t)ϕi (x), ψη(x) ≈
n p∑
i=1

ς
η
i ϕi (x)

where {ϕi }n p
i=1 is a base of V and n p is the total number of nodes determined byK, obtaining

a continuous Bubnov-Galerkin formulation.
To obtain a linear system of equations in space, several functions were approximated by an

average of their value at the vertices of each triangle. Specifically, for a general φ : � → R

define:

ai j (φ) =
nt∑

	=1

φ̄K	

∫
K	

ϕiϕ j , bi (φ) =
nt∑

	=1

φ̄K	

∫
K	

ϕi ,

m1
i j (φ) =

nt∑
	=1

φ̄K	

∫
K	

ϕi
∂ϕ j

∂x1
, m2

i j (φ) =
nt∑

	=1

φ̄K	

∫
K	

ϕi
∂ϕ j

∂x2
,

where φ̄K	
= (φ(x1) + φ(x2) + φ(x3))/3 for the vertices x1, x2, x3 of K	 ∈ K. Then we

construct thematrices A(φ), M1(φ),M2(φ) and the vector b(φ) (Larson and Bengzon 2013).
Replacing η, u, v, ψη, ψu , and ψv for their approximation in the weak formulation, gives the
system:

0 = Ãw′(t) + B̃(t)w(t) − d̃(t). (4)
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where w = (η,u,v)T ,

Ã =
⎡
⎣ A(1)

A(1)
A(1)

⎤
⎦ , d̃ =

⎡
⎣ 0
b(ĉ)
b(ŝ)

⎤
⎦ ,

B̃ =
⎡
⎣−(M1(u) + M2(v))T −(M1(h))T −(M2(h))T

M1(g) Mγ −A( f )
M2(g) A( f ) Mγ

⎤
⎦ ,

with Mγ = M1(u) + M2(v) + A(cdγ ), ĉ = cωω2

H cos(ζ ) and ŝ = cωω2

H sin(ζ ).

Remark 1 H tends to zero when approximating to the coastline; thus, to manage the terms
where there is a division by H , we use a maximum between H and a positive constant Hmax

(Flather and Heaps 1975).

Because of the Dirichlet boundary conditions, we only need to find out the values of the
unknowns w in the interior nodes, and utilize the information from the boundary. If we denote
by I and B the subset of interior and boundary nodes, respectively, the equation (4) can be
written as:

0 = ÃIIw′
I(t) + ÃIBw′

B(t) + B̃II(t)wI(t) + B̃IB(t)wB(t) − d̃I(t),
0 = ÃBIw′

I(t) + ÃBBw′
B(t) + B̃BI(t)wI(t) + B̃BB(t)wB(t) − d̃B(t).

(5)

Then using the second equation to replace w′
B(t) in the first equation:

0 = ÃIIw′
I(t) + ÃIB Ã−1

BB
(
d̃B(t) − B̃BI(t)wI(t) − B̃BB(t)wB(t)

)
− ÃIB Ã−1

BB ÃBIw′
I(t) + B̃II(t)wI(t) + B̃IB(t)wB(t) − d̃I(t)

=
(
ÃII − ÃIB Ã−1

BB ÃBI
)
w′
I(t) +

(
B̃II(t) − ÃIB Ã−1

BB B̃BI(t)
)
wI(t)

+
(
B̃IB(t) − ÃIB Ã−1

BB B̃BB(t)
)
wB(t) −

(
d̃I(t) − ÃIB Ã−1

BBd̃B(t)
)

.

(6)

Now, to solve this system, we will proceed to discretize (6) in time. We write the time-
dependent functions as a convex combination of two time steps, the actual time n − 1 and
the new time we want to compute, n. Then, for example, w(t) ≈ θwn + (1− θ)wn−1, where
θ ∈ [0, 1], n = 0, . . . ,m, m ∈ N, and w0 = w(0), wm = w(T ).

To keep the system linear, we take the discretization of B̃ explicitly, similarly to Flather
and Heaps (1975) i.e., B̃(t) ≈ B̃n−1. For the time derivative we use a classical Euler method

to obtain
dw

dt
≈ wn − wn−1

�t
.

Applying the time discretization to the linear system (6), we obtain:

(
ÃII − ÃP ABI

�t
+ θ(B̃n−1

II − ÃP B
n−1
BI )

)
wn
I = b, (7)
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where

b = −
(

− ÃII − ÃP ABI
�t

wn−1
I + (1 − θ)(B̃n−1

II − ÃP B
n−1
BI )wn−1

I

+ θ(B̃n−1
IB − ÃP B

n−1
BB )wnB + (1 − θ)(B̃n−1

IB − ÃP B
n−1
BB )wn−1

B

− θ(d̃nI − ÃP d̃
n
B) − (1 − θ)(d̃n−1

I − ÃP d̃
n−1
B )

)
,

ÃP = ÃIB Ã−1
BB.

The system given in (7) is unstable and a stabilization method is required (Hanert et al.
2003). To address this issue, we adopted the technique of numerical smoothing (Brebbia and
Partridge 1976), which we applied at every time step by the following process:

For each interior node i0 ∈ I:
1. Find every node sharing an edge (neighbor) with the i0−node and let {i0, i1, . . . , inw } be

the set of indices corresponding to the i0−node neighbors including i0.
2. Define arbitrary weights σ0, . . . , σnw ∈ [0, 1], where ∑nw

j=0 σ j = 1.

3. Define the smoothed solution si0 = ∑nw

j=0 σ jwi j .

Then utilize sI instead of wn−1
I to solve (7).

4 Oscillating planar flow in a frictionless elliptical paraboloid

The model performance was tested with the analytical solution of (1)-(3) with cd = 0 and
cω = 0, provided by Thacker (1981) in the case of the elliptical paraboloid with planar
surface oscillations:

η(x, y, t) = 2α
h0
L

( x

L
cos(κt) − y

L
sin(κt) − α

2L

)
,

u(x, y, t) = −ακ sin(κt),

v(x, y, t) = −ακ cos(κt),

where κ = f
2 +

[
f 2

4 + 2 gh0
L2

] 1
2
, α is a constant that determines the amplitude of the motion,

h0 determines the depth of the paraboloid and L the radius (the ellipse is a circle for this
solution).

The paraboloid basin is given by:

h = h0

(
1 − x21

L2 − x22
L2

)
.

Boundary and initial conditions were extracted from the provided analytical solution. The
generateMesh function fromMATLAB (2019 was used for the triangulation of the basin
and the corresponding system (7) was solved for different quantities of time steps and varying
the L and h0 value in the range of 1 to 10000 and 1 to 100, respectively (similar results were
obtained for all the values tested).

We define the vectorial norm:

vecnorm2(u, v) =
(√

u21 + v21, . . . ,

√
u2n + v2n

)
,
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where u and v are n-dimensional vectors. The error formula used to confront velocities
resulting from the model with the analytical solutions was:

Evel
rel = max

k
max

(
vecnorm2(ukm − uks , v

k
m − vks )

vecnorm2(uks , v
k
s )

)
, (8)

where the vectors um, vm and us, vs are the model resulting velocities and analytical solu-
tions, respectively, the superscript k indicates the time step and the division is elementwise.
Similarly, the elevation error used was

Eel
rel = max

k

|ηkm − ηks |
|ηks |

. (9)

The convex combination time parameter θ and the numerical smoothing procedureweights
were optimized for this experiment, minimizing the error function defined by Evel

rel + Eel
rel.

We obtained θ = 0.6534 (usually this value is taken in the range of [0.5, 1] (Casulli 1990)),
and the weights acting as a neighbor mean. To evaluate the target function Evel

rel + Eel
rel, it is

necessary to solve the complete problem to then compare the errors; therefore, the function
evaluation is computationally expensive. To avoid complicated derivatives and excessive
function evaluations, we utilized a Nelder–Mead algorithm (fminsearch function from
MATLAB (2019).

The numerical smoothing behaves similar to adding artificial viscosity to the SWE, cre-
ating a smother representation of the flow, but also of the elevation, which has no physical
justification (Hanert et al. 2003), then we expect the errors to be close to zero, but not nec-
essarily convergent to zero.

It can be observed in Fig. 1, that the maximum relative error diminishes its value as the
number of time steps increases. The rate is linear for the velocity, but it is asymptotic for the
elevation; though the relative error in the elevation is small (0.0319 or 0.3% at 50000 time
steps). In Fig. 2 we display the L2 errors, where we utilized L = 100, h0 = 1 and α = 0.1,
highlighting its convergence in space, where, analogous to the temporal error of Fig. 1, we
took the maximum L2 error over time.

As expected, the errors are not strictly convergent to zero, but in both the temporal and
L2 errors, we observed good behavior with small relative errors.

5 Gulf of San Jorge implementation

We consider the region in between the coordinates (−45.2049◦,−44.9312◦) latitude and
(−66.6029◦,−65.5193◦) longitude. Utilizing a .tif bathymetry file (Rodriguez-Perez and
Sanchez-Carnero 2022), we determined the boundaries from the points with zero depth, and
created a polygon that is an approximation of the boundary (∂�). Then we utilized the Gmsh
package (Geuzaine and Remacle 2009) andMeshAdapt routine to create the triangulation K
(see Fig. 3).

The depth h is defined by interpolating the data from the .tif with the
scatteredInterpolant function from MATLAB (2019). For simplicity, the physi-
cal geometry (latitude-longitude) is approximated to a flat earth geometry (Stevens et al.
2015) measured in meters.

We utilized 3316 nodes (the amount of boundary nodes was reduced by selecting the most
determinant ones to the geometry from the coastline obtained in the .tif file) with a maximum
triangle diameter of 1000m and minimum of 200m. A 44700s M2 period (Palma et al. 2020)
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Fig. 1 Error for the elliptical parabolid flow

Fig. 2 L2 error for the elliptical parabolid flow
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Fig. 3 Gulf of San Jorge in a depth colormap, with the region � considered for this work (left) and the
triangulation approximating the desired region scaled to meters (right)

was used (T = 44700), initialized by a cold start (w0
I = 0) and run through five tidal cycles

to eliminate the influence of w0
I . The resolution can be easily improved by refining the mesh

and adding more boundary nodes from the bathymetry file, although it should be considered
that a refined spatial mesh increases the computational effort.

To address the wind terms, we used the model provided by [32]. As the model has a low
resolution for our geometry size, we used six points in the vicinity of � and utilized the
value of the mean of these points for all the region at each time step, interpolating in time.
The wind drag coefficient cω was estimated with the formula cω = ρ(0.63 + 0.66ω) · 10−3

(Tubbs 2010).
We distinguish two types of boundary conditions, the closed, referring to land boundaries,

and an artificial open boundary which is usually used in applications of the SWE to limit �.
Following Brebbia and Partridge (1976), we apply a no-slip condition at the closed bound-
aries. Physical conditions are unknown at the open boundary, and available data or a larger
model is usually utilized to find these conditions. In this work, we take the M2 tide (provided
by a larger model), that was proved to mainly shape the circulation of the region (Palma et al.
2020), to specify the open boundary conditions. We utilized bilinear interpolation to obtain
the values on the boundary nodes.

There are still undergoing works about suitable open boundary conditions for the SWE,
which guarantees a unique, smooth, and stable solution (Nordström andWinters 2022; Blayo
and Debreu 2005). In Nordström and Winters (2022), an analysis of the SWE boundary
conditions when constant zero depth is set (h ≡ 0), the work of Palma and Matano (1998)
made several numerical experiments for different boundary conditions utilizing the Princeton
Ocean Model (Blumberg and Mellor 1987), whereas Praagman (1979) derives boundary
conditions from the characteristic variables approach, and Blayo and Debreu (2005) revisits
boundary conditions from the point of view of characteristic variables.

The approach of utilizing conditions specified by a larger model at the open boundaries
grants practicality and simplicity, although the outflowing information is totally determined
by these external data, and does not depend at all on the internal solution. Therefore, part of
the outgoing information will be reflected into the domain as soon as the external data is not
perfectly consistent with the internal dynamics (Blayo and Debreu 2005).
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Fig. 4 Comparison between the model results and data at p1

5.1 Parameter optimization and results

The data available for comparison at the moment of this work were collected by an ADCP
(acoustic Doppler current profiler) at two spatial points p1 = (−45.0561◦,−65.8238◦) and
p2 = (−45.047◦,−65.8366◦) for two indepenent periods of approximately 1 day (the sample
campaign was executed inMarch 2020 and funded by the project P-UE 22920160100045CO
Centro Para el Estudio de SistemasMarinos, CCTCONICET-CENPAT). TheADCPprovides
the value of the current velocity at different depths every 300 seconds; therefore, at each time,
we averaged the values to obtain velocity vectors u p1 , vp1 and u p2 , vp2 .

Usually in the shallow water problems, comparisons are made with elevation data in real
applications (Grotkop 1973; García-Navarro et al. 2019; Flather and Heaps 1975; Westerink
et al. 1985), among others. Comparisons with current velocities are rarer as mentioned in
Howarth and Proctor (1992) and Timko et al. (2013), but they provide some circulation
assurance that an only elevation contrast might miss. Thus, as current circulation is the main
objective in this work, ADCP data are ideal.

The ADCP data were smoothed by a fast Fourier transform (FFT) procedure (Golub and
Van Loan 2013) to facilitate the convergence of the optimization algorithm. A few tests were
carried out to analyze the sinusoidal behavior of the output relating to Hmax, obtaining good
results with a value of 0.6.

For the parameter optimization, we utilized the Nelder–Mead algorithm mentioned in
Sect. 4. Numerical smoothing weights and the θ parameter values were taken from the pre-
vious elliptical paraboloid optimization. Then we adjusted the bottom friction coefficient cd
and the starting tidal phase, to minimize the error of the model output interpolated to p1,
compared with the available data in one M2 period (because the period is 44700s, we have
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Fig. 5 Model velocity field in blue and data observed at p1 in red at time step 50 (left), zoomed vicinity of
p1 data (red), and model results (blue) at time step 50 (right) (colour figure online)

44700
300 = 149 time steps for comparison). The error function utilized was:

Ep1 = ‖vecnorm2(u
p1
m − u p1 , v

p1
m − vp1)‖1,

where u p1
m and v

p1
m ∈ R

149 are the model results interpolated in p1. Better results were
obtained with this absolute error formula rather than a relative error one (8).

The optimization was run for �t = {100s, 50s, 20s}, with better quality results at �t =
20s, as expected becuase of the CFL condition. The optimum bottom friction coefficient

(cd ) obtained was 0.0228 with a minimum mean error Ē p1 = Ep1
149 = 0.119m/s. Although

cd values in the range of [0.005, 0.0228] had similar mean errors. In Fig. 4, we can see the
comparison between the model output and the data in p1, whereas in Fig. 5, we display the
model velocity field results at a fixed time step. To further validate the model, we utilized the
bottom friction coefficient value obtained from the optimization in p1 to run the model and
compare the output with p2 data (see Fig. 6).

Themodel output is in reasonable agreementwith the data,with values of Ē p1 = 0.119m/s
and Ē p2 = 0.143m/s. As remarked before, velocity current comparisons are not abundant
in shallow water models; works like (Fornerino and Le Provost 1985; Howarth and Proctor
1992; Proctor 1987) obtained error values of the same order and in several cases higher. Some
good results are showed in Dowd and Thompson (1996) where tidal amplitudes and phases
at the boundary are estimated from interior ADCP velocities using an inverse method and
linearized SWE.

Error sources are likely related with the simplified coarse windmodel (instead of observed
wind data) and the treatment of the open boundary conditions as mentioned in the discussion
previous to Sect. 5.1.

6 Conclusion

A P1 − P1 finite element model utilizing numerical smoothing as stabilization technique
(Brebbia and Partridge 1976) was developed, tested in a parabolic basin, and applied in the
northern region of the Gulf of San Jorge. Taking into account, this is one of the simplest
finite element methods to apply, with the only parameter from the equations adjusted being
cd , no-slip boundary conditions and prescribed (nested from a larger model) open boundary
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Fig. 6 Comparison between the model results and data at p2

conditions; satisfactory results were obtained. This suggests that simple models as the one
described in this paper are still an option to be considered in ocean modeling. Although this
is possibly a first step to apply a more sophisticated model, which would utilize a wetting
and drying algorithm (Horritt 2002) in a nested interface of a larger model already applied
to the region (Palma et al. 2020), it is notable that a basic method can produce good results
in a very complex real case application. The model described in this work stands out for its
simplicity and natural construction, which makes a real case scenario implementation and
code programming straight forward.
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