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Abstract
The choice of an adequate mathematical model is a key step in solving problems in many dif-
ferent fields.Whenmore than onemodel is available to represent a given phenomenon, a poor
choice might result in loss of precision and efficiency. Well-known strategies for comparing
mathematical models can be found in many previous works, but seldom regarding several
models with uncertain parameters at once. In this work, we present a novel approach for
measuring the similarity among any given number of mathematical models, so as to support
decision making regarding model selection. The strategy consists in defining a new general
model composed of all candidate models and a uniformly distributed random variable, whose
sampling selects the candidate model employed to evaluate the response. Global Sensitivity
Analysis (GSA) is then performed to measure the sensitivity of the response with respect to
this random variable. The result indicates the level of discrepancy among the mathematical
models in the stochastic context. We also demonstrate that the proposed approach is related
to the RootMean Square (RMS) error when only twomodels are compared. The main advan-
tages of the proposed approach are: (i) the problem is cast in the sound framework of GSA,
(ii) the approach also quantifies if the discrepancy among the mathematical models is sig-
nificant in comparison to uncertainties/randomness of the parameters, an analysis that is not
possible with RMS error alone. Numerical examples of different disciplines and degrees of
complexity are presented, showing the kind of insight we can get from the proposed approach.
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1 Introduction

In this work, we consider the following problem. Suppose a given phenomenon can be rep-
resented using different mathematical models f1, f2,..., fm .1 We then wish to measure the
similarity/discrepancy among these mathematical models. Here, we propose a stochastic
comparison approach wherein the problems parameters may be uncertain. In this way, we
measure not only the discrepancy between the mathematical models but also if this discrep-
ancy is significant in comparison to parameters uncertainties. This is an important question
given that the discrepancy of the mathematical models may sometimes be overwhelmed by
uncertainties and randomness on the problems parameters.

Due to its practical value, mathematical models comparisons have been extensively car-
ried out in almost every field of science (see Heywood and Cheng (1984); Alberg and
Berglund (2003); Allen et al. (2005); Fuina et al. (2011); Cazes and Moës (2015); Zhou
et al. (2016); Henkel et al. (2016); Ooi and Ooi (2017); Malena et al. (2019); de Assis
et al. (2020); den Boon et al. (2019); Vorel et al. (2021); Adnan et al. (2021); Bauer and
Tyacke (2022) for some examples and discussions on the subject). The term “models com-
parison” is also frequently employed in the following contexts: i) comparison of regression
models to empirical data (e.g. goodness of fit, R coefficient, likelihood estimates, among
others); ii) stochastic models comparison (e.g. Bayesian models comparison, Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC), among others). It is important
to emphasize that the problem addressed here is different: we wish to compare if two or more
deterministic mathematical representations (e.g. mathematical models) f1, f2,..., fm can be
considered similar/discrepant even when they are subject to uncertainties in the parame-
ters.

Here, we demonstrate that this problem can be formulated in the context of Global Sensi-
tivity Analysis (GSA) (Saltelli et al. 2007) by defining a random variable that chooses which
mathematical model is employed to evaluate the response. Sobol’ indices (Sobol’ 1990) (or
some other GSA technique) can then be employed to measure the sensitivity of the response
with respect to this random variable. The result indicates the similarity among the mathemat-
ical models in the stochastic context. Themain advantage of the proposed approach is that the
problem of mathematical models comparison is written as a GSA problem, for which a sound
theoretical basis and efficient computational techniques exist. Other interesting properties of
the proposed approach are discussed later on this paper.

Note that Borgonovo (2010) employed a similar approach to represent settings changes
in a given mathematical model. In this case, a discrete random variable defines the current
setting (i.e. current scenario) and different equations are employed for each setting. How-
ever, these different equations actually represent the response of the same theoretical model
under different situations (e.g. before and after new information is included). Besides, Can-
navó (2012) also employed GSA for a similar problem, that of comparison of theoretical
models to empirical data (even though the empirical data was simulated with more accurate
theoretical models in this case). The novelty of this work is that we address a different prob-
lem: employment of GSA for measuring similarity/discrepancy amongmathematical models
that represent the same phenomenon. The proposed formulation is also different from that
proposed by Cannavó (2012). Finally, some preliminary results of the present work were
presented in a conference paper by Begnini et al. (2022).

1 Here, we employ the term mathematical model to represent the mathematical/numerical relation between
input x ∈ R

n and output y ∈ R.
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The rest of this paper is organized as follows. In the next section, we present a brief review
of GSA and Sobol’ indices. We then present the proposed approach for mathematical models
comparison. Numerical examples are presented in Section 4. The conclusions of this work
are summarized in the last section.

2 Global sensitivity analysis and Sobol’ indices

In GSA, one quantifies the influence of input randomness on output randomness for a given
mathematical model. The subject has been extensively studied in the past and is cast under
solid mathematical foundations. Efficient computational techniques for GSA have also been
developed. An overview of the subject is presented in Saltelli et al. (2007) and Borgonovo and
Plischke (2016). See Tang et al. (2015); Yun et al. (2016); Zaicenco (2017); Jakeman et al.
(2020); Hübler (2020); Ehre et al. (2020); Ökten and Liu (2021); Zhang et al. (2020); Zhu
and Sudret (2021); Antoniadis et al. (2021); Goda (2021); Papaioannou and Straub (2021);
Gilquin et al. (2021); Mwasunda et al. (2022) for some recent advances, applications and
discussions on GSA.

GSA can be employed for several practical purposes (Saltelli et al. 2007; Borgonovo and
Plischke 2016). In this work, we employ GSA in the context of factor fixing decision, i.e. we
employ GSA to investigate whether or not some random factor can be fixed without affecting
the results too much. In particular, we employ GSA to decide if we can take some particular
mathematical model over a set of available ones without affecting the results too much.

Consider the random variable

Y = f (X), (1)

where X ∈ R
n is a random vector and f : Rn → R is the mathematical model. Here, we say

that Y is the response of the mathematical model f . Sobol’ first-order sensitivity index with
respect to random variable Xi is defined as Sobol’ (1990)

Si = V [E [Y |Xi ]]

V [Y ]
, (2)

whereE andV represent the expected value and variance, respectively. In the above equation,
E [Y |Xi ] represents the expected value of the response conditioned to Xi . Sobol’ total index
can be written as Saltelli et al. (2007)

ST i = 1 − V [E [Y |X∼i ]]

V [Y ]
, (3)

where E [Y |X∼i ] is the expected value of the response conditioned to all factors but Xi .
Sobol’ indices measure the relative impact on the variance of the model response when

some factor Xi is fixed. For this reason, Sobol’ indices are variance-based measures of
sensitivity. The main difference between the indices Si and ST i is that the latter also captures
the interaction between Xi and the other factors. Given that one variable may not directly
influence the model variability but its interaction effects may be relevant, the total index ST i
is more appropriate for factor fixing decision. Sobol’ indices play a very important role in
variance-based GSA and the reader is referred to Sobol’ (1990); Saltelli (2002); Saltelli et al.
(2007); Sobol’ (2001) for more details on the subject.
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3 Proposed approach for models comparison

In order to quantify the similarity among mathematical models f1, f2,..., fm using Sobol’
indices we employ the following strategy. We first take a discrete Uniform random variable
W with mass function

p(w) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1/m, if w = 1
1/m, if w = 2
...

1/m, if w = m

(4)

We then define the response as

Y = f (X,W ) ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(X), if w = 1
f2(X), if w = 2
...

fm(X), if w = m

, (5)

i.e., we take Y = fi (X) with probability 1/m. In other words, the random variable W
is employed to randomly select which mathematical model is employed to evaluate the
response. Since W is uniform, the probability of employing each mathematical model fi is
the same.

In this context, the sensitivity with respect to mathematical model choice can be measured
by Sobol’ total index with respect to W 2, i.e.,

STW = 1 − V [E [Y |X∼W ]]

V [Y ]
. (6)

A small sensitivity index STW indicates that W does not influence V[Y ] very much. This
means that, from Sobol’ indices point of view, choosing between the different mathematical
models fi has a small impact on the response. Thus, the index STW can be viewed as a
measure of discrepancy among the mathematical models fi in the stochastic context. The
error estimates presented in Sobol’ et al. (2007) for factor fixing should also apply for the
proposed approach, even though we do not pursue this topic further in this work.

The proposed approach has some interesting properties:

1. The problem ofmathematical models comparison is written as a GSA problem, for which
an extensive literature exists. This means that the proposed approach inherits the sound
mathematical basis of Sobol’ indices (Sobol’ 2001; Sobol 2003; Sobol’ et al. 2007) and
that efficient computational techniques are available (Saltelli 2002; Saltelli et al. 2007;
Cannavó 2012; Gilquin et al. 2021).

2. The proposed approach measures the discrepancy between the mathematical models in
the stochastic context. Even if the models are discrepant in the deterministic context, the
discrepancy in the stochastic context may end-up being irrelevant if the influence of the
random variables is too high. Several comparison techniques measure the discrepancy
between models but do not identify if this discrepancy is significant with respect to the
influence of the random variables. The opposite is also true. Two models may seem
similar in the deterministic context but end-up being discrepant in the stochastic context,
when subject to uncertainty or randomness.

2 In this work, we do not consider Sobol’ first order index SW = V [E [Y |W ]] /V [Y ] because the total index
STW is more appropriate for factor fixing decision (Saltelli et al. 2007)
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3. The proposed approach allows for simultaneous comparison of several models at once.

3.1 Relation to RMS error

Suppose we wish to measure the discrepancy between two mathematical models f1, f2. A
very popular approach in this case is to evaluate the Root Means Square (RMS) error

ERMS =
√

EX
[
( f2(X) − f1(X))2

]
. (7)

The RMS error is likely the most popular approach for measuring discrepancies between
models in practice, due to its computational and conceptual simplicity.

When only two mathematical models are compared, the proposed approach shares con-
ceptual similarities to the RMS error. It can be demonstrated that (see the Appendix)

ERMS = 2
√
STWV [Y ] (8)

and

STW = E2
RMS

E2
RMS + 4VX [m(X)]

, (9)

where

m(X) = 1

2
( f1(X) + f2(X)) (10)

is the mean model (i.e. the point-wise mean between models f1 and f2). That is, the total
index with respect to model choice STW is closely linked to the RMS error in this case.

These results indicate that the Total Index STW can be interpreted as a relation between
the mean square error and the variance of the mean model. We also observe that the RMS
error can be easily evaluated from the results obtained with GSA using Eq. (8). Finally, note
that Eq. (9) is useful for computational purposes when one wishes to evaluate only STW ,
without measuring the sensitivity with respect to the other factors of the problem. All these
conclusions hold when only two models f1, f2 are considered, because the RMS error is not
defined whenmore than twomodels are compared. These are important conclusions, because
the RMS error is very popular in practice.

4 Numerical examples

In this section, we present three numerical examples that illustrate the kind of insight we can
gain from the proposed approach. The first example concerns the comparison of a quadratic
function with its first order Taylor expansion. In the second example, we compare three well
known head loss (i.e. pressure drop) formulas for a given range of situations. In the last
example, we compare second order effects (i.e. bending moment amplification due to large
displacements) for two reinforced concrete plane frames. Sobol’ total effect indices were
evaluated with the MATLAB toolbox GSAT developed by Cannavó (2012).
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Table 1 Sensitivity indices for Example 1

Case STW (Model Choice) ST 1 ST 2

X1 ∼ N (6, 1), X2 ∼ N (6, 1) 0,0027 0,4976 0,5032

X1 ∼ N (9, 1), X2 ∼ N (10, 1) 0,2854 0,3653 0,3872

X1 ∼ N (9, 2), X2 ∼ N (10, 3) 0,1311 0,2729 0,6477

Bold symbols represent sensitivity indexes with respect to model choice

4.1 Mathematical example

We first consider the mathematical models

f1(X1, X2) = X2
1 + X2

2 + X1X2, (11)

f2(X1, X2) = 108 + 18(X1 − 6) + 18(X2 − 6). (12)

Note that the model f2 is the first-order Taylor expansion of f1 at (x1, x2) = (6, 6). The sen-
sitivity indices were evaluated with a sample of size N = 105. This example was previously
discussed by Begnini et al. (2022).

We start by taking X1, X2 as independent random variables with Normal distribution,
expected value E[X1] = E[X2] = 6 and standard deviation

√
V[X1] = √

V[X2] = 1. The
results are presented in the first row of Table 1. Sensitivity with respect to the model choice
(i.e. STW ) is presented in the second column with bold letters. Sensitivity with respect to the
other random variables are presented in the other columns.

For X1, X2 ∼ N (6, 1), we observe that the random variable W has a small impact on
the variance of the response (i.e. STW close to 0.3%). This means that, in the stochastic
context considered, the mathematical models f1 and f2 can be considered very similar since
choosing between one or another does not affect the results significantly. This occurs because
the Taylor expansion f2 is centered at the expected value of the random variables and the
variance of the random variables is small.

We now change the expected value of the randomvariables toE[X1] = 9,E[X2] = 10 and
leave the other parameters unchanged. The results are presented in the second row of Table 1.
The sensitivity index STW is now close to 29%. This indicates that choosing between f1 and
f2 now affects the results, i.e. the mathematical models are not similar for the new stochastic
context. This basically occurs because the Taylor expansion f2 is no longer centered on the
expected value of the random variables.

In the last case, we take expected values E[X1] = 9, E[X2] = 10 and standard deviations√
V[X1] = 2,

√
V[X2] = 3. Note that we keep the expected values from the previous

case, but the standard deviations are significantly increased. The index STW now results
close to 13%, indicating that the models f1 and f2 are less discrepant than in the previous
case (although the discrepancy is still relevant). This result is explained by the sensitivity
index ST 2, that is now close to 65%. Since the standard deviation of X2 was increased to√
V[X2] = 3, the relative importance of this factor to the analysis was significantly increased.

As a consequence, the relative importance of the other two factors W and X1 was reduced.
In other words, the discrepancy between the models is now overwhelmed by the variability
of X2. This puts in evidence an important conclusion: models comparison in the stochastic
context must consider if the model discrepancy is relevant in comparison to the randomness
caused by the random variables.
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The total index STW was also evaluatedwith Eq. (9) for all three cases presented in Table 1,
in order to check the validity of the expression. In this case, we employed crude Monte Carlo
Simulation (MCS) with a sample of size 106 in order to evaluate ERMS and V [m(X)].
The indexes resulted STW = 0.0035, STW = 0.2875 and STW = 0.1285, respectively.
These results are very similar to the ones obtained with GSA and presented in Table 1. This
demonstrates that Eq. (9) can also be employed to evaluate STW in practice. However, note
that the indexes ST 1 and ST 2 cannot be accessed by this approach.

4.2 Head loss formulas

In the second example, we compare the well-known Darcy-Weisbach, Hazen-Williams and
Chezy-Manning head loss formulas for a range of situations. These models are largely
employed in the Engineering community to evaluate the pressure drop due to friction for
flows in closed conduits. More details on the subject are presented in Larock et al. (2000).
Here, we assume that all quantities are represented using SI units.

Darcy-Weisbach model is given by

QDW (D, S, e) = 1√
f
A
√
2gDS, (13)

where Q is the flow, A is the pipe cross-sectional area, g = 9.81m/s2 is the acceleration of
gravity, D is the pipe diameter and S is the slope of the energy line. The friction factor f of
Darcy-Weisbach model can be evaluated with Colebrook-White formula

1√
f

= 1.14 − 2 log10

(
e

D
+ 1√

f

9.35

Re

)

, (14)

where e is the material roughness and

Re = V D

ν
(15)

is Reynolds number, where V = Q/A is the flow velocity and ν is the kinematic viscosity
(here we take ν = 10−6, representing water at 20oC).

Darcy-Weisbach is a theoretical model derived from fluid mechanics fundamental equa-
tions. For this reason, themodel is valid for awide range of situations, including different flow
regimes. It is also the model that better agrees with experimental data in general. However,
the friction factor from Eq. (14) is defined implicitly, i.e. it depends on both Q (by means of
Re) and on itself. Consequently, evaluation of the flow using Eq. (13) requires an iterative
scheme. Here, we employ the following fixed point iteration

Re(k) = Qk
D

Aν
, (16)

1
√

f (k+1)
= 1.14 − 2 log10

(
e

D
+ 1

√
f (k)

9.35

Re(k)

)

, (17)

Q(k+1)
DW = 1

√
f (k)

A
√
2gDS, (18)

where indices (k) represent the current iteration and (k + 1) represents the updated values.
Here, we take f0 = 0.5, Q0 = 0.01 and iterate until |Q(k+1)

DW − Q(k)
DW | ≤ 10−6.
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Table 2 Random variables for
head loss models

Random variable Hydraulic parameters affected

CHW = X1 × 130

X1 ∼ �(25.0, 0.04) e = X1 × 0.26 × 10−3

nCM = X1 × 0.014

X2 ∼ U(0.05, 0.20) D = X2

X3 ∼ U(0.01, 0.20) S = X3

The Hazen–Williams model can be written as (using SI units)

QHW (R, S,CHW ) = 0.849CHW AR0.63S0.54, (19)

whereCHW is the Hazen-Williamsmaterial roughness, R = D/4 for pipes with full flow and
A, S are as defined above. Hazen-Williams is an empirical equation calibrated for turbulent
flows. For this reason, its range of applications is limited in comparison to that of Darcy-
Weisbach model. However, Hazen-Williams model is much easier to employ in practice,
since it does not require an iterative scheme. Besides, Hazen-Williams model has been found
to be very accurate for a wide range of situations of practical interest.

Finally, Chezy-Manning head loss model can be written as (using SI units)

QCM (R, S, nCM ) = 1

nCM
AR2/3

√
S, (20)

where nCM is the Manning material roughness and A, R, S are as defined above. The Chezy-
Manning model is also empirical and was calibrated for wholly rough flow regimes. Even
though it is also simple to employ, since no iterative scheme is required, some researchers
argue that Hazen–Williams empirical model is more accurate in comparison to Darcy–
Weisbach model and experimental data.

In this example, we compare these three classical models for parameters as defined in
Table 2. Random variable X1 is a multiplier for the material roughness of the pipe, with
Gamma distribution, expected value equal to 1.0 and standard deviation equal to 0.2 (i.e.
parameters (25.0, 0.04)). The expected values for CHW , e and nCM correspond to cast iron
pipes. The pipe diameter is defined by the Uniform random variable X2 ∼ U(0.05, 0.20) and
the slope of the energy line is given by Uniform random variable X3 ∼ U(0.01, 0.20). In
other words, the comparisons made here hold for cast iron pipes with uncertain roughness,
diameter in the range 0.05m to 0.20m and slope of the energy line in the range 1/100 to
20/100. The sensitivity indices were evaluated with a sample of size N = 105.

We first compare all three models by taking f1 = QDW , f2 = QHW and f3 = QCM .
The results are given in the first row of Table 3. We observe that the variance of the response
is mainly affected by uncertainties on the pipe diameter and slope of the energy line (X2

and X3, respectively). However, the response is also significantly affected by W , since we
get STW close to 16%. This indicates that the three models cannot be considered similar in
this case. Note that this analysis is not able to quantify direct discrepancy between individual
models. For this reason, we then proceed to comparison between two models at a time.

We now compare only Darcy-Weisbach and Hazen–Williams models, by taking f1 =
QDW , f2 = QHW . The results are given in the second row of Table 3. The results now
indicate weak sensitivity with respect toW , with STW close to 5%. This means that choosing
between Darcy–Weisbach and Hazen–Williams models has little impact on the variance of
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Table 3 Sensitivity indices for Example 2

Comparison STW (Model Choice) ST 1 ST 2 ST 3

Darcy-Weisbach vs

Hazen-Williams vs 0.1636 0.0806 0.6726 0.2650

Chezy-Manning

Darcy-Weisbach vs 0.0543 0.0686 0.7132 0.2922

Hazen-Williams

Darcy-Weisbach vs 0.0946 0.0495 0.7100 0.2645

Chezy-Manning

Hazen-Williams vs 0.2218 0.1170 0.6308 0.2602

Chezy-Manning

Bold symbols represent sensitivity indexes with respect to model choice

the response in the stochastic context considered here. In other words, Darcy-Weisbach and
Hazen–Williams models can be considered similar for the range of values considered.

The previous results indicate that Darcy–Weisbach and Hazen–Williams models are simi-
lar for the situation studied. This seems to indicate that Chezy-Manningmodel is not similar to
the other two, becausewhen all threemodels are compared simultaneouslyweget a significant
sensitivity with respect to W (see the first row of Table 3). In order to confirm this assump-
tion we now compare Darcy-Weisbach and Chezy-Manning models, by taking: f1 = QDW ,
f2 = QCM . The results are given in the third row of Table 3. Sensitivity with respect to W
now indicates that Chezy-Manning model is not very similar to Darcy–Weisbach, since we
get STW close to 10%.

In order to understand what is really happening we finally compare Hazen-Williams and
Chezy-Manning models, by taking: f1 = QHW , f2 = QCM . The results are given in the
last row of Table 3 and indicate that the two models are very discrepant, since we get STW
close to 22%. This is the largest discrepancy identified among the three models.

These results lead to the following conclusions:

• Hazen–Williams model can be considered similar to Darcy-Weisbach model under the
circumstances studied, with STW close to 5%;

• Similarity between Chezzy-Manning and Darcy–Weisbach models is arguable under the
circumstances studied, with STW close to 10%;

• Hazen–Williams and Chezy-Manning models are very discrepant under the circum-
stances studied, with STW close to 22%.

These conclusions are basically the same pointed out in the past by other researchers (see
Jamil and Mujeebu (2019)) and indicate the kind of insight we can get from the proposed
approach.

The total index STW was also evaluatedwith Eq. (9) for the following comparisons: Darcy-
Weisbach vs Hazen–Williams, Darcy–Weisbach vs Chezy-Manning and Hazen–Williams vs
Chezy-Manning. Crude MCS with a sample of size 106 was employed. The indexes resulted
STW = 0.0547, STW = 0.0909 and STW = 0.2257, respectively. These results are again
very similar to the ones obtained with GSA (see Table 3), demonstrating again that Eq. (9)
can be employed in practice. However, simultaneous comparison of the three models is not
possible in this case, since the RMS error can only be defined for twomodels at once. Finally,
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we again observe that the sensitivity with respect to the other random factors ST 1, ST 2 and
ST 3 cannot be obtained from the RMS error alone.

4.3 Second-order effects on plane frames

In the last example, we consider a problem from Structural Engineering, concerning the
ReinforcedConcrete (RC) plane frames fromFig. 1. In particular, we compare two commonly
employed mathematical models to represent the displacements of the structure. In the first
case, the static equilibrium equations are written considering the original geometry of the
structure. This approach is known as Linear Structural Analysis, since it leads to a system
of linear equations. In the second case, the static equilibrium equations are written for the
displaced configuration of the structure. This is known as Geometric Non-Linear Structural
Analysis, since it leads to a system of non-linear equations. Geometric Non-Linear Structural
Analysis is conceptually more accurate, since equilibrium indeed occurs in the displaced
configuration. However, in several practical applications, the displacements are very small,
due to design constraints, and Linear Structural Analysis is able to obtain accurate results.
Since Linear Structural Analysis is much easier to employ, because it avoids the system of
non-linear equations, engineers generally employ Linear Structural Analysis instead of Non-
Linear Analysis, unless strictly necessary. See McGuire et al. (2000) for more details on the
subject.

Here, we employ the proposed approach to identify if second order effects (i.e. bending
moment amplification due to consideration of Geometric Non-Linearity) are significant. The
first frame has two floors, while the second frame has four floors. Each story is 4m height
and 5m long. All beams have rectangular cross-section with base equal to 20cm and height
equal to 40cm. All columns have square cross-section with dimensions 20cm × 20cm.
The cross-section moment of inertia of columns and beams are multiplied by 0.8 and 0.4,
respectively, in order to represent loss of flexural stiffness due to cracking of the reinforced
concrete. Structural analysis was made with the software MASTAN2 (McGuire et al. 2000)
using a plane frame model and a single finite element for each structural member. Geometric
non-linear analysis was made with the predictor corrector algorithm using 10 uniform load
steps. The sensitivity indexes were evaluated with a sample of size N = 104.

The random variables are as defined in Table 4. The Gamma-distributed random variables
X1, X2, X3 are multipliers for the Elastic Modulus E , the lateral forces P and the distributed
loads q , respectively. These multipliers have expected value equal to 1.0 and standard devi-
ation equal to 0.1 (i.e. parameters [100, 0.01]). Finally, random variable X4 is normally
distributed and defines the out-of-plumb angle θ , as illustrated in Fig. 2.

In order to quantify the importance of second-order effects we consider the bending
moment at the base of the lower right column (the region indicated in red in Fig. 1). We thus
take

f1 = ML , (21)

f2 = MNL , (22)

where ML and MNL represent the bending moment at the base of the lower right column
obtainedwith linear and geometric non-linear analysis, respectively. The results are presented
in Table 5.

For the two-story frame, the sensitivity with respect to model choice is close to 5%. This
indicates a small influence of considering or not second order effects in this case. However,
for the four-story frame the sensitivity index with respect to model choice is close to 20%,
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Fig. 1 Reinforced Concrete (RC) plane frames

Table 4 Random variables for
RC plane frames

Random variable Structural parameters affected

X1 ∼ �(100, 0.01) E = X1 × 20GPa

X2 ∼ �(100, 0.01) P = X2 × 30kN

X3 ∼ �(100, 0.01) q = X3 × 15kN/m

X4 ∼ N (0, 0.02) θ = X4rad
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Fig. 2 Out-of-plumb angle θ

Table 5 Sensitivity indices for Example 3

Number of floors STW (Model Choice) ST 1 ST 2 ST 3 ST 4

2 Floors 0.0549 0.0024 0.7316 0.0090 0.1966

4 Floors 0.1966 0.0052 0.6515 0.0113 0.1440

Bold symbols represent sensitivity indexes with respect to model choice

indicating that geometric non-linearity is now an important factor of the problem. These
results indicate that linear structural analysis would likely be enough for most practical
purposes concerning the two-story frame studied. However, the four-story frame studied is
strongly subject to second-order effects that should be considered in practice.

We also observe that uncertainty on lateral loads (X2) is the most important factor in this
case. The out-of-plumb angle (X4) is also significant for the variance of the response. Finally,
uncertainties on the elastic modulus and distributed loads (X1 and X3, respectively) have a
small impact on the variance of the response.

The total index STW was also evaluated with Eq. (9) for the two RC plane frames. Crude
MCS with a sample of size 103 was employed. The indexes resulted STW = 0.0583 and
STW = 0.1941, respectively. These results are again vary similar to the ones obtained with
GSA.

5 Conclusions

In this work, we proposed an approach for mathematical models comparison in the stochastic
context. The problem is stated in the framework of GSA, by defining a random variable that
chooses which mathematical model is employed to evaluate the response. Sensitivity with
respect to this random variable then indicates if the mathematical models are similar or
not. We also demonstrated that the proposed approach is related to the RMS error. This
is an important results since the RMS error is a very popular approach for measuring the
discrepancy between two models. However, the main advantages of the proposed approach
are: (i) the problem of mathematical models comparison is cast in the sound framework of
GSA, (ii) the approach also quantifies if the discrepancy among the mathematical models is
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significant in comparison to uncertainties/randomness of the parameters, an analysis that is
not possible with RMS error alone.

When only two mathematical models are compared, the sensitivity index with respect to
model choice STW can also be evaluatedwith Eq. (9), using the RMS error and the variance of
the mean model. The results presented in the examples demonstrate that this expression can
be easily employed in practice. However, it should be highlighted that this approach cannot
be employed for simultaneous comparison of more than two models. Besides, this approach
is unable to provide the sensitivity indexes with respect to the other random factors of the
problem. For this reason, the proposed GSA approach is more general than the RMS error.
Even though, Eq. (9) may be very useful in practice when only two models are compared
and only STW is required, a situation that may indeed be common in practice.

It is important to point out that a variance-based sensitivity indexwas employed in thiswork
(Sobol’ total index). Thus, the approach proposed here shares the same limitations of standard
variance-based approaches. First, the approach requires large computation effort in order to
give accurate results. Besides, the approach is not recommended if higher order moments
(e.g. skewness and kurtosis) or other probability measures (e.g. reliability) are important.
However, it is important to highlight that several recent advancements on GSA could lead
to a reduction of the required computational effort (see Hübler (2020); Ehre et al. (2020);
Ökten and Liu (2021); Zhu and Sudret (2021); Papaioannou and Straub (2021)). Besides, the
proposed approach can be adapted for reliability-based GSA using the concepts presented in
Kala (2019); Fort et al. (2016). The numerical examples presented here illustrate the kind
of insight we can get from this analysis. We observe that the proposed approach is valuable
for identifying the level of discrepancy between mathematical models in a given stochastic
context (i.e. considering randomness/uncertainties on the parameters of the models).

Acknowledgements This research was partly supported by CNPq (Brazilian Research Council). These finan-
cial support are gratefully acknowledged.

Funding Funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (309846/2022-6).

Data availability All data used in this paper were obtained numerically. The first two examples can be repro-
duced with the details described in the text. The reader can contact the corresponding author in order to obtain
the structural model employed in the third example.

Declarations

Conflict of interest the authors declare that this work has no conflict of interest/competing interests.

Appendix A relation tomean square error

The total index with respect to model choice can be written as

STW = 1 − VX [EW [Y |X∼W ]]

V [Y ]

= EX [VW [Y |X∼W ]]

V [Y ]
.

(A1)

Let us define the auxiliary random variable

Z(X) = VW [Y |X∼W ] . (A2)
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If only two mathematical models f1, f2 are considered, we then have

Z(X) = 1

2
( f1(X) − EW [Y |X∼W ])2 + 1

2
( f2(X) − EW [Y |X∼W ])2 . (A3)

Besides

EW [Y |X∼W ] = 1

2
( f1(X) + f2(X)) . (A4)

Thus

f1(X) − EW [Y |X∼W ] = f1(X) − 1

2
( f1(X) + f2(X))

= 1

2
( f1(X) − f2(X))

(A5)

and

( f1(X) − EW [Y |X∼W ])2 = ( f2(X) − EW [Y |X∼W ])2

= 1

4
( f2(X) − f1(X))2 .

(A6)

Substitution of Eq. (A6) into Eq. (A3) gives

Z(X) = 1

4
( f2(X) − f1(X))2 . (A7)

Consequently

EX [VW [Y |X∼W ]] = EX [Z(X)]

= 1

4
EX

[
( f2(X) − f1(X))2

]
.

(A8)

The total index with respect to model choice can then be written as

STW = 1

4

EX
[
( f2(X) − f1(X))2

]

V [Y ]
(A9)

However, we observe that the Root Mean Square (RMS) Error is defined as

ERMS =
√

EX
[
( f2(X) − f1(X))2

]
. (A10)

For this reason we can write

STW = 1

4

E2
RMS

V [Y ]
(A11)

or, alternatively,

ERMS = 2
√
STWV [Y ]. (A12)

This demonstrates Eq. (8).
Also note that

V [Y ] = EX [VW [Y |X∼W ]] + VX [EW [Y |X∼W ]] (A13)

and

VX [EW [Y |X∼W ]] = VX

[
1

2
( f1(X) + f2(X))

]

. (A14)
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Thus

V [Y ] = 1

4
EX

[
( f2(X) − f1(X))2

] + VX

[
1

2
( f1(X) + f2(X))

]

. (A15)

It is then possible to write

V [Y ] = 1

4
E2
RMS + VX [m(X)] , (A16)

where

m(X) = 1

2
( f1(X) + f2(X)) (A17)

is the mean model, i.e. the point-wise mean between models f1 and f2. From these results
we can also write

STW = E2
RMS

E2
RMS + 4VX [m(X)]

, (A18)

that demonstrates Eq. (9).
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