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Abstract
In this paper, a unified approach for various extended inverses of tensors, the generalized
bilateral inverse of tensors via Einstein products, is introduced and we show that a number of
known generalized tensor inverses can be regarded as special cases of this idea. Some char-
acterizations of the CMP, DMP, andMPD inverse of tensors by using Einstein products are
provided. The notion of generalized bilateral inverses’ dual and self-duality are investigated.
In addition, the bilateral inverse solutions for singular linear tensor equations are studied.

Keywords Tensor · Generalized bilateral inverse of tensor · Dual · CMP inverse · DMP
inverse · Einstein product
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1 Introduction

Tensors are higher-dimensional generalizations of matrices and can thus be viewed as mul-
tidimensional array (Weiyang and Yimin 2016; Wei et al. 2018). Tensors have various
applications, such as data mining (Eldén 2007), machine learning (Rabanser et al. 2017),
computer vision (Cyganek and Gruszczyński 2014), automation systems (Zhao et al. 2017),
neuroscience (Beckmann and Smith 2005) etc.

Let CI1×···×IM denotes the set of all tensors of order M and their elements are denoted
as A = (ai1,i2,··· ,iM )1≤i j≤I j , j = 1, . . . , M . Suppose that A ∈ C

I1×···×IM×J1×···×JN . Then
A∗ ∈ C

J1×···×JN×I1×···×IM is a conjugate transpose ofA and is defined as (A∗) j1··· jN i1···iM =
āi1···iM j1··· jN , where the over-line stands for the conjugate of ai1···iM j1··· jN . If the tensor A is
real, then its transpose is represented by AT .
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Consider the Einstein product of two tensors, A ∈ C
I1×···×IN×K1×···×KN and B ∈

C
K1×···×KN×J1×···×JM . The Einstein product A ∗N B ∈ C

K1×···×KN×J1×···×JM was defined
as in Einstein (2007), using the operation via ∗N

(A ∗N B)i1···iN j1··· jM =
∑

k1···kN
ai1···iN k1···kN bk1···kN j1··· jM .

Suppose that B ∈ C
K1×···×KN . Thus,

A ∗N B ∈ C
I1×···×IN & (A ∗N B)i1···iN =

∑

k1···kN
ai1···iN k1···kN bk1···kN .

Definition 1 Sun et al. (2016) Let D ∈ C
I1×···×IN×I1×···×IN . Then the tensor D is diagonal

if (D)i1···iN× j1··· jN = 0 for (i1, . . . , iN ) �= ( j1, . . . , jN ).

Suppose that I ∈ C
I1×···×IN×I1×···×IN is the identity tensor. Then the tensor X ∈

C
I1×···×IN×I1×···×IN is considered the inverse of tensorA ∈ C

I1×···×IN×I1×···×IN if it satisfies
the condition X ∗N A = A ∗N X = I and it is represented byA−1 (see Brazell et al. 2013).

Suppose thatA ∈ C
I1×···×IN×J1×···×JM . IfX ∈ C

J1×···×JM×I1×···×IN satisfiesA∗M X ∗N

A = A, thenX is referred to as an inner inverse of tensorA. Alternatively, ifX ∗N A∗M X =
X , then X is referred to as an outer inverse of tensorA. Throughout this paper, the following
notations are established.

Gi (A) := {X ∈ C
J1×···×JM×I1×···×IN : A ∗M X ∗N A = A},

Go(A) := {X ∈ C
J1×···×JM×I1×···×IN : X ∗N A ∗M X = X }.

Furthermore, if X ∈ Gr (A) := Gi (A)∩Go(A), then X is represented as the reflexive inverse
of A.

Definition 2 Sun et al. (2016, Definition 2.2) Suppose that A ∈ C
I1×···×IN×J1×···×JM . The

tensor X ∈ Gr (A) that satisfies the following:

(A ∗M X )∗ = A ∗M X & (X ∗N A)∗ = X ∗N A,

is referred to as the Moore-Penrose inverse of the tensor A.

For A ∈ C
I1×···×IN×K1×···×KN , the null space N (A) and the range R(A) are defined by:

N (A) = {A ∗N X = O : X ∈ C
K1×···×KN } & R(A) = {A ∗N X : X ∈ C

K1×···×KN },
where O is the zero tensor (see Ji and Wei 2018).

Let A ∈ C
I1×···×IN×I1×···×IN . Define Ae := Ae−1 ∗N A, f or e ≥ 2.

Note that

{0} =N (I) ⊆ N (A) ⊆ N (A2) ⊆ · · · ⊆ N (Ae) ⊆ N (Ae+1) ⊆ · · · ⊆ C
I1×···×IN ,

{0} ⊆ · · · ⊆ R(Ae+1) ⊆ R(Ae) ⊆ · · · ⊆ R(A2) ⊆ R(A) ⊆ R(I) = C
I1×···×IN .

In Ji and Wei (2018), the index of a tensor A is represented by index(A) is defined as the
smallest non-negative integer e such that R(Ae+1) = R(Ae) or N (Ae+1) = N (Ae).

Definition 3 Ji andWei (2018, Theorem 3.3) The Drazin inverse ofA ∈ C
I1×···×IN×I1×···×IN

with index(A)=k, is the tensor X ∈ Go, which satisfies:

A ∗N X = X ∗N A & Ak+1 ∗N X = Ak .
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The Drazin inverse is represented by Ad . For more information (see Sahoo et al. 2020; Du
et al. 2019; Ma et al. 2019; Wang et al. 2023; Wang and Wei 2022; Sun et al. 2018; Bu et al.
2014).

Theorem 4 Wang et al. (2020, Theorem 1.1) Let A ∈ C
I1×···×IN×I1×···×IN . Then A can

be represented as the sum of two tensors CA and NA, such that, A = CA + NA, where
index(CA) ≤ 1, NA is nilpotent and CA ∗N NA = NA ∗N CA = O.

The tensorsCA and NA are referred to as the corepart and thenilpotent part ofA, respectively.
It is readily seen that CA = A ∗N Ad ∗N A.

Let A ∈ C
I1×···×IN×I1×···×IN . If the following conditions hold, the unique matrix X ∈

Go(A) is referred to as the DMP inverse of A and is represented by Ad,† Wang et al. (2020,
Theorem 2.2).

Ak ∗N X = Ak ∗N A† & X ∗N A = Ad ∗N A.

Note that Ad,† = Ad ∗N A ∗N A†.
By employing the same approach as in Wang et al. (2020, Theorem 2.2), the following

holds.

Proposition 1 Suppose thatA ∈ C
I1×···×IN×I1×···×IN with index(A) = k. ThenX = A†,d =

A† ∗N A ∗N Ad is the unique solution of the following:

X ∗N A ∗N X = X & A ∗N X = A ∗N Ad & X ∗N Ak = A† ∗N Ak . (1)

Definition 5 Let A ∈ C
I1×···×IN×I1×···×IN with index(A) = k. Then The MPD inverse of

A, represented by A†,d , the definition is as follows

A†,d := A† ∗N A ∗N Ad . (2)

LetA ∈ C
I1×···×IN×I1×···×IN . If the following conditions hold, the uniquematrixX ∈ Go(A)

is referred to as the CMP inverse ofA and is represented byAc,† = A† ∗N CA ∗N A† Wang
et al. (2020).

A ∗N X = CA ∗N A† & X ∗N A = A† ∗N CA & A ∗N X ∗N A = CA. (3)

2 CMP and DMP generalized inverses of tensors

This section introduces novel characterizations of CMP, DMP, and MPD inverses of tensors.
The theorem below demonstrates that one of the conditions inWang et al. (2020, Theorem

2.7) is unnecessary.

Theorem 6 Suppose that A ∈ C
I1×···×IN×I1×···×IN . Then X = Ac,† is the unique solution

of the following:

A ∗N X = CA ∗N A† & X ∗N A = A† ∗N CA & X ∗N A ∗N X = X . (4)

Proof It is obvious that the tensorX = Ac,† satisfies the system (4). Assume that two tensors
X1 and X2 satisfy (4), then

X1 = X1 ∗N A ∗N X1 = A† ∗N CA ∗N X1 = A† ∗N A ∗N Ad ∗N A ∗N X1

= A† ∗N A ∗N Ad ∗N CA ∗N A† = A† ∗N A ∗N Ad ∗N A ∗N X2

= A† ∗N CA ∗N X2 = X2 ∗N A ∗N X2 = X2.
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A novel characterization of DMP inverses of tensors, which does not rely on the index ofA,
is presented in the following (see Wang et al. (2020, Theorem 2.2)).

Theorem 7 Suppose that A ∈ C
I1×···×IN×I1×···×IN . Then X = Ad,† is the unique solution

of the following:

A ∗N X ∗N A ∗N X = CA ∗N A† & X ∗N A = Ad ∗N A & X ∗N A ∗N X = X .(5)

Proof It is evident that the tensor X = Ad ∗N A ∗N A† satisfies the system (5). Assume that
two tensors X1 and X2 satisfy (5), then

X1 = X1 ∗N A ∗N X1 = X1 ∗N A ∗N X1 ∗N A ∗N X1 = X1 ∗N CA ∗N A†

= X1 ∗N A ∗N Ad ∗N A ∗N A† = Ad ∗N A ∗N Ad ∗N A ∗N A†

= X2 ∗N A ∗N Ad ∗N A ∗N A† = X2 ∗N CA ∗N A†

= X2 ∗N A ∗N X2 ∗N A ∗N X2 = X2 ∗N A ∗N X2 = X2.

	

By employing the same approach as in the proof of Theorem 7, the following holds.

Corollary 8 Let A ∈ C
I1×···×IN×I1×···×IN . Then X = A†,d is the unique solution of the

following:

A ∗N X = A ∗N Ad & X ∗N A ∗N X ∗N A = A† ∗N CA & X ∗N A ∗N X = X .

In the following theorem we state a new characterization of Ac,†.

Theorem 9 Let A ∈ C
I1×···×IN×I1×···×IN . Then X = Ac,† is the unique solution satisfies

in 6.

A ∗N X ∗N A = CA & R(X ) ⊆ R(A∗) & R(X ∗) ⊆ R(A), (6)

Proof By (3),

A ∗N Ac,† ∗N A = CA,

Ac,† = Ac,† ∗N A ∗N Ac,† = (A† ∗N A)∗ ∗N Ad ∗N A ∗N A† ∗N A ∗N Ac,†

= A∗ ∗N (A†)∗ ∗N Ad,†,

Ac,† = Ac,† ∗N A ∗N Ac,† = Ac,† ∗N A ∗N A† ∗N A ∗N Ad ∗N (A ∗N A†)∗

= A†,d ∗N (A†)∗ ∗N A∗.

(7)

where U = (A†)∗ ∗N Ad,† ∈ C
I1×···×IN×I1×···×IN and V = A†,d ∗N (A†)∗ ∈

C
I1×···×IN×I1×···×IN . Therefore, by Stanimirović et al. (2020, Lemma 2.2 (a)), we obtain that

R(X ) ⊆ R(A∗) and R(X ∗) ⊆ R(A) are equivalent toAc,† = A∗ ∗N U andAc,† = V ∗N A∗,
respectively. By the Eq. (7), it is clear to see that Ac,† satisfies (6). Assume possible, there
exist X1 and X2 such that X1 �= X2, we have that

A ∗N X1 ∗N A = CA & X1 = A∗ ∗N U1 & X1 = V1 ∗N A∗, (8)

A ∗N X2 ∗N A = CA & X2 = A∗ ∗N U2 & X2 = V2 ∗N A∗, (9)

where U1,U2,V1,V2 ∈ C
I1×···×IN×I1×···×IN . Let

X = X2 − X1, U = U2 − U1, V = V2 − V1. (10)
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It then follows from (6), (8), (9) and (10),

A ∗N X ∗N A = 0 & X = A∗ ∗N U & X = V ∗N A∗.

By Panigrahy et al. (2020, Lemma 3.7), we have

(X ∗N A)∗ ∗N X ∗N A = A∗ ∗N (X )∗ ∗N X ∗N A
= A∗ ∗N (A∗ ∗N U)∗ ∗N X ∗N A
= A∗ ∗N (U)∗ ∗N (A ∗N X ∗N A) = O.

Therefore, X ∗N A = O. Meanwhile,

X ∗N X ∗ = X ∗N (V ∗N A∗)∗ = X ∗N A ∗N V∗ = O,

by Panigrahy et al. (2020, Remark 3.8), yields that X = O, and hence X1 = X2. Therefore,
we conclude that unique tensor X = Ac,† satisfying (6). 	

Corollary 10 Let A ∈ C

I1×···×IN×I1×···×IN . If there exist X and Z in C
I1×···×IN×I1×···×IN

satisfying

A ∗N X ∗N A = CA & X = A∗ ∗N Z ∗N A∗,

then X = Ac,†.

By employing the same approach as in the proof of Theorem 9, the following holds.

Corollary 11 Let A ∈ C
I1×···×IN×I1×···×IN . Then X = O is the unique solution satisfies

in 11.

A ∗N X = O & R(X ) ⊆ R(A∗). (11)

By using Corollary 11, we characterize Ac,† by two relations.

Theorem 12 Let A ∈ C
I1×···×IN×I1×···×IN . Then X = Ac,† is the unique solution satisfies

in 12.

A ∗N X = CA ∗N A† & R(X ) ⊆ R(A∗). (12)

In the following theorem, we characterize Ad,† by the relations in 13.

Theorem 13 Let A ∈ C
I1×···×IN×I1×···×IN . Then X = Ad,† is the unique solution satisfies

in 13.

A† ∗N X ∗N A = A†,d & R(X ) ⊆ R(A) & R(X ∗) ⊆ R(A). (13)

Proof It is clear thatA† ∗N Ad,† ∗N A = A†,d , R(Ad,†) = R(A∗N Ad ∗N A†) ⊆ R(A), and
R((Ad,†)∗) = R((Ad ∗N A ∗N A†)∗) = R((A†)∗ ∗N A∗ ∗N (Ad)∗) ⊆ R((A†)∗) = R(A).
That is, we have proved that Ad,† satisfies (13). By Stanimirović et al. (2020, Lemma 2.2
(a)), from (13), we can assume that X = (A†)∗ ∗N U and X = V ∗N A∗ for some U,V ∈
C

I1×···×IN×I1×···×IN .
Assume possible, there exist X1 and X2 such that X1 �= X2 and

A† ∗N X1 ∗N A = A†,d & X1 = (A†)∗ ∗N U1 & X1 = V1 ∗N A∗, (14)

A† ∗N X2 ∗N A = A†,d & X2 = (A†)∗ ∗N U2 & X2 = V2 ∗N A∗, (15)

where U1,U2,V1,V2 ∈ C
I1×···×IN×I1×···×IN . Let

X = X2 − X1, U = U2 − U1, V = V2 − V1. (16)
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It then follows from (13), (14), (15) and (16),

A† ∗N X ∗N A = O & X = (A†)∗ ∗N U & X = V ∗N A∗.

By Panigrahy et al. (2020, Lemma 3.7), we have that

(X ∗N A)∗ ∗N X ∗N A = A∗ ∗N (X )∗ ∗N X ∗N A
= A∗ ∗N ((A†)∗ ∗N U)∗ ∗N X ∗N A
= A∗ ∗N (U)∗ ∗N (A† ∗N X ∗N A) = O.

We obtain X ∗N A = O. Meanwhile, we find

X ∗N X ∗ = X ∗N (V ∗N A∗)∗ = (X ∗N A) ∗N V∗ = O,

by Panigrahy et al. (2020, Remark 3.8), we obtain X = O., and hence X1 = X2. Therefore,
we conclude that unique tensor X = Ad,† satisfying (13). 	

Corollary 14 Let A ∈ C

I1×···×IN×I1×···×IN . If there exist X ,Z ∈ Mn(C) satisfying

A† ∗N X ∗N A = A†,d & X = A ∗N Z ∗N A∗. (17)

then X = Ad,†.

By using Corollary 11, we characterize Ad,† by two relations.

Theorem 15 Let A ∈ C
I1×···×IN×I1×···×IN . Then X = Ad,† is the unique solution satisfies

in 18.

A† ∗N X = A†,d ∗N A† & R(X ) ⊆ R(A). (18)

By employing the same approach as in the proof of Theorem 13, the following hold.

Theorem 16 Suppose that A ∈ C
I1×···×IN×I1×···×IN . Then the solution satisfies in 19.

A ∗N X ∗N A† = Ad,† & R(X ) ⊆ R(A∗) & R(X ∗) ⊆ R(A∗). (19)

is unique and is given by X = A†,d .

Corollary 17 Let A ∈ C
I1×···×IN×I1×···×IN . If there exist X ,Z ∈ Mn(C) satisfying

A ∗N X ∗N A† = Ad,† & X = A∗ ∗N Z ∗N A. (20)

then X = A†,d .

By using Corollary 11, we characterize A†,d by two relations.

Theorem 18 Let A ∈ C
I1×···×IN×I1×···×IN . Then the solution satisfies in 21.

A ∗N X = A ∗N Ad & R(X ) ⊆ R(A∗). (21)

is unique and is given by X = A†,d .

First, we obtain the null space and the range of the outer inverse of the tensor A.

Lemma 1 Let A ∈ C
I1×···×IN×J1×···×JM and X ∈ Go(A). Then

R(I − A ∗M X ) = N (A ∗M X ) = N (X ),

N (I − X ∗N A) = R(X ∗N A) = R(X ).
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Proof Given that X ∗N A and A ∗M X are projections, we can conclude that:

R(I − A ∗M X ) = N (A ∗M X ) ⊆ N (X ∗N A ∗M X ) = N (X ) ⊆ N (A ∗M X ),

N (I − X ∗N A) = R(X ∗N A) ⊆ R(X ) = R(X ∗N A ∗M X ) ⊆ R(X ∗N A).

	

Lemma 2 (Panigrahy and Mishra (2022, Lemma 2.3)) If A ∈ C

I1×···×IN×I1×···×IN is a
Hermitian idempotent tensor, then A† = A.

Remark 1 LetA ∈ C
I1×···×IN×I1×···×IN is Hermitian idempotent tensor. Then CA = Ad,† =

A†,d .

Theorem 19 Let A ∈ C
I1×···×IN×I1×···×IN with index(A) = k. The solution to the system of

following:

Ak ∗N X = Ak+1 & A ∗N X = X ∗N A & X ∗N Ad ∗N X = X (22)

is unique and is given by X = CA.

Proof It is evident that the tensorX = CA satisfies the system (22). Assume that two tensors
X1 and X2 satisfy (22), then by Behera et al. (2020, Lemma 3.1), we have

X1 = X1 ∗N Ad ∗N X1 = X1 ∗N (Ad)2 ∗N A ∗N X1

= X1 ∗N (Ad)2 ∗N X1 ∗N A = X1 ∗N (Ad)k+2 ∗N Ak ∗N X1 ∗N A
= X1 ∗N (Ad)k+2 ∗N Ak+1 ∗N A = X1 ∗N Ak+1 ∗N (Ad)k+2 ∗N A
= Ak ∗N X1 ∗N A ∗N (Ad)k+2 ∗N A = Ak+1 ∗N A ∗N (Ad)k+2 ∗N A
= Ak ∗N X2 ∗N A ∗N (Ad)k+2 ∗N A = X2 ∗N Ak+1 ∗N (Ad)k+2 ∗N A
= X2 ∗N (Ad)k+2 ∗N Ak+1 ∗N A = X2 ∗N (Ad)k+2 ∗N Ak ∗N X2 ∗N A
= X2 ∗N (Ad)2 ∗N X2 ∗N A = X2 ∗N (Ad)2 ∗N A ∗N X2

= X2 ∗N Ad ∗N X2 = X2.

	

Next result gives the aforementioned relationships in terms of mainly the core part of the
tensor A.

Theorem 20 Let A ∈ C
I1×···×IN×I1×···×IN with index(A) = k. Then

(i) Ad,† ∗N CA = CA ∗N Ad,† if and only if Ak+1 ∗N A† = Ak .
(ii) A†,d ∗N CA = CA ∗N A†,d if and only if A† ∗N Ak+1 = Ak .
(iii) CA = Ad,† ∗N A if and only if Ak = Ak+1.
(iv) CA = A†,d ∗N A if and only if A† ∗N Ak = Ak .

Proof (i) By Ji and Wei (2018, Theorem 3.4 (1)) and Lemma 1, we have

Ad,† ∗N CA = CA ∗N Ad,†

⇔ Ad ∗N A ∗N (I − A ∗N A†) = O
⇔ N (A†) = N (A ∗N A†) = R(I − A ∗N A†) ⊆ N (Ad ∗N A) = N (Ad) = N (Ak)

⇔ Ak+1 ∗N A† = Ak .
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(i i) and (i i i) are similar to part (i).
(iv)

CA = A†,d ∗N A ⇔ CA = A† ∗N CA
⇔ (I − A†) ∗N CA = O
⇔ R(CA) ⊆ N (I − A†).

By Ji and Wei (2018, Theorem 3.4 (1)), we can conclude that

R(CA) = R(Ad ∗N A ∗N A) ⊆ R(Ad) = R(Ak)

= R(CA ∗N Ad ∗N Ak) ⊆ R(CA).

Therefore, R(CA) = R(Ak). We obtain R(Ak) ⊆ N (I − A†) ⇔ A† ∗N Ak = Ak . 	

Hartwig and Spindelböck decomposition of tensor A arrived at the following lemma.

Lemma 3 Wang et al. (2020, Lemma 1.3) Let A ∈ C
I1×···×IN×I1×···×IN . Then there exist

unitary U ∈ C
I1×···×IN×I1×···×IN such that

A = U ∗N

(
� ∗N K � ∗N L

O O
)

∗N U∗, (23)

where � ∈ C
R1×···×RN×R1×···×RN is a diagonal tensor of singular values of tensor A, and

the tensors K ∈ C
R1×···×RN×R1×···×RN , L ∈ C

R1×···×RN×(I1−R1)×···×(IN−RN ) satisfy:

K ∗N K∗ + L ∗N L∗ = I. (24)

Using the same approach as described in the proof of Wang et al. (2020, Theorem 2.3), the
following holds.

Corollary 21 Suppose that A ∈ C
I1×···×IN×I1×···×IN is in the form of (23). Then

A†,d = U ∗N

(K∗ ∗N �̃ K∗ ∗N �̃ ∗N (� ∗N K)d ∗N � ∗N L
L∗ ∗N �̃ L∗ ∗N �̃ ∗N (� ∗N K)d ∗N � ∗N L

)
∗N U∗, (25)

where �̃ = K ∗N (� ∗N K)d .

Weextend the recently obtained properties by usingCMP inverse to the tensor (seeMehdipour
and Salemi (2018, p. 4 (9))).

Theorem 22 Let A ∈ C
I1×···×IN×I1×···×IN be of the form (23). Then

(Ac,†)† = U ∗N

(
(�̃)† ∗N K (�̃)† ∗N L

O O
)

∗N U∗. (26)

Proof Suppose that A is expressed as shown in (23) and

X = U ∗N

(
(�̃)† ∗N K (�̃)† ∗N L

O O
)

∗N U∗.

By Wang et al. (2020, p. 7(2.6)) and (24), we have that

X ∗N Ac,†

= U ∗N

(
(�̃)† ∗N K (�̃)† ∗N L

O O
)

∗N U∗ ∗N U ∗N

(K∗ ∗N �̃ O
L∗ ∗N �̃ O

)
∗N U∗∗N
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= U ∗N

(
(�̃)† ∗N �̃ O

O O
)

∗N U∗.

According to Definition 2, it is straightforward to calculate the first equation, which states
that.

Ac,† ∗N X ∗N Ac,†

= U ∗N

(K∗ ∗N �̃ O
L∗ ∗N �̃ O

)
∗N U∗ ∗N U ∗N

(
(�̃)† ∗N �̃ O

O O
)

∗N U∗

= U ∗N

(K∗ ∗N �̃ O
L∗ ∗N �̃ O

)
∗N U∗ = Ac,†.

Moreover, the second equation

X ∗N Ac,† ∗N X

= U ∗N

(
(�̃)† ∗N �̃ O

O O
)

∗N U∗ ∗N U ∗N

(
(�̃)† ∗N K (�̃)† ∗N L

O O
)

∗N U∗

= U ∗N

(
(�̃)† ∗N K (�̃)† ∗N L

O O
)

∗N U∗ = X .

The third equation follows from

(Ac,† ∗N X )∗

=
(
U ∗N

(K∗ ∗N �̃ ∗N (�̃)† ∗N K K∗ ∗N �̃ ∗N (�̃)† ∗N L
L∗ ∗N �̃ ∗N (�̃)† ∗N K L∗ ∗N �̃ ∗N (�̃)† ∗N L

)
∗N U∗

)∗

= U ∗N

⎛

⎝K∗ ∗N

(
�̃ ∗N (�̃)†

)∗ ∗N K K∗ ∗N

(
�̃ ∗N (�̃)†

)∗ ∗N L
L∗ ∗N

(
�̃ ∗N (�̃)†

)∗ ∗N K L∗ ∗N

(
�̃ ∗N (�̃)†

)∗ ∗N L

⎞

⎠ ∗N U∗

= U ∗N

(K∗ ∗N �̃ ∗N (�̃)† ∗N K K∗ ∗N �̃ ∗N (�̃)† ∗N L
L∗ ∗N �̃ ∗N (�̃)† ∗N K L∗ ∗N �̃ ∗N (�̃)† ∗N L

)
∗N U∗

= Ac,† ∗N X .

The fourth equation follows from

(X ∗N Ac,†)∗ =
(
U ∗N

(
(�̃)† ∗N �̃ O

O O
)

∗N U∗
)∗

= U ∗N

((
(�̃)† ∗N �̃

)∗
O

O O

)
∗N U∗

= X ∗N Ac,†.

The tensor X fulfills four equations. Assume that both W and Z also satisfy four equations
each. In order to demonstrate the uniqueness, we need to show that

W = W ∗N (A ∗N W)∗ = W ∗N W∗ ∗N A∗ = W ∗N W∗ ∗N A∗ ∗N Z∗ ∗N A∗

= W ∗N (A ∗N W)∗ ∗N (A ∗N Z)∗ = W ∗N A ∗N Z
= W ∗N A ∗N Z ∗N A ∗N Z = (W ∗N A)∗ ∗N (Z ∗N A)∗ ∗N Z
= A∗ ∗N W∗ ∗N A∗ ∗N Z∗ ∗N Z = (Z ∗N A)∗ ∗N Z = Z.
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By using Theorem 22, we conclude the following.

Theorem 23 Suppose that A ∈ C
I1×···×IN×I1×···×IN be as in (23). Then A†,d ∗N (Ac,†)† =

(Ac,†)† ∗N Ad,† if and only if the following conditions hold.

1. K∗ ∗N �̃ ∗N K = (�̃)† ∗N �̃,
2. L∗ ∗N �̃ = 0,

where �̃ = �̃ ∗N (�̃)†.

Proof By Wang et al. (2020, Theorem 2.3), (24), (25) and (26), we have

A†,d ∗N (Ac,†)†

= U ∗N

(K∗ ∗N �̃ ∗N (�̃)† ∗N K K∗ ∗N �̃ ∗N (�̃)† ∗N L
L∗ ∗N �̃ ∗N (�̃)† ∗N K L∗ ∗N �̃ ∗N (�̃)† ∗N L

)
∗N U∗

(Ac,†)† ∗N Ad,† = U ∗N

(
(�̃)† ∗N �̃ O

O O
)

∗N U∗.

Then A†,d ∗N (Ac,†)† = (Ac,†)† ∗N Ad,† if and only if the following conditions hold.

K∗ ∗N �̃ ∗N (�̃)† ∗N K = (�̃)† ∗N �̃, (27)

K∗ ∗N �̃ ∗N (�̃)† ∗N L = O, (28)

L∗ ∗N �̃ ∗N (�̃)† ∗N L = O. (29)

Note that the Eq. (27) and the Part 1 of Theorem 23 are equivalent. Since using (24), by left-
multiplying the Eqs. (28) and (29) byK andL, respectively, we obtain �̃ ∗N (�̃)† ∗N L = O,
equivalent to L∗ ∗N �̃ ∗N (�̃)† = O, that is the Part 2 of Theorem 23. 	


3 Generalized bilateral inverse of tensor via Einstein product

In this section, we expand upon the recently introduced concept of a generalized bilateral
inverse for a tensor A using the Einstein product. Furthermore, we demonstrate that cer-
tain well-known generalized inverses can be viewed as specific instances of the generalized
bilateral inverses for tensors (see Kheirandish and Salemi 2023).

Definition 24 Let A ∈ C
I1×···×IN×J1×···×JM and let X1,X2 ∈ Gi (A) ∪ Go(A). Then X1 ∗N

A ∗M X2 is referred to as generalized bilateral inverse of tensor A.

Wewill now present a theorem that characterizes the generalized bilateral inverses of tensors.

Theorem 25 Suppose that A ∈ C
I1×···×IN×J1×···×JM and suppose that X1 ∈ Go(A) and

X2 ∈ Gi (A). The unique solution to the system of following:

X ∗N A ∗M X =X , A ∗M X ∗N A ∗M X =A ∗M X1 ∗N A ∗M X2, X ∗N A=X1 ∗N A.

(30)

is given by X = X1 ∗N A ∗M X2.

Proof Assume that X = X1 ∗N A ∗M X2 is a solution. Then

X ∗N A ∗M X = X1 ∗N A ∗M X2 ∗N A ∗M X1 ∗N A ∗M X2
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= X1 ∗N A ∗M X1 ∗N A ∗M X2 = X1 ∗N A ∗M X2

A ∗M X ∗N A ∗M X = A ∗M X1 ∗N A ∗M X2 ∗N A ∗M X1 ∗N A ∗M X2

= A ∗M X1 ∗N A ∗M X1 ∗N A ∗M X2

= A ∗M X1 ∗N A ∗M X2,

X ∗N A = X1 ∗N A ∗M X2 ∗N A = X1 ∗N A.

Suppose that two tensors W and Z satisfy (30), then

W =W ∗N A ∗M W = W ∗N A ∗M W ∗N A ∗M W
=W ∗N A ∗M X1 ∗N A ∗M X2 = X1 ∗N A ∗M X1 ∗N A ∗M X2

=Z ∗N A ∗M X1 ∗N A ∗M X2 = Z ∗N A ∗M Z = Z.

	

Using the same approach as described in the proof of Theorem 25, the following holds.

Corollary 26 Suppose that A ∈ C
I1×···×IN×J1×···×JM and suppose that X1 ∈ Go(A) and

X2 ∈ Gi (A). The unique solution to the system of following:

X ∗N A ∗M X =X , A ∗M X =A ∗M X1, X ∗N A ∗M X ∗N A=X2 ∗N A ∗M X1 ∗N A.

is given by X = X2 ∗N A ∗M X1.

The following proposition demonstrates that certain well-known generalized inverses of
tensors can be regarded as generalized bilateral inverses of tensors.

Proposition 2 Suppose that A ∈ C
I1×···×IN×I1×···×IN . Then

(i) A†,d = A† ∗N A ∗N Ad , (A† ∈ Gi (A) & Ad ∈ Go(A)).

(i i) Ad,† = Ad ∗N A ∗N A†, (Ad ∈ Go(A) & A† ∈ Gi (A)).

(i i i) Ac,† = A† ∗N A ∗N Ad,†, (A† ∈ Gi (A) & Ad,† ∈ Go(A)).

(iv) Ac,† = A†,d ∗N A ∗N A†, (A†,d ∈ Go(A) & A† ∈ Gi (A)).

Next, will define the dual of the generalized bilateral inverse for tensors in the following
manner:

Definition 27 Suppose that A ∈ C
I1×···×IN×I1×···×IN and suppose that X1,X2 ∈ Gi (A) ∪

Go(A). Then the dual of generalized bilateral inverse of tensor X1 ∗N A ∗N X2 is denoted
by

(X1 ∗N A ∗N X2)
′ := X2 ∗N A ∗N X1,

and X1 ∗N A ∗N X2 is called self dual, if X1 ∗N A ∗N X2 = X2 ∗N A ∗N X1.

Now, we extend the recently obtained properties in Kheirandish and Salemi (2023) for
tensors. LetA ∈ C

I1×···×IN×I1×···×IN ,X1 ∈ Go(A) and X2 ∈ Gi (A). The following theorem
presents the necessary and sufficient conditions for a generalized bilateral inverse of tensors
X1 ∗N A ∗N X2 to be self-dual.

Theorem 28 Suppose that A ∈ C
I1×···×IN×I1×···×IN ,X1 ∈ Go(A) and X2 ∈ Gi (A). Then,

the following statements are equivalent.

(i) X1 ∗N A ∗N X2 is self dual,
(ii) X1 = X1 ∗N A ∗N X2 = X2 ∗N A ∗N X1,
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(iii) N (A ∗N X2) ⊆ N (X1) and R(X1) ⊆ R(X2 ∗N A).

Proof ((i) → (i i)) Assume X1 ∗N A ∗N X2 = X2 ∗N A ∗N X1. Since A ∗N X2 ∗N A = A
and X1 ∗N A ∗N X1 = X1, we obtain that

X1 =X1 ∗N A ∗N X1 = X1 ∗N (A ∗N X2 ∗N A) ∗N X1

=(X1 ∗N A ∗N X2) ∗N A ∗N X1 = (X2 ∗N A ∗N X1) ∗N A ∗N X1

=X2 ∗N A ∗N (X1 ∗N A ∗N X1) = X2 ∗N A ∗N X1.

Then X1 = X1 ∗N A ∗N X2 = X2 ∗N A ∗N X1.

((i i) → (i i i)) SinceX1 = X1 ∗N A∗N X2, we obtain that N (A∗N X2) ⊆ N (X1 ∗N A∗N

X2) = N (X1).Also, sinceX1 = X2∗NA∗NX1,weobtain that R(X1) = R(X2∗NA∗NX1) ⊆
R(X2 ∗N A).

((i i i) → (i)) Using Lemma 1, we can see that R(I − A ∗N X2) = N (A ∗N X2) and
N (A ∗N X2) ⊆ N (X1). Therefore, R(I − A ∗N X2) ⊆ N (X1) which implies that X1 ∗N

(I − A ∗N X2) = 0. Hence, we have X1 = X1 ∗N A ∗N X2. Similarly, using Lemma 1, we
arrive R(X2 ∗N A) = N (I −X2 ∗N A) and R(X1) ⊆ R(X2 ∗N A) = N (I −X2 ∗N A). This
implies that (I − X2 ∗N A) ∗N X1 = 0. Therefore we have X1 = X2 ∗N A ∗N X1, which
completes the proof. 	

Let A ∈ C

I1×···×IN×I1×···×IN , X1 = AD, X2 = A†. By Theorem 28, Lemma 1, Ji and Wei
(2018, Theorem 3.4 (1)) and Sahoo et al. (2020, Theorem 3.7 a(i)), we deduce the following.

Proposition 3 Suppose thatA ∈ C
I1×···×IN×I1×···×IN with index(A) = k. Then, the following

statements are equivalent.

(i) Ad ∗N A ∗N A† = A† ∗N A ∗N Ad ,

(ii) Ad = Ad,† = A†,d ,
(iii) N (A∗) ⊆ N (Ak) & R(Ak) ⊆ R(A∗).

The following theorem states the necessary and sufficient conditions for the generalized
bilateral inverse of tensors to be self-dual.

Theorem 29 Suppose thatA ∈ C
I1×···×IN×I1×···×IN ,X2 ∈ Go(A) and X1 ∈ Gi (A)∪Go(A).

Then X1 ∗N A ∗N X2 is self dual, X1 ∗N A ∗N X2 = (X1 ∗N A ∗N X2)
′ = X2 ∗N A ∗N X1,

if and only if N (X2) ⊆ N (X2 ∗N A ∗N X1) and R(X1 ∗N A ∗N X2) ⊆ R(X2).

Proof Assume X1 ∗N A ∗N X2 = X2 ∗N A ∗N X1. Since X2 ∗N A ∗N X2 = X2 and by
Lemma 1, we obtain the following relations:

X2 ∗N A ∗N X1 = (X2 ∗N A ∗N X2) ∗N A ∗N X1 = X2 ∗N A ∗N X1 ∗N A ∗N X2,

X2 ∗N A ∗N X1 ∗N (I − A ∗N X2) = 0, (31)

N (X2) = N (A ∗N X2) = R(I − A ∗N X2) ⊆ N (X2 ∗N A ∗N X1), (32)

X1 ∗N A ∗N X2 = X1 ∗N A ∗N (X2 ∗N A ∗N X2) = X2 ∗N A ∗N X1 ∗N A ∗N X2

(I − X2 ∗N A) ∗N X1 ∗N A ∗N X2 = 0, (33)

R(X1 ∗N A ∗N X2) ⊆ N (I − X2 ∗N A) = R(X2 ∗N A) = R(X2). (34)

Therefore,

N (X2) ⊆ N (X2 ∗N A ∗N X1), R(X1 ∗N A ∗N X2) ⊆ R(X2).
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Conversely, we know that Eqs. (31), (32), (33), and (34) are equivalent. Therefore, X2 ∗N

A ∗N X1 = X2 ∗N A ∗N X1 ∗N A ∗N X2 and X1 ∗N A ∗N X2 = X2 ∗N A ∗N X1 ∗N A ∗N X2.

Therefore, X1 ∗N A ∗N X2 = X2 ∗N A ∗N X1. 	

Theorem 30 Suppose that A ∈ C

I1×···×IN×I1×···×IN . Then

(i) Ad = Ad ∗N A ∗N A† if and only if (Ad ∗N A ∗N A†)′ = Ac,†.
(ii) Ad = A† ∗N A ∗N Ad if and only if (A† ∗N A ∗N Ad)′ = Ac,†.

Proof (i)

Ad = Ad ∗N A ∗N A†,

⇔ A† ∗N A ∗N Ad = A† ∗N A ∗N Ad ∗N A ∗N A†,

⇔ (Ad ∗N A ∗N A†)′ = Ac,†.

(i i)

Ad = A† ∗N A ∗N Ad ,

⇔ Ad ∗N A ∗N A† = A† ∗N A ∗N Ad ∗N A ∗N A†

⇔ (A† ∗N A ∗N Ad)′ = Ac,†.

	

The remark below demonstrates that the dual of a generalized bilateral inverseX1∗N A∗N X2

is closely linked to X1 and X2.

Remark 2 Let A ∈ C
I1×···×IN×I1×···×IN . Using Definition 27 and Proposition 2(iii)-(iv), it

follows that Ac† = A† ∗N A ∗N Ad,† = A†,d ∗N A ∗N A†. But

(A† ∗N A ∗N Ad,†)′ = Ad,† ∗N A ∗N A† = Ad,†.

(A†,d ∗N A ∗N A†)′ = A† ∗N A ∗N A†,d = A†,d ,

The theorem below presents the necessary and sufficient conditions for the generalized
bilateral inverses of tensor A† ∗N A ∗N Ad,† to be self dual.

Theorem 31 Suppose that A ∈ C
I1×···×IN×I1×···×IN with index(A) = k. The following

statements are equivalent:

(i) A† ∗N A ∗N Ad,† = Ad,† ∗N A ∗N A†.
(ii) R(Ak) ⊆ R(A∗) & N (A∗) ⊆ N (Ak ∗N A†).

Proof From Theorem 28, we can conclude that A† ∗N A ∗N Ad,† = Ad,† ∗N A ∗N A† if
and only if R(Ad,†) ⊆ R(A† ∗N A) and N (A ∗N A†) ⊆ N (Ad,†). By applying Lemma 1,
R(A† ∗N A) = R(A†) and N (A†) = N (A ∗N A†). Furthermore, according to Sahoo et
al. (2020, the first part Theorem 3.7), we can conclude that R(A†) = R(A∗) and N (A†) =
N (A∗). Moreover, by Ji and Wei (2018, Theorem 3.4 (1)) and Behera et al. (2020, Lemma
3.1), we have that

R(Ad,†) = R(Ad ∗N A ∗N A†) ⊆ R(Ad) = R(Ak)

= R(Ad,† ∗N A ∗N Ak) ⊆ R(Ad,†)

N (Ad,†) ⊆ N (Ak ∗N Ad,†) = N (Ak ∗N A†) ⊆ N ((Ad)k ∗N Ak ∗N A†)

= N (Ad ∗N A ∗N A†) = N (Ad,†).

Then,wehave R(Ad,†) = R(Ak) and N (Ad,†) = N (Ak∗NA†). Therefore, R(Ak) ⊆ R(A∗)
and N (A∗) ⊆ N (Ak ∗N A†). 	
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4 Bilateral inverse solutions of singular tensor equations

Let A ∈ C
I1×···×IN×I1×···×IN be a tensor with index(A) ≥ 1 and B ∈ C

I1×···×IN . As
an application of the DMP, MPD and CMP inverses of tensor, we consider the following
equation

A ∗N X = B. (35)

First, we state the following theorem.

Theorem 32 Suppose that A ∈ C
I1×···×IN×I1×···×IN with index(A) = k. Then

(i) The Eq. (35) has a solution Ad,† ∗N B if and only if B ∈ R(Ak).
(ii) The Eq. (35) has a solution A†,d ∗N B if and only if B ∈ R(Ak).
(iii) The Eq. (35) has a solution Ac,† ∗N B if and only if B ∈ R(Ak).

Proof (i) Let Ad,† ∗N B is a solution of (35). By Ji and Wei (2018, Theorem 3.4 (1)), we
have

B = A ∗N Ad,† ∗N B = Ad ∗N A2 ∗N A† ∗N B ∈ R(Ad) = R(Ak).

Suppose that B ∈ R(Ak), by Stanimirović et al. (2020, Lemma 2.2 (a)), we can conclude
that is a tensor U ∈ C

I1×···×IN such that B = Ak ∗N U . Set X1 = Ad,† ∗N B. Thus,
A ∗N X1 = A ∗N Ad,† ∗N B = A ∗N Ad ∗N A ∗N A† ∗N Ak ∗N U = B,

implying that Ad,† ∗N B is a solution of (35).
(ii) and (iii) have similar proofs to that of (i). 	


Using the same approach as described in the proof of Theorem 32, the following holds.

Remark 3 Let A ∈ C
I1×···×IN×I1×···×IN with index(A) = k. Then

(i) Ad,† ∗N B = Ad ∗N B, if B ∈ R(A).

(ii) A†,d ∗N B = A† ∗N B, if B ∈ R(Ak).

(iii) Ac,† ∗N B = A† ∗N B, if B ∈ R(Ak).

Theorem 33 Assume that A ∈ C
I1×···×IN×I1×···×IN with index(A) = k and assume that

B ∈ R(Ak). Then

(i) The general solution of (35) takes of the form

X = Ad,† ∗N B + (I − A† ∗N A) ∗ Y (36)

for any tensor Y ∈ C
I1×···×IN .

(ii) The Eq. (35) has the unique solution Ad,† ∗N B ∈ R(Ak).

Proof (i) By Theorem 32(i), Ad,† ∗N B is a solution (35). Assume that X = Ad,† ∗N B +
(I − A† ∗N A) ∗ (Y1 + Y2), where Y1 ∈ C

I1×···×IN and A ∗N Y2 = O. Then

A ∗N X = A ∗N Ad,† ∗N B + (A − A ∗N A† ∗N A) ∗ (Y1 + Y2) = B,

that is X is a solution (35). Assume that W is any arbitrary solution of (35). It is clear that
R(I − A† ∗N A) ⊆ N (A) and W − Ad,† ∗N B ∈ N (A). Because

N (A) = R(I − A† ∗N A) +
(
N (A) ∩ R(I − A† ∗N A)⊥

)
,
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we have thatW −Ad,† ∗N B = (I −A† ∗N A) ∗N W1 +W2, whereW2 ∈ N (A) ∩ R(I −
A† ∗N A)⊥. Because W2 ∈ N (A), we obtain A ∗N W2 = O. Moreover,

W2 = W2 − A† ∗N A ∗N W2 = (I − A† ∗N A) ∗N W2.

Therefore, W − Ad,† ∗N B = (I − A† ∗N A) ∗ (W1 + W2), where W1 ∈ C
I1×···×IN and

W2 ∈ N (A).
(i i)LetX be a solution in R(Ak). By Theorem 32(i),Ad,†∗N B is a solution in R(Ak). By

the proof of Theorem 31, we have R(Ad,†) = R(Ak). We have thatX −Ad,† ∗N B ∈ R(Ak).
Moreover, as stated in Part (i) of this theorem,we have thatX−Ad,†∗NB = (I−A†∗NA)∗Y
for some Y . Now Ak ∗N (X − Ad,† ∗N B) = (Ak − Ak ∗N A† ∗N A) ∗ Y = O. Hence
X − Ad,† ∗N B ∈ N (Ak). Thus, X − Ad,† ∗N B ∈ R(Ak) ∩ N (Ak) = {O}, that is
X = Ad,† ∗N B. 	

Theorem 34 Let A ∈ C

I1×···×IN×I1×···×IN with index(A) = k and assume that B ∈ R(Ak).
Then

(i) The general solution of (35) is of the form

X = A†,d ∗N B + (I − A† ∗N A) ∗ Y (37)

for any tensor Y ∈ C
I1×···×IN .

(ii) The Eq. (35) has the unique solution A†,d ∗N B ∈ R(A† ∗N Ak).

Proof (i) By using a method similar to the one employed in the proof of Theorem 33(i).
(i i) Suppose thatX is a solution in R(A†∗N Ak). Using a similar method as in the proof of

Theorem31,we obtain R(A†,d) = R(A†∗NAk). This impliesX−A†,d∗NB ∈ R(A†∗NAk).
Moreover, as stated in Part (i) of this theorem,we have thatX−A†,d∗NB = (I−A†∗NA)∗Y
for some Y . Now Ak ∗N (X − A†,d ∗N B) = (Ak − Ak ∗N A† ∗N A) ∗ Y = O. Hence
X − A†,d ∗N B ∈ N (Ak). Therefore,

X − A†,d ∗N B ∈ R(A† ∗N Ak) ∩ N (Ak) ⊆ R(A† ∗N Ak) ∩ N (A† ∗N Ak) = {O},
that is X = A†,d ∗N B. 	

Using the same approach as described in the proof of Theorem 34, the following holds.

Corollary 35 Let A ∈ C
I1×···×IN×I1×···×IN with index(A) = k and assume that B ∈ R(Ak).

Then

(i) The general solution of (35) takes of the form

X = Ac,† ∗N B + (I − A† ∗N A) ∗ Y (38)

for any tensor Y ∈ C
I1×···×IN .

(ii) The Eq. (35) has the unique solution Ac,† ∗N B ∈ R(A† ∗N Ak).

As an application of the DMP, MPD and CMP inverses of tensor, we consider the following
equation

CA ∗N X = B, (39)

where A ∈ C
I1×···×IN×I1×···×IN and X ,B ∈ C

I1×···×IN . Using the same approach as
described in the proof of Theorem 32, the following holds.

Corollary 36 Suppose that A ∈ C
I1×···×IN×I1×···×IN with index(A) = k. Then
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(i) The Eq. (39) has a solution Ad,† ∗N B if and only if B ∈ R(Ak).
(ii) The Eq. (39) has a solution A†,d ∗N B if and only if B ∈ R(Ak).
(iii) The Eq. (39) has a solution Ac,† ∗N B if and only if B ∈ R(Ak).

Using the same approach as described in the proof of Theorems 33 and 34, the following
hold.

Corollary 37 Assume that A ∈ C
I1×···×IN×I1×···×IN with index(A) = k and assume that

B ∈ R(Ak). Then

(i) The general solution of (39) takes of the form

X = Ad,† ∗N B + (I − Ad ∗N A) ∗N Y,

for any tensor Y ∈ C
I1×···×IN .

(ii) The Eq. (39) has the unique solution Ad,† ∗N B ∈ R(Ak).

Corollary 38 Assume that A ∈ C
I1×···×IN×I1×···×IN with index(A) = k and assume that

B ∈ R(Ak). Then

(i) The general solution of (39) is of the form

X = A†,d ∗N B + (I − Ad ∗N A) ∗N Y,

for any tensor Y ∈ C
I1×···×IN .

(ii) The Eq. (39) has the unique solution A†,d ∗N B ∈ R(A† ∗N Ak).

Corollary 39 Assume that A ∈ C
I1×···×IN×I1×···×IN with index(A) = k and assume that

B ∈ R(Ak). Then

(i) The general solution of (39) takes of the form

X = Ac,† ∗N B + (I − Ad ∗N A) ∗N Y,

for any tensor Y ∈ C
I1×···×IN .

(ii) The Eq. (39) has the unique solution Ac,† ∗N B ∈ R(A† ∗N Ak).

Suppose that A ∈ C
I1×···×IN×I1×···×IN and X ,B ∈ C

I1×···×IN . As an application of the
core-part of A, we consider the following equation:

A† ∗N X = B. (40)

Theorem 40 LetA ∈ C
I1×···×IN×I1×···×IN and B ∈ R(A† ∗N Ad). Then the general solution

of (40) takes of the form

X = CA ∗N B + (I − A ∗N A†) ∗N Y,

for any tensor Y ∈ C
I1×···×IN .

Proof Using a similar method as in the proof of Theorem 32, we obtain that X0 = CA ∗N B
is a solution of Eq. (40) if and only if B ∈ R(A† ∗N Ad). Also, by Lemma 1, it is clear that
R(I − A ∗N A†) = N (A ∗N A†) = N (A†). Thus,

A† ∗N [CA ∗N B + (I − A ∗N A†) ∗N Y] = A† ∗N CA ∗N B + O = B.
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As an application of theDMP,MPDandCMP inverses of tensor, we consider the following
equation

Ak+1 ∗N X = Ak ∗N B, (41)

where index(A) = k and B ∈ R(Ak). If B ∈ R(Ak) and index(A) = k, then each member
of the set {Ad ∗N B,Ad,† ∗N B,A†,d ∗N B,Ac,† ∗N B} is a solution of Eqs. (35) and (41)
(see Behera et al. (2020, P. 21)).

Theorem 41 LetA ∈ C
I1×···×IN×I1×···×IN and B ∈ R(Ak) with index(A) = k. Then, the set

of all solutions of (41) can be represented as

X = Ad,† ∗N B + N (Ak).

Furthermore, the Eq. (41) has the unique solution X = Ad,† ∗N B ∈ R(Ak).

Proof Assume B ∈ R(Ak). By Stanimirović et al. (2020, Lemma 2.2 (a)), we can conclude
that there is a tensor U ∈ C

I1×···×IN such that B = Ak ∗N U .
Ak+1 ∗N (X − Ad,† ∗N B) = Ak+1 ∗N X − Ak+1 ∗N Ad ∗N A ∗N A† ∗N B

= Ak ∗N B − Ak ∗N A ∗N A† ∗N Ak ∗N U
= Ak ∗N B − Ak ∗N B = O.

From Ji and Wei (2018, Theorem 3.2), we have that X − Ad,† ∗N B ∈ N (Ak+1) = N (Ak).
Therefore, X = Ad,† ∗N B + N (Ak). Let X be a solution in R(Ak). Moreover, by The-
orem 32(i) and the proof of Theorem 31, we arrive X − Ad,† ∗N B ∈ R(Ak). For the
uniqueness in R(Ak), let V ∈ R(Ak) be any solution of (41). Now V −Ad,† ∗N B ∈ R(Ak),
we have Ak+1 ∗N V − Ak+1 ∗N Ad,† ∗N B = O. So, V − Ad,† ∗N B ∈ N (Ak). Hence,
V − Ad,† ∗N B ∈ R(Ak) ∩ N (Ak) = {O}. i.e., V = Ad,† ∗N B. 	

Using the same approach as described in the proof of Theorems 34(i i) and 41, the following
hold.

Corollary 42 Suppose that A ∈ C
I1×···×IN×I1×···×IN and B ∈ R(Ak) with index(A) = k.

Then, the set of all solutions of (41) can be represented as

X = A†,d ∗N B + N (Ak).

Furthermore, the Eq. (41) has the unique solution X = A†,d ∗N B ∈ R(A† ∗N Ak).

Corollary 43 Suppose that A ∈ C
I1×···×IN×I1×···×IN and B ∈ R(Ak) with index(A) = k.

Then, the set of all solutions of (41) can be represented as

X = Ac,† ∗N B + N (Ak).

Furthermore, the Eq. (41) has the unique solution X = Ac,† ∗N B ∈ R(A† ∗N Ak).

As an application of the DMP, MPD and CMP inverses of tensor, we consider the following
equation

Ak ∗N X = Ak ∗N A† ∗N B. (42)

where index(A) = k and B ∈ R(Ak). If B ∈ R(Ak) and index(A) = k, then each member
of the set {Ad,† ∗N B,A†,d ∗N B,Ac,† ∗N B} is a solution of Eqs. (41) and (42).
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Theorem 44 Suppose that A ∈ C
I1×···×IN×I1×···×IN and X ,B ∈ C

I1×···×IN with
index(A) = k. Then X = Ac,† ∗N B is a solution of Eq. (42). Moreover, X =
Ac,† ∗N B + (I −Ad ∗N A) ∗N Y is the general solution of Eq. (42), where Y ∈ C

I1×···×IN

is an arbitrary tensor.

Proof Set X = Ac,† ∗N B. Then,
Ak ∗N X = Ak ∗N Ac,† ∗N B = Ak ∗N A† ∗N B.

By Ji and Wei (2018, Theorem 3.4), we have R(I −Ad ∗N A) = N (Ad ∗N A) = N (Ad) =
N (Ak).

Thus,Ak ∗N [Ac,†∗N B+(I−Ad ∗N A)∗N Y] = Ak ∗N Ac,†∗N B+O = Ak ∗N A†∗N B.

	

Using the same approach as described in the proof of Theorem 44, the following holds.

Corollary 45 Suppose that A ∈ C
I1×···×IN×I1×···×IN and X ,B ∈ C

I1×···×IN with
index(A) = k. Then X = Ad,† ∗N B is a solution of the Eq. (42). Moreover, X =
Ad,† ∗N B + (I −A ∗N Ad) ∗N Y is the general solution of Eq. (42), where Y ∈ C

I1×···×IN

is an arbitrary tensor.

Using the same approach as described in the proof of Theorems 34(i i) and 41, the following
holds.

Remark 4 Let A ∈ C
I1×···×IN×I1×···×IN and B ∈ R(Ak) with index(A) = k. Then

(i) The Eq. (42) has a unique solution X = Ad,† ∗N B ∈ R(Ak) and its general solution
X = Ad,† ∗N B + N (Ak).

(ii) The Eq. (42) has a unique solution X = A†,d ∗N B ∈ R(A† ∗N Ak) and its general
solution X = A†,d ∗N B + N (Ak).

(iii) The Eq. (42) has a unique solution X = Ac,† ∗N B ∈ R(A† ∗N Ak) and its general
solution X = Ac,† ∗N B + N (Ak).
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