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Abstract

In this paper, a unified approach for various extended inverses of tensors, the generalized
bilateral inverse of tensors via Einstein products, is introduced and we show that a number of
known generalized tensor inverses can be regarded as special cases of this idea. Some char-
acterizations of the CMP, DMP, and MPD inverse of tensors by using Einstein products are
provided. The notion of generalized bilateral inverses’ dual and self-duality are investigated.
In addition, the bilateral inverse solutions for singular linear tensor equations are studied.

Keywords Tensor - Generalized bilateral inverse of tensor - Dual - CMP inverse - DMP
inverse - Einstein product

Mathematics Subject Classification 15A09 - 15A69 - 65F20

1 Introduction

Tensors are higher-dimensional generalizations of matrices and can thus be viewed as mul-
tidimensional array (Weiyang and Yimin 2016; Wei et al. 2018). Tensors have various
applications, such as data mining (Eldén 2007), machine learning (Rabanser et al. 2017),
computer vision (Cyganek and Gruszczynski 2014), automation systems (Zhao et al. 2017),
neuroscience (Beckmann and Smith 2005) etc.

Let Cl><*Im denotes the set of all tensors of order M and their elements are denoted
as A = (@i iy, iy )1<ij<i;» j = 1,..., M. Suppose that A € ClrxexIyxJixxJy Then
A* g C/reInxdixxIu i5 g conjugate transpose of A and is defined as (A*) ... jyi, iy =
Qjy.--ips 1 ji » Where the over-line stands for the conjugate of a;,...;, j; .. jy - If the tensor A is
real, then its transpose is represented by A7 .
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Consider the Einstein product of two tensors, A € ClXxIvxKix—xKy apnd B ¢
CKi<xKy>xJix-xJu The Einstein product A sy B € CK>xKnxJixxJu \ag defined
as in Einstein (2007), using the operation via %y

(A*N B)ijoiy jiju = Z Qjywcingky kg Dy -k 1o -
ky--ky
Suppose that B € CK1* KN Thus,

A*N Be (CIIX."XIN & (A *N B)i1-~-i1\1 = Z ai[---iNkl--~kok1“-kN'
ki--kn

Definition 1 Sun et al. (2016) Let D € C/1>*~xIvxI1xxIN Then the tensor D is diagonal
if (D)il“'iNle"'jN =0 for (i], ey iN) # (j], ey JN)

Suppose that Z € Cl>xIvxIix-xIy g the identity tensor. Then the tensor X &
ClxxdyxIix-xIy is considered the inverse of tensor A € Cl > InxxxIy if it gatisfies
the condition X *y A = A*xy X = Z and it is represented by A1 (see Brazell et al. 2013).

Suppose that 4 € ClxxInxJixxJu 1f x g Clx-xImxIxxIN satisfies Aspr X sy
A = A, then X is referred to as an inner inverse of tensor .A. Alternatively, if X' sy A%y X =
X, then X is referred to as an outer inverse of tensor .A. Throughout this paper, the following
notations are established.

Gi(A) := (X e CI > ImxTicxIn . Ay X sy A= A},
Go(A) := (X e CIreXdxlixxIn .y g Ay X = X).

Furthermore, if X € G, (A) := G;(A) NG,(A), then X is represented as the reflexive inverse
of A.

Definition 2 Sun et al. (2016, Definition 2.2) Suppose that A € C/1>X*INxJix=xJu The
tensor X € G, (A) that satisfies the following:

Asy DN " =Axy X & (X sy A" =X sy A,
is referred to as the Moore-Penrose inverse of the tensor .A.
For A € CI<xInxKix--xKn “the null space N (A) and the range R(A) are defined by:
N(A) = {Asxy X =0:x e CRdny & R(A) = {Axy X : X e CROoKvy,

where O is the zero tensor (see Ji and Wei 2018).
Let A € ChxxINxIix-xIN Define A° := A xy A, for e>2.
Note that

{0} =N(Z) S N(A) S N(A) S --- S N(A) S NATH ..o c clooxdv,
{0} S+ C R S R(A) -+ C R(A®) € R(A) S R(Z) = CloxIv,

In Ji and Wei (2018), the index of a tensor A is represented by index (A) is defined as the
smallest non-negative integer e such that R(A¢*!) = R(A¢) or N(A°t!) = N(A4°).

Definition 3 Ji and Wei (2018, Theorem 3.3) The Drazin inverse of A g C/1X v x11x--xIy
with index(A)=k, is the tensor X € G,, which satisfies:

Asy X=X sy A & AH 5y x = AF
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The Drazin inverse is represented by A?. For more information (see Sahoo et al. 2020; Du
et al. 2019; Ma et al. 2019; Wang et al. 2023; Wang and Wei 2022; Sun et al. 2018; Bu et al.
2014).

Theorem 4 Wang et al. (2020, Theorem 1.1) Let A € CH><*INxIixXIN Thep A can
be represented as the sum of two tensors C 4 and N 4, such that, A = C 4 + N4, where
index(C4) <1, N 4 is nilpotent and C o xy Ng = Ny xy C4 = O.

The tensors C 4 and N 4 are referred to as the core part and the nilpotent part of A, respectively.
It is readily seen that C 4 = A *y A 5y A.

Let A € Clr¢-xInxIixxIn 1f the following conditions hold, the unique matrix X
Go(A) is referred to as the DMP inverse of A and is represented by A% Wang et al. (2020,
Theorem 2.2).

Asy X = A sy AT & X xy A=A 5y A

Note that AT = A% sy A sy A'.
By employing the same approach as in Wang et al. (2020, Theorem 2.2), the following
holds.

Proposition 1 Suppose that A € Cl>*xInxIox<xIN yih index(A) = k. Then X = A™ =
AT sy Axy A? is the unique solution of the following:

Xsy Asy X=X & Asy X = Axy A% & X sy A = AT 5y A*. )

Definition 5 Let A € C/< > InvxIix-xIN with index(A) = k. Then The MPD inverse of
A, represented by A" the definition is as follows

AT = AT wy A sy A9, 2)

Let A e Clox-xInxDix—xIy [f the following conditions hold, the unique matrix X € G, (A)
is referred to as the CMP inverse of A and is represented by AST = AT sy C 4y AT Wang
et al. (2020).

Asxy X =Cysy AT & XsyA=ATsyCsq & AsyXsy A=Ca.  (3)

2 CMP and DMP generalized inverses of tensors

This section introduces novel characterizations of CMP, DMP, and MPD inverses of tensors.
The theorem below demonstrates that one of the conditions in Wang et al. (2020, Theorem
2.7) is unnecessary.

Theorem 6 Suppose that A € Cl>*>InxIoxxIn Thep ¥ = AT is the unique solution
of the following:

Asy X =Cyxny AT & Xsy A=A" sy Caq & Xxy Asy X = X. )

Proof 1t is obvious that the tensor X = AT satisfies the system (4). Assume that two tensors
X1 and A&, satisfy (4), then

Xi= X sy Ay X = AT sy Casny X = AT sy Asy A sy Asy X
:Af*NA*NAd*NCA*NAT:AT*NA*NA‘I*NA*NXZ
:A%*NC_A*NXQZXz*NA*NXZZXQ.

m}
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A novel characterization of DMP inverses of tensors, which does not rely on the index of A,
is presented in the following (see Wang et al. (2020, Theorem 2.2)).

Theorem 7 Suppose that A € ClV>¥xINxIixxIN Thep X = A% is the unique solution
of the following:

Asy Xsy Asy X =Casy AT & Xsxy A=Alxy A & X sy Axy X = X.(5)

Proof 1t is evident that the tensor X = A9 x5 A xy AT satisfies the system (5). Assume that
two tensors X1 and A satisfy (5), then

Xi =X sy Asy X = X sy Asy Xy sy Axy X = Xy sy Cpiy A
=X ky Asy AL sy Axy AT = A% 5y Asxy A 5y Axy AT
=X2*NA*NA‘1*NA*N.A+=X2*NCA*NAT
=X %y Ay X sy Axy Xy = X x5y Axy Ao = X).

By employing the same approach as in the proof of Theorem 7, the following holds.

Corollary8 Let A € Clr<-xInxlix=xIN Tpen X = AY s the unique solution of the
following:

Asy X = Axy A & X*N.A*NX*NA:A%*NCA & Xxy Axy X =AX.
In the following theorem we state a new characterization of A<

Theorem 9 Let A € C/VxXInxlixXIN Tpepn X = AST is the unique solution satisfies
in 6.

Axy X sy A=Cy & R(X) CRAY) & R(X*) CR(A), 6)
Proof By (3),
A sy .AC’T *y A=C4,
.Ac’f = .AC’T *N A*N AC’T = (AT kN .A)* *N .Ad *N A*N .AJ'- kN A *N .AC’T
= A" sy (AD* 5y ATT, @)
.AC'+ = .AC’T *N A*N AC’T = .AC‘+ kN .A*N AT kN A *N .Ad kN (A kN Af)*
= AT’d kN (./4Jr)>‘< Ky A*.
where U = (AD* xy ALT e Chx-xIvxhixexIyv gnd Y = AHd 5y ADH* €
ChoxxIyxDix-xIv Therefore, by Stanimirovié et al. (2020, Lemma 2.2 (a)), we obtain that
R(X) C R(A*) and R(X*) C R(A) are equivalentto AT = A*syUf and AT = Vi A*,

respectively. By the Eq. (7), it is clear to see that AT satisfies (6). Assume possible, there
exist X7 and X, such that X} # X,, we have that

Asy Xisn A=Cyg & Xi=A%sxyU; & X =V sy A, 8
Asy Xosy A=Ca & Xo=A"sylhh & X =Vyxy A", ©)

where Uy, Uy, V1, Vo € CIrxxdnxlixexIy 1 et

X=X-X, U=U-U, V=V—-V. (10)
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It then follows from (6), (8), (9) and (10),
Axy X sy A=0 & X=A"syU & X =Vxy A"
By Panigrahy et al. (2020, Lemma 3.7), we have
(X xy A sy Xxy A=A sy (X)" %y X x5y A

=A%y (A sy U sy X xy A
= A sy U xy (Axy X 2y A) = O.

Therefore, X xy A = O. Meanwhile,

Xsny X =Xy Vay AN =X sy Axy V" =0,

by Panigrahy et al. (2020, Remark 3.8), yields that X = O, and hence X = &,. Therefore,
we conclude that unique tensor X = A7 satisfying (6). O

Corollary 10 Let A € CloxxInxIvixxIn_If there exist X and Z in Cl>>*InxTixxIy
satisfying
Asy X sy A=Cq & X = A" %y Z xy A*,
then X = A7,
By employing the same approach as in the proof of Theorem 9, the following holds.

Corollary 11 Let A € CV-xXIvxIixXIN Thep X = O is the unique solution satisfies
inll.

Asy X =0 & R(X)C R(A). (11)
By using Corollary 11, we characterize A" by two relations.

Theorem 12 Let A € Clo<xInxIvxxIN Thep x = A" is the unique solution satisfies
in 12.

Asxy X =Cyaxy AT & R(X) C R(AY). (12)
In the following theorem, we characterize A% by the relations in 13.

Theorem 13 Let A € CloxInxIixxIN Tpen x = A%T is the unique solution satisfies
in 13.

Al sy X sy A=A & RWX) CRA) & RX*) C R(A). (13)

Proof Itis clear that A" xy A%T sy A = AT R(A%T) = R(Axy A% %y AT) C R(A), and
R((A)*) = R((A% sy Ay AT)*) = RAD* 5y A* 5y (A9)*) € R((AN*) = R(A).
That is, we have proved that A4T satisfies (13). By Stanimirovi¢ et al. (2020, Lemma 2.2
(), from (13), we can assume that X = (A")* «y ¢ and X = V sy A* for some U,V €
(CIIX"‘XINXIIX"'XIN.

Assume possible, there exist X7 and A> such that X} # &> and

AT sy O av A=A & xi=UDY syUy & X =V 5y A", (14)
Al sy sy A=A & 1 =UN* snlh & X =Vs sy A, 15)

where Uy, Uy, V1, Vo € CIrxxInxlixexIy 1 et
X=X —X, U=U U, V=V —). (16)
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It then follows from (13), (14), (15) and (16),
ATsy X sy A=0 & X=UN"syU & X =Vxy A%
By Panigrahy et al. (2020, Lemma 3.7), we have that
(X sy A sy Xy A=A 5y (X)" %y X xy A
= A* sy (AN 5y UD* 5y X sy A
= A" xy U xy (AT 5y Xy A) = 0.
We obtain X xy A = O. Meanwhile, we find
Xy X' =Xxy (Vay AN = (X sy A) sy V' =0,

by Panigrahy et al. (2020, Remark 3.8), we obtain X = O., and hence X} = &}. Therefore,
we conclude that unique tensor X = A% satisfying (13). O

Corollary 14 Let A € ClxXInxDixxXIN_[f there exist X, Z € M, (C) satisfying

AT sy Xxy A= A™ & X =Axy Zxy A% (17)
then X = A%,
By using Corollary 11, we characterize A%"" by two relations.

Theorem 15 Let A € ClV<xInxIixxIN Tpen x = A%T is the unique solution satisfies
in 18.

Alsy X = AT wy AT & R(X) S R(A). (18)
By employing the same approach as in the proof of Theorem 13, the following hold.
Theorem 16 Suppose that A € CH*>INxIixxIN They the solution satisfies in 19.
Asy X sy AT = AT & R(X) C R(A*) & R(X*) C R(AY). (19)
is unique and is given by X = A",
Corollary 17 Let A € ClxXInxlixxIN_[f there exist X, Z € M, (C) satisfying
Asy X sy AT = ALT & X = A" sy Z 2y A. (20)
then X = A4,
By using Corollary 11, we characterize A™? by two relations.
Theorem 18 Let A € CIX ¥ INxIixXIN They the solution satisfies in 21.
Axy X = Axy AT & R(X) C R(AY). Q1)
is unique and is given by X = A",
First, we obtain the null space and the range of the outer inverse of the tensor .A.
Lemma1 Let A € Clx*InxJixxIu gud x e G,(A). Then

RIZ—-Axy X)=NAxy X) =NX),
N(IZ - X xy A) = R(X xy A) = R(X).
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Proof Given that X %y A and A %) X are projections, we can conclude that:
RZ—Axy X)=NAUxy X)) SNX xy Axpyy X) =N(X) S NAxy X),
NZ—-X*xy A =RX*xy A C R(X)=R(X *y Axpy X) C R(X *y A).
O

Lemma2 (Panigrahy and Mishra (2022, Lemma 2.3)) If A € Ch>-xInxIix-xIy j¢ g
Hermitian idempotent tensor, then AT = A.

Remark 1 Let A € C/1<xIv>xIixxIN js Hermitian idempotent tensor. Then C4 = A% T =
At

Theorem 19 Let A € Cl< X INxTixxIN yith index(A) = k. The solution to the system of
following:

Ay X = AT & Asy X=Xy A & Xsy Alsy X=X (22)
is unique and is given by X = C 4.

Proof Ttis evident that the tensor X = C 4 satisfies the system (22). Assume that two tensors
X1 and A&, satisfy (22), then by Behera et al. (2020, Lemma 3.1), we have

X=Xy AT xy X = Xy (AD ey Asy X
= A1y (AD sy X A= A1y (AD TP ey AR sy 215y A
= X sy (A2 5y A sy A= X sy A sy (ADF2 5y A
= A sy Xy xn Asy (ADF2 5y A= A sy Asy (ADR2 5y A
= A sy 2wy Ay (ADKF2 5y A = X5 5y AT sy (ADKF2 5y A
=X sy (A2 5y A sy A= 20 5y (AD* 2 sy AF sy X 5y A
=Xy xy (AD2 sy Xy sy A= Xy 5y (AD? sy Ay X
=Xy AT 5y X = X5,
O

Next result gives the aforementioned relationships in terms of mainly the core part of the
tensor A.

Theorem 20 Let A € ClxxInxIixxIN yyirh index(A) = k. Then

(i) AYT sy Caq = Caxy ALY ifand only if A sy AT = AK.
(ii) AN sy Caq = Cyxy AT ifand only if AT sy AFT1 = AK,
(iii) Ca = A" %y A ifand only if A* = AFHL,

(iv) Ca= A" %y A ifand only if A" sy AF = AF,

Proof (i) By Ji and Wei (2018, Theorem 3.4 (1)) and Lemma 1, we have
ALTwy Ca = Caxn AT
s A sy Axy T—Axy AH =0
& NAH) = NUAxy AN = R@T — Axy A7) € N(A 5y A) = N(AY) = N(AF)
& Ay AT = Ak,
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(ii) and (iii) are similar to part (7).
(iv)
Ca=AMsy Ae Cyp=A %y Cy

ST -AN*yCa=0

& R(Ca) S NI — A).
By Ji and Wei (2018, Theorem 3.4 (1)), we can conclude that

R(C4) = R(A" sy Axy A) € R(AT) = R(AY)
= R(Ca #n A 5y AX) C R(C ).

Therefore, R(C 4) = R(AX). We obtain R(A¥) € N(Z — A") & AT xy A% = AF. O
Hartwig and Spindelbick decomposition of tensor A arrived at the following lemma.

Lemma 3 Wang et al. (2020, Lemma 1.3) Let A € Cl>xXINxIxXIN Then there exist
unitary U € CI<xInxlvxxIN gych that

E*NICZ*NL)*NU*,

o o (23)

.A =U kN (
where ¥ € CRIXXRyxRixxRN ¢ q diggonal tensor of singular values of tensor A, and
the tensors K € CRiX< xRy xRixxRy — p o CRi>xRyx(I1—R1)xx(In—Ry) satisfy:

Kxy K*+ Lxy LY =1T. (24)

Using the same approach as described in the proof of Wang et al. (2020, Theorem 2.3), the
following holds.

Corollary 21 Suppose that A € CIV< > InxTixXIn g in the form of (23). Then

’C**NiK**Ni*N(E*NK)d*NE*NE

hd _ 2 >
A _U*N<c**,v2 L5 sn 5wy (3 sn K sy S sy £

) xy UT, (25)

where & = K sy (I xn K)7.

We extend the recently obtained properties by using CMP inverse to the tensor (see Mehdipour
and Salemi (2018, p. 4 (9))).

Theorem 22 Let A € Clx X INxIixxIN po of the form (23). Then

iy -
A = U xy <(2) ;Nic <2>O*N c) o U, 26)

Proof Suppose that A is expressed as shown in (23) and

(iﬂ(;w K (i)*O*N E) v U,

By Wang et al. (2020, p. 7(2.6)) and (24), we have that

X:U*N<

X %y At

() sy K () xy £ Ky £ 0
=Z/[*N< o o *Nu**Nu*N ﬁ**Nfl(’) *Nu**N
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_ () sy T O x

According to Definition 2, it is straightforward to calculate the first equation, which states
that.

AST sy & xy AST

_ K%y £ 0O . (ONETNE, «
_U*N(L**Ni(o)*jvu *NM*N( o o *y U

_ Ky 0O . et
_U*N(L**Ni(g)*jvz/l = A",

Moreover, the second equation

Xy ATy X

ST > ST )T
ZU*N(@) *N20>*NU**NU*N((2> wn K () *Nc>*Nu*

O O O O
_ ) #n K () *y L .
—Z/{*N< o o syUT =X

The third equation follows from
(.AC’]L XN X)*
K sy Sy ()T xy KK sy S sy () %y £ Ry
= U*N % ~ St % ~. S *y U
ﬁ *NE*N(E) *NICﬁ *NZ*N(Z) *Nﬁ
- ~ .\ * - - *
K* %y (2 *y ():)') sy IC KC* sy (2 . (E)T) sy L )
- R - L x sy U
L* %y (2 N (E)T) sy KC L %y (): . (2)7) wn L
K* sy oy (2)F sy K K* sy & sy ()T sy £ .
=U *xN " ~ ~ . * ~ e xy U
LAy Zxy () sy K L¥ %y Zxy (2) %y L
= .AC’T xy X

ZU*N

The fourth equation follows from

< o .
(X xy AST* = (u *N <(E) N X O) *N u*>

O (@]
. <\ *
gy (BT E) O
o @

=X *xnN AT,

The tensor X fulfills four equations. Assume that both WV and Z also satisfy four equations
each. In order to demonstrate the uniqueness, we need to show that

W =Wy (Asxy W) =W sy W sy A* = Wy W sy A* sy 2% 5y A*
=Wy (Axy W) x5y (Axy 2) =Wy Axy Z
=Wxy Axy Zxy Asxy 2= Wiy A" sy (Z sy A x5y Z
=A sy W sy A sy Z¥ sy Z=(Zxy AT sy Z = Z.

m}
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By using Theorem 22, we conclude the following.

Theorem 23 Suppose that A € CIV<*INxIixXIN pe gs in (23). Then A sy (AT =
(AT sy AT if and only if the following conditions hold.

I K*sy Asy K= ()T sy T,
2. L',**NA:O,

where A = %, *N (i])T.

Proof By Wang et al. (2020, Theorem 2.3), (24), (25) and (26), we have
AT,d *N (AC,JF)T
s K* sy sy (2) sy K K* sy Z sy () sy £ o 1
- N L* *Ni*N (f:)T *N/C L* *Ni*N (i:)T *Nﬁ N

.
AT sy AT = 15y ((2> SN ) g) o U

Then A" sy (AT = (A9T)T %y A%T if and only if the following conditions hold.

K sy Say (D) sy K= ) #y 2, 27)
K sy Sy () sy L= 0, (28)
L sy Ty () sy £L=0. (29)

Note that the Eq. (27) and the Part 1 of Theorem 23 are equivalent. Since using (24), by left-
multiplying the Eqs. (28) and (29) by K and £, respectively, we obtain Sy (E) sy L =0,
equivalent to L* xp S oy (Z)T O, that is the Part 2 of Theorem 23. ]

3 Generalized bilateral inverse of tensor via Einstein product

In this section, we expand upon the recently introduced concept of a generalized bilateral
inverse for a tensor A using the Einstein product. Furthermore, we demonstrate that cer-
tain well-known generalized inverses can be viewed as specific instances of the generalized
bilateral inverses for tensors (see Kheirandish and Salemi 2023).

Definition 24 Let A € C/1>>*Iv>xJix>u and let Xy, Xp € G;(A) U G,(A). Then X; *y
A sy X, is referred to as generalized bilateral inverse of tensor A.

We will now present a theorem that characterizes the generalized bilateral inverses of tensors.

Theorem 25 Suppose that A € ClhxxInxJixxJu gnd suppose that X\ € G,(A) and
X> € G (A). The unique solution to the system of following:

Xxy Axpyy X=X, Aspy X sy Axpyy X=Axpy X1 xy Axpy Xo, X sy A= *y A.
(30)

is given by X = X| xy Axpy Xo.
Proof Assume that X = X} xy A *); X is a solution. Then

Xxny Axpyy X = X sy Axpy Xp sy Axpy X1 xy Axpy Xo
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=X kny Axpy Xy sy Axpy Xp = X sy Axy Ao
Axpyy X sy Asxpyy X = Axpyp X1 sy Axpy X xy Asxpy X xy Asxpy X
=Axpy X1 kny Axpy X1 %y Axy Ao
=A*M Xl *N.A*MXL
Xxny A=X sy Axpy Xoxy A= X N A.
Suppose that two tensors W and Z satisfy (30), then
W =Wy Axyy W=Wxy Axyy Wxy Axy W
=W>I<NA*MX1 *NA*M X2=X1 *NA*M Xl *N.A*MXQ
=ZxsNAxy X1 sy Axyy Xp=Zxy Axy Z2 = Z.

Using the same approach as described in the proof of Theorem 25, the following holds.

Corollary 26 Suppose that A € ChoxxInxix=xIu gnd suppose that Xi € G,(A) and
X> € Gi(A). The unique solution to the system of following:

Xay Axpy X=X, Axy X=Axy X1, X sy Axpy X sy A=X) xy Axpy X xn A.
is given by X = Xp xny A *xp X.

The following proposition demonstrates that certain well-known generalized inverses of
tensors can be regarded as generalized bilateral inverses of tensors.

Proposition 2 Suppose that A € CIV¥<*INxIixXIN Tpep

(i) AT = AT sy Axy A9, AN e gl & A e G, ().
(i) ALt = Ay Axy AT, A e g, A & A" €Gi(A)).
(i) AT = AT sy A sy AT, AT e G & AT € G,(A).
(iv) AT = AT sy Axy AT, A € Gy(A) & AT € Gi(A).

Next, will define the dual of the generalized bilateral inverse for tensors in the following
manner:

Definition 27 Suppose that A € Cl>**IvxlixxIN and suppose that X7, X» € Gi(A) U
Go(A). Then the dual of generalized bilateral inverse of tensor X *y A xy X3 is denoted
by

(X1 *ny A xn Xz)/ =X %y Axy X,
and X| xy A *y X» is called self dual, if X| *y Axy Ao = X sy A xy X].

Now, we extend the recently obtained properties in Kheirandish and Salemi (2023) for
tensors. Let A € ClrxxIvxlixxIy "y e G (A) and X» € G;(A). The following theorem
presents the necessary and sufficient conditions for a generalized bilateral inverse of tensors
X1 *n A xy X, to be self-dual.

Theorem 28 Suppose that A € ClVxInxhix—xIv  x, e G (A) and X» € G;(A). Then,
the following statements are equivalent.

(i) X1 %N Axn X is self dual,
(ii) X1 = X1 *sny Axy X = Xp sy A*xy X,
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(iii) N(A*xy X)) C N(X)) and R(X)) C R(X» #y A).

Proof ((i) — (ii)) Assume X| *xy Axy Xo = X sy Axpy X|.Since Axy Ao xy A=A
and X xy A *xy X1 = X}, we obtain that
X) =X #y Axy X1 = X xy (Axy X sy A) xy X
=(X *y Axy Xp) ¥y Axy X = (X2 xy Axy X)) xy Axy X
=X #y A*xy (X] xy Axy X1) = X %y Axy X].
Then X} = X xy Axy Xp = Xp xy A *y X].

((ii) — (iii)) Since X} = X *y A*xpy Xo, we obtain that N(Axy XA2) C N (X %y A*xp
Xy) = N(X1). Also, since X| = Xo*xy A*xy X], weobtainthat R(X]) = R(Xpxy AxyX1) C
R(Xy xy A).

((iii) — (i)) Using Lemma 1, we can see that R(I — A *y X2) = N(A *y X) and
N(A xy X)) € N(X1). Therefore, R(I — A xy X2) € N(X]) which implies that X} %y
(I — Axy Xp) = 0. Hence, we have X1 = A7 *y A *y AX>. Similarly, using Lemma 1, we
arrive R(Xp sy A) = N(I —X» xy A) and R(X]) C R(Xy xy A) = N(I — X, *y A). This
implies that (I — A, *xy A) xny X1 = 0. Therefore we have X = A %y A xy X, which
completes the proof. O

Let A € CloxxIvxlixexIy =y = AP x) = AT. By Theorem 28, Lemma 1, Ji and Wei
(2018, Theorem 3.4 (1)) and Sahoo et al. (2020, Theorem 3.7 a(i)), we deduce the following.

Proposition 3 Suppose that A € CI1¥ > INXID<XIN yyith index(A) = k. Then, the following
statements are equivalent.

(i) Ad kN Ay At = At kN Ay Ad,
(ii) A% = AT = A4
(iii) N(A*) S NAY & R(AF) C R(A*).

The following theorem states the necessary and sufficient conditions for the generalized
bilateral inverse of tensors to be self-dual.

Theorem 29 Suppose that A € ClV<*IvxlixxIv x, e G (A) and X1 € Gi(A)UG,(A).
Then X xy Axy X is self dual, X xy Axy Xo = (X] ¥y Axny X2) = X xy Axy X1,
if and only if N(Xp) C N(Xs xy Axy X)) and R(X] xy Ay X2) € R(Xp).

Proof Assume X| xy A *xy Xo = Xp *n A *y X]. Since Xp xy A *y X» = X and by
Lemma 1, we obtain the following relations:

Xz *NA*N Xl = (Xg *NA*N Xz) *NA*N Xl :XZ *NA*N Xl *NA*N Xz,
Xy xny Axy X sy (T — Axy Xp) =0, 31
N(Xp) = N(Axy X2) = R(Z — Axy A2) € N(Xy xy Axy A1), (32)

Xy sy Axy Xo = X xy Axy (X2 ky Axy Xp) = X sy Axy X x5y Axy X2
(I =X sy A) xy X1 sy Axy X =0, (33)
R(X sy Axy X2) S N(Z — X ¥y A) = R(X xy A) = R(Xp). (34)

Therefore,

N(X) C N(Xp xy Axy X1), R(X| xy A*xy &2) C R(A2).
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Conversely, we know that Eqs. (31), (32), (33), and (34) are equivalent. Therefore, X> *y
ANy X =X kv Axy X sy Axy Xoand X sy Axy Xo = X sy Axny X xy Ay Xy,
Therefore, X| *y A xy Xo = X xny A xy X]. O

Theorem 30 Suppose that A € Cl*<>InxTixxIN Thep
(i) A=A sy Axy AT ifandonly if (AT sy Axy AT = AT,
(ii) A2 = A" sy Axy A% ifandonly if (AT sy Axy AY) = AT,

Proof (i)
Al = Ay Ay AT,
s A *N A*NAd :AT*NA*NA‘{*NA*NAT,
& (A sy Asy ATY = AT,
(i7)
A? = AT 5y Axy A9,
& A *N Axp AT = AT 5y A xy Al *N A xp AT
& (AT sy Axy AT = AT,
|

The remark below demonstrates that the dual of a generalized bilateral inverse X xn Axy X>
is closely linked to & and A5.
Remark2 Let A e Cl<>InxIix--xIn {sing Definition 27 and Proposition 2(iii)-(iv), it
follows that AT = AT xy A sy ADT = AT 5y Ay AT. But
(.AT sy A XN .Ad’T)/ = .Ad’T XN A *N .AT = .Ad’T.
(AN sy Asy ATY = ATy A sy AT = AT,
The theorem below presents the necessary and sufficient conditions for the generalized
bilateral inverses of tensor AT xy A xx A% to be self dual.
Theorem 31 Suppose that A € Cl>¥>INxIvxXIN yoith index(A) = k. The following
statements are equivalent:
(i) At sy Ay AT = pd-¥ sy Ay At
(ii) R(A*) C R(A*) & N(A*) C N(A* %y AT).
Proof From Theorem 28, we can conclude that A" xy A sy ALT = AT sy Axy AT if
and only if R(A%Y) € R(AY %y A) and N(A %y AT) € N(ALT). By applying Lemma 1,
R(AT sy A) = R(A") and N(AT) = N(A xx A"). Furthermore, according to Sahoo et
al. (2020, the first part Theorem 3.7), we can conclude that R(AT) = R(A*) and N(A") =
N (A*). Moreover, by Ji and Wei (2018, Theorem 3.4 (1)) and Behera et al. (2020, Lemma
3.1), we have that
R(AYT) = R(AY xy Axy AT) € R(AY) = R(A)
= R(A%T sy Axy A € R(ADT)
N(AYTY € N(AF sy ATy = N(AF 5y AT) € N((ADE 5y AF 5y AT
= N(A? sy Axy A7) = N(ADT).
Then, we have R(A%T) = R(A¥) and N (A4 T) = N(A*xy.AT). Therefore, R(A¥) C R(A*)
and N(A*) C N(A* xy AT). u]
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4 Bilateral inverse solutions of singular tensor equations

Let A € ClixxIvxhixxIy pe g tensor with index(A) > 1 and B € CII*xIN_ As
an application of the DMP, MPD and CMP inverses of tensor, we consider the following
equation

Axy X =B. (35)
First, we state the following theorem.
Theorem 32 Suppose that A € ClP¥< > InxIxXIN yith index(A) = k. Then

(i) The Eq. (35) has a solution A>T x5 B ifand only if B € R(AY).
(ii) The Eq. (35) has a solution A4 «x B ifand only if B € R(A).
(iii) The Eq. (35) has a solution AT xy B ifand only if B € R(A*).

Proof (i) Let A% %y B is a solution of (35). By Ji and Wei (2018, Theorem 3.4 (1)), we
have

B=Axy AT sy B= A% 5y A2 %y AT 5y B € R(AY) = R(AY).

Suppose that B € R (A, by Stanimirovi¢ et al. (2020, Lemma 2.2 (a)), we can conclude
that is a tensor U € C1*"*IN guch that B = AF xy U. Set X = A% T xy B. Thus,

Asy X = Asy AT sy B=Axy A% sy Asy Al sy A vy U = B,

implying that A%" sy B is a solution of (35).
(i1) and (iii) have similar proofs to that of (i). ]

Using the same approach as described in the proof of Theorem 32, the following holds.

Remark 3 Let A € Cl x> InxIx-xIN with index(A) = k. Then

i) AT %y B= A9 %y B, if B € R(A).
(i) AM xy B= AT xy B, if B € R(A).
(iii) AT sy B = A" xy B, if B € R(AX).

Theorem 33 Assume that A € CV< > INxIxXIN yith index(A) = k and assume that
B € R(AX). Then

(i) The general solution of (35) takes of the form
X=AM sy B+ (T — AT sy A %Y (36)

for any tensor Y € Cl<x1Iy,
(ii) The Eq. (35) has the unique solution A%" xy B € R(AY).

Proof (i) By Theorem 32(i), A% " sy B is a solution (35). Assume that X = A%T sy B+
(T — AT %y A) x V1 + I»), where Yy € Ch>*IN and A xy V5, = O. Then

Asy X = Asy A% sy B+ (A — Axy AT sy A) % (V) 4+ I0) = B,

that is X is a solution (35). Assume that WV is any arbitrary solution of (35). It is clear that
R(Z — AT sy A) C N(A) and W — A%T xy B € N(A). Because

N(A) = R(T — AT sy A) + (N(A) ART — At sy A)L) :
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we have that W — AT xy B = (Z — A" x5 A) %y Wi + W, where W, € N(A) N R(Z —
AT sy A)L. Because Wh € N(A), we obtain A sy W> = O. Moreover,

W2=W2—.AT*NA*NW2=(I—AT*NA)*NWZ.

Therefore, W — A%T sy B = (T — AT %y A) x (W) + Wh), where W; € ClixxIn apd
W, € N(A).

(i) Let X be a solution in R (.A¥). By Theorem 32(i), A4T s Bis asolution in R(A¥). By
the proof of Theorem 31, we have R(A%T) = R(A¥). We have that X — A% T %y B € R(A¥).
Moreover, as stated in Part (i ) of this theorem, we have that X — A% Ty B = (ZT— A sy A)xY
for some Y. Now AX sy (X — AL sy B) = (AF — AF sy AT 5y A) % Y = O. Hence
X — AT xy B € N(AY). Thus, X — AYT xy B € R(A*) N N(AK) = {0}, that is
X = AdT *y B. [}

Theorem 34 Let A € ClxxXInxIix<xIN yith index(A) = k and assume that B € R(AX).
Then

(i) The general solution of (35) is of the form
X=A" sy B+ (T — A 5y A5y 37)

for any tensor Yy € CT>*>In,
(ii) The Eq. (35) has the unique solution APy B e R(AT sy AF).

Proof (i) By using a method similar to the one employed in the proof of Theorem 33(i).

(ii) Suppose that X is a solution in R(A sy A¥). Using a similar method as in the proof of
Theorem 31, we obtain R(A"?) = R(A"sy.A%). Thisimplies ¥ — AT 9%y B € R(A sy AX).
Moreover, as stated in Part (i ) of this theorem, we have that X — AT 9xy B = (ZT— A sy A)xY
for some Y. Now AX sy (X — AT sy B) = (AF — AF sy AT %y A) % Y = O. Hence
X — AM4 «y B € N(AF). Therefore,

X — A" sy Be RA xy AN NUE) € R(AT sy A NN ATy A = {0},
thatis X = A" xy B. m]
Using the same approach as described in the proof of Theorem 34, the following holds.

Corollary 35 Let A € CIXINxToxXIN yyith index(A) = k and assume that B € R(AF).
Then

(i) The general solution of (35) takes of the form
X=ATxy B+ T — AT %y A Y (38)

for any tensor Y € CI>x>In,
(ii) The Eq. (35) has the unique solution A" xy B € R(AT xy AX).

As an application of the DMP, MPD and CMP inverses of tensor, we consider the following
equation

Cpxy X =B, (39)

where A € ClxxInxlix-xIy and X, B € Cl>**IN Using the same approach as
described in the proof of Theorem 32, the following holds.

Corollary 36 Suppose that A € CIV*< > INxTixXIN yith index(A) = k. Then
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(i) The Eq. (39) has a solution AT wn B ifand only if B € R(AF).
(ii) The Eq. (39) has a solution AY¢ xy B ifand only if B € R(AX).
(iii) The Eq. (39) has a solution A" xy B ifand only if B € R(AX).

Using the same approach as described in the proof of Theorems 33 and 34, the following
hold.

Corollary 37 Assume that A € ClV<>xINxIixXIN ywith index(A) = k and assume that
B € R(AX). Then

(i) The general solution of (39) takes of the form
X =AM sy B4+ (T — A %y A xy Y,

for any tensor Y € CI>*>In,
(ii) The Eq. (39) has the unique solution AT %y B e R(AY).

Corollary 38 Assume that A € CH>*<>INxIixxIN \ith index(A) = k and assume that
B € R(AX). Then

(i) The general solution of (39) is of the form
X =AMy B+ (T — AT sy A) xy Y,

for any tensor Y € Cl<x1Iy,
(ii) The Eq. (39) has the unique solution A™¢ sy B € R(A™ sy AX).

Corollary 39 Assume that A € CIV<>*INxIixxIN ywith index(A) = k and assume that
B € R(AX). Then

(i) The general solution of (39) takes of the form
X=ATxy B+ (T — A 5y D) xn Y,

for any tensor Y € CI>*>In,
(ii) The Eq. (39) has the unique solution A" xy B € R(AT s A5,

Suppose that A e CHxxInxlixxIv and ¥ B € Ch>*IN_As an application of the
core-part of A, we consider the following equation:

AT sy X =B. (40)

Theorem 40 Ler A € Clv<xInxlixxIn gnd B e R(AT %y A4). Then the general solution
of (40) takes of the form

X=CaxyB+ T —Axy A)*y Y,
for any tensor Y € ClxxIn,

Proof Using a similar method as in the proof of Theorem 32, we obtain that Xy = C 4 xy B
is a solution of Eq. (40) if and only if B € R(AT xy A%). Also, by Lemma 1, it is clear that
R(Z — Axy AT) = N(Axy AT) = N(A"). Thus,

AT sy [Casn B+ (T — Asxy AN sy V= AT sy Co sy B+ 0O = B.
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As an application of the DMP, MPD and CMP inverses of tensor, we consider the following
equation

Ay x = AR xy B, 4D

where index(A) = k and B € R(AX). If B € R(A*) and index(A) = k, then each member
of the set {A? xy B, ATT xy B, AT« B, A>T s B} is a solution of Egs. (35) and (41)
(see Behera et al. (2020, P. 21)).

Theorem 41 Let A € Clox>InxlixxIn qng B € R(AX) with index(A) = k. Then, the set
of all solutions of (41) can be represented as

X = AT sy B+ N(AY).

Furthermore, the Eq. (41) has the unique solution X = ALty B e R(AR).

Proof Assume B € R(AX). By Stanimirovic et al. (2020, Lemma 2.2 (a)), we can conclude
that there is a tensor i € CI > *I¥ guch that B = A* %y U.

A g (X — AT sy B) = A sy X — A oy A% sy Ay AT sy B
:Ak*NB—Ak*NA*NAT*NAk*NU
= A sy B— Ay B=0.
From Ji and Wei (2018, Theorem 3.2), we have that X — AT sy B € N(AFH) = N(45).
Therefore, X = A%T xx B + N(AX). Let X be a solution in R(A¥). Moreover, by The-
orem 32(i) and the proof of Theorem 31, we arrive X — A%T %y B € R(A¥). For the
uniqueness in R(A¥), let V € R(A) be any solution of (41). Now V — AT %y B € R(A),

we have At sy V — A wy A4T sy B = 0. So, V — ATy B € N(AY). Hence,
Y — AT wy Be RUAH NNAK) = (0).1e., V= AT x5 B. o

Using the same approach as described in the proof of Theorems 34(ii) and 41, the following
hold.

Corollary 42 Suppose that A € CH>*>InxloxIn gnd B e R(A*) with index(A) = k.
Then, the set of all solutions of (41) can be represented as

X =AM sy B4+ N(AY).
Furthermore, the Eq. (41) has the unique solution X = AMd xy B e R(.AT *N Ak).

Corollary 43 Suppose that A € Cl<>InxIvcxIn gng B e R(A¥) with index(A) = k.
Then, the set of all solutions of (41) can be represented as

X = AT sy B+ N(AY).

Furthermore, the Eq. (41) has the unique solution X = AT xy B € R(A" sy AX).

As an application of the DMP, MPD and CMP inverses of tensor, we consider the following
equation

A sy X = A sy AT 5y B. (42)

where index(A) =kand B € R(AY).If B € R(AY) and index (A) = k, then each member
of the set {A%T sy B, A" xy B, A>T %y B} is a solution of Eqs. (41) and (42).
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Theorem 44 Suppose that A e ClxxIvxlixexIy gng x B e CH* >IN i
index(A) = k. Then X = AT xy B is a solution of Eq. (42). Moreover, X =
AT sy B4+ (T — Ay A) xn Y is the general solution of Eq. (42), where Y € Cl<xIn
is an arbitrary tensor.

Proof Set X = AT xx B. Then,
A sy X = A sy AT 5y B= A sy AT x4 B.

By Ji and Wei (2018, Theorem 3.4), we have R(Z — A #y A) = N(A? x5y A) = N(AY) =
N(A5).

Thus, AF sy [AST sy B4+ (Z— A% sy A sy V] = AX sy ATy B+O = Ar sy AT sy B.

O

Using the same approach as described in the proof of Theorem 44, the following holds.

Corollary 45 Suppose that A e Cl>x>xInxlixxIv gnd x B e CH>xIN with
index(A) = k. Then X = AT xy B is a solution of the Eq. (42). Moreover, X =
ALY sy B4+ (T — Axy A?) sy Y is the general solution of Eq. (42), where Y € Cl1>* <IN
is an arbitrary tensor.

Using the same approach as described in the proof of Theorems 34(ii) and 41, the following
holds.

Remark4 Let A € Clv<>InxIix—xIy and B € R(A*) with index(A) = k. Then

(i) The Eq. (42) has a unique solution X = A% %y B € R(A) and its general solution
X = AN xy B+ N(AD).
(ii) The Eq. (42) has a unique solution X = A" xy B € R(A" xy A¥) and its general
solution X = A" xy B + N(AY).
(iii) The Eq. (42) has a unique solution X = AT xy B € R(AT sy AFy and its general
solution X = A%T sy B+ N(A4).

Declarations

Conflict of interest There is no conflict of interest in the manuscript.

References

Beckmann CF, Smith SM (2005) Tensorial extensions of independent component analysis for multisubject
FMRI analysis. Neuroimage 25(1):294-311

Behera R, Nandi AK, Sahoo JK (2020) Further results on the Drazin inverse of even-order tensors. Numer
Linear Algebra Appl 27(5):2317

Brazell M, Li N, Navasca C, Tamon C (2013) Solving multilinear systems via tensor inversion. STAM J Matrix
Anal Appl 34(2):542-570

Bu C, Zhang X, Zhou J, Wang W, Wei Y (2014) The inverse, rank and product of tensors. Linear Algebra
Appl 446:269-280

Cyganek B, Gruszczyriski S (2014) Hybrid computer vision system for drivers’ eye recognition and fatigue
monitoring. Neurocomputing 126:78-94

Du H-M, Wang B-X, Ma H-F (2019) Perturbation theory for core and core-ep inverses of tensor via Einstein
product. Filomat 33(16):5207-5217

Einstein A (2007) The foundation of the general theory of relativity. Ann Phys 49(7):769-822

Eldén L (2007) Matrix methods in data mining and pattern recognition. SIAM

@ Springer f b/v\/\



Generalized bilateral inverses of tensors via Einstein product... Page 190f19 343

JiJ, Wei Y (2018) The Drazin inverse of an even-order tensor and its application to singular tensor equations.
Comput Math Appl 75(9):3402-3413

Kheirandish E, Salemi A (2023) Generalized bilateral inverses. J Comput Appl Math 428:115137

Ma H, Li N, Stanimirovi¢ PS, Katsikis VN (2019) Perturbation theory for Moore-Penrose inverse of tensor
via Einstein product. Comput Appl Math 38:1-24

Mehdipour M, Salemi A (2018) On a new generalized inverse of matrices. Linear Multilinear Algebra
66(5):1046-1053

Panigrahy K, Mishra D (2022) Extension of Moore-Penrose inverse of tensor via Einstein product. Linear
Multilinear Algebra 70(4):750-773

Panigrahy K, Behera R, Mishra D (2020) Reverse-order law for the Moore-Penrose inverses of tensors. Linear
Multilinear Algebra 68(2):246-264

Rabanser S, Shchur O, Giinnemann S (2017) Introduction to tensor decompositions and their applications in
machine learning. arXiv preprint arXiv:1711.10781

Sahoo JK, Behera R, Stanimirovié PS, Katsikis VN, Ma H (2020) Core and core-ep inverses of tensors. Comput
Appl Math 39(1):9

Sahoo JK, Behera R, Stanimirovi¢ PS, Katsikis VN (2020) Computation of outer inverses of tensors using the
QR decomposition. Comput Appl Math 39(3):1-20

Stanimirovié PS, Ciri¢ M, Katsikis VN, Li C, Ma H (2020) Outer and (b, c) inverses of tensors. Linear
Multilinear Algebra 68(5):940-971

SunL,Zheng B, BuC, Wei Y (2016) Moore-Penrose inverse of tensors via Einstein product. Linear Multilinear
Algebra 64(4):686-698

Sun L, Zheng B, Wei Y, Bu C (2018) Generalized inverses of tensors via a general product of tensors. Front
Math China 13:893-911

Wang Y, Wei Y (2022) Generalized eigenvalue for even order tensors via Einstein product and its applications
in multilinear control systems. Comput Appl Math 41(8):419

Wang B, Du H, Ma H (2020) Perturbation bounds for DMP and CMP inverses of tensors via Einstein product.
Comput Appl Math 39(1):1-17

Wang X, Che M, Mo C, Wei Y (2023) Solving the system of nonsingular tensor equations via randomized
Kaczmarz-like method. J Comput Appl Math 421:114856

Wei Y, Stanimirovic P, Petkovic M (2018) Numerical and symbolic computations of generalized inverses.
World Scientific

Weiyang D, Yimin W (2016) Theory and computation of tensors. Elsevier, Academic Press, Amsterdam,
Boston, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo

Zhao Y, Yang LT, Zhang R (2017) A tensor-based multiple clustering approach with its applications in
automation systems. IEEE Trans Ind Inform 14(1):283-291

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer f DMAC


http://arxiv.org/abs/1711.10781

	Generalized bilateral inverses of tensors via Einstein product with applications to singular tensor equations
	Abstract
	1 Introduction
	2 CMP and DMP generalized inverses of tensors
	3 Generalized bilateral inverse of tensor via Einstein product
	4 Bilateral inverse solutions of singular tensor equations
	References




