

Generalized bilateral inverses of tensors via Einstein product with applications to singular tensor equations

Ehsan Kheirandish[1](http://orcid.org/0000-0002-7898-4164) · Abbas Salemi1

Received: 2 August 2023 / Revised: 25 September 2023 / Accepted: 29 September 2023 / Published online: 26 October 2023 © The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023

Abstract

In this paper, a unified approach for various extended inverses of tensors, *the generalized bilateral inverse of tensors via Einstein products*, is introduced and we show that a number of known generalized tensor inverses can be regarded as special cases of this idea. Some characterizations of the *CMP*, *DMP*, and *MPD* inverse of tensors by using Einstein products are provided. The notion of generalized bilateral inverses' dual and self-duality are investigated. In addition, the bilateral inverse solutions for singular linear tensor equations are studied.

Keywords Tensor · Generalized bilateral inverse of tensor · Dual · CMP inverse · DMP inverse · Einstein product

Mathematics Subject Classification 15A09 · 15A69 · 65F20

1 Introduction

Tensors are higher-dimensional generalizations of matrices and can thus be viewed as multidimensional array (Weiyang and Yimi[n](#page-18-0) [2016;](#page-18-0) Wei et al[.](#page-18-1) [2018\)](#page-18-1). Tensors have various applications, such as data mining (Eldé[n](#page-17-0) [2007](#page-17-0)), machine learning (Rabanser et al[.](#page-18-2) [2017\)](#page-18-2), computer v[i](#page-17-1)sion (Cyganek and Gruszczyński [2014](#page-17-1)), automation systems (Zhao et al[.](#page-18-3) [2017\)](#page-18-3), neuroscience (Beckmann and Smit[h](#page-17-2) [2005\)](#page-17-2) etc.

Let $\mathbb{C}^{I_1 \times \cdots \times I_M}$ denotes the set of all tensors of order *M* and their elements are denoted as $A = (a_{i_1,i_2,\dots,i_M})_{1 \le i_j \le I_j}, j = 1,\dots,M$. Suppose that $A \in \mathbb{C}^{I_1 \times \dots \times I_M \times J_1 \times \dots \times J_N}$. Then $A^* \in \mathbb{C}^{J_1 \times \cdots \times J_N \times I_1 \times \cdots \times I_M}$ is a conjugate transpose of *A* and is defined as $(A^*)_{j_1 \cdots j_N i_1 \cdots i_M}$ $\bar{a}_{i_1\cdots i_Mj_1\cdots j_N}$, where the over-line stands for the conjugate of $a_{i_1\cdots i_Mj_1\cdots j_N}$. If the tensor *A* is real, then its transpose is represented by A^T .

Communicated by Yimin Wei.

 \boxtimes Ehsan Kheirandish ehsankheirandish@math.uk.ac.ir Abbas Salemi salemi@uk.ac.ir

¹ Department of Applied Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

Consider the Einstein product of two tensors, $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times K_1 \times \cdots \times K_N}$ and $B \in$ $\mathbb{C}^{K_1 \times \cdots \times K_N \times J_1 \times \cdots \times J_M}$. The Einstein product $A *_{N} B \in \mathbb{C}^{K_1 \times \cdots \times K_N \times J_1 \times \cdots \times J_M}$ was defined as in Einstei[n](#page-17-3) [\(2007\)](#page-17-3), using the operation via ∗*^N*

$$
(\mathcal{A} *_{N} \mathcal{B})_{i_1 \cdots i_N j_1 \cdots j_M} = \sum_{k_1 \cdots k_N} a_{i_1 \cdots i_N k_1 \cdots k_N} b_{k_1 \cdots k_N j_1 \cdots j_M}.
$$

Suppose that $B \in \mathbb{C}^{K_1 \times \cdots \times K_N}$. Thus,

$$
\mathcal{A} *_{N} \mathcal{B} \in \mathbb{C}^{I_{1} \times \cdots \times I_{N}} \& (\mathcal{A} *_{N} \mathcal{B})_{i_{1} \cdots i_{N}} = \sum_{k_{1} \cdots k_{N}} a_{i_{1} \cdots i_{N} k_{1} \cdots k_{N}} b_{k_{1} \cdots k_{N}}.
$$

Definition 1 Sun et al[.](#page-18-4) [\(2016](#page-18-4)) Let $\mathcal{D} \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. Then the tensor \mathcal{D} is diagonal if $(D)_{i_1\cdots i_N\times j_1\cdots j_N} = 0$ for $(i_1, \ldots, i_N) \neq (j_1, \ldots, j_N)$.

Suppose that $\mathcal{I} \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ is the identity tensor. Then the tensor $\mathcal{X} \in$ $\mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ is considered the inverse of tensor $\mathcal{A} \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ if it satisfies the condition $\mathcal{X} *_{N} \mathcal{A} = \mathcal{A} *_{N} \mathcal{X} = \mathcal{I}$ and it is represented by \mathcal{A}^{-1} (see Brazell et al[.](#page-17-4) [2013\)](#page-17-4).

Suppose that $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times J_1 \times \cdots \times J_M}$. If $\mathcal{X} \in \mathbb{C}^{J_1 \times \cdots \times J_M \times I_1 \times \cdots \times I_N}$ satisfies $\mathcal{A} *_{M} \mathcal{X} *_{N}$ $A = A$, then *X* is referred to as an inner inverse of tensor *A*. Alternatively, if $\chi *_{N} A *_{M} \chi =$ X , then X is referred to as an outer inverse of tensor A . Throughout this paper, the following notations are established.

$$
\mathcal{G}_i(\mathcal{A}) := \{ \mathcal{X} \in \mathbb{C}^{J_1 \times \cdots \times J_M \times I_1 \times \cdots \times I_N} : \mathcal{A} *_{M} \mathcal{X} *_{N} \mathcal{A} = \mathcal{A} \},
$$

$$
\mathcal{G}_o(\mathcal{A}) := \{ \mathcal{X} \in \mathbb{C}^{J_1 \times \cdots \times J_M \times I_1 \times \cdots \times I_N} : \mathcal{X} *_{N} \mathcal{A} *_{M} \mathcal{X} = \mathcal{X} \}.
$$

Furthermore, if $X \in \mathcal{G}_r(\mathcal{A}) := \mathcal{G}_i(\mathcal{A}) \cap \mathcal{G}_o(\mathcal{A})$, then X is represented as the reflexive inverse of *A*.

Definition 2 Sun et al. [\(2016,](#page-18-4) Definition 2.2) Suppose that $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times J_1 \times \cdots \times J_M}$. The tensor $\mathcal{X} \in \mathcal{G}_r(\mathcal{A})$ that satisfies the following:

$$
(\mathcal{A} *_{M} \mathcal{X})^{*} = \mathcal{A} *_{M} \mathcal{X} \& (\mathcal{X} *_{N} \mathcal{A})^{*} = \mathcal{X} *_{N} \mathcal{A},
$$

is referred to as the Moore-Penrose inverse of the tensor *A*.

For $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times K_1 \times \cdots \times K_N}$, the null space $N(A)$ and the range $R(A)$ are defined by:

$$
N(\mathcal{A}) = \{ \mathcal{A} *_{N} \mathcal{X} = \mathcal{O} : \mathcal{X} \in \mathbb{C}^{K_{1} \times \cdots \times K_{N}} \} \& R(\mathcal{A}) = \{ \mathcal{A} *_{N} \mathcal{X} : \mathcal{X} \in \mathbb{C}^{K_{1} \times \cdots \times K_{N}} \},
$$

where $\mathcal O$ [i](#page-18-5)s the zero tensor (see Ji and Wei [2018](#page-18-5)).

Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. Define $A^e := A^{e-1} *_{N} A$, for $e \geq 2$. Note that

$$
\{0\} = N(\mathcal{I}) \subseteq N(\mathcal{A}) \subseteq N(\mathcal{A}^2) \subseteq \cdots \subseteq N(\mathcal{A}^e) \subseteq N(\mathcal{A}^{e+1}) \subseteq \cdots \subseteq \mathbb{C}^{I_1 \times \cdots \times I_N},
$$

$$
\{0\} \subseteq \cdots \subseteq R(\mathcal{A}^{e+1}) \subseteq R(\mathcal{A}^e) \subseteq \cdots \subseteq R(\mathcal{A}^2) \subseteq R(\mathcal{A}) \subseteq R(\mathcal{I}) = \mathbb{C}^{I_1 \times \cdots \times I_N}.
$$

In J[i](#page-18-5) and Wei [\(2018](#page-18-5)), the index of a tensor A is represented by $index(A)$ is defined as the smallest non-negative integer e such that $R(A^{e+1}) = R(A^e)$ or $N(A^{e+1}) = N(A^e)$.

Definition 3 Ji and Wei [\(2018,](#page-18-5) Theorem 3.3) The Drazin inverse of $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ with index(A)=k, is the tensor $X \in \mathcal{G}_o$, which satisfies:

$$
\mathcal{A} *_{N} \mathcal{X} = \mathcal{X} *_{N} \mathcal{A} \& \mathcal{A}^{k+1} *_{N} \mathcal{X} = \mathcal{A}^{k}.
$$

The Drazin inverse is represented by \mathcal{A}^d [.](#page-18-6) For more information (see Sahoo et al. [2020](#page-18-6); Du et al[.](#page-17-5) [2019;](#page-17-5) Ma et al[.](#page-18-7) [2019;](#page-18-7) Wang et al[.](#page-18-8) [2023](#page-18-8); Wang and We[i](#page-18-9) [2022](#page-18-9); Sun et al[.](#page-18-10) [2018;](#page-18-10) Bu et al[.](#page-17-6) [2014](#page-17-6)).

Theorem 4 *Wang et al.* [\(2020](#page-18-11), *Theorem 1.1)* Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. *Then A can be represented as the sum of two tensors* C_A *and* N_A *, such that,* $A = C_A + N_A$ *, where index*(C_A) \leq 1, N_A *is nilpotent and* $C_A *_{N} N_A = N_A *_{N} C_A = \mathcal{O}$.

The tensors*C^A* and *N^A* are referred to as the *core* part and the *nilpotent* part of *A*, respectively. It is readily seen that $C_A = A * N A^d * N A$.

Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. If the following conditions hold, the unique matrix $\mathcal{X} \in$ $G_o(\mathcal{A})$ is referred to as the *DMP inverse* of \mathcal{A} and is represented by $\mathcal{A}^{d, \dagger}$ Wang et al. [\(2020,](#page-18-11) Theorem 2.2).

$$
\mathcal{A}^k *_{N} \mathcal{X} = \mathcal{A}^k *_{N} \mathcal{A}^{\dagger} \& \mathcal{X} *_{N} \mathcal{A} = \mathcal{A}^d *_{N} \mathcal{A}.
$$

Note that $A^{d,\dagger} = A^d * N A * N A^{\dagger}$.

By employing the same approach as in Wang et al. [\(2020,](#page-18-11) Theorem 2.2), the following holds.

Proposition 1 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *with index*(*A*) = *k. Then* $\mathcal{X} = A^{\dagger, d}$ = $A^{\dagger} *_{N} A *_{N} A^{d}$ *is the unique solution of the following:*

$$
\mathcal{X} *_{N} \mathcal{A} *_{N} \mathcal{X} = \mathcal{X} \& \mathcal{A} *_{N} \mathcal{X} = \mathcal{A} *_{N} \mathcal{A}^{d} \& \mathcal{X} *_{N} \mathcal{A}^{k} = \mathcal{A}^{\dagger} *_{N} \mathcal{A}^{k}.\tag{1}
$$

Definition 5 Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ with index(*A*) = *k*. Then The MPD inverse of *A*, represented by $A^{\dagger,d}$, the definition is as follows

$$
\mathcal{A}^{\dagger,d} := \mathcal{A}^{\dagger} *_{N} \mathcal{A} *_{N} \mathcal{A}^{d}.
$$
 (2)

Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. If the following conditions hold, the unique matrix $\mathcal{X} \in \mathcal{G}_o(\mathcal{A})$ is referred to as the *CMP inverse* of *A* and is represented by $A^{c,\dagger} = A^{\dagger} *_{N} C_{A} *_{N} A^{\dagger}$ Wang et al[.](#page-18-11) [\(2020](#page-18-11)).

$$
\mathcal{A} *_{N} \mathcal{X} = C_{\mathcal{A}} *_{N} \mathcal{A}^{\dagger} \& \mathcal{X} *_{N} \mathcal{A} = \mathcal{A}^{\dagger} *_{N} C_{\mathcal{A}} \& \mathcal{A} *_{N} \mathcal{X} *_{N} \mathcal{A} = C_{\mathcal{A}}.
$$
 (3)

2 CMP and DMP generalized inverses of tensors

This section introduces novel characterizations of CMP, DMP, and MPD inverses of tensors.

The theorem below demonstrates that one of the conditions in Wang et al. [\(2020,](#page-18-11) Theorem 2.7) is unnecessary.

Theorem 6 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. *Then* $\mathcal{X} = \mathcal{A}^{c, \dagger}$ *is the unique solution of the following:*

$$
\mathcal{A} *_{N} \mathcal{X} = C_{\mathcal{A}} *_{N} \mathcal{A}^{\dagger} \& \mathcal{X} *_{N} \mathcal{A} = \mathcal{A}^{\dagger} *_{N} C_{\mathcal{A}} \& \mathcal{X} *_{N} \mathcal{A} *_{N} \mathcal{X} = \mathcal{X}.
$$
 (4)

Proof It is obvious that the tensor $\mathcal{X} = \mathcal{A}^{c,\dagger}$ satisfies the system [\(4\)](#page-2-0). Assume that two tensors X_1 and X_2 satisfy [\(4\)](#page-2-0), then

$$
\mathcal{X}_1 = \mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_1 = \mathcal{A}^{\dagger} *_{N} C_{\mathcal{A}} *_{N} \mathcal{X}_1 = \mathcal{A}^{\dagger} *_{N} \mathcal{A} *_{N} \mathcal{A}^{d} *_{N} \mathcal{A} *_{N} \mathcal{X}_1
$$

= $\mathcal{A}^{\dagger} *_{N} \mathcal{A} *_{N} \mathcal{A}^{d} *_{N} C_{\mathcal{A}} *_{N} \mathcal{A}^{\dagger} = \mathcal{A}^{\dagger} *_{N} \mathcal{A} *_{N} \mathcal{A}^{d} *_{N} \mathcal{X}_2$
= $\mathcal{A}^{\dagger} *_{N} C_{\mathcal{A}} *_{N} \mathcal{X}_2 = \mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_2 = \mathcal{X}_2.$

 \Box

2 Springer JDMNC

A novel characterization of DMP inverses of tensors, which does not rely on the index of *A*, is presented in the following (see Wang et al. [\(2020,](#page-18-11) Theorem 2.2)).

Theorem 7 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *Then* $\mathcal{X} = A^{d, \dagger}$ *is the unique solution of the following:*

$$
\mathcal{A} *_{N} \mathcal{X} *_{N} \mathcal{A} *_{N} \mathcal{X} = C_{\mathcal{A}} *_{N} \mathcal{A}^{\dagger} \& \mathcal{X} *_{N} \mathcal{A} = \mathcal{A}^{d} *_{N} \mathcal{A} \& \mathcal{X} *_{N} \mathcal{A} *_{N} \mathcal{X} = \mathcal{X}.(5)
$$

Proof It is evident that the tensor $\mathcal{X} = \mathcal{A}^d *_{N} A *_{N} A^{\dagger}$ satisfies the system [\(5\)](#page-3-0). Assume that two tensors \mathcal{X}_1 and \mathcal{X}_2 satisfy [\(5\)](#page-3-0), then

$$
\mathcal{X}_1 = \mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_1 = \mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_1 = \mathcal{X}_1 *_{N} C_{\mathcal{A}} *_{N} \mathcal{A}^{\dagger}
$$

= $\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{A}^{d} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger} = \mathcal{A}^{d} *_{N} \mathcal{A} *_{N} \mathcal{A}^{d} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger}$
= $\mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{A}^{d} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger} = \mathcal{X}_2 *_{N} C_{\mathcal{A}} *_{N} \mathcal{A}^{\dagger}$
= $\mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_2 = \mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_2 = \mathcal{X}_2.$

By employing the same approach as in the proof of Theorem [7,](#page-3-1) the following holds.

Corollary 8 *Let* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. Then $\mathcal{X} = A^{\dagger,d}$ *is the unique solution of the following:*

$$
\mathcal{A} *_{N} \mathcal{X} = \mathcal{A} *_{N} \mathcal{A}^{d} \& \mathcal{X} *_{N} \mathcal{A} *_{N} \mathcal{X} *_{N} \mathcal{A} = \mathcal{A}^{\dagger} *_{N} \mathcal{C}_{\mathcal{A}} \& \mathcal{X} *_{N} \mathcal{A} *_{N} \mathcal{X} = \mathcal{X}.
$$

In the following theorem we state a new characterization of $A^{c, \dagger}$.

Theorem 9 Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. Then $\mathcal{X} = \mathcal{A}^{c,\dagger}$ is the unique solution satisfies *in [6.](#page-3-2)*

$$
\mathcal{A} *_{N} \mathcal{X} *_{N} \mathcal{A} = C_{\mathcal{A}} \& \mathcal{R}(\mathcal{X}) \subseteq \mathcal{R}(\mathcal{A}^{*}) \& \mathcal{R}(\mathcal{X}^{*}) \subseteq \mathcal{R}(\mathcal{A}), \tag{6}
$$

Proof By [\(3\)](#page-2-1),

$$
A *_{N} A^{c,\dagger} *_{N} A = C_{A},
$$

\n
$$
A^{c,\dagger} = A^{c,\dagger} *_{N} A *_{N} A^{c,\dagger} = (A^{\dagger} *_{N} A)^{*} *_{N} A^{d} *_{N} A *_{N} A^{\dagger} *_{N} A *_{N} A^{c,\dagger}
$$

\n
$$
= A^{*} *_{N} (A^{\dagger})^{*} *_{N} A^{d,\dagger},
$$

\n
$$
A^{c,\dagger} = A^{c,\dagger} *_{N} A *_{N} A^{c,\dagger} = A^{c,\dagger} *_{N} A *_{N} A^{\dagger} *_{N} A *_{N} A^{d} *_{N} (A *_{N} A^{\dagger})^{*}
$$

\n
$$
= A^{\dagger,d} *_{N} (A^{\dagger})^{*} *_{N} A^{*}.
$$

\n(7)

where $U = (A^{\dagger})^* * N A^{d,\dagger} \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ and $V = A^{\dagger,d} * N (A^{\dagger})^* \in \mathbb{C}^{I_1 \times \cdots \times I_N}$ $\mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. Therefore, by Stanimirović et al. [\(2020,](#page-18-12) Lemma 2.2 (a)), we obtain that $R(\mathcal{X}) \subseteq R(\mathcal{A}^*)$ and $R(\mathcal{X}^*) \subseteq R(\mathcal{A})$ are equivalent to $\mathcal{A}^{c,\dagger} = \mathcal{A}^* *_{N} \mathcal{U}$ and $\mathcal{A}^{c,\dagger} = \mathcal{V} *_{N} \mathcal{A}^*$, respectively. By the Eq. [\(7\)](#page-3-3), it is clear to see that $A^{c,\dagger}$ satisfies [\(6\)](#page-3-2). Assume possible, there exist \mathcal{X}_1 and \mathcal{X}_2 such that $\mathcal{X}_1 \neq \mathcal{X}_2$, we have that

$$
\mathcal{A} *_{N} \mathcal{X}_{1} *_{N} \mathcal{A} = C_{\mathcal{A}} \& \mathcal{X}_{1} = \mathcal{A}^{*} *_{N} \mathcal{U}_{1} \& \mathcal{X}_{1} = \mathcal{V}_{1} *_{N} \mathcal{A}^{*},
$$
 (8)

$$
\mathcal{A} *_{N} \mathcal{X}_{2} *_{N} \mathcal{A} = C_{\mathcal{A}} \& \mathcal{X}_{2} = \mathcal{A}^{*} *_{N} \mathcal{U}_{2} \& \mathcal{X}_{2} = \mathcal{V}_{2} *_{N} \mathcal{A}^{*},
$$
 (9)

where $U_1, U_2, V_1, V_2 \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. Let

$$
\mathcal{X} = \mathcal{X}_2 - \mathcal{X}_1, \quad \mathcal{U} = \mathcal{U}_2 - \mathcal{U}_1, \quad \mathcal{V} = \mathcal{V}_2 - \mathcal{V}_1.
$$
 (10)

 \Box

It then follows from (6) , (8) , (9) and (10) ,

$$
\mathcal{A} *_{N} \mathcal{X} *_{N} \mathcal{A} = 0 \& \mathcal{X} = \mathcal{A}^{*} *_{N} \mathcal{U} \& \mathcal{X} = \mathcal{V} *_{N} \mathcal{A}^{*}.
$$

By Panigrahy et al. [\(2020](#page-18-13), Lemma 3.7), we have

$$
(\mathcal{X} *_{N} \mathcal{A})^{*} *_{N} \mathcal{X} *_{N} \mathcal{A} = \mathcal{A}^{*} *_{N} (\mathcal{X})^{*} *_{N} \mathcal{X} *_{N} \mathcal{A}
$$

= $\mathcal{A}^{*} *_{N} (\mathcal{A}^{*} *_{N} \mathcal{U})^{*} *_{N} \mathcal{X} *_{N} \mathcal{A}$
= $\mathcal{A}^{*} *_{N} (\mathcal{U})^{*} *_{N} (\mathcal{A} *_{N} \mathcal{X} *_{N} \mathcal{A}) = \mathcal{O}.$

Therefore, $\mathcal{X} *_{N} \mathcal{A} = \mathcal{O}$. Meanwhile,

$$
\mathcal{X} *_{N} \mathcal{X}^{*} = \mathcal{X} *_{N} (\mathcal{V} *_{N} \mathcal{A}^{*})^{*} = \mathcal{X} *_{N} \mathcal{A} *_{N} \mathcal{V}^{*} = \mathcal{O},
$$

by Panigrahy et al. [\(2020,](#page-18-13) Remark 3.8), yields that $\mathcal{X} = \mathcal{O}$, and hence $\mathcal{X}_1 = \mathcal{X}_2$. Therefore, we conclude that unique tensor $\mathcal{X} = \mathcal{A}^{c,\dagger}$ satisfying (6). we conclude that unique tensor $\mathcal{X} = \mathcal{A}^{c,\dagger}$ satisfying [\(6\)](#page-3-2).

Corollary 10 Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. If there exist $\mathcal X$ and $\mathcal Z$ in $\mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *satisfying*

$$
\mathcal{A} *_{N} \mathcal{X} *_{N} \mathcal{A} = \mathcal{C}_{\mathcal{A}} \& \mathcal{X} = \mathcal{A}^{*} *_{N} \mathcal{Z} *_{N} \mathcal{A}^{*},
$$

then $\mathcal{X} = \mathcal{A}^{c,\dagger}$ *.*

By employing the same approach as in the proof of Theorem [9,](#page-3-6) the following holds.

Corollary 11 *Let* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. *Then* $\mathcal{X} = \mathcal{O}$ *is the unique solution satisfies in [11.](#page-4-0)*

$$
\mathcal{A} *_{N} \mathcal{X} = \mathcal{O} \quad \& \quad R(\mathcal{X}) \subseteq R(\mathcal{A}^{*}). \tag{11}
$$

By using Corollary [11,](#page-4-1) we characterize $A^{c,\dagger}$ by two relations.

Theorem 12 *Let* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. Then $\mathcal{X} = A^{c, \dagger}$ is the unique solution satisfies *in [12.](#page-4-2)*

$$
\mathcal{A} *_{N} \mathcal{X} = C_{\mathcal{A}} *_{N} \mathcal{A}^{\dagger} \& R(\mathcal{X}) \subseteq R(\mathcal{A}^{*}). \tag{12}
$$

In the following theorem, we characterize $A^{d,\dagger}$ by the relations in [13.](#page-4-3)

Theorem 13 Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. Then $\mathcal{X} = \mathcal{A}^{d, \dagger}$ is the unique solution satisfies *in [13.](#page-4-3)*

$$
\mathcal{A}^{\dagger} *_{N} \mathcal{X} *_{N} \mathcal{A} = \mathcal{A}^{\dagger,d} \& R(\mathcal{X}) \subseteq R(\mathcal{A}) \& R(\mathcal{X}^{*}) \subseteq R(\mathcal{A}). \tag{13}
$$

Proof It is clear that $A^{\dagger} *_{N} A^{d,\dagger} *_{N} A = A^{\dagger,d}, R(A^{d,\dagger}) = R(A *_{N} A^{d} *_{N} A^{\dagger}) \subseteq R(A)$, and $R((\mathcal{A}^{d,\dagger})^*) = R((\mathcal{A}^d *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger})^*) = R((\mathcal{A}^{\dagger})^* *_{N} \mathcal{A}^* *_{N} (\mathcal{A}^d)^*) \subseteq R((\mathcal{A}^{\dagger})^*) = R(\mathcal{A}).$ That is, we have proved that $\mathcal{A}^{d,\dagger}$ satisfies [\(13\)](#page-4-3). By Stanimirović et al. [\(2020](#page-18-12), Lemma 2.2) (a)), from [\(13\)](#page-4-3), we can assume that $\mathcal{X} = (\mathcal{A}^{\dagger})^* *_{N} \mathcal{U}$ and $\mathcal{X} = \mathcal{V} *_{N} \mathcal{A}^*$ for some $\mathcal{U}, \mathcal{V} \in$ $\int_0^1 I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N$

Assume possible, there exist \mathcal{X}_1 and \mathcal{X}_2 such that $\mathcal{X}_1 \neq \mathcal{X}_2$ and

$$
\mathcal{A}^{\dagger} *_{N} \mathcal{X}_{1} *_{N} \mathcal{A} = \mathcal{A}^{\dagger,d} \& \mathcal{X}_{1} = (\mathcal{A}^{\dagger})^{*} *_{N} \mathcal{U}_{1} \& \mathcal{X}_{1} = \mathcal{V}_{1} *_{N} \mathcal{A}^{*},
$$
 (14)

$$
\mathcal{A}^{\dagger} *_{N} \mathcal{X}_{2} *_{N} \mathcal{A} = \mathcal{A}^{\dagger,d} \& \mathcal{X}_{2} = (\mathcal{A}^{\dagger})^{*} *_{N} \mathcal{U}_{2} \& \mathcal{X}_{2} = \mathcal{V}_{2} *_{N} \mathcal{A}^{*}, \tag{15}
$$

where $U_1, U_2, V_1, V_2 \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. Let

$$
\mathcal{X} = \mathcal{X}_2 - \mathcal{X}_1, \quad \mathcal{U} = \mathcal{U}_2 - \mathcal{U}_1, \quad \mathcal{V} = \mathcal{V}_2 - \mathcal{V}_1.
$$
 (16)

2 Springer JDMW

It then follows from (13) , (14) , (15) and (16) ,

$$
\mathcal{A}^{\dagger} *_{N} \mathcal{X} *_{N} \mathcal{A} = \mathcal{O} \& \mathcal{X} = (\mathcal{A}^{\dagger})^{*} *_{N} \mathcal{U} \& \mathcal{X} = \mathcal{V} *_{N} \mathcal{A}^{*}.
$$

By Panigrahy et al. [\(2020](#page-18-13), Lemma 3.7), we have that

$$
(\mathcal{X} *_{N} \mathcal{A})^{*} *_{N} \mathcal{X} *_{N} \mathcal{A} = \mathcal{A}^{*} *_{N} (\mathcal{X})^{*} *_{N} \mathcal{X} *_{N} \mathcal{A}
$$

= $\mathcal{A}^{*} *_{N} ((\mathcal{A}^{\dagger})^{*} *_{N} \mathcal{U})^{*} *_{N} \mathcal{X} *_{N} \mathcal{A}$
= $\mathcal{A}^{*} *_{N} (\mathcal{U})^{*} *_{N} (\mathcal{A}^{\dagger} *_{N} \mathcal{X} *_{N} \mathcal{A}) = \mathcal{O}.$

We obtain $X *_{N} A = \mathcal{O}$. Meanwhile, we find

$$
\mathcal{X} *_{N} \mathcal{X}^{*} = \mathcal{X} *_{N} (\mathcal{V} *_{N} \mathcal{A}^{*})^{*} = (\mathcal{X} *_{N} \mathcal{A}) *_{N} \mathcal{V}^{*} = \mathcal{O},
$$

by Panigrahy et al. [\(2020](#page-18-13), Remark 3.8), we obtain $\mathcal{X} = \mathcal{O}$., and hence $\mathcal{X}_1 = \mathcal{X}_2$. Therefore, we conclude that unique tensor $\mathcal{X} = \mathcal{A}^{d, \dagger}$ satisfying (13). we conclude that unique tensor $\mathcal{X} = \mathcal{A}^{d,\dagger}$ satisfying [\(13\)](#page-4-3).

Corollary 14 *Let* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *. If there exist* $X, Z \in M_n(\mathbb{C})$ *satisfying*

$$
\mathcal{A}^{\dagger} *_{N} \mathcal{X} *_{N} \mathcal{A} = \mathcal{A}^{\dagger,d} \& \mathcal{X} = \mathcal{A} *_{N} \mathcal{Z} *_{N} \mathcal{A}^{*}.
$$
 (17)

then $\mathcal{X} = A^{d,\dagger}$.

By using Corollary [11,](#page-4-1) we characterize $A^{d,\dagger}$ by two relations.

Theorem 15 *Let* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. Then $\mathcal{X} = A^{d, \dagger}$ is the unique solution satisfies *in [18.](#page-5-0)*

$$
\mathcal{A}^{\dagger} *_{N} \mathcal{X} = \mathcal{A}^{\dagger,d} *_{N} \mathcal{A}^{\dagger} \& R(\mathcal{X}) \subseteq R(\mathcal{A}). \tag{18}
$$

By employing the same approach as in the proof of Theorem [13,](#page-4-6) the following hold.

Theorem 16 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. Then the solution satisfies in [19.](#page-5-1)

$$
\mathcal{A} *_{N} \mathcal{X} *_{N} \mathcal{A}^{\dagger} = \mathcal{A}^{d, \dagger} \& R(\mathcal{X}) \subseteq R(\mathcal{A}^{*}) \& R(\mathcal{X}^{*}) \subseteq R(\mathcal{A}^{*}). \tag{19}
$$

is unique and is given by $\mathcal{X} = \mathcal{A}^{\dagger,d}$ *.*

Corollary 17 *Let* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *. If there exist* $X, Z \in M_n(\mathbb{C})$ *satisfying*

$$
\mathcal{A} *_{N} \mathcal{X} *_{N} \mathcal{A}^{\dagger} = \mathcal{A}^{d,\dagger} \& \mathcal{X} = \mathcal{A} * *_{N} \mathcal{Z} *_{N} \mathcal{A}.
$$
 (20)

then $\mathcal{X} = \mathcal{A}^{\dagger,d}$.

By using Corollary [11,](#page-4-1) we characterize $A^{\dagger,d}$ by two relations.

Theorem 18 Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. Then the solution satisfies in [21.](#page-5-2)

$$
\mathcal{A} *_{N} \mathcal{X} = \mathcal{A} *_{N} \mathcal{A}^{d} \& R(\mathcal{X}) \subseteq R(\mathcal{A}^{*}).
$$
\n(21)

is unique and is given by $\mathcal{X} = \mathcal{A}^{\dagger,d}$ *.*

First, we obtain the null space and the range of the outer inverse of the tensor *A*.

Lemma 1 *Let* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times J_1 \times \cdots \times J_M}$ *and* $X \in \mathcal{G}_o(A)$ *. Then*

$$
R(\mathcal{I} - \mathcal{A} *_{M} \mathcal{X}) = N(\mathcal{A} *_{M} \mathcal{X}) = N(\mathcal{X}),
$$

$$
N(\mathcal{I} - \mathcal{X} *_{N} \mathcal{A}) = R(\mathcal{X} *_{N} \mathcal{A}) = R(\mathcal{X}).
$$

2 Springer JDMX

 \Box

Proof Given that $X *_{N} A$ and $A *_{M} X$ are projections, we can conclude that:

$$
R(\mathcal{I} - \mathcal{A} *_M \mathcal{X}) = N(\mathcal{A} *_M \mathcal{X}) \subseteq N(\mathcal{X} *_N \mathcal{A} *_M \mathcal{X}) = N(\mathcal{X}) \subseteq N(\mathcal{A} *_M \mathcal{X}),
$$

$$
N(\mathcal{I} - \mathcal{X} *_N \mathcal{A}) = R(\mathcal{X} *_N \mathcal{A}) \subseteq R(\mathcal{X}) = R(\mathcal{X} *_N \mathcal{A} *_M \mathcal{X}) \subseteq R(\mathcal{X} *_N \mathcal{A}).
$$

Lemma 2 *(Panigrahy and Mishra [\(2022](#page-18-14), Lemma 2.3))* If $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ is a *Hermitian idempotent tensor, then* $A^{\dagger} = A$ *.*

Remark 1 Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ is Hermitian idempotent tensor. Then $C_A = A^{d, \dagger} =$ $A^{\dagger,d}$.

Theorem 19 *Let* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *with index(A) = k. The solution to the system of following:*

$$
\mathcal{A}^k *_{N} \mathcal{X} = \mathcal{A}^{k+1} \& \mathcal{A} *_{N} \mathcal{X} = \mathcal{X} *_{N} \mathcal{A} \& \mathcal{X} *_{N} \mathcal{A}^d *_{N} \mathcal{X} = \mathcal{X} \tag{22}
$$

is unique and is given by $X = C_A$ *.*

Proof It is evident that the tensor $X = C_A$ satisfies the system [\(22\)](#page-6-0). Assume that two tensors \mathcal{X}_1 and \mathcal{X}_2 satisfy [\(22\)](#page-6-0), then by Behera et al. [\(2020](#page-17-7), Lemma 3.1), we have

$$
\mathcal{X}_1 = \mathcal{X}_1 *_{N} \mathcal{A}^d *_{N} \mathcal{X}_1 = \mathcal{X}_1 *_{N} (\mathcal{A}^d)^2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1
$$

\n
$$
= \mathcal{X}_1 *_{N} (\mathcal{A}^d)^2 *_{N} \mathcal{X}_1 *_{N} \mathcal{A} = \mathcal{X}_1 *_{N} (\mathcal{A}^d)^{k+2} *_{N} \mathcal{A}^k *_{N} \mathcal{X}_1 *_{N} \mathcal{A}
$$

\n
$$
= \mathcal{X}_1 *_{N} (\mathcal{A}^d)^{k+2} *_{N} \mathcal{A}^{k+1} *_{N} \mathcal{A} = \mathcal{X}_1 *_{N} \mathcal{A}^{k+1} *_{N} (\mathcal{A}^d)^{k+2} *_{N} \mathcal{A}
$$

\n
$$
= \mathcal{A}^k *_{N} \mathcal{X}_1 *_{N} \mathcal{A} *_{N} (\mathcal{A}^d)^{k+2} *_{N} \mathcal{A} = \mathcal{A}^{k+1} *_{N} \mathcal{A} *_{N} (\mathcal{A}^d)^{k+2} *_{N} \mathcal{A}
$$

\n
$$
= \mathcal{A}^k *_{N} \mathcal{X}_2 *_{N} \mathcal{A} *_{N} (\mathcal{A}^d)^{k+2} *_{N} \mathcal{A} = \mathcal{X}_2 *_{N} \mathcal{A}^{k+1} *_{N} (\mathcal{A}^d)^{k+2} *_{N} \mathcal{A}
$$

\n
$$
= \mathcal{X}_2 *_{N} (\mathcal{A}^d)^{k+2} *_{N} \mathcal{X}_2 *_{N} \mathcal{A} = \mathcal{X}_2 *_{N} (\mathcal{A}^d)^{k+2} *_{N} \mathcal{A} *_{N} \mathcal{X}_2 *_{N} \mathcal{A}
$$

\n
$$
= \mathcal{X}_2 *_{N} (\mathcal{A}^d)^2 *_{N} \mathcal{X}_2 *_{N} \mathcal{A} = \mathcal{X}_2 *_{N} (\mathcal{A}^d)^2 *_{N} \mathcal{A} *_{N} \mathcal{X}_2
$$

Next result gives the aforementioned relationships in terms of mainly the core part of the tensor *A*.

Theorem 20 *Let* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *with index(A) = k. Then*

Proof (*i*) By Ji and Wei [\(2018,](#page-18-5) Theorem 3.4 (1)) and Lemma [1,](#page-5-3) we have

$$
\mathcal{A}^{d,\dagger} *_{N} C_{\mathcal{A}} = C_{\mathcal{A}} *_{N} \mathcal{A}^{d,\dagger}
$$

\n
$$
\Leftrightarrow \mathcal{A}^{d} *_{N} \mathcal{A} *_{N} (\mathcal{I} - \mathcal{A} *_{N} \mathcal{A}^{\dagger}) = \mathcal{O}
$$

\n
$$
\Leftrightarrow N(\mathcal{A}^{\dagger}) = N(\mathcal{A} *_{N} \mathcal{A}^{\dagger}) = R(\mathcal{I} - \mathcal{A} *_{N} \mathcal{A}^{\dagger}) \subseteq N(\mathcal{A}^{d} *_{N} \mathcal{A}) = N(\mathcal{A}^{d}) = N(\mathcal{A}^{k})
$$

\n
$$
\Leftrightarrow \mathcal{A}^{k+1} *_{N} \mathcal{A}^{\dagger} = \mathcal{A}^{k}.
$$

(*ii*) and (*iii*) are similar to part (*i*).

(*i*v)

$$
C_{\mathcal{A}} = A^{\dagger,d} *_{N} A \Leftrightarrow C_{\mathcal{A}} = A^{\dagger} *_{N} C_{\mathcal{A}}
$$

$$
\Leftrightarrow (I - A^{\dagger}) *_{N} C_{\mathcal{A}} = \mathcal{O}
$$

$$
\Leftrightarrow R(C_{\mathcal{A}}) \subseteq N(I - A^{\dagger}).
$$

By Ji and Wei [\(2018,](#page-18-5) Theorem 3.4 (1)), we can conclude that

$$
R(C_{\mathcal{A}}) = R(\mathcal{A}^d *_{N} \mathcal{A} *_{N} \mathcal{A}) \subseteq R(\mathcal{A}^d) = R(\mathcal{A}^k)
$$

= $R(C_{\mathcal{A}} *_{N} \mathcal{A}^d *_{N} \mathcal{A}^k) \subseteq R(C_{\mathcal{A}}).$

Therefore, $R(C_A) = R(A^k)$. We obtain $R(A^k) \subseteq N(\mathcal{I} - A^{\dagger}) \Leftrightarrow A^{\dagger} *_{N} A^k = A^k$.

Hartwig and Spindelböck decomposition of tensor *A* arrived at the following lemma.

Lemma 3 *Wang et al.* [\(2020,](#page-18-11) *Lemma 1.3)* Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. Then there exist $unitary$ $U \in \mathbb{C}^{\bar{I_1} \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *such that*

$$
\mathcal{A} = \mathcal{U} *_{N} \begin{pmatrix} \Sigma *_{N} \mathcal{K} \Sigma *_{N} \mathcal{L} \\ \mathcal{O} & \mathcal{O} \end{pmatrix} *_{N} \mathcal{U}^{*},
$$
(23)

where $\Sigma \in \mathbb{C}^{R_1 \times \cdots \times R_N \times R_1 \times \cdots \times R_N}$ *is a diagonal tensor of singular values of tensor A, and the tensors* $K \in \mathbb{C}^{R_1 \times \cdots \times R_N \times R_1 \times \cdots \times R_N}$, $\mathcal{L} \in \mathbb{C}^{R_1 \times \cdots \times R_N \times (I_1 - R_1) \times \cdots \times (I_N - R_N)}$ *satisfy:*

 $K *_{N} K^{*} + \mathcal{L} *_{N} \mathcal{L}^{*} = \mathcal{I}.$ (24)

Using the same approach as described in the proof of Wang et al. [\(2020,](#page-18-11) Theorem 2.3), the following holds.

Corollary 21 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *is in the form of [\(23\)](#page-7-0). Then*

$$
\mathcal{A}^{\dagger,d} = \mathcal{U} *_{N} \begin{pmatrix} \mathcal{K}^{*} *_{N} \tilde{\Sigma} & \mathcal{K}^{*} *_{N} \tilde{\Sigma} *_{N} (\Sigma *_{N} \mathcal{K})^{d} *_{N} \Sigma *_{N} \mathcal{L} \\ \mathcal{L}^{*} *_{N} \tilde{\Sigma} & \mathcal{L}^{*} *_{N} \tilde{\Sigma} *_{N} (\Sigma *_{N} \mathcal{K})^{d} *_{N} \Sigma *_{N} \mathcal{L} \end{pmatrix} *_{N} \mathcal{U}^{*},
$$
(25)

where $\tilde{\Sigma} = \mathcal{K} *_{N} (\Sigma *_{N} \mathcal{K})^{d}$.

We extend the recently obtained properties by using CMP inverse to the tensor (see Mehdipour and Salemi [\(2018,](#page-18-15) p. 4 (9))).

Theorem 22 *Let* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *be of the form [\(23\)](#page-7-0). Then*

$$
(\mathcal{A}^{c,\dagger})^{\dagger} = \mathcal{U} *_{N} \begin{pmatrix} (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{K} (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{L} \\ \mathcal{O} & \mathcal{O} \end{pmatrix} *_{N} \mathcal{U}^{*}.
$$
 (26)

Proof Suppose that *A* is expressed as shown in [\(23\)](#page-7-0) and

$$
\mathcal{X} = \mathcal{U} *_{N} \begin{pmatrix} (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{K} (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{L} \\ \mathcal{O} & \mathcal{O} \end{pmatrix} *_{N} \mathcal{U}^{*}.
$$

By Wang et al. $(2020, p. 7(2.6))$ $(2020, p. 7(2.6))$ and (24) , we have that

$$
\mathcal{X} *_{N} \mathcal{A}^{c,\dagger}
$$
\n
$$
= \mathcal{U} *_{N} \begin{pmatrix} (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{K} & (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{L} \\ \mathcal{O} & \mathcal{O} \end{pmatrix} *_{N} \mathcal{U}^{*} *_{N} \mathcal{U} *_{N} \begin{pmatrix} \mathcal{K}^{*} *_{N} \tilde{\Sigma} & \mathcal{O} \\ \mathcal{L}^{*} *_{N} \tilde{\Sigma} & \mathcal{O} \end{pmatrix} *_{N} \mathcal{U}^{*} *_{N}
$$
\n
$$
\text{g} \text{Springer } \mathcal{J} \text{bin}
$$

$$
= \mathcal{U} *_{N} \begin{pmatrix} (\tilde{\Sigma})^{\dagger} *_{N} \tilde{\Sigma} \ \mathcal{O} \\ \mathcal{O} \end{pmatrix} *_{N} \mathcal{U}^{*}.
$$

According to Definition [2,](#page-1-0) it is straightforward to calculate the first equation, which states that.

$$
\mathcal{A}^{c,\dagger} *_{N} \mathcal{X} *_{N} \mathcal{A}^{c,\dagger}
$$
\n
$$
= \mathcal{U} *_{N} \left(\begin{matrix} \mathcal{K}^{*} *_{N} \tilde{\Sigma} \ \mathcal{O} \\ \mathcal{L}^{*} *_{N} \tilde{\Sigma} \ \mathcal{O} \end{matrix} \right) *_{N} \mathcal{U}^{*} *_{N} \mathcal{U} *_{N} \left(\begin{matrix} (\tilde{\Sigma})^{\dagger} *_{N} \tilde{\Sigma} \ \mathcal{O} \\ \mathcal{O} \end{matrix} \right) *_{N} \mathcal{U}^{*}
$$
\n
$$
= \mathcal{U} *_{N} \left(\begin{matrix} \mathcal{K}^{*} *_{N} \tilde{\Sigma} \ \mathcal{O} \\ \mathcal{L}^{*} *_{N} \tilde{\Sigma} \ \mathcal{O} \end{matrix} \right) *_{N} \mathcal{U}^{*} = \mathcal{A}^{c,\dagger}.
$$

Moreover, the second equation

$$
\mathcal{X} *_{N} \mathcal{A}^{c,\dagger} *_{N} \mathcal{X}
$$
\n
$$
= \mathcal{U} *_{N} \begin{pmatrix} (\tilde{\Sigma})^{\dagger} *_{N} \tilde{\Sigma} \ C \\ \mathcal{O} \end{pmatrix} *_{N} \mathcal{U} *_{N} \mathcal{U} *_{N} \mathcal{U} *_{N} \begin{pmatrix} (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{K} \ (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{L} \\ \mathcal{O} \end{pmatrix} *_{N} \mathcal{U}^{*}
$$
\n
$$
= \mathcal{U} *_{N} \begin{pmatrix} (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{K} \ (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{L} \\ \mathcal{O} \end{pmatrix} *_{N} \mathcal{U}^{*} = \mathcal{X}.
$$

The third equation follows from

$$
(\mathcal{A}^{c,\dagger} *_{N} \mathcal{X})^{*}
$$
\n
$$
= (\mathcal{U} *_{N} (\widetilde{\Sigma}^{*} *_{N} \widetilde{\Sigma} *_{N} (\widetilde{\Sigma})^{\dagger} *_{N} \mathcal{K} \mathcal{K}^{*} *_{N} \widetilde{\Sigma} *_{N} (\widetilde{\Sigma})^{\dagger} *_{N} \mathcal{L}) *_{N} \mathcal{U}^{*})^{*}
$$
\n
$$
= (\mathcal{U} *_{N} (\widetilde{\Sigma} *_{N} \widetilde{\Sigma} *_{N} (\widetilde{\Sigma})^{\dagger} *_{N} \mathcal{K} \mathcal{L}^{*} *_{N} \widetilde{\Sigma} *_{N} (\widetilde{\Sigma})^{\dagger} *_{N} \mathcal{L}) *_{N} \mathcal{U}^{*})^{*}
$$
\n
$$
= \mathcal{U} *_{N} (\mathcal{K}^{*} *_{N} (\widetilde{\Sigma} *_{N} (\widetilde{\Sigma})^{\dagger})^{*} *_{N} \mathcal{K} \mathcal{K}^{*} *_{N} (\widetilde{\Sigma} *_{N} (\widetilde{\Sigma})^{\dagger})^{*} *_{N} \mathcal{L}) *_{N} \mathcal{U}^{*}
$$
\n
$$
= \mathcal{U} *_{N} (\mathcal{K}^{*} *_{N} \widetilde{\Sigma} *_{N} (\widetilde{\Sigma})^{\dagger} *_{N} \mathcal{K} \mathcal{K}^{*} *_{N} \widetilde{\Sigma} *_{N} (\widetilde{\Sigma})^{\dagger} *_{N} \mathcal{L}) *_{N} \mathcal{U}^{*}
$$
\n
$$
= \mathcal{U} *_{N} (\mathcal{K}^{*} *_{N} \widetilde{\Sigma} *_{N} (\widetilde{\Sigma})^{\dagger} *_{N} \mathcal{K} \mathcal{L}^{*} *_{N} \widetilde{\Sigma} *_{N} (\widetilde{\Sigma})^{\dagger} *_{N} \mathcal{L}) *_{N} \mathcal{U}^{*}
$$
\n
$$
= \mathcal{A}^{c,\dagger} *_{N} \mathcal{X}.
$$

The fourth equation follows from

$$
(\mathcal{X} *_{N} \mathcal{A}^{c,\dagger})^{*} = (\mathcal{U} *_{N} (\widetilde{\Sigma})^{\dagger} *_{N} \widetilde{\Sigma} \underset{\mathcal{O}}{\circ}) *_{N} \mathcal{U}^{*})^{*}
$$

$$
= \mathcal{U} *_{N} (\widetilde{\Sigma})^{\dagger} *_{N} \widetilde{\Sigma})^{*} \underset{\mathcal{O}}{\circ} *_{N} \mathcal{U}^{*}
$$

$$
= \mathcal{X} *_{N} \mathcal{A}^{c,\dagger}.
$$

The tensor X fulfills four equations. Assume that both W and Z also satisfy four equations each. In order to demonstrate the uniqueness, we need to show that

$$
W = W *_{N} (A *_{N} W)^{*} = W *_{N} W^{*} *_{N} A^{*} = W *_{N} W^{*} *_{N} A^{*} *_{N} Z^{*} *_{N} A^{*}
$$

= $W *_{N} (A *_{N} W)^{*} *_{N} (A *_{N} Z)^{*} = W *_{N} A *_{N} Z$
= $W *_{N} A *_{N} Z *_{N} A *_{N} Z = (W *_{N} A)^{*} *_{N} (Z *_{N} A)^{*} *_{N} Z$
= $A^{*} *_{N} W^{*} *_{N} A^{*} *_{N} Z^{*} *_{N} Z = (Z *_{N} A)^{*} *_{N} Z = Z.$

Ц

 $\underline{\circ}$ Springer \mathcal{J} DMWC

By using Theorem [22,](#page-7-2) we conclude the following.

Theorem 23 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *be as in [\(23\)](#page-7-0). Then* $A^{\dagger,d} *_{N} (A^{c,\dagger})^{\dagger} =$ $(A^{c,\dagger})^{\dagger} *_{N} A^{d,\dagger}$ *if and only if the following conditions hold.*

I. $K^* * N \tilde{\Delta} * N K = (\tilde{\Sigma})^{\dagger} * N \tilde{\Sigma}$, 2. $L^* * N \tilde{\Delta} = 0$.

where $\tilde{\Delta} = \tilde{\Sigma} *_{N} (\tilde{\Sigma})^{\dagger}$.

Proof By Wang et al. [\(2020,](#page-18-11) Theorem 2.3), [\(24\)](#page-7-1), [\(25\)](#page-7-3) and [\(26\)](#page-7-4), we have

$$
\mathcal{A}^{\dagger,d} *_{N} (\mathcal{A}^{c,\dagger})^{\dagger} \n= \mathcal{U} *_{N} \left(\mathcal{K}^{*} *_{N} \tilde{\Sigma} *_{N} (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{K} \mathcal{K}^{*} *_{N} \tilde{\Sigma} *_{N} (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{L} \right) *_{N} \mathcal{U}^{*} \n(\mathcal{A}^{c,\dagger})^{\dagger} *_{N} \mathcal{A}^{d,\dagger} = \mathcal{U} *_{N} \left(\tilde{\Sigma} \right)^{\dagger} *_{N} \tilde{\Sigma} \mathcal{O} \right) *_{N} \mathcal{U}^{*}.
$$

Then $A^{\dagger,d} *_{N} (A^{c,\dagger})^{\dagger} = (A^{c,\dagger})^{\dagger} *_{N} A^{d,\dagger}$ if and only if the following conditions hold.

 $\mathcal{K}^* *_{N} \tilde{\Sigma} *_{N} (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{K} = (\tilde{\Sigma})^{\dagger} *_{N} \tilde{\Sigma}$ (27)

$$
\mathcal{K}^* *_{N} \tilde{\Sigma} *_{N} (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{L} = \mathcal{O}, \qquad (28)
$$

$$
\mathcal{L}^* *_{N} \tilde{\Sigma} *_{N} (\tilde{\Sigma})^{\dagger} *_{N} \mathcal{L} = \mathcal{O}.
$$
 (29)

Note that the Eq. (27) and the Part 1 of Theorem [23](#page-9-1) are equivalent. Since using (24) , by left-multiplying the Eqs. [\(28\)](#page-9-2) and [\(29\)](#page-9-3) by *K* and *L*, respectively, we obtain $\sum_{i=1}^{\infty} *_{N} (\sum_{i=1}^{n})*_{N} L = \mathcal{O}$, equivalent to $\mathcal{L}^* *_{N} \tilde{\Sigma} *_{N} (\tilde{\Sigma})^{\dagger} = \mathcal{O}$, that is the Part 2 of Theorem [23.](#page-9-1)

3 Generalized bilateral inverse of tensor via Einstein product

In this section, we expand upon the recently introduced concept of a *generalized bilateral inverse for a tensor A using the Einstein product*. Furthermore, we demonstrate that certain well-known generalized inverses can be viewed as specific instances of the generalized bilateral inverses for tensors (see Kheirandish and Salem[i](#page-18-16) [2023\)](#page-18-16).

Definition 24 Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times J_1 \times \cdots \times J_M}$ and let $\mathcal{X}_1, \mathcal{X}_2 \in \mathcal{G}_i(A) \cup \mathcal{G}_o(A)$. Then $\mathcal{X}_1 *_{N}$ *A* ∗*^M X*² is referred to as *generalized bilateral inverse of tensor A*.

We will now present a theorem that characterizes the generalized bilateral inverses of tensors.

Theorem 25 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times J_1 \times \cdots \times J_M}$ *and suppose that* $X_1 \in \mathcal{G}_o(A)$ *and* $\mathcal{X}_2 \in \mathcal{G}_i(\mathcal{A})$. The unique solution to the system of following:

$$
\mathcal{X} *_{N} \mathcal{A} *_{M} \mathcal{X} = \mathcal{X}, \ \mathcal{A} *_{M} \mathcal{X} *_{N} \mathcal{A} *_{M} \mathcal{X} = \mathcal{A} *_{M} \mathcal{X}_{1} *_{N} \mathcal{A} *_{M} \mathcal{X}_{2}, \ \mathcal{X} *_{N} \mathcal{A} = \mathcal{X}_{1} *_{N} \mathcal{A}.
$$
\n(30)

is given by $\mathcal{X} = \mathcal{X}_1 *_{N} \mathcal{A} *_{M} \mathcal{X}_2$.

Proof Assume that $X = X_1 *_{N} A *_{M} X_2$ is a solution. Then

$$
\mathcal{X} *_{N} \mathcal{A} *_{M} \mathcal{X} = \mathcal{X}_{1} *_{N} \mathcal{A} *_{M} \mathcal{X}_{2} *_{N} \mathcal{A} *_{M} \mathcal{X}_{1} *_{N} \mathcal{A} *_{M} \mathcal{X}_{2}
$$

2 Springer JDMW

 \Box

$$
= \mathcal{X}_1 *_{N} \mathcal{A} *_{M} \mathcal{X}_1 *_{N} \mathcal{A} *_{M} \mathcal{X}_2 = \mathcal{X}_1 *_{N} \mathcal{A} *_{M} \mathcal{X}_2
$$

$$
\mathcal{A} *_{M} \mathcal{X} *_{N} \mathcal{A} *_{M} \mathcal{X} = \mathcal{A} *_{M} \mathcal{X}_1 *_{N} \mathcal{A} *_{M} \mathcal{X}_2 *_{N} \mathcal{A} *_{M} \mathcal{X}_1 *_{N} \mathcal{A} *_{M} \mathcal{X}_2
$$

$$
= \mathcal{A} *_{M} \mathcal{X}_1 *_{N} \mathcal{A} *_{M} \mathcal{X}_1 *_{N} \mathcal{A} *_{M} \mathcal{X}_2
$$

$$
= \mathcal{A} *_{M} \mathcal{X}_1 *_{N} \mathcal{A} *_{M} \mathcal{X}_2,
$$

$$
\mathcal{X} *_{N} \mathcal{A} = \mathcal{X}_1 *_{N} \mathcal{A} *_{M} \mathcal{X}_2 *_{N} \mathcal{A} = \mathcal{X}_1 *_{N} \mathcal{A}.
$$

Suppose that two tensors *W* and *Z* satisfy [\(30\)](#page-9-4), then

$$
W = W *_{N} A *_{M} W = W *_{N} A *_{M} W *_{N} A *_{M} W
$$

= $W *_{N} A *_{M} X_{1} *_{N} A *_{M} X_{2} = X_{1} *_{N} A *_{M} X_{1} *_{N} A *_{M} X_{2}$
= $Z *_{N} A *_{M} X_{1} *_{N} A *_{M} X_{2} = Z *_{N} A *_{M} Z = Z.$

Using the same approach as described in the proof of Theorem [25,](#page-9-5) the following holds.

Corollary 26 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times J_1 \times \cdots \times J_M}$ *and suppose that* $X_1 \in \mathcal{G}_o(A)$ *and* $\mathcal{X}_2 \in \mathcal{G}_i(\mathcal{A})$. The unique solution to the system of following:

$$
\mathcal{X} *_{N} \mathcal{A} *_{M} \mathcal{X} = \mathcal{X}, \quad \mathcal{A} *_{M} \mathcal{X} = \mathcal{A} *_{M} \mathcal{X}_{1}, \quad \mathcal{X} *_{N} \mathcal{A} *_{M} \mathcal{X} *_{N} \mathcal{A} = \mathcal{X}_{2} *_{N} \mathcal{A} *_{M} \mathcal{X}_{1} *_{N} \mathcal{A}.
$$

is given by $\mathcal{X} = \mathcal{X}_{2} *_{N} \mathcal{A} *_{M} \mathcal{X}_{1}.$

The following proposition demonstrates that certain well-known generalized inverses of tensors can be regarded as generalized bilateral inverses of tensors.

Proposition 2 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *Then*

(i)
$$
A^{\dagger,d} = A^{\dagger} *_{N} A *_{N} A^{d}
$$
, $(A^{\dagger} \in \mathcal{G}_{i}(A)) \& A^{d} \in \mathcal{G}_{o}(A))$.
\n(ii) $A^{d,\dagger} = A^{d} *_{N} A *_{N} A^{\dagger}$, $(A^{d} \in \mathcal{G}_{o}(A)) \& A^{\dagger} \in \mathcal{G}_{i}(A))$.
\n(iii) $A^{c,\dagger} = A^{\dagger} *_{N} A *_{N} A^{d,\dagger}$, $(A^{\dagger} \in \mathcal{G}_{i}(A)) \& A^{d,\dagger} \in \mathcal{G}_{o}(A)$.
\n(iv) $A^{c,\dagger} = A^{\dagger,d} *_{N} A *_{N} A^{\dagger}$, $(A^{\dagger,d} \in \mathcal{G}_{o}(A) \& A^{\dagger} \in \mathcal{G}_{i}(A))$.

Next, will define the dual of the generalized bilateral inverse for tensors in the following manner:

Definition 27 Suppose that $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ and suppose that $\mathcal{X}_1, \mathcal{X}_2 \in \mathcal{G}_i(A) \cup$ $G_0(A)$. Then the *dual of generalized bilateral inverse of tensor* $X_1 * N$, $A * N$, X_2 is denoted by

$$
(\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2)' := \mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1,
$$

and $\mathcal{X}_1 *_{N} \mathcal{X}_2$ is called self dual, if $\mathcal{X}_1 *_{N} \mathcal{X}_2 = \mathcal{X}_2 *_{N} \mathcal{X}_3 *_{N} \mathcal{X}_1$.

Now, we extend the recently obtained properties in Kheirandish and Salem[i](#page-18-16) [\(2023\)](#page-18-16) for tensors. Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$, $X_1 \in \mathcal{G}_o(A)$ and $X_2 \in \mathcal{G}_i(A)$. The following theorem presents the necessary and sufficient conditions for a generalized bilateral inverse of tensors $\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2$ to be self-dual.

Theorem 28 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$, $\mathcal{X}_1 \in \mathcal{G}_o(A)$ *and* $\mathcal{X}_2 \in \mathcal{G}_i(A)$. *Then, the following statements are equivalent.*

- *(i) X*¹ ∗*^N A* ∗*^N X*² *is self dual,*
- *(ii) X*¹ = *X*¹ ∗*^N A* ∗*^N X*² = *X*² ∗*^N A* ∗*^N X*1,

(iii) $N(A *_{N} X_{2})$ ⊂ $N(X_{1})$ *and* $R(X_{1})$ ⊂ $R(X_{2} *_{N} A)$.

Proof $((i) \rightarrow (ii))$ Assume $\mathcal{X}_1 *_{N} \mathcal{X}_2 = \mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1$. Since $\mathcal{A} *_{N} \mathcal{X}_2 *_{N} \mathcal{A} = \mathcal{A}$ and $\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_1 = \mathcal{X}_1$, we obtain that

$$
\mathcal{X}_1 = \mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_1 = \mathcal{X}_1 *_{N} (\mathcal{A} *_{N} \mathcal{X}_2 *_{N} \mathcal{A}) *_{N} \mathcal{X}_1
$$

= $(\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2) *_{N} \mathcal{A} *_{N} \mathcal{X}_1 = (\mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1) *_{N} \mathcal{A} *_{N} \mathcal{X}_1$
= $\mathcal{X}_2 *_{N} \mathcal{A} *_{N} (\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_1) = \mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1.$

Then $\mathcal{X}_1 = \mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2 = \mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1$.

 $((ii) \rightarrow (iii)$ Since $\mathcal{X}_1 = \mathcal{X}_1 *_{N} \mathcal{X}_2$, we obtain that $N(\mathcal{A} *_{N} \mathcal{X}_2) \subseteq N(\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2)$ *X*₂) = *N*(*X*₁). Also, since $X_1 = X_2 * N A * N X_1$, we obtain that $R(X_1) = R(X_2 * N A * N X_1)$ ⊆ $R(\mathcal{X}_2 *_{N} \mathcal{A}).$

 $((iii) \rightarrow (i))$ Using Lemma [1,](#page-5-3) we can see that $R(I - A *_{N} X_{2}) = N(A *_{N} X_{2})$ and *N*(*A* ∗*N* \mathcal{X}_2) ⊆ *N*(\mathcal{X}_1). Therefore, $R(I - A *_{N} \mathcal{X}_2)$ ⊆ $N(\mathcal{X}_1)$ which implies that $\mathcal{X}_1 *_{N}$ $(I - A *_{N} X_{2}) = 0$. Hence, we have $X_{1} = X_{1} *_{N} A *_{N} X_{2}$. Similarly, using Lemma [1,](#page-5-3) we arrive $R(\mathcal{X}_2 *_{N} \mathcal{A}) = N(I - \mathcal{X}_2 *_{N} \mathcal{A})$ and $R(\mathcal{X}_1) \subseteq R(\mathcal{X}_2 *_{N} \mathcal{A}) = N(I - \mathcal{X}_2 *_{N} \mathcal{A})$. This implies that $(I - X_2 * N \mathcal{A}) * N \mathcal{X}_1 = 0$. Therefore we have $\mathcal{X}_1 = \mathcal{X}_2 * N \mathcal{A} * N \mathcal{X}_1$, which completes the proof completes the proof.

Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$, $\mathcal{X}_1 = A^D$, $\mathcal{X}_2 = A^{\dagger}$. By Theorem [28,](#page-10-0) Lemma [1,](#page-5-3) Ji and Wei $(2018,$ $(2018,$ Theorem 3.4 (1)) and Sahoo et al. $(2020,$ $(2020,$ Theorem 3.7 a(i)), we deduce the following.

Proposition 3 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *with index*(*A*) = *k. Then, the following statements are equivalent.*

- (i) $\mathcal{A}^d * N \mathcal{A} * N \mathcal{A}^{\dagger} = \mathcal{A}^{\dagger} * N \mathcal{A} * N \mathcal{A}^d$ (iii) $A^d = A^{d, \dagger} = A^{\dagger, d}$
- *(iii)* $N(A^*)$ ⊂ $N(A^k)$ *&* $R(A^k)$ ⊂ $R(A^*)$.

The following theorem states the necessary and sufficient conditions for the generalized bilateral inverse of tensors to be self-dual.

Theorem 29 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$, $\mathcal{X}_2 \in \mathcal{G}_o(A)$ and $\mathcal{X}_1 \in \mathcal{G}_i(A) \cup \mathcal{G}_o(A)$. Then $\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2$ is self dual, $\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2 = (\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2)' = \mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1$, *if and only if* $N(\mathcal{X}_2) \subseteq N(\mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1)$ *and* $R(\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2) \subseteq R(\mathcal{X}_2)$.

Proof Assume $\mathcal{X}_1 *_{N} \mathcal{X}_2 = \mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1$. Since $\mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_2 = \mathcal{X}_2$ and by Lemma [1,](#page-5-3) we obtain the following relations:

$$
\mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1 = (\mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_2) *_{N} \mathcal{A} *_{N} \mathcal{X}_1 = \mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2,
$$

$$
\mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1 *_{N} (\mathcal{I} - \mathcal{A} *_{N} \mathcal{X}_2) = 0,
$$
\n(31)

$$
N(\mathcal{X}_2) = N(\mathcal{A} *_{N} \mathcal{X}_2) = R(\mathcal{I} - \mathcal{A} *_{N} \mathcal{X}_2) \subseteq N(\mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1),
$$
(32)

$$
\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2 = \mathcal{X}_1 *_{N} \mathcal{A} *_{N} (\mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_2) = \mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2
$$

(*I* - $\mathcal{X}_2 *_{N} \mathcal{A}$) *_{N} $\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2 = 0,$ (33)

$$
R(\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2) \subseteq N(\mathcal{I} - \mathcal{X}_2 *_{N} \mathcal{A}) = R(\mathcal{X}_2 *_{N} \mathcal{A}) = R(\mathcal{X}_2).
$$
 (34)

Therefore,

$$
N(\mathcal{X}_2) \subseteq N(\mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1), \quad R(\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2) \subseteq R(\mathcal{X}_2).
$$

Conversely, we know that Eqs. [\(31\)](#page-11-0), [\(32\)](#page-11-1), [\(33\)](#page-11-2), and [\(34\)](#page-11-3) are equivalent. Therefore, $\mathcal{X}_2 *_{N}$ $A *_{N} X_{1} = X_{2} *_{N} A *_{N} X_{1} *_{N} A *_{N} X_{2}$ and $X_{1} *_{N} A *_{N} X_{2} = X_{2} *_{N} A *_{N} X_{1} *_{N} A *_{N} X_{2}$.
Therefore, $X_{1} *_{N} A *_{N} X_{2} = X_{2} *_{N} A *_{N} X_{1}$. Therefore, $\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2 = \mathcal{X}_2 *_{N} \mathcal{A} *_{N} \mathcal{X}_1$.

Theorem 30 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *Then*

(*i*) $\mathcal{A}^d = \mathcal{A}^d *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger}$ *if and only if* $(\mathcal{A}^d *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger})' = \mathcal{A}^{c,\dagger}$. *(ii)* $A^d = A^{\dagger} * N A * N A^d$ *if and only if* $(A^{\dagger} * N A * N A^d)' = A^{c,\dagger}$.

Proof (*i*)

$$
\mathcal{A}^d = \mathcal{A}^d *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger},
$$

\n
$$
\Leftrightarrow \mathcal{A}^{\dagger} *_{N} \mathcal{A} *_{N} \mathcal{A}^d = \mathcal{A}^{\dagger} *_{N} \mathcal{A} *_{N} \mathcal{A}^d *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger},
$$

\n
$$
\Leftrightarrow (\mathcal{A}^d *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger})' = \mathcal{A}^{c,\dagger}.
$$

(*ii*)

$$
\mathcal{A}^{d} = \mathcal{A}^{\dagger} *_{N} \mathcal{A} *_{N} \mathcal{A}^{d},
$$

\n
$$
\Leftrightarrow \mathcal{A}^{d} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger} = \mathcal{A}^{\dagger} *_{N} \mathcal{A} *_{N} \mathcal{A}^{d} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger}
$$

\n
$$
\Leftrightarrow (\mathcal{A}^{\dagger} *_{N} \mathcal{A} *_{N} \mathcal{A}^{d})' = \mathcal{A}^{c,\dagger}.
$$

 \Box

The remark below demonstrates that the dual of a generalized bilateral inverse $\mathcal{X}_1 *_{N} \mathcal{A} *_{N} \mathcal{X}_2$ is closely linked to \mathcal{X}_1 and \mathcal{X}_2 .

Remark 2 Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$. Using Definition [27](#page-10-1) and Proposition [2\(](#page-10-2)iii)-(iv), it follows that $A^{c\dagger} = A^{\dagger} * N A * N A^{d,\dagger} = A^{\dagger} A * N A * N A^{\dagger}$. But

$$
(\mathcal{A}^{\dagger} *_{N} \mathcal{A} *_{N} \mathcal{A}^{d,\dagger})' = \mathcal{A}^{d,\dagger} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger} = \mathcal{A}^{d,\dagger}.
$$

$$
(\mathcal{A}^{\dagger,d} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger})' = \mathcal{A}^{\dagger} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger,d} = \mathcal{A}^{\dagger,d},
$$

The theorem below presents the necessary and sufficient conditions for the generalized bilateral inverses of tensor $A^{\dagger} *_{N} A *_{N} A^{d,\dagger}$ to be self dual.

Theorem 31 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *with index(A) = k. The following statements are equivalent:*

 (1) $A^{\dagger} * N A * N A^{d,\dagger} = A^{d,\dagger} * N A * N A^{\dagger}.$ *(ii)* $R(A^k)$ ⊂ $R(A^*)$ *&* $N(A^*)$ ⊂ $N(A^k * N A^{\dagger})$.

Proof From Theorem [28,](#page-10-0) we can conclude that $A^{\dagger} *_{N} A *_{N} A^{d,\dagger} = A^{d,\dagger} *_{N} A *_{N} A^{\dagger}$ if and only if $R(\mathcal{A}^{d,\dagger}) \subseteq R(\mathcal{A}^{\dagger} *_{N} \mathcal{A})$ and $N(\mathcal{A} *_{N} \mathcal{A}^{\dagger}) \subseteq N(\mathcal{A}^{d,\dagger})$. By applying Lemma [1,](#page-5-3) $R(A^{\dagger} * N A) = R(A^{\dagger})$ and $N(A^{\dagger}) = N(A * N A^{\dagger})$. Furthermore, according to Sahoo et al. [\(2020,](#page-18-17) the first part Theorem 3.7), we can conclude that $R(A^{\dagger}) = R(A^*)$ and $N(A^{\dagger}) =$ $N(\mathcal{A}^*)$. Moreover, by Ji and Wei [\(2018](#page-18-5), Theorem 3.4 (1)) and Behera et al. [\(2020](#page-17-7), Lemma 3.1), we have that

$$
R(\mathcal{A}^{d,\dagger}) = R(\mathcal{A}^{d} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger}) \subseteq R(\mathcal{A}^{d}) = R(\mathcal{A}^{k})
$$

= $R(\mathcal{A}^{d,\dagger} *_{N} \mathcal{A} *_{N} \mathcal{A}^{k}) \subseteq R(\mathcal{A}^{d,\dagger})$
 $N(\mathcal{A}^{d,\dagger}) \subseteq N(\mathcal{A}^{k} *_{N} \mathcal{A}^{d,\dagger}) = N(\mathcal{A}^{k} *_{N} \mathcal{A}^{\dagger}) \subseteq N((\mathcal{A}^{d})^{k} *_{N} \mathcal{A}^{k} *_{N} \mathcal{A}^{\dagger})$
= $N(\mathcal{A}^{d} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger}) = N(\mathcal{A}^{d,\dagger}).$

Then, we have $R(A^{d,\dagger}) = R(A^k)$ and $N(A^{d,\dagger}) = N(A^k * N A^{\dagger})$. Therefore, $R(A^k) \subseteq R(A^*)$ and $N(A^*) \subseteq N(A^k *_{N} A^{\dagger}).$

5 Springer JDMAC

4 Bilateral inverse solutions of singular tensor equations

Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ be a tensor with *index*(*A*) > 1 and $B \in \mathbb{C}^{I_1 \times \cdots \times I_N}$. As an application of the DMP, MPD and CMP inverses of tensor, we consider the following equation

$$
A *_{N} \mathcal{X} = \mathcal{B}.
$$
 (35)

First, we state the following theorem.

Theorem 32 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *with index*(*A*) = *k. Then*

- *(i) The Eq. [\(35\)](#page-13-0)* has a solution $A^{d, \dagger} *_{N} B$ *if and only if* $B \in R(A^{k})$ *.*
- *(ii) The Eq. [\(35\)](#page-13-0)* has a solution $A^{\dagger,d} *_{N} B$ *if and only if* $B \in R(A^k)$ *.*
- *(iii) The Eq. [\(35\)](#page-13-0)* has a solution $A^{c, \dagger} *_{N} B$ *if and only if* $B \in R(A^{k})$ *.*

Proof (*i*) Let $\mathcal{A}^{d,\dagger} *_{N} \mathcal{B}$ is a solution of [\(35\)](#page-13-0). By Ji and Wei [\(2018,](#page-18-5) Theorem 3.4 (1)), we have

$$
\mathcal{B} = \mathcal{A} *_{N} \mathcal{A}^{d, \dagger} *_{N} \mathcal{B} = \mathcal{A}^{d} *_{N} \mathcal{A}^{2} *_{N} \mathcal{A}^{\dagger} *_{N} \mathcal{B} \in R(\mathcal{A}^{d}) = R(\mathcal{A}^{k}).
$$

Suppose that $\mathcal{B} \in R(\mathcal{A}^k)$, by Stanimirović et al. [\(2020,](#page-18-12) Lemma 2.2 (a)), we can conclude that is a tensor $U \in \mathbb{C}^{I_1 \times \cdots \times I_N}$ such that $B = A^k *_{N} U$. Set $\mathcal{X}_1 = A^{d, \dagger} *_{N} B$. Thus,

$$
\mathcal{A} *_{N} \mathcal{X}_{1} = \mathcal{A} *_{N} \mathcal{A}^{d, \dagger} *_{N} \mathcal{B} = \mathcal{A} *_{N} \mathcal{A}^{d} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger} *_{N} \mathcal{A}^{k} *_{N} \mathcal{U} = \mathcal{B},
$$

implying that $\mathcal{A}^{d,\dagger} *_{N} \mathcal{B}$ is a solution of [\(35\)](#page-13-0).

(ii) and (iii) have similar proofs to that of (i).

Using the same approach as described in the proof of Theorem [32,](#page-13-1) the following holds.

Remark 3 Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ with index(A) = k . Then

(i) $\mathcal{A}^{d, \dagger} *_{N} \mathcal{B} = \mathcal{A}^{d} *_{N} \mathcal{B}$, if $\mathcal{B} \in R(\mathcal{A})$. (ii) $A^{\dagger,d} *_{N} B = A^{\dagger} *_{N} B$, if $B \in R(A^{k})$. (iii) $A^{c, \dagger} *_{N} B = A^{\dagger} *_{N} B$, if $B \in R(A^{k})$.

Theorem 33 Assume that $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ with index(A) = *k* and assume that $B \in R(\mathcal{A}^k)$ *. Then*

(i) The general solution of [\(35\)](#page-13-0) takes of the form

$$
\mathcal{X} = \mathcal{A}^{d,\dagger} *_{N} \mathcal{B} + (\mathcal{I} - \mathcal{A}^{\dagger} *_{N} \mathcal{A}) * \mathcal{Y}
$$
 (36)

for any tensor $\mathcal{Y} \in \mathbb{C}^{I_1 \times \cdots \times I_N}$.

(ii) The Eq. [\(35\)](#page-13-0) has the unique solution $A^{d, \dagger} *_{N} B \in R(A^{k})$ *.*

Proof (*i*) By Theorem [32](#page-13-1)(*i*), $\mathcal{A}^{d, \dagger} *_{N} \mathcal{B}$ is a solution [\(35\)](#page-13-0). Assume that $\mathcal{X} = \mathcal{A}^{d, \dagger} *_{N} \mathcal{B}$ + $(T - A^{\dagger} * N A) * (\mathcal{Y}_1 + \mathcal{Y}_2)$, where $\mathcal{Y}_1 \in \mathbb{C}^{I_1 \times \cdots \times I_N}$ and $A * N \mathcal{Y}_2 = \mathcal{O}$. Then

$$
\mathcal{A} *_{N} \mathcal{X} = \mathcal{A} *_{N} \mathcal{A}^{d, \dagger} *_{N} \mathcal{B} + (\mathcal{A} - \mathcal{A} *_{N} \mathcal{A}^{\dagger} *_{N} \mathcal{A}) * (\mathcal{Y}_{1} + \mathcal{Y}_{2}) = \mathcal{B},
$$

that is X is a solution [\(35\)](#page-13-0). Assume that W is any arbitrary solution of (35). It is clear that $R(\mathcal{I} - \mathcal{A}^{\dagger} * N \mathcal{A}) \subseteq N(\mathcal{A})$ and $\mathcal{W} - \mathcal{A}^{d,\dagger} * N \mathcal{B} \in N(\mathcal{A})$. Because

$$
N(\mathcal{A}) = R(\mathcal{I} - \mathcal{A}^{\dagger} *_{N} \mathcal{A}) + (N(\mathcal{A}) \cap R(\mathcal{I} - \mathcal{A}^{\dagger} *_{N} \mathcal{A})^{\perp}),
$$

2 Springer JDMW

$$
\Box
$$

we have that $W - A^{d, \dagger} *_{N} B = (I - A^{\dagger} *_{N} A) *_{N} W_{1} + W_{2}$, where $W_{2} \in N(A) \cap R(I - A^{\dagger})$ $A^{\dagger} *_{N} A^{\dagger}$. Because $W_2 \in N(A)$, we obtain $A *_{N} W_2 = \mathcal{O}$. Moreover,

$$
W_2 = W_2 - A^{\dagger} *_{N} A *_{N} W_2 = (I - A^{\dagger} *_{N} A) *_{N} W_2.
$$

Therefore, $W - A^{d, \dagger} *_{N} B = (I - A^{\dagger} *_{N} A) * (W_1 + W_2)$, where $W_1 \in \mathbb{C}^{I_1 \times \cdots \times I_N}$ and $W_2 \in N(A)$.

(*ii*) Let *X* be a solution in $R(A^k)$. By Theorem [32](#page-13-1)(*i*), $A^{d, \dagger} *_{N} B$ is a solution in $R(A^k)$. By the proof of Theorem [31,](#page-12-0) we have $R(A^{d,\dagger}) = R(A^k)$. We have that $\mathcal{X} - \mathcal{A}^{d,\dagger} *_{N} \mathcal{B} \in R(A^k)$. Moreover, as stated in Part(*i*) of this theorem, we have that $\mathcal{X} - \mathcal{A}^{d, \dagger} *_{N} \mathcal{B} = (\mathcal{I} - \mathcal{A}^{\dagger} *_{N} \mathcal{A}) * \mathcal{Y}$ for some *Y*. Now $A^k *_{N} (X - A^{d,\dagger} *_{N} B) = (A^k - A^k *_{N} A^{\dagger} *_{N} A) * Y = O$. Hence $\mathcal{X} - \mathcal{A}^{d, \dagger} *_{N} \mathcal{B} \in N(\mathcal{A}^{k})$. Thus, $\mathcal{X} - \mathcal{A}^{d, \dagger} *_{N} \mathcal{B} \in R(\mathcal{A}^{k}) \cap N(\mathcal{A}^{k}) = \{0\}$, that is $\mathcal{X} = \mathcal{A}^{d, \dagger} *_{N} \mathcal{B}.$

Theorem 34 *Let* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *with index*(A) = k *and assume that* $B \in R(A^k)$ *. Then*

(i) The general solution of [\(35\)](#page-13-0) is of the form

$$
\mathcal{X} = \mathcal{A}^{\dagger,d} *_{N} \mathcal{B} + (\mathcal{I} - \mathcal{A}^{\dagger} *_{N} \mathcal{A}) * \mathcal{Y}
$$
\n(37)

for any tensor $\mathcal{Y} \in \mathbb{C}^{I_1 \times \cdots \times I_N}$.

(ii) The Eq. [\(35\)](#page-13-0) has the unique solution $A^{\dagger,d} *_{N} B \in R(A^{\dagger} *_{N} A^{k})$.

Proof (*i*) By using a method similar to the one employed in the proof of Theorem [33](#page-13-2)(*i*).

(*ii*) Suppose that $\mathcal X$ is a solution in $R(\mathcal A^\dagger *_{N} \mathcal A^k)$. Using a similar method as in the proof of Theorem [31,](#page-12-0) we obtain $R(A^{\dagger,d}) = R(A^{\dagger} * N A^k)$. This implies $\mathcal{X} - A^{\dagger,d} * N \mathcal{B} \in R(A^{\dagger} * N A^k)$. Moreover, as stated in Part (*i*) of this theorem, we have that $\mathcal{X} - \mathcal{A}^{\dagger,d} *_{N} \mathcal{B} = (\mathcal{I} - \mathcal{A}^{\dagger} *_{N} \mathcal{A}) * \mathcal{Y}$ for some *Y*. Now $A^k * N$ $(X - A^{\dagger, d} * N) = (A^k - A^k * N A^{\dagger} * N) * Y = O$. Hence *X* − $A^{\dagger,d}$ ∗*N* $B \in N(A^k)$. Therefore,

$$
\mathcal{X} - \mathcal{A}^{\dagger, d} *_{N} \mathcal{B} \in R(\mathcal{A}^{\dagger} *_{N} \mathcal{A}^{k}) \cap N(\mathcal{A}^{k}) \subseteq R(\mathcal{A}^{\dagger} *_{N} \mathcal{A}^{k}) \cap N(\mathcal{A}^{\dagger} *_{N} \mathcal{A}^{k}) = \{ \mathcal{O} \},
$$

that is $\mathcal{X} = \mathcal{A}^{\dagger, d} *_{N} \mathcal{B}$.

Using the same approach as described in the proof of Theorem [34,](#page-14-0) the following holds.

Corollary 35 *Let* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *with index*(A) = *k and assume that* $B \in R(A^k)$ *. Then*

(i) The general solution of [\(35\)](#page-13-0) takes of the form

$$
\mathcal{X} = \mathcal{A}^{c,\dagger} *_{N} \mathcal{B} + (\mathcal{I} - \mathcal{A}^{\dagger} *_{N} \mathcal{A}) * \mathcal{Y}
$$
\n(38)

for any tensor $\mathcal{Y} \in \mathbb{C}^{I_1 \times \cdots \times I_N}$.

(ii) The Eq. [\(35\)](#page-13-0) has the unique solution $A^{c, \dagger} *_{N} B \in R(A^{\dagger} *_{N} A^{k})$.

As an application of the DMP, MPD and CMP inverses of tensor, we consider the following equation

$$
C_{\mathcal{A}} *_{N} \mathcal{X} = \mathcal{B},\tag{39}
$$

where $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ and $\mathcal{X}, \mathcal{B} \in \mathbb{C}^{I_1 \times \cdots \times I_N}$. Using the same approach as described in the proof of Theorem [32,](#page-13-1) the following holds.

Corollary 36 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *with index*(*A*) = *k. Then*

- *(i) The Eq. [\(39\)](#page-14-1)* has a solution $A^{d, \dagger} *_{N} B$ *if and only if* $B \in R(A^{k})$ *.*
- *(ii) The Eq. [\(39\)](#page-14-1)* has a solution $A^{\dagger,d} *_{N} B$ *if and only if* $B \in R(A^k)$ *. (iii) The Eq. [\(39\)](#page-14-1)* has a solution $A^{c, \dagger} *_{N} B$ *if and only if* $B \in R(A^{k})$ *.*

Using the same approach as described in the proof of Theorems [33](#page-13-2) and [34,](#page-14-0) the following

hold. **Corollary 37** Assume that $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ with index(A) = *k* and assume that

 $B \in R(\mathcal{A}^k)$ *. Then*

(i) The general solution of [\(39\)](#page-14-1) takes of the form

 $\mathcal{X} = \mathcal{A}^{d, \dagger} *_{N} \mathcal{B} + (\mathcal{I} - \mathcal{A}^{d} *_{N} \mathcal{A}) *_{N} \mathcal{V}$

for any tensor $\mathcal{Y} \in \mathbb{C}^{I_1 \times \cdots \times I_N}$.

(ii) The Eq. [\(39\)](#page-14-1) has the unique solution $A^{d, \dagger} *_{N} B \in R(A^{k})$.

Corollary 38 Assume that $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ with index(A) = *k* and assume that $B \in R(\mathcal{A}^k)$ *. Then*

(i) The general solution of [\(39\)](#page-14-1) is of the form

 $\mathcal{X} = \mathcal{A}^{\dagger,d} *_{N} \mathcal{B} + (\mathcal{I} - \mathcal{A}^{d} *_{N} \mathcal{A}) *_{N} \mathcal{Y}$

for any tensor $\mathcal{Y} \in \mathbb{C}^{I_1 \times \cdots \times I_N}$.

(ii) The Eq. [\(39\)](#page-14-1) has the unique solution $A^{\dagger,d} *_{N} B \in R(A^{\dagger} *_{N} A^{k})$.

Corollary 39 Assume that $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ with index(A) = *k* and assume that $B \in R(\mathcal{A}^k)$ *. Then*

(i) The general solution of [\(39\)](#page-14-1) takes of the form

$$
\mathcal{X} = \mathcal{A}^{c,\dagger} *_{N} \mathcal{B} + (\mathcal{I} - \mathcal{A}^{d} *_{N} \mathcal{A}) *_{N} \mathcal{Y},
$$

for any tensor $\mathcal{Y} \in \mathbb{C}^{I_1 \times \cdots \times I_N}$.

(ii) The Eq. [\(39\)](#page-14-1) has the unique solution $A^{c,\dagger} *_{N} B \in R(A^{\dagger} *_{N} A^{k})$.

Suppose that $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ and $\mathcal{X}, \mathcal{B} \in \mathbb{C}^{I_1 \times \cdots \times I_N}$. As an application of the core-part of *A*, we consider the following equation:

$$
\mathcal{A}^{\dagger} *_{N} \mathcal{X} = \mathcal{B}.
$$
 (40)

Theorem 40 *Let* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ and $B \in R(A^{\dagger} *_{N} A^d)$. Then the general solution *of [\(40\)](#page-15-0) takes of the form*

$$
\mathcal{X} = C_{\mathcal{A}} *_{N} \mathcal{B} + (\mathcal{I} - \mathcal{A} *_{N} \mathcal{A}^{\dagger}) *_{N} \mathcal{Y},
$$

for any tensor $\mathcal{Y} \in \mathbb{C}^{I_1 \times \cdots \times I_N}$.

2 Springer JDMW

Proof Using a similar method as in the proof of Theorem [32,](#page-13-1) we obtain that $\mathcal{X}_0 = C_A *_{N} \mathcal{B}$ is a solution of Eq. [\(40\)](#page-15-0) if and only if $B \in R(\mathcal{A}^{\dagger} *_{N} \mathcal{A}^{d})$. Also, by Lemma [1,](#page-5-3) it is clear that $R(\mathcal{I} - \mathcal{A} *_{N} \mathcal{A}^{\dagger}) = N(\mathcal{A} *_{N} \mathcal{A}^{\dagger}) = N(\mathcal{A}^{\dagger}).$ Thus,

$$
A^{\dagger} *_{N} [C_{A} *_{N} \mathcal{B} + (\mathcal{I} - A *_{N} A^{\dagger}) *_{N} \mathcal{Y}] = A^{\dagger} *_{N} C_{A} *_{N} \mathcal{B} + \mathcal{O} = \mathcal{B}.
$$

Ц

As an application of the DMP, MPD and CMP inverses of tensor, we consider the following equation

$$
\mathcal{A}^{k+1} *_{N} \mathcal{X} = \mathcal{A}^{k} *_{N} \mathcal{B},\tag{41}
$$

where $index(A) = k$ and $B \in R(A^k)$. If $B \in R(A^k)$ and $index(A) = k$, then each member of the set ${A^d *_{N} B, A^{d,\dagger} *_{N} B, A^{\dagger,d} *_{N} B, A^{c,\dagger} *_{N} B}$ is a solution of Eqs. [\(35\)](#page-13-0) and [\(41\)](#page-16-0) (see Behera et al. [\(2020,](#page-17-7) P. 21)).

Theorem 41 *Let* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *and* $B \in R(A^k)$ *with index*(A) = *k. Then, the set of all solutions of [\(41\)](#page-16-0) can be represented as*

$$
\mathcal{X} = \mathcal{A}^{d,\dagger} *_{N} \mathcal{B} + N(\mathcal{A}^{k}).
$$

Furthermore, the Eq. [\(41\)](#page-16-0) has the unique solution $\mathcal{X} = \mathcal{A}^{d, \dagger} *_{N} \mathcal{B} \in R(\mathcal{A}^{k})$.

Proof Assume $B \in R(\mathcal{A}^k)$. By Stanimirović et al. [\(2020,](#page-18-12) Lemma 2.2 (a)), we can conclude that there is a tensor $U \in \mathbb{C}^{I_1 \times \cdots \times I_N}$ such that $B = A^k * N U$.

$$
A^{k+1} *_{N} (\mathcal{X} - A^{d,\dagger} *_{N} \mathcal{B}) = A^{k+1} *_{N} \mathcal{X} - A^{k+1} *_{N} \mathcal{A}^{d} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger} *_{N} \mathcal{B}
$$

= $A^{k} *_{N} B - A^{k} *_{N} \mathcal{A} *_{N} \mathcal{A}^{\dagger} *_{N} \mathcal{A}^{k} *_{N} \mathcal{U}$
= $A^{k} *_{N} B - A^{k} *_{N} B = \mathcal{O}.$

From Ji and Wei [\(2018](#page-18-5), Theorem 3.2), we have that $\mathcal{X} - \mathcal{A}^{d, \dagger} *_{N} \mathcal{B} \in N(\mathcal{A}^{k+1}) = N(\mathcal{A}^{k})$. Therefore, $X = A^{d, \dagger} *_{N} B + N(A^{k})$. Let X be a solution in $R(A^{k})$. Moreover, by The-orem [32\(](#page-13-1)i) and the proof of Theorem [31,](#page-12-0) we arrive $X - A^{d, \dagger} *_{N} B \in R(A^{k})$. For the uniqueness in *R*(*A*^{*k*}), let *V* ∈ *R*(*A*^{*k*}) be any solution of [\(41\)](#page-16-0). Now *V* − *A*^{*d*,†} ∗_{*N*} *B* ∈ *R*(*A*^{*k*}), we have $A^{k+1} * N$ $\mathcal{V} - A^{k+1} * N$ $A^{d,†} * N$ $B = \mathcal{O}$. So, $\mathcal{V} - A^{d,†} * N$ $B \in N(A^k)$. Hence, *V* − $A^{d, \dagger}$ ∗*N* $B \in R(A^k) \cap N(A^k) = \{O\}$. i.e., $V = A^{d, \dagger}$ ∗*N* B .

Using the same approach as described in the proof of Theorems [34](#page-14-0)(*ii*) and [41,](#page-16-1) the following hold.

Corollary 42 *Suppose that* $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ *and* $B \in R(A^k)$ *with index*(*A*) = *k. Then, the set of all solutions of [\(41\)](#page-16-0) can be represented as*

$$
\mathcal{X} = \mathcal{A}^{\dagger,d} *_{N} \mathcal{B} + N(\mathcal{A}^{k}).
$$

Furthermore, the Eq. [\(41\)](#page-16-0) *has the unique solution* $\mathcal{X} = \mathcal{A}^{\dagger,d} *_{N} \mathcal{B} \in R(\mathcal{A}^{\dagger} *_{N} \mathcal{A}^{k})$.

Corollary 43 Suppose that $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ and $B \in R(A^k)$ with index(*A*) = *k*. *Then, the set of all solutions of [\(41\)](#page-16-0) can be represented as*

$$
\mathcal{X} = \mathcal{A}^{c,\dagger} *_{N} \mathcal{B} + N(\mathcal{A}^{k}).
$$

Furthermore, the Eq. [\(41\)](#page-16-0) *has the unique solution* $X = A^{c, \dagger} *_{N} B \in R(A^{\dagger} *_{N} A^{k})$ *.*

As an application of the DMP, MPD and CMP inverses of tensor, we consider the following equation

$$
\mathcal{A}^k *_{N} \mathcal{X} = \mathcal{A}^k *_{N} \mathcal{A}^{\dagger} *_{N} \mathcal{B}.
$$
 (42)

where $index(\mathcal{A}) = k$ and $\mathcal{B} \in R(\mathcal{A}^k)$. If $\mathcal{B} \in R(\mathcal{A}^k)$ and $index(\mathcal{A}) = k$, then each member of the set $\{A^{d,\dagger} *_{N} B, A^{\dagger,d} *_{N} B, A^{c,\dagger} *_{N} B\}$ is a solution of Eqs. [\(41\)](#page-16-0) and [\(42\)](#page-16-2).

2 Springer JDMNC

Theorem 44 Suppose that $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ and $\mathcal{X}, \mathcal{B} \in \mathbb{C}^{I_1 \times \cdots \times I_N}$ with *index*(*A*) = *k.* Then $X = A^{c, \dagger} *_{N} B$ *is a solution of Eq.* [\(42\)](#page-16-2)*. Moreover,* $X =$ $\mathcal{A}^{c,\dagger} *_{N} \mathcal{B} + (\mathcal{I} - \mathcal{A}^{d} *_{N} \mathcal{A}) *_{N} \mathcal{Y}$ *is the general solution of Eq.* [\(42\)](#page-16-2)*, where* $\mathcal{Y} \in \mathbb{C}^{I_{1} \times \cdots \times I_{N}}$ *is an arbitrary tensor.*

Proof Set $\mathcal{X} = \mathcal{A}^{c,\dagger} *_{N} \mathcal{B}$. Then,

$$
\mathcal{A}^k *_{N} \mathcal{X} = \mathcal{A}^k *_{N} \mathcal{A}^{c,\dagger} *_{N} \mathcal{B} = \mathcal{A}^k *_{N} \mathcal{A}^{\dagger} *_{N} \mathcal{B}.
$$

By Ji and Wei [\(2018,](#page-18-5) Theorem 3.4), we have $R(\mathcal{I} - \mathcal{A}^d * N \mathcal{A}) = N(\mathcal{A}^d * N \mathcal{A}) = N(\mathcal{A}^d) =$ $N(A^k)$.

Thus,
$$
A^k *_{N} [A^{c,\dagger} *_{N} B + (I - A^d *_{N} A) *_{N} Y] = A^k *_{N} A^{c,\dagger} *_{N} B + O = A^k *_{N} A^{\dagger} *_{N} B
$$
.

Using the same approach as described in the proof of Theorem [44,](#page-16-3) the following holds.

Corollary 45 Suppose that $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ and $\mathcal{X}, \mathcal{B} \in \mathbb{C}^{I_1 \times \cdots \times I_N}$ with *index*(*A*) = *k. Then* $\mathcal{X} = \mathcal{A}^{d,\dagger} *_{N} \mathcal{B}$ *is a solution of the Eq. [\(42\)](#page-16-2). Moreover,* $\mathcal{X} =$ $\mathcal{A}^{d,\dagger}$ ∗*N* $\mathcal{B} + (\mathcal{I} - \mathcal{A} * N \mathcal{A}^d) * N$ *y is the general solution of Eq. [\(42\)](#page-16-2), where* $\mathcal{Y} \in \mathbb{C}^{I_1 \times \cdots \times I_N}$ *is an arbitrary tensor.*

Using the same approach as described in the proof of Theorems [34](#page-14-0)(*ii*) and [41,](#page-16-1) the following holds.

Remark 4 Let $A \in \mathbb{C}^{I_1 \times \cdots \times I_N \times I_1 \times \cdots \times I_N}$ and $B \in R(A^k)$ with *index*(*A*) = *k*. Then

- (i) The Eq. [\(42\)](#page-16-2) has a unique solution $\mathcal{X} = \mathcal{A}^{d, \dagger} *_{N} \mathcal{B} \in R(\mathcal{A}^{k})$ and its general solution $\mathcal{X} = \mathcal{A}^{d, \dagger} *_{N} \mathcal{B} + N(\mathcal{A}^{k}).$
- (ii) The Eq. [\(42\)](#page-16-2) has a unique solution $\mathcal{X} = \mathcal{A}^{\dagger,d} *_{N} \mathcal{B} \in R(\mathcal{A}^{\dagger} *_{N} \mathcal{A}^{k})$ and its general solution $\mathcal{X} = \mathcal{A}^{\dagger,d} *_{N} \mathcal{B} + N(\mathcal{A}^{k}).$
- (iii) The Eq. [\(42\)](#page-16-2) has a unique solution $\mathcal{X} = \mathcal{A}^{c,\dagger} *_{N} \mathcal{B} \in R(\mathcal{A}^{\dagger} *_{N} \mathcal{A}^{k})$ and its general solution $\mathcal{X} = \mathcal{A}^{c,\dagger} *_{N} \mathcal{B} + N(\mathcal{A}^{k}).$

Declarations

Conflict of interest There is no conflict of interest in the manuscript.

References

- Beckmann CF, Smith SM (2005) Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage 25(1):294–311
- Behera R, Nandi AK, Sahoo JK (2020) Further results on the Drazin inverse of even-order tensors. Numer Linear Algebra Appl 27(5):2317
- Brazell M, Li N, Navasca C, Tamon C (2013) Solving multilinear systems via tensor inversion. SIAM J Matrix Anal Appl 34(2):542–570
- Bu C, Zhang X, Zhou J, Wang W, Wei Y (2014) The inverse, rank and product of tensors. Linear Algebra Appl 446:269–280
- Cyganek B, Gruszczyński S (2014) Hybrid computer vision system for drivers' eye recognition and fatigue monitoring. Neurocomputing 126:78–94
- Du H-M, Wang B-X, Ma H-F (2019) Perturbation theory for core and core-ep inverses of tensor via Einstein product. Filomat 33(16):5207–5217

Einstein A (2007) The foundation of the general theory of relativity. Ann Phys 49(7):769–822 Eldén L (2007) Matrix methods in data mining and pattern recognition. SIAM

Ji J, Wei Y (2018) The Drazin inverse of an even-order tensor and its application to singular tensor equations. Comput Math Appl 75(9):3402–3413

Kheirandish E, Salemi A (2023) Generalized bilateral inverses. J Comput Appl Math 428:115137

- Ma H, Li N, Stanimirović PS, Katsikis VN (2019) Perturbation theory for Moore-Penrose inverse of tensor via Einstein product. Comput Appl Math 38:1–24
- Mehdipour M, Salemi A (2018) On a new generalized inverse of matrices. Linear Multilinear Algebra 66(5):1046–1053
- Panigrahy K, Mishra D (2022) Extension of Moore-Penrose inverse of tensor via Einstein product. Linear Multilinear Algebra 70(4):750–773
- Panigrahy K, Behera R, Mishra D (2020) Reverse-order law for the Moore-Penrose inverses of tensors. Linear Multilinear Algebra 68(2):246–264
- Rabanser S, Shchur O, Günnemann S (2017) Introduction to tensor decompositions and their applications in machine learning. arXiv preprint [arXiv:1711.10781](http://arxiv.org/abs/1711.10781)
- Sahoo JK, Behera R, Stanimirović PS, Katsikis VN, Ma H (2020) Core and core-ep inverses of tensors. Comput Appl Math 39(1):9
- Sahoo JK, Behera R, Stanimirović PS, Katsikis VN (2020) Computation of outer inverses of tensors using the QR decomposition. Comput Appl Math 39(3):1–20
- Stanimirović PS, Ćirić M, Katsikis VN, Li C, Ma H (2020) Outer and (b, c) inverses of tensors. Linear Multilinear Algebra 68(5):940–971
- Sun L, Zheng B, Bu C, Wei Y (2016) Moore-Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra 64(4):686–698
- Sun L, Zheng B, Wei Y, Bu C (2018) Generalized inverses of tensors via a general product of tensors. Front Math China 13:893–911
- Wang Y, Wei Y (2022) Generalized eigenvalue for even order tensors via Einstein product and its applications in multilinear control systems. Comput Appl Math 41(8):419
- Wang B, Du H, Ma H (2020) Perturbation bounds for DMP and CMP inverses of tensors via Einstein product. Comput Appl Math 39(1):1–17
- Wang X, Che M, Mo C, Wei Y (2023) Solving the system of nonsingular tensor equations via randomized Kaczmarz-like method. J Comput Appl Math 421:114856
- Wei Y, Stanimirovic P, Petkovic M (2018) Numerical and symbolic computations of generalized inverses. World Scientific
- Weiyang D, Yimin W (2016) Theory and computation of tensors. Elsevier, Academic Press, Amsterdam, Boston, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo
- Zhao Y, Yang LT, Zhang R (2017) A tensor-based multiple clustering approach with its applications in automation systems. IEEE Trans Ind Inform 14(1):283–291

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

