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Abstract
In this work, connected graphs of order n and largest eigenvalue of the distance Laplacian
matrix with multiplicity equal to n − 4 are investigated. A complete characterization is
presented if n is one of its distance Laplacian eigenvalues with multiplicity one. We also
present a conjecture about forbidden subgraphs of G when the multiplicity of its largest
eigenvalue is n − 4, and we analyze the case where G has diameter four.

Keywords Distance Laplacian matrix · Laplacian matrix · Multiplicity of eigenvalues

Mathematics Subject Classification 05C12 · 05C50 · 15A18

1 Introduction

Let G = (V , E) be a connected graph of order n and let di, j be the distance (the length of
the shortest path) between vertices vi and v j of G. The diameter of a connected graph G
is maxvi ,v j∈V di, j . The distance matrix of G, denoted by D(G), is the n × n matrix whose

Communicated by Carlos Hoppen.

B Celso M. da Silva Jr.
celso.silva@cefet-rj.br

Rosário Fernandes
mrff@fct.unl.pt

Maria A. A. de Freitas
maguieiras@im.ufrj.br

Renata R. Del-Vecchio
rrdelvecchio@id.uff.br

1 CMA and Department of Mathematics, FCT, UNL, 2829-516 Caparica, Portugal

2 IM and COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

3 DEMET, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Rio de Janeiro,
Brazil

4 IME, Universidade Federal Fluminense, Niterói, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-023-02460-1&domain=pdf
http://orcid.org/0000-0002-5075-7373


317 Page 2 of 16 R. Fernandes et al.

(i, j)-entry is equal to di, j , for i, j = 1, 2, . . . , n. For 1 ≤ i ≤ n, the sum of the distances
from vi to all other vertices in G is known as the transmission of the vertex vi and is denoted
by Tr(vi ). Let Tr(G) be the transmission matrix of G, the diagonal matrix of order n whose
(i, i)-entry is equal to Tr(vi ). The distance Laplacian matrix of G,DL(G), is the difference
between the transmission matrix and the distance matrix, that is, DL (G) = Tr(G) − D(G)

(Aouchiche and Hansen 2013). Let SpecDL (G) = (∂L
1 (G), ∂L

2 (G), . . . , ∂L
n (G) = 0) be the

distance Laplacian spectrum of the connected graph G, denoted byDL(G)-spectrum, where
∂L
1 (G) ≥ ∂L

2 (G) ≥ . . . ≥ ∂L
n (G) = 0. The multiplicity of the eigenvalue ∂L

i (G), i =
1, . . . , n, is denoted by m(∂L

i (G)). We often use exponents to exhibit the multiplicity of the
distance Laplacian eigenvalues, whenwewrite theDL -spectrum.We recall that ∂L

n−1(G) = n

if and only if G, the complement of G, is disconnected (Aouchiche and Hansen 2013).
Moreover, ∂L

n−1(G) ≥ n and the multiplicity of n as an eigenvalue ofDL (G) is one less than
the number of components of G (Aouchiche and Hansen 2013).

In recent years, several works investigated the connected graphs on n vertices in which
one of its distance Laplacian eigenvalues has a high multiplicity, n − r . The characterization
of such graphs is completely made for r equal to one (Aouchiche and Hansen 2014), two
(Fernandes et al. 2018; Lin et al. 2016; da Silva et al. 2016), or three (Fernandes et al. 2018;
Lu et al. 2017; Ma et al. 2018; da Silva et al. 2016). In a recent paper (Khan et al. 2023), the
case r = 4, under the condition that n is a distance Laplacian eigenvalue with multiplicity
two or three, was studied. In this work, we consider the remaining cases where the largest
distance Laplacian eigenvalue has multiplicity equal to n − 4. In Sect. 3, we describe all
possible graphs with such multiplicity that also has n in its distance Laplacian spectrum,
with multiplicity one, i.e., ∂L

n−1(G) = n and m(∂L
n−1(G)) = 1. For the case ∂L

n−1(G) �= n,

we first recall the following central result for r = 2 or r = 3, where Pr+2 denotes the path
on r + 2 vertices.

Proposition 1 (da Silva et al. 2016) If G is a connected graph on n vertices such that
m(∂L

1 (G)) = n − r , 1 ≤ r ≤ 3, then G has no Pr+2 as an induced subgraph.

Thus, based on Proposition 1, a natural way of trying to characterize the connected
graphs such that m(∂L

1 (G)) = n − 4 is investigating its relation with the existence
of P6 as an induced subgraph. Computationally, using the software nauty and Traces
(McKay and Piperno 2014), and Graph6Java (Mohammad et al. 2019), we looked for
graphs G on n vertices, 6 ≤ n ≤ 11, m(∂L

1 (G)) = n − 4 and ∂L
n−1(G) �= n. In

addition to C6, all other obtained graphs, for 6 ≤ n ≤ 8, are presented in Fig. 1. No
graphs were found if 9 ≤ n ≤ 11. Note that, besides C6, we have two graphs and
their complements, with the following spectra: SpecDL (C6) = (13(2), 10, 9(2), 0),
SpecDL (G1) = (14.16(2), 10, 7.84(2), 0), SpecDL (G1) = (10.3(2), 8, 6.7(2), 0),
SpecDL (G2) = (12.41(3), 9.59(3), 0), SpecDL (G2) = (11.41(3), 8.59(3), 0). In any case,
P6 is a forbidden subgraph. Considering these facts, in Sect. 4 we focus our attention to
investigate if there could be a connected graph G with at least six vertices, P6 as a forbidden
subgraph and m(∂L

1 (G)) = n − 4. Such graph has diameter at most four. We conclude that
this condition is not feasible if diameter of G is equal to four.

2 Preliminaries

In what follows, G = (V , E), or just G, denotes a connected graph with n vertices and
G denotes its complement. The diameter of a connected graph G is denoted by diam(G).
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Fig. 1 Graphs with m(∂L1 (G)) = n − 4 and ∂Ln−1(G) �= n

As usual, we write, respectively, Pn, Cn, Sn , Wn and Kn, for the path, the cycle, the star,
the wheel and the complete graph, all with n vertices. We denote by Kl1,l2,...,lk the complete
k-partite graph. If e ∈ E , the graph obtained from G by deleting the edge e is denoted G − e.
If e /∈ E , the graph obtained from G by adding the edge e is denoted G + e. Sometimes, we
write G + 2e meaning that we have added two edges in G.

Now, we recall the definitions of some operations with graphs that will be used. For this,
let G1 = (V1, E1) and G2 = (V2, E2) be vertex disjoint graphs. The union of G1 and G2 is
the graph G1 ∪G2, whose vertex set is V1 ∪ V2 and whose edge set is E1 ∪ E2. The union of
r copies of G1 will be denoted by rG1. The join of G1 and G2 is the graph G1 ∨G2 obtained
from G1 ∪ G2 by joining each vertex of G1 with every vertex of G2.

The Laplacian matrix of G is the n × n matrix L(G) = Deg(G) − A(G), where Deg(G)

is the diagonal matrix of vertex degrees of G and A(G) is its adjacency matrix. We denote by
(μ1(G), μ2(G), . . . , μn(G)) the L-spectrum ofG, i.e., the spectrum of the Laplacian matrix
of G, and we assume that the eigenvalues are labelled such that μ1(G) ≥ μ2(G) ≥ · · · ≥
μn(G) = 0. It is well known that the multiplicity of the Laplacian eigenvalue 0 is equal to
the number of components of G and that μn−i (G) = n − μi (G), i = 1, . . . , n − 1 (see
Merris 1994 for more details).

The following result relates the spectra of the matrices L and DL .

Theorem 2 (Aouchiche and Hansen 2013) Let G be a connected graph on n vertices with
diam(G) ≤ 2. Let μ1(G) ≥ μ2(G) ≥ · · · ≥ μn−1(G) > μn(G) = 0 be the Laplacian
spectrum of G. Then, the distance Laplacian spectrum of G is 2n − μn−1(G) ≥ 2n −
μn−2(G) ≥ · · · ≥ 2n − μ1(G) > ∂L

n (G) = 0. Moreover, for every i ∈ {1, 2, . . . , n − 1} the
eigenspaces corresponding to μi (G) and to 2n − μi (G) are the same.

Propositions 3, 4, 5 provide the L-spectrum of some graphs that will be analyzed later.
Proposition 5 can be easily checked.

Proposition 3 (Fernandes et al. 2018) Let G be a connected graph of order n ≥ 4. Then,
G ∼= Kn−2 ∨ K2 if and only if the L-spectrum of G is (μ

(n−2)
1 (G), μ2(G), 0), with μ1(G) >

μ2(G) > 0.

Proposition 4 (Mohammadian and Tayfeh-Rezaie 2011) Let G be a connected graph on
n ≥ 5 vertices whose distinct Laplacian eigenvalues are 0 < α < β < γ . Then, the
multiplicity of γ is n − 3 if and only if G ∼= Kn−3 ∨ K1,2.

Proposition 5 Let G be a connected graph on n = 4 vertices whose distinct Laplacian
eigenvalues are 0 < α < β < γ . Then, G ∼= P4 or G ∼= K3,1 + e.

For proving the next result, we recall that a connected graph G has at least diam(G) + 1
distinct Laplacian eigenvalues (Brouwer and Haemers 2011, Proposition 1.3.3).
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Table 1 L-spectrum of some graphs

Graph L-spectrum Graph L-spectrum

P4 (3.4, 2, 0.6, 0) K2,2 (4, 2(2), 0)

K3,1 (4, 1(2), 0) C5 (3.62(2), 1.38(2), 0)

K3,1 + e (4, 3, 1, 0) Kn (n(n−1), 0)

Kn − e (n(n−2), n − 2, 0) Kn−3 ∨ K2,1 (n(n−3), n − 1, n − 3, 0)

Kn−4 ∨ K2,2 (n(n−3), (n − 2)(2), 0) Kn−3 ∨ 3K1 (n(n−3), (n − 3)(2), 0)

Proposition 6 Let G be a connected graph on n ≥ 4 vertices whose distinct Laplacian
eigenvalues are γ > α > 0. Then, themultiplicity of γ is n−3 if and only if G ∼= Kn−4∨K2,2,

or G ∼= Kn−3 ∨ 3K1, or G ∼= C5, for n ≥ 5, or G ∼= K2,2, or G ∼= K3,1, for n = 4.

Proof As G has three distinct Laplacian eigenvalues, so diam(G) = 2 and its DL -spectrum
is ((2n − α)(2), (2n − γ )(n−3), 0). For n ≥ 5, these graphs are precisely determined in
Theorems 4.4 and 4.5 of Fernandes et al. (2018) and in Theorem 1.2 of Ma et al. (2018). For
n = 4, by Theorem 3.5 in da Silva et al. (2016), we get the result. 	


In Table 1 are presented the L-spectra of some connected graphs that are well known
and will be useful in this work. Also, in Proposition 7 we provide the DL -spectra of the
complete k-partite graph and of graphs obtained from it by adding edges. As these graphs
have diameter two, each DL -spectrum can be easily determined by considering the relation
between the Laplacian spectrum of a graph and its complement, the spectra contained in
Table 1 and Theorem 2.

Proposition 7 Let l1 ≥ l2 ≥ . . . ≥ lk ≥ 1, k ≥ 2, and n be integers such that l1 + l2 + · · · +
lk = n. If G = Kl1,l2,...,lk and p = |{i : li ≥ 2}|, then:

• The DL-spectrum of G is ((n + l1)(l1−1), (n + l2)(l2−1), . . . , (n + l p)(l p−1), n(k−1), 0).
• The DL-spectrum of the graph G plus one extra edge in the class with l j vertices, if

possible, is obtained from SpecDL (G), by replacing one eigenvalue n+ l j by n+ l j −2.
• The DL-spectrum of the graph G plus two extra edges, one in the class with l j vertices

and other in the class with l f vertices, if possible, is obtained from SpecDL (G), by
replacing one eigenvalue n + l j and one n + l f by n + l j − 2 and n + l f − 2.

• The DL-spectrum of the graph G plus two extra edges sharing a common vertex in the
class with l j , if possible, is obtained from SpecDL (G), by replacing two eigenvalues
n + l j by n + l j − 3 and n + l j − 1.

• The DL-spectrum of the graph G plus two extra independent edges in the class with l j
vertices, if possible, is obtained from SpecDL (G), by replacing two eigenvalues n + l j
by n + l j − 2.

• The DL-spectrum of the graph G plus three extra edges determining a K3 in the class
with l j vertices, if possible, is obtained from SpecDL (G), by replacing two eigenvalues
n + l j by n + l j − 3.

123



On the multiplicities of distance Laplacian eigenvalues Page 5 of 16 317

3 On graphs with n as a distance Laplacian eigenvalue

In this section, we completely characterize the graphs for which m(∂L
1 (G)) = n − 4,

∂L
n−1(G) = n and m(n) = 1. In this case, G has diameter of two and its distance Laplacian
spectrum is related with the Laplacian spectrum (Theorem 2).

Theorem 8 Let G be a connected graph with n ≥ 6 vertices such that m(∂L
1 (G)) = n − 4

and ∂L
n−1(G) = n. Then, m(∂L

n−1(G)) = 1 if and only if G ∼= W6, or G is isomorphic to one
of the following graphs:

• for n ≥ 6, Sn + 2e (where the extra edges can share a vertex or they are independent),
Sn +3e (where the extra edges induce a K3), K2,n−2+e (where the extra edge is incident
to vertices of the largest class) and K p,p + 2e (where the extra edges are in different
classes);

• in addition to the previous graphs, for n ≥ 7, K3,n−3 and K3,n−3 + e (where the extra
edge is incident to vertices of the smallest class);

• in addition to the previous graphs, for n ≥ 8, Kp,p + 2e (where the extra edges are in
the same class and they can share a vertex or they are independent) and G ∼= Kp,p + 3e
(where the extra edges induce a K3).

Proof Since m(∂L
n−1(G)) = 1, the graph G has two components, say G ∼= F1 ∪ F2. So,

diam(G) = 2 and the L-spectrum of G is written as

(∂L
1 (G) − n, . . . , ∂L

1 (G) − n, ∂L
n−3(G) − n, ∂L

n−2(G) − n, 0, 0),

that is, the largest Laplacian eigenvalue of G has multiplicity n − 4. Suppose that |V (F1)| ≤
|V (F2)|. We have the following possibilities:

• |V (F1)| = 1, then F1 = K1 and (∂L
1 (G) − n, . . . , ∂L

1 (G) − n, ∂L
n−3(G) − n, ∂L

n−2(G) −
n, 0) is the L-spectrum of F2. If ∂L

n−3(G) > ∂L
n−2(G), from Proposition 4, G ∼=

Sn + 2e, n ≥ 6, where the extra edges share a vertex. If ∂L
n−3(G) = ∂L

n−2(G), from
Proposition 6, G ∼= W6 or, for n ≥ 6, G ∼= Sn + 2e, where the extra edges are indepen-
dent, or G ∼= Sn + 3e, where the extra edges induce a K3.

• |V (F1)| = 2, then F1 = K2 and its L-spectrum is (2, 0). From Propositions 4, 5, 6,
∂L
1 (G) − n > 2. So, the L-spectrum of F2 is (∂L

1 (G) − n, . . . , ∂L
1 (G) − n, α, 0). Then,

from Proposition 3, for n ≥ 6, G ∼= K2,n−2 + e, where the extra edge is incident to
vertices of the largest class.

• |V (F1)| = 3, then F1 = K3 or F1 = P3 with L-spectrum, respectively, equal to (3, 3, 0)
and (3, 1, 0). If n = 6, thenG ∼= K3,3+2e,where the extra edges are in different classes.
For n ≥ 7, from Propositions 3, 4, 5, 6, as |V (F2)| ≥ 4, it follows that ∂L

1 (G) − n > 3.
So, the L-spectrum of F2 is (∂L

1 (G) − n, . . . , ∂L
1 (G) − n, 0). Thus, if F1 = K3, then

G ∼= K3,n−3, n ≥ 7. If F1 = P3, then G = K3,n−3 + e, n ≥ 7, where the extra edge is
incident to vertices of the smallest class.

• |V (F1)| = p > 3,
Case I. the L-spectrumof F1 is (∂L

1 (G)−n, . . . , ∂L
1 (G)−n, ∂L

n−2(G)−n, ∂L
n−3(G)−n, 0)

and of F2 is (∂L
1 (G) − n, . . . , ∂L

1 (G) − n, 0). If ∂L
n−2(G) > ∂L

n−3(G), and |V (F1)| = 4,
it follows, from Proposition 5, that G ∼= K4,4 + 2e, where the extra edges share a vertex.
If ∂L

n−2(G) > ∂L
n−3(G), and |V (F1)| > 4, then, from Proposition 4, G ∼= Kp,p + 2e,

p ≥ 5, where the extra edges share a vertex. If ∂L
n−2(G) = ∂L

n−3(G), from Proposition
6, G ∼= Kp,p + 2e, p ≥ 5, where the extra edges are in the same class and they are
independent,G ∼= Kp,p+3e, p ≥ 5,where the extra edges induce a K3,G ∼= K4,4+2e,
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Table 2 DL -spectrum of some graphs

Graph DL -spectrum

W6 (9.62(2), 7.38(2), 6, 0)

Sn + 2e, n ≥ 6, ((2n − 1)(n−4), 2n − 2, 2n − 4, n, 0)

extra edges share a vertex

Sn + 2e, n ≥ 6, ((2n − 1)(n−4), (2n − 3)(2), n, 0)

extra edges are independent

Sn + 3e, n ≥ 6,

extra edges induce a K3 ((2n − 1)(n−4), (2n − 4)(2), n, 0)

K2,n−2 + e, n ≥ 6, ((2n − 2)(n−4), 2n − 4, n + 2, n, 0)

extra edge is in the largest class

Kp,p + 2e, p ≥ 3,
(( 3n

2
)(n−4)

,
( 3n−4

2
)(2)

, n, 0
)

extra edges are in different classes

K3,n−3, n ≥ 7, ((2n − 3)(n−4), (n + 3)(2), n, 0)

K3,n−3 + e, n ≥ 7, ((2n − 3)(n−4), n + 3, n + 1, n, 0)

extra edge is in the smallest class

Kp,p + 2e, p ≥ 4
(( 3n

2
)(n−4)

,
( 3n−2

2
)
,
( 3n−6

2
)
, n, 0

)

extra edges share a vertex

Kp,p + 2e, p ≥ 4,
( 3n
2

(n−4)
,
( 3n−4

2
)(2)

, n, 0
)

extra edges are independent in the same class

Kp,p + 3e, p ≥ 4,
( 3n
2

(n−4)
,
( 3n−6

2
)(2)

, n, 0
)

extra edges induce a K3

where the extra edges are in the same class and they are independent, or G ∼= K4,4 + 3e,
where the extra edges induce a K3.

Case II. the L-spectrum of F1 is (∂L
1 (G) − n, . . . , ∂L

1 (G) − n, ∂L
n−3(G) − n, 0) and the

L-spectrum of F2 is (∂L
1 (G) − n, . . . , ∂L

1 (G) − n, ∂L
n−2(G) − n, 0). From Proposition 3,

it follows that G ∼= Kp,p + 2e, p ≥ 4, where the extra edges are in different classes.

By Proposition 7 we can explicit the DL -spectra presented in Table 2. 	


4 Diameter four graphs with forbidden P6

In this section, we focus on connected graphs with at least six vertices, having P6 as a
forbidden subgraph. In particular, this condition implies investigating graphswith amaximum
diameter equal to four and we will consider, specifically, graphs with a diameter four. So,
from now on, we denote by v1, v2, v3, v4, v5 the vertices inducing a P5, with d(v1, v5) = 4
and P = v1v2v3v4v5 been a shortest path between v1 and v5. In Fig. 2 are presented all
possible graphs on six vertices having P5 as an induced subgraph with d(v1, v5) = 4.

Besides, let G be a connected graph on n vertices, n ≥ 8, m(∂L
1 (G)) = n − 4 and let

M be a principal submatrix of DL(G), of order k ∈ {6, 7}, with largest eigenvalue λ. By
Cauchy Interlacing, we get λ = ∂L

1 (G) and m(λ) ≥ k − 4. So, as 1, the all ones vector
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P6
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��
�
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v6

Fig. 2 Graphs on six vertices and P5 as an induced subgraph

with appropriate order, is an eigenvector for DL(G), it is possible to get a vector z of M
corresponding to λ with at least k − 5 entries equal to zero, which can be arbitrarily chosen
(Proposition 3.1, Fernandes et al. 2018), such that z ⊥ 1. This fact will be fundamental for
what follows in this work.

Theorem 9 (da Silva et al. 2016) If G is a connected graph then ∂L
1 (G) ≥ max

vi∈V
Tr(vi ) + 1.

Equality is attained if and only if G ∼= Kn .

The next propositions are similar to the results that appeared in Lu et al. (2017). Since
they have analogous proofs we omit them.

Proposition 10 Let G be a connected graph with n ≥ 8 vertices. If m(∂L
1 ) = n − 4 then ∂L

1
is an integer number.

Proposition 11 Let G be a connected graph with n vertices such that G � Kn and ∂L
1 is an

integer number. Then, ∂L
1 ≥ maxv∈V Tr(v) + 2. Moreover, if there exists v0 ∈ V such that

∂L
1 = Tr(v0) + 2, then Tr(v0) = maxv∈V Tr(v).

We will now state two results from matrix theory that will be useful in what follows. We
denote by 0 and 1 vectors with a given size and all entries equal to zero and all entries equal
to one, respectively.

Lemma 12 Let

M =

⎡

⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −a
−1 t2 −1 −2 −3 −b
−2 −1 t3 −1 −2 −c
−3 −2 −1 t4 −1 −d
−4 −3 −2 −1 t5 −e
−a −b −c −d −e t6

⎤

⎥⎥⎥⎥⎥⎥
⎦
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and a, b, c, d, e, t1, t2, t3, t4, t5, t6 ∈ N. Let λ1 be an eigenvalue of M and z =
(z1, z2, z3, z4, 0, z6) be an eigenvector of M associated to λ1 such that z ⊥ 1.

1. If e = d + 1 and t4 �= λ1, then z = (z1, z2, z3, 0, 0, z6) and −2z1 − z2 − (d − 1)z6 = 0.
2. If e = d + 1 = c+ 2, t4 �= λ1 and t3 �= λ1, then z = (z1, z2, 0, 0, 0, z6) and −z1 − (c−

1)z6 = 0.
3. If e = d + 1 = c + 2 = 3, t4 �= λ1 and t3 �= λ1, then z = (0, z2, 0, 0, 0, z6). Moreover,

a = 1.
4. If e = d + 1 = c + 2 = b + 3 = 4, t4 �= λ1, t2 �= λ1 and t3 �= λ1, then z =

(z1, 0, 0, 0, 0, z6).

Proof 1. Using thefifth entry of both sides ofMz = λ1zweget−4z1−3z2−2z3−z4−ez6 =
0. Since z ⊥ 1, we obtain −3z1 − 2z2 − z3 − (e − 1)z6 = 0. Using the fourth entry
of Mz = λ1z we get −3z1 − 2z2 − z3 + t4z4 − dz6 = λ1z4. As d = e − 1, we
conclude that t4z4 = λ1z4. So, z4 = 0, because t4 �= λ1, z = (z1, z2, z3, 0, 0, z6) and
−3z1 − 2z2 − z3 − dz6 = 0. This implies that −2z1 − z2 − (d − 1)z6 = 0.

2. From Item 1 and the third entry of Mz = λ1z, we get −2z1 − z2 + t3z3 − cz6 = λ1z3.
As c = d − 1, we conclude that t3z3 = λ1z3. So, z3 = 0, because t3 �= λ1, z =
(z1, z2, 0, 0, 0, z6) and −2z1 − z2 − cz6 = 0. This implies that −z1 − (c − 1)z6 = 0.

3. From Item 2,
since c = 1, then z1 = 0 and z = (0, z2, 0, 0, 0, z6). If a �= 1, using the first entry of
Mz = λ1z we get −z2 − az6 = 0. Consequently, z2 = z6 = 0 and z = 0, which is
impossible.

4. The result is immediate from Item 2. 	


Using a similar arguments as before, we get the next proposition.

Lemma 13 Let

M =

⎡

⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −a
−1 t2 −1 −2 −3 −b
−2 −1 t3 −1 −2 −c
−3 −2 −1 t4 −1 −d
−4 −3 −2 −1 t5 −e
−a −b −c −d −e t6

⎤

⎥⎥⎥⎥⎥⎥
⎦

and a, b, c, d, e, t1, t2, t3, t4, t5, t6 ∈ N. Let λ1 be an eigenvalue of M and z =
(0, z2, z3, z4, z5, z6) be an eigenvector of M associated to λ1 such that z ⊥ 1.

1. If a = b+1, and t2 �= λ1, then z = (0, 0, z3, z4, z5, z6) and −z4 −2z5 − (b−1)z6 = 0.
2. If a = b + 1 = c + 2, t2 �= λ1 and t3 �= λ1, then z = (0, 0, 0, z4, z5, z6) and

−z5 − (c − 1)z6 = 0.
3. If a = b + 1 = c + 2 = 3, t2 �= λ1 and t3 �= λ1, then z = (0, 0, 0, z4, 0, z6). Moreover,

e = 1.

Proposition 14 Let G be a connected graphwith n ≥ 6 vertices, diam(G) = 4 andm(∂L
1 ) =

n − 4. Then, H7 and H8 are not induced subgraphs of G.
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Proof The principal submatrices of DL(G) with respect to H7 and H8 are, respectively,

M1 =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

t1 −1 −2 −3 −4 −1
−1 t2 −1 −2 −3 −1
−2 −1 t3 −1 −2 −1
−3 −2 −1 t4 −1 −2
−4 −3 −2 −1 t5 −3
−1 −1 −1 −2 −3 t6

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

, M2 =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

t1 −1 −2 −3 −4 −2
−1 t2 −1 −2 −3 −1
−2 −1 t3 −1 −2 −1
−3 −2 −1 t4 −1 −1
−4 −3 −2 −1 t5 −2
−2 −1 −1 −1 −2 t6

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

.

For each of the principal submatrices, there exists an eigenvector associated with ∂L
1 ,

z = (z1, z2, z3, z4, 0, z6), z ⊥ 1.
Case 1: If H7 is an induced subgraph of G, by Lemma 12, z = (0, z2, 0, 0, 0, z6).

Considering the second entry of M1z = ∂L
1 z, it follows that (t2 + 1 − ∂L

1 )z2 = 0. Since
t2 + 1 < ∂L

1 , then z2 = 0. Consequently, z = 0, which is impossible.

Case 2: If H8 is an induced subgraph of G, by Lemma 12, z = (z1, z2, z3, 0, 0, z6)
and −2z1 − z2 = 0. From this, considering the third and sixth entries of M2z = ∂L

1 z, as
t3 �= ∂L

1 , it follows, respectively, that z3 = 1
t3−∂L

1
z6, and z3 = (t6 − ∂L

1 )z6. Consequently,
1

t3−∂L
1
z6 = (t6 − ∂L

1 )z6.

If z6 = 0, then z3 = 0, implying z1 + z2 = 0 and −2z1 − z2 = 0. In this case, z = 0,
which is impossible. So, z6 �= 0 and 1

t3−∂L
1

= (t6 − ∂L
1 ). Therefore, 1 = (t6 − ∂L

1 )(t3 − ∂L
1 ).

This is impossible because t3 + 1 < ∂L
1 and t6 + 1 < ∂L

1 . 	


Proposition 15 Let G be a connected graphwith n ≥ 8 vertices, diam(G) = 4 andm(∂L
1 ) =

n − 4. Then, H3 is not an induced subgraph of G.

Proof Suppose that H3 is an induced subgraph ofG. Then, the principal submatrix ofDL(G)

with respect to H3 is

M1 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −1
−1 t2 −1 −2 −3 −1
−2 −1 t3 −1 −2 −2
−3 −2 −1 t4 −1 −2
−4 −3 −2 −1 t5 −3
−1 −1 −2 −2 −3 t6

⎤

⎥⎥⎥⎥⎥⎥
⎦

or M2 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −1
−1 t2 −1 −2 −3 −1
−2 −1 t3 −1 −2 −2
−3 −2 −1 t4 −1 −3
−4 −3 −2 −1 t5 −4
−1 −1 −2 −3 −4 t6

⎤

⎥⎥⎥⎥⎥⎥
⎦

or M3 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −1
−1 t2 −1 −2 −3 −1
−2 −1 t3 −1 −2 −2
−3 −2 −1 t4 −1 −3
−4 −3 −2 −1 t5 −3
−1 −1 −2 −3 −3 t6

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

• Suppose it is M1. Let z = (z1, z2, z3, z4, 0, z6) be a vector satisfying z ⊥ 1 and M1z =
∂L
1 z. By Lemma 12, z = (z1, z2, z3, 0, 0, z6) and −2z1 − z2 − z6 = 0. Considering
the second entry of M1z = ∂L

1 z, since t2 + 1 �= ∂L
1 , it follows that z2 = 0 and, then,

z1 = z3. Considering the first entry of both sides of M1z = ∂L
1 z, it follows that z1 = 0.

Consequently, z6 = 0 and z = 0, which is impossible.
• In case it is M2, the proof is analogous to the case M1, by taking z = (z1, 0, 0, 0, 0, z6)

and considering the first entry of M2z = ∂L
1 z.
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• Suppose it is M3. Let z = (z1, z2, z3, z4, z5, 0) be a vector satisfying z ⊥ 1 and M3z =
∂L
1 z. Considering, respectively, the sixth andfifth entries ofM3z = ∂L

1 z and, then, looking
at the first four lines of this eigenequation, we get:

z1 = 1

t1 + 1 − ∂L
1

z5, z2 = t5 + 2 − ∂L
1

t2 − ∂L
1

z5,

z3 = t5 + 2 − ∂L
1

t3 + 1 − ∂L
1

z5, z4 = t5 + 2 − ∂L
1

t4 − ∂L
1

z5.

Since z1 + z2 + z3 + z4 = −z5, then
[

1

t1 + 1 − ∂L
1

+ t5 + 2 − ∂L
1

t2 − ∂L
1

+ t5 + 2 − ∂L
1

t3 + 1 − ∂L
1

+ t5 + 2 − ∂L
1

t4 − ∂L
1

]

z5 = −z5

and, as z is an eigenvector, then z5 �= 0 and
[

1

t1 + 1 − ∂L
1

+ t5 + 2 − ∂L
1

t2 − ∂L
1

+ t5 + 2 − ∂L
1

t3 + 1 − ∂L
1

+ t5 + 2 − ∂L
1

t4 − ∂L
1

]

= −1.

This is impossible because

(t1 + 1 − ∂L
1 )(t4 − ∂L

1 )(t2 − ∂L
1 )(t3 + 1 − ∂L

1 ) > 0,
[
(t2 − ∂L

1 )(t3 + 1 − ∂L
1 ) + (t2 − ∂L

1 )(t4 − ∂L
1 ) + (t3 + 1 − ∂L

1 )(t4 − ∂L
1 )

]
> 0,

(t1 + 1 − ∂L
1 )(t5 + 2 − ∂L

1 ) ≥ 0

and

0 >
(t2 − ∂L

1 )(t3 + 1 − ∂L
1 )(t4 − ∂L

1 )

(t1 + 1 − ∂L
1 )(t4 − ∂L

1 )(t2 − ∂L
1 )(t3 + 1 − ∂L

1 )
> −1.

	

Proposition 16 Let G be a connected graphwith n ≥ 8 vertices, diam(G) = 4 andm(∂L

1 ) =
n − 4. Then, H5 is not an induced subgraph of G.

Proof Suppose that H5 is an induced subgraph ofG. Then, the principal submatrix ofDL(G)

with respect to H5 is

N1 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −2
−1 t2 −1 −2 −3 −1
−2 −1 t3 −1 −2 −1
−3 −2 −1 t4 −1 −2
−4 −3 −2 −1 t5 −3
−2 −1 −1 −2 −3 t6

⎤

⎥⎥⎥⎥⎥⎥
⎦

or N2 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −2
−1 t2 −1 −2 −3 −1
−2 −1 t3 −1 −2 −1
−3 −2 −1 t4 −1 −2
−4 −3 −2 −1 t5 −2
−2 −1 −1 −2 −2 t6

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

• Suppose it is N1 and let z = (z1, z2, z3, z4, 0, z6) be a vector satisfying z ⊥ 1 and
N1z = ∂L

1 z. By Lemma 12, we get a contradiction.
• Suppose it is N2. Since d(v6, v5) = 2 and v1v2v3v4v5 is a path between v1 and v5, then

there is a vertex v7 adjacent to v5 and v6 such that there is neither adjacent to v2 nor v1.
If v7 is adjacent to v4 and it is not adjacent to v3, then the subgraph of G induced by
vertices v1, v2, v3, v4, v5, v7 is isomorphic to H3. In case v7 is adjacent to both, v4 and
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v3, the subgraph of G induced by vertices v1, v2, v3, v4, v5, v7 is isomorphic to H8. In
any of these cases we have a contradiction.
If v7 is adjacent to v3 and it is not adjacent to v4, then the principal submatrix of DL(G)

with respect to the subgraph of G induced by vertices v1, v2, v3, v4, v5, v6, v7 is

F1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t1 −1 −2 −3 −4 −2 −3
−1 t2 −1 −2 −3 −1 −2
−2 −1 t3 −1 −2 −1 −1
−3 −2 −1 t4 −1 −2 −2
−4 −3 −2 −1 t5 −2 −1
−2 −1 −1 −2 −2 t6 −1
−3 −2 −1 −2 −1 −1 t7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let z = (0, z2, z3, 0, z5, z6, z7) be a vector satisfying z ⊥ 1 and F1z = ∂L
1 z. Considering,

respectively, the equations from first, second, fourth and seventh entries of F1z = ∂L
1 z,

we get z = 0, a contradiction.
If v7 is neither adjacent to v3 nor to v4, then the principal submatrix ofDL (G) associated
with vertices v1, v2, v3, v4, v5, v6, v7 is

F2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −2 −3
−1 t2 −1 −2 −3 −1 −2
−2 −1 t3 −1 −2 −1 −2
−3 −2 −1 t4 −1 −2 −2
−4 −3 −2 −1 t5 −2 −1
−2 −1 −1 −2 −2 t6 −1
−3 −2 −2 −2 −1 −1 t7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Analogously to the case of F1, we have a contradiction. 	

Proposition 17 Let G be a connected graphwith n ≥ 8 vertices, diam(G) = 4 andm(∂L

1 ) =
n − 4. Then, H2 is not an induced subgraph of G.

Proof Suppose that H2 is an induced subgraph ofG. Then, the principal submatrix ofDL(G)

with respect to H2 is

U1 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −3
−1 t2 −1 −2 −3 −2
−2 −1 t3 −1 −2 −1
−3 −2 −1 t4 −1 −2
−4 −3 −2 −1 t5 −3
−3 −2 −1 −2 −3 t6

⎤

⎥⎥⎥⎥⎥⎥
⎦

or U2 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −2
−1 t2 −1 −2 −3 −2
−2 −1 t3 −1 −2 −1
−3 −2 −1 t4 −1 −2
−4 −3 −2 −1 t5 −3
−2 −2 −1 −2 −3 t6

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

U3 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −3
−1 t2 −1 −2 −3 −2
−2 −1 t3 −1 −2 −1
−3 −2 −1 t4 −1 −2
−4 −3 −2 −1 t5 −2
−3 −2 −1 −2 −2 t6

⎤

⎥⎥⎥⎥⎥⎥
⎦

or U4 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −2
−1 t2 −1 −2 −3 −2
−2 −1 t3 −1 −2 −1
−3 −2 −1 t4 −1 −2
−4 −3 −2 −1 t5 −2
−2 −2 −1 −2 −2 t6

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

• Suppose it is U1 (or U2). Let z = (z1, z2, z3, z4, 0, z6) be a vector satisfying z ⊥ 1 and
U1z = ∂L

1 z (or U1z = ∂L
1 z). By Lemma 12, we get a contradiction.

• Suppose it is U3. Let z = (0, z2, z3, z4, z5, z6) be a vector satisfying z ⊥ 1 and U3z =
∂L
1 z. By Lemma 13, we get a contradiction.
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• Suppose it is U4. Since d(v6, v5) = 2 = d(v1, v6) and v1v2v3v4v5 is a path between v1
and v5, then there are vertices v7 and v8 such that v8 is adjacent to v1 and v6 and v7 is
adjacent to v5 and v6. Moreover, v8 is neither adjacent to v4 nor v5, and v7 is neither
adjacent to v1 nor v2. So, v7 can be adjacent to v3 or v4 and v8 can be adjacent to v3 or
v2.
If v3 is adjacent to v7 and to v8, then the subgraph of G induced by vertices
v1, v3, v5, v6, v7, v8 is isomorphic to H8. If v3 is adjacent to v7 or to v8, but not both,
then the subgraph of G induced by vertices v1, v3, v5, v6, v7, v8 is isomorphic to H5. If
v3 is neither adjacent to v7 nor to v8, but v4 is adjacent to v7, then the subgraph of G
induced by vertices v1, v2, v3, v4, v5, v7 is isomorphic to H3. In any of these cases we
have a contradiction.
If v3 is neither adjacent to v7 nor to v8 and v4 is not adjacent to v7, then the prin-
cipal submatrix of DL(G) with respect to the subgraph of G, induced by vertices
v1, v2, v3, v4, v5, v6, v7, is given by W1 or W2, respectively defined as:

⎡

⎢
⎢
⎢
⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −2 −3
−1 t2 −1 −2 −3 −2 −2
−2 −1 t3 −1 −2 −1 −2
−3 −2 −1 t4 −1 −2 −2
−4 −3 −2 −1 t5 −2 −1
−2 −2 −1 −2 −2 t6 −1
−3 −2 −2 −2 −1 −1 t7

⎤

⎥
⎥
⎥
⎥⎥⎥⎥⎥
⎦

,

⎡

⎢
⎢
⎢
⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −2 −3
−1 t2 −1 −2 −3 −2 −3
−2 −1 t3 −1 −2 −1 −2
−3 −2 −1 t4 −1 −2 −2
−4 −3 −2 −1 t5 −2 −1
−2 −2 −1 −2 −2 t6 −1
−3 −3 −2 −2 −1 −1 t7

⎤

⎥
⎥
⎥
⎥⎥⎥⎥⎥
⎦

.

Suppose it isW1. Let z = (0, 0, z3, z4, z5, z6, z7) be a vector satisfying z ⊥ 1 andW1z =
∂L
1 z. Considering, respectively, the first, second, sixth and fifth entries of W1z = ∂L

1 z,
we obtain that z = 0, contradiction.
In case it isW2,weget also get a contradiction fromconsidering z=(0,0, z3, z4, z5, z6,z7)
be a vector satisfying z ⊥ 1 and W2z = ∂L

1 z and, respectively, first, second, fourth and
fifth entries of this eigenequation. 	


Proposition 18 Let G be a connected graphwith n ≥ 8 vertices, diam(G) = 4 andm(∂L
1 ) =

n − 4. If P6 is not an induced subgraph of G, then H6 is not an induced subgraph of G.

Proof Suppose that H6 is an induced subgraph ofG. Then, the principal submatrix ofDL(G)

with respect to H6 is

Y =

⎡

⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −2
−1 t2 −1 −2 −3 −1
−2 −1 t3 −1 −2 −2
−3 −2 −1 t4 −1 −1
−4 −3 −2 −1 t5 −2
−2 −1 −2 −1 −2 t6

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

Let z = (z1, z2, z3, z4, 0, z6) be a vector satisfying z ⊥ 1 and Y z = ∂L
1 z. By Lemma 12, we

get z = (z1, z2, z3, 0, 0, z6) and −2z1 − z2 = 0. Considering the third entry of Y z = ∂L
1 z,

it follows that z3 = 2
t1−∂L

1
z6. If z6 = 0, then z3 = 0 and z = 0, which is impossible. So,

z6 �= 0. Considering the sixth entry of Y z = ∂L
1 z, it follows that z3 = t6−∂L

1
2 z6 and, then,

2
t1−∂L

1
= t6−∂L

1
2 .
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Since n ≥ 8,we get ∂L
1 ≥ t6+2 and ∂L

1 ≥ t3+2.Consequently, ∂L
1 = t6+2 = t3+2 and v3

is a vertex of G with maximum transmission. Because
∑6

i=1,i �=3 Y3i = 8 <
∑6

i=1,i �=5 Y5i =
12, there is a vertex v7 such that d(v7, v5) = 1 < d(v7, v3).

Concluding, as P6 is not an induced subgraph of G and v7 is not adjacent to v3, v1, v2,
then v7 is adjacent to v4 and the subgraph of G induced by vertices v1, v2, v3, v4, v5, v7 is
isomorphic to H3. So, we get an impossible situation. 	

Proposition 19 Let G be a connected graphwith n ≥ 8 vertices, diam(G) = 4 andm(∂L

1 ) =
n − 4. If P6 is not an induced subgraph of G, then H1 is not an induced subgraph of G.

Proof Suppose that H1 is an induced subgraph of G.

• If d(v6, v5) = 2, then there is a vertex v7 adjacent to v6 and v5. Since d(v1, v5) = 4,
then v7 is neither adjacent to v1 nor v2. Since P6 is not an induced subgraph of G, then
v7 is adjacent to v3 or v4.
If v7 is adjacent to v3 and v4, then the subgraph of G induced by vertices
v1, v2, v3, v4, v5, v7 is isomorphic to H7. If v7 is adjacent to v3 and it is not adjacent
to v4, then the subgraph of G induced by vertices v1, v2, v6, v7, v5, v4 is isomorphic to
P6. If v7 is adjacent to v4 and it is not adjacent to v3, then the subgraph of G induced
by vertices v1, v2, v3, v4, v5, v7 is isomorphic to H3. In any of these cases we get a
contradiction.

• If d(v6, v5) = 3, then there are vertices v7 and v8 such that v7 is adjacent to v6 and v8
and the vertex v8 is adjacent to v7 and v5. Since d(v1, v5) = 4, then v8 is neither adjacent
to v1 nor v2. Using similar argument, as used when d(v6, v5) = 2, with v8 instead of v7,

we get a contradiction.
• If d(v6, v5) = 4, then the principal submatrix of DL(G) with respect to H1 is

M =

⎡

⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −2
−1 t2 −1 −2 −3 −1
−2 −1 t3 −1 −2 −2
−3 −2 −1 t4 −1 −3
−4 −3 −2 −1 t5 −4
−2 −1 −2 −3 −4 t6

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

Let z = (z1, z2, z3, z4, 0, z6) be a vector satisfying z1 + z2 + z3 + z4 + z6 = 0 and Mz =
∂L
1 z. By Lemma 12, z = (z1, 0, 0, 0, 0, z6). Considering the first entry of both sides of
Mz = ∂L

1 z, we have t1z1 −2z6 = ∂L
1 z1. Since n ≥ 8, then t1 +2 = ∂L

1 and v1 is a vertex
with maximum transmission in G. Because

∑6
i=1,i �=1 M3i = 12 <

∑6
i=1,i �=5 M5i = 14

there is a vertex v7 such that d(v7, v5) < d(v7, v1). Considering all cases we have just
seen, the subgraph of G induced by vertices v1, v2, v3, v4, v5, v6, v7 is isomorphic to
graphs R1 or R2 (Fig. 3).
Since d(v6, v5) = 4, then, in both cases, we have v6 is not adjacent to v7.
Let E be the principal submatrix of DL(G) with respect to R1 :

E =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −2 −3
−1 t2 −1 −2 −3 −1 −2
−2 −1 t3 −1 −2 −2 −1
−3 −2 −1 t4 −1 −3 −2
−4 −3 −2 −1 t5 −4 −1
−2 −1 −2 −3 −4 t6 −3
−3 −2 −1 −2 −1 −3 t7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.
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R1

� � � � �

� ��
�

v1 v2 v3 v4 v5

v6 v7

R2

� � � � �

� �

v1 v2 v3 v4 v5

v6 v7

Fig. 3 Graphs R1 and R2

and z = (0, z2, z3, 0, z5, z6, z7) be a vector satisfying z ⊥ 1 and Ez = ∂L
1 z. Considering,

respectively, the first, second, fourth and fifth entries of this eigenequation, we conclude
that z = 0.
If R2 (Fig. 3) is an induced subgraph of G, then d(v6, v7) = 2 or d(v6, v7) = 3 or
d(v6, v7) = 4.
If d(v6, v7) = 2 and d(v6, v5) = 4, then there is a vertex v8 adjacent to v6 and v7, and v8
is neither adjacent to v4 nor v5. So, v8 can be adjacent to v1 or v2 or v3. If v8 is adjacent
to v3, then P6 or H2 or H5 or H7 is an induced subgraph of G. If v8 is not adjacent
to v3, then P6 or H3 is an induced subgraph of G. In any case of these cases we get a
contradiction.
If d(v6, v7) = 3 and d(v6, v5) = 4, then there are vertices v8 and v9 such that v9 is
adjacent to v6 and v8, and v8 is adjacent to v7. Moreover, v8 is not adjacent to v5, and
v9 is neither adjacent to v4 nor v5. If v8 is not adjacent to v4, then the subgraph of G
induced by vertices v6, v9, v8, v7, v4, v5 is isomorphic to P6. If v8 is adjacent to v4, then
P6 or H5 or H6 or H8 is an induced subgraph of G. All cases are not possible.
If d(v6, v7) = 3, then d(v1, v7) = 4, d(v2, v7) = 3 and the principal submatrix of
DL(G) with respect to R2 is

J =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

t1 −1 −2 −3 −4 −2 −4
−1 t2 −1 −2 −3 −1 −3
−2 −1 t3 −1 −2 −2 −2
−3 −2 −1 t4 −1 −3 −1
−4 −3 −2 −1 t5 −4 −2
−2 −1 −2 −3 −4 t6 −4
−4 −3 −2 −1 −2 −4 t7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

Let z = (0, z2, z3, z4, 0, z6, z7) be a vector satisfying z ⊥ 1 and J z = ∂L
1 z. Considering,

respectively, the first, second, fifth and fourth entries of J z = ∂L
1 z, we conclude that

z = 0. 	

For the last results, we need to introduce a definition and a lemma.

Definition 1 Let a, b be two positive integers. We denote by S(a, b) the graph obtained from
Ka,1 ∪ K1 ∪ Kb,1 by joining each pendant vertex of Ka,1 and Kb,1 with the vertex of K1.

Proposition 20 Let a, b be two positive integers such that a ≤ b. Let v be a pendant vertex
of Ka,1 and u be its central vertex. Let w be a pendant vertex of Kb,1. Then, in S(a, b) it
follows that T r(v) = Tr(w) < Tr(u).

Proof It is easy to check that Tr(v) = 3 + 2(a + b) = Tr(w) and Tr(u) = 6 + a + 3b.
Also, Tr(v) < Tr(u) since a ≤ b. 	


123



On the multiplicities of distance Laplacian eigenvalues Page 15 of 16 317

Proposition 21 Let G be a connected graphwith n ≥ 8 vertices, diam(G) = 4 andm(∂L
1 ) =

n − 4. If P6 is not an induced subgraph of G, then H4 is not an induced subgraph of G.

Proof Suppose that H4 is an induced subgraph ofG. Then, the principal submatrix ofDL(G)

with respect to H4 is

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

t1 −1 −2 −3 −4 −1
−1 t2 −1 −2 −3 −2
−2 −1 t3 −1 −2 −1
−3 −2 −1 t4 −1 −2
−4 −3 −2 −1 t5 −3
−1 −2 −1 −2 −3 t6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let z = (z1, z2, z3, z4, 0, z6) be a vector satisfying z ⊥ 1 and Mz = ∂L
1 z. By Lemma 12,

z = (0, z2, 0, 0, 0, z6). Consider the second entry of Mz = ∂L
1 z and, since n ≥ 8, then

t2 + 2 = ∂L
1 and v2 is a vertex with maximum transmission in G. Because

∑6
i=1,i �=2 M3i =

9 <
∑6

i=1,i �=5 M5i = 15, there is a vertex v7 such that d(v7, v5) < d(v7, v2). Considering
all cases we have just seen we conclude v7 is adjacent to v4 and v5. Using a similar argument,
as we used before, we get v4 is a vertex ofG with a maximum transmission. Consequently,G
has an induced subgraph isomorphic to S(a, b), with a, b ≥ 1, v1, v5 as the central vertices
of the stars in S(a, b), v3 as the vertex of K1, v4 as a pendent vertex of the star with central
vertex v5 and a + 1 vertices, and v2 as a pendent vertex of the star with central vertex v1
and b + 1 vertices. By Proposition 20, if a ≤ b, then Tr(v5) > Tr(v2) and if a ≥ b, then
Tr(v1) > Tr(v2). So, we get a contradiction. 	


Asanydiameter four graphwith P6 as a forbidden subgraphmust have an induced subgraph
isomorphic to some of the graphs Hi , 1 ≤ i ≤ 8, from Propositions 14, 15, 16, 17, 18, 19, 21,
we can state:

Theorem 22 Let G be a connected graph with n ≥ 8 vertices such that m(∂L
1 ) = n − 4. If

P6 is not an induced subgraph of G, then diam(G) ≤ 3.

Concluding, based on results presented in Sect. 3 and a computational search for graphs
on n vertices, 6 ≤ n ≤ 11, we could not find a graph with m(∂L

1 (G)) = n − 4 and P6 as an
induced subgraph. So, we propose the following conjecture:

Conjecture 23 Let G be a connected graph with n ≥ 6 vertices. If m(∂L
1 (G)) = n − 4, then

P6 is a forbidden subgraph.

In case that P6 is a forbidden subgraph, Theorem 22 presents some advances in an effort
to determine all graphs such that m(∂L

1 ) = n − 4.
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