

On the multiplicities of distance Laplacian eigenvalues

Rosário Fernandes¹ · Maria A. A. de Freitas² · Celso M. da Silva Jr.³ · Renata R. Del-Vecchio⁴

Received: 29 December 2022 / Revised: 3 August 2023 / Accepted: 6 September 2023 / Published online: 29 September 2023 © The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023

Abstract

In this work, connected graphs of order n and largest eigenvalue of the distance Laplacian matrix with multiplicity equal to n - 4 are investigated. A complete characterization is presented if n is one of its distance Laplacian eigenvalues with multiplicity one. We also present a conjecture about forbidden subgraphs of G when the multiplicity of its largest eigenvalue is n - 4, and we analyze the case where G has diameter four.

Keywords Distance Laplacian matrix · Laplacian matrix · Multiplicity of eigenvalues

Mathematics Subject Classification 05C12 · 05C50 · 15A18

1 Introduction

Let G = (V, E) be a connected graph of order *n* and let $d_{i,j}$ be the distance (the length of the shortest path) between vertices v_i and v_j of *G*. The diameter of a connected graph *G* is $\max_{v_i, v_j \in V} d_{i,j}$. The distance matrix of *G*, denoted by $\mathcal{D}(G)$, is the $n \times n$ matrix whose

Communicated by Carlos Hoppen.

Rosário Fernandes mrff@fct.unl.pt

Maria A. A. de Freitas maguieiras@im.ufrj.br

Renata R. Del-Vecchio rrdelvecchio@id.uff.br

- ¹ CMA and Department of Mathematics, FCT, UNL, 2829-516 Caparica, Portugal
- ² IM and COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- ³ DEMET, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Rio de Janeiro, Brazil
- ⁴ IME, Universidade Federal Fluminense, Niterói, Brazil

Celso M. da Silva Jr. celso.silva@cefet-rj.br

(i, j)-entry is equal to $d_{i, j}$, for i, j = 1, 2, ..., n. For $1 \le i \le n$, the sum of the distances from v_i to all other vertices in G is known as the transmission of the vertex v_i and is denoted by $Tr(v_i)$. Let Tr(G) be the transmission matrix of G, the diagonal matrix of order n whose (i, i)-entry is equal to $Tr(v_i)$. The distance Laplacian matrix of G, $\mathcal{D}^L(G)$, is the difference between the transmission matrix and the distance matrix, that is, $\mathcal{D}^L(G) = Tr(G) - \mathcal{D}(G)$ (Aouchiche and Hansen 2013). Let $Spec_{D^L}(G) = (\partial_1^L(G), \partial_2^L(G), ..., \partial_n^L(G) = 0)$ be the distance Laplacian spectrum of the connected graph G, denoted by $\mathcal{D}^L(G)$ -spectrum, where $\partial_1^L(G) \ge \partial_2^L(G) \ge ... \ge \partial_n^L(G) = 0$. The multiplicity of the eigenvalue $\partial_i^L(G)$, i =1, ..., n, is denoted by $m(\partial_i^L(G))$. We often use exponents to exhibit the multiplicity of the distance Laplacian eigenvalues, when we write the \mathcal{D}^L -spectrum. We recall that $\partial_{n-1}^L(G) = n$ if and only if \overline{G} , the complement of G, is disconnected (Aouchiche and Hansen 2013). Moreover, $\partial_{n-1}^L(G) \ge n$ and the multiplicity of n as an eigenvalue of $\mathcal{D}^L(G)$ is one less than the number of components of \overline{G} (Aouchiche and Hansen 2013).

In recent years, several works investigated the connected graphs on *n* vertices in which one of its distance Laplacian eigenvalues has a high multiplicity, n - r. The characterization of such graphs is completely made for *r* equal to one (Aouchiche and Hansen 2014), two (Fernandes et al. 2018; Lin et al. 2016; da Silva et al. 2016), or three (Fernandes et al. 2018; Lu et al. 2017; Ma et al. 2018; da Silva et al. 2016). In a recent paper (Khan et al. 2023), the case r = 4, under the condition that *n* is a distance Laplacian eigenvalue with multiplicity two or three, was studied. In this work, we consider the remaining cases where the largest distance Laplacian eigenvalue has multiplicity equal to n - 4. In Sect. 3, we describe all possible graphs with such multiplicity that also has *n* in its distance Laplacian spectrum, with multiplicity one, i.e., $\partial_{n-1}^L(G) = n$ and $m(\partial_{n-1}^L(G)) = 1$. For the case $\partial_{n-1}^L(G) \neq n$, we first recall the following central result for r = 2 or r = 3, where P_{r+2} denotes the path on r + 2 vertices.

Proposition 1 (da Silva et al. 2016) If G is a connected graph on n vertices such that $m(\partial_1^L(G)) = n - r, 1 \le r \le 3$, then G has no P_{r+2} as an induced subgraph.

Thus, based on Proposition 1, a natural way of trying to characterize the connected graphs such that $m(\partial_1^L(G)) = n - 4$ is investigating its relation with the existence of P_6 as an induced subgraph. Computationally, using the software nauty and Traces (McKay and Piperno 2014), and Graph6Java (Mohammad et al. 2019), we looked for graphs G on n vertices, $6 \le n \le 11$, $m(\partial_1^L(G)) = n - 4$ and $\partial_{n-1}^L(G) \ne n$. In addition to C_6 , all other obtained graphs, for $6 \le n \le 8$, are presented in Fig. 1. No graphs were found if $9 \le n \le 11$. Note that, besides C_6 , we have two graphs and their complements, with the following spectra: $Spec_{DL}(C_6) = (13^{(2)}, 10, 9^{(2)}, 0)$, $Spec_{DL}(G_1) = (14.16^{(2)}, 10, 7.84^{(2)}, 0)$, $Spec_{DL}(\overline{G_1}) = (10.3^{(2)}, 8, 6.7^{(2)}, 0)$, $Spec_{DL}(G_2) = (12.41^{(3)}, 9.59^{(3)}, 0)$, $Spec_{DL}(\overline{G_2}) = (11.41^{(3)}, 8.59^{(3)}, 0)$. In any case, P_6 is a forbidden subgraph. Considering these facts, in Sect. 4 we focus our attention to investigate if there could be a connected graph G with at least six vertices, P_6 as a forbidden subgraph and $m(\partial_1^L(G)) = n - 4$. Such graph has diameter at most four. We conclude that this condition is not feasible if diameter of G is equal to four.

2 Preliminaries

In what follows, G = (V, E), or just G, denotes a connected graph with n vertices and \overline{G} denotes its complement. The diameter of a connected graph G is denoted by diam(G).

Fig. 1 Graphs with $m(\partial_1^L(G)) = n - 4$ and $\partial_{n-1}^L(G) \neq n$

As usual, we write, respectively, P_n , C_n , S_n , W_n and K_n , for the path, the cycle, the star, the wheel and the complete graph, all with *n* vertices. We denote by $K_{l_1,l_2,...,l_k}$ the complete *k*-partite graph. If $e \in E$, the graph obtained from *G* by deleting the edge *e* is denoted G - e. If $e \notin E$, the graph obtained from *G* by adding the edge *e* is denoted G + e. Sometimes, we write G + 2e meaning that we have added two edges in *G*.

Now, we recall the definitions of some operations with graphs that will be used. For this, let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be vertex disjoint graphs. The *union* of G_1 and G_2 is the graph $G_1 \cup G_2$, whose vertex set is $V_1 \cup V_2$ and whose edge set is $E_1 \cup E_2$. The union of *r* copies of G_1 will be denoted by rG_1 . The *join* of G_1 and G_2 is the graph $G_1 \vee G_2$ obtained from $G_1 \cup G_2$ by joining each vertex of G_1 with every vertex of G_2 .

The Laplacian matrix of *G* is the $n \times n$ matrix L(G) = Deg(G) - A(G), where Deg(G) is the diagonal matrix of vertex degrees of *G* and A(G) is its adjacency matrix. We denote by $(\mu_1(G), \mu_2(G), \ldots, \mu_n(G))$ the *L*-spectrum of *G*, i.e., the spectrum of the Laplacian matrix of *G*, and we assume that the eigenvalues are labelled such that $\mu_1(G) \ge \mu_2(G) \ge \cdots \ge \mu_n(G) = 0$. It is well known that the multiplicity of the Laplacian eigenvalue 0 is equal to the number of components of *G* and that $\mu_{n-i}(\overline{G}) = n - \mu_i(G)$, $i = 1, \ldots, n - 1$ (see Merris 1994 for more details).

The following result relates the spectra of the matrices L and D^L .

Theorem 2 (Aouchiche and Hansen 2013) Let *G* be a connected graph on *n* vertices with $diam(G) \leq 2$. Let $\mu_1(G) \geq \mu_2(G) \geq \cdots \geq \mu_{n-1}(G) > \mu_n(G) = 0$ be the Laplacian spectrum of *G*. Then, the distance Laplacian spectrum of *G* is $2n - \mu_{n-1}(G) \geq 2n - \mu_{n-2}(G) \geq \cdots \geq 2n - \mu_1(G) > \partial_n^L(G) = 0$. Moreover, for every $i \in \{1, 2, ..., n-1\}$ the eigenspaces corresponding to $\mu_i(G)$ and to $2n - \mu_i(G)$ are the same.

Propositions 3, 4, 5 provide the L-spectrum of some graphs that will be analyzed later. Proposition 5 can be easily checked.

Proposition 3 (Fernandes et al. 2018) Let G be a connected graph of order $n \ge 4$. Then, $G \cong K_{n-2} \vee \overline{K_2}$ if and only if the L-spectrum of G is $(\mu_1^{(n-2)}(G), \mu_2(G), 0)$, with $\mu_1(G) > \mu_2(G) > 0$.

Proposition 4 (Mohammadian and Tayfeh-Rezaie 2011) Let G be a connected graph on $n \ge 5$ vertices whose distinct Laplacian eigenvalues are $0 < \alpha < \beta < \gamma$. Then, the multiplicity of γ is n - 3 if and only if $G \cong K_{n-3} \vee \overline{K_{1,2}}$.

Proposition 5 Let G be a connected graph on n = 4 vertices whose distinct Laplacian eigenvalues are $0 < \alpha < \beta < \gamma$. Then, $G \cong P_4$ or $G \cong K_{3,1} + e$.

For proving the next result, we recall that a connected graph *G* has at least diam(G) + 1 distinct Laplacian eigenvalues (Brouwer and Haemers 2011, Proposition 1.3.3).

Graph	L-spectrum	Graph	L-spectrum
<i>P</i> ₄	(3.4, 2, 0.6, 0)	<i>K</i> _{2,2}	$(4, 2^{(2)}, 0)$
<i>K</i> _{3,1}	$(4, 1^{(2)}, 0)$	C_5	$(3.62^{(2)}, 1.38^{(2)}, 0)$
$K_{3,1} + e$	(4, 3, 1, 0)	K_n	$(n^{(n-1)}, 0)$
$K_n - e$	$(n^{(n-2)}, n-2, 0)$	$K_{n-3} \vee \overline{K_{2,1}}$	$(n^{(n-3)}, n-1, n-3, 0)$
$K_{n-4} \vee K_{2,2}$	$(n^{(n-3)}, (n-2)^{(2)}, 0)$	$K_{n-3} \vee 3K_1$	$(n^{(n-3)}, (n-3)^{(2)}, 0)$

 Table 1
 L-spectrum of some graphs

Proposition 6 Let G be a connected graph on $n \ge 4$ vertices whose distinct Laplacian eigenvalues are $\gamma > \alpha > 0$. Then, the multiplicity of γ is n-3 if and only if $G \cong K_{n-4} \lor K_{2,2}$, or $G \cong K_{n-3} \lor 3K_1$, or $G \cong C_5$, for $n \ge 5$, or $G \cong K_{2,2}$, or $G \cong K_{3,1}$, for n = 4.

Proof As *G* has three distinct Laplacian eigenvalues, so diam(G) = 2 and its D^L -spectrum is $((2n - \alpha)^{(2)}, (2n - \gamma)^{(n-3)}, 0)$. For $n \ge 5$, these graphs are precisely determined in Theorems 4.4 and 4.5 of Fernandes et al. (2018) and in Theorem 1.2 of Ma et al. (2018). For n = 4, by Theorem 3.5 in da Silva et al. (2016), we get the result.

In Table 1 are presented the *L*-spectra of some connected graphs that are well known and will be useful in this work. Also, in Proposition 7 we provide the D^L -spectra of the complete *k*-partite graph and of graphs obtained from it by adding edges. As these graphs have diameter two, each D^L -spectrum can be easily determined by considering the relation between the Laplacian spectrum of a graph and its complement, the spectra contained in Table 1 and Theorem 2.

Proposition 7 Let $l_1 \ge l_2 \ge ... \ge l_k \ge 1$, $k \ge 2$, and *n* be integers such that $l_1 + l_2 + ... + l_k = n$. If $G = K_{l_1, l_2, ..., l_k}$ and $p = |\{i : l_i \ge 2\}|$, then:

- The \mathcal{D}^L -spectrum of G is $((n+l_1)^{(l_1-1)}, (n+l_2)^{(l_2-1)}, \dots, (n+l_p)^{(l_p-1)}, n^{(k-1)}, 0)$.
- The \mathcal{D}^L -spectrum of the graph G plus one extra edge in the class with l_j vertices, if possible, is obtained from $\operatorname{Spec}_{\mathcal{D}^L}(G)$, by replacing one eigenvalue $n + l_j$ by $n + l_j 2$.
- The \mathcal{D}^L -spectrum of the graph G plus two extra edges, one in the class with l_j vertices and other in the class with l_f vertices, if possible, is obtained from $Spec_{\mathcal{D}^L}(G)$, by replacing one eigenvalue $n + l_j$ and one $n + l_f$ by $n + l_j - 2$ and $n + l_f - 2$.
- The \mathcal{D}^L -spectrum of the graph G plus two extra edges sharing a common vertex in the class with l_j , if possible, is obtained from $Spec_{\mathcal{D}^L}(G)$, by replacing two eigenvalues $n + l_j$ by $n + l_j 3$ and $n + l_j 1$.
- The \mathcal{D}^L -spectrum of the graph G plus two extra independent edges in the class with l_j vertices, if possible, is obtained from $Spec_{\mathcal{D}^L}(G)$, by replacing two eigenvalues $n + l_j$ by $n + l_j 2$.
- The \mathcal{D}^L -spectrum of the graph G plus three extra edges determining a K_3 in the class with l_j vertices, if possible, is obtained from $Spec_{\mathcal{D}^L}(G)$, by replacing two eigenvalues $n + l_j$ by $n + l_j 3$.

Deringer JDMAC

3 On graphs with n as a distance Laplacian eigenvalue

In this section, we completely characterize the graphs for which $m(\partial_1^L(G)) = n - 4$, $\partial_{n-1}^L(G) = n$ and m(n) = 1. In this case, *G* has diameter of two and its distance Laplacian spectrum is related with the Laplacian spectrum (Theorem 2).

Theorem 8 Let G be a connected graph with $n \ge 6$ vertices such that $m(\partial_1^L(G)) = n - 4$ and $\partial_{n-1}^L(G) = n$. Then, $m(\partial_{n-1}^L(G)) = 1$ if and only if $G \cong W_6$, or G is isomorphic to one of the following graphs:

- for $n \ge 6$, $S_n + 2e$ (where the extra edges can share a vertex or they are independent), $S_n + 3e$ (where the extra edges induce a K_3), $K_{2,n-2} + e$ (where the extra edge is incident to vertices of the largest class) and $K_{p,p} + 2e$ (where the extra edges are in different classes);
- in addition to the previous graphs, for n ≥ 7, K_{3,n-3} and K_{3,n-3} + e (where the extra edge is incident to vertices of the smallest class);
- in addition to the previous graphs, for n ≥ 8, K_{p,p} + 2e (where the extra edges are in the same class and they can share a vertex or they are independent) and G ≃ K_{p,p} + 3e (where the extra edges induce a K₃).

Proof Since $m(\partial_{n-1}^{L}(G)) = 1$, the graph \overline{G} has two components, say $\overline{G} \cong F_1 \cup F_2$. So, diam(G) = 2 and the L-spectrum of \overline{G} is written as

$$(\partial_1^L(G) - n, \dots, \partial_1^L(G) - n, \partial_{n-3}^L(G) - n, \partial_{n-2}^L(G) - n, 0, 0),$$

that is, the largest Laplacian eigenvalue of \overline{G} has multiplicity n - 4. Suppose that $|V(F_1)| \le |V(F_2)|$. We have the following possibilities:

- |V(F₁)| = 1, then F₁ = K₁ and (∂^L₁(G) − n, ..., ∂^L₁(G) − n, ∂^L_{n-3}(G) − n, ∂^L_{n-2}(G) − n, 0) is the L-spectrum of F₂. If ∂^L_{n-3}(G) > ∂^L_{n-2}(G), from Proposition 4, G ≅ S_n + 2e, n ≥ 6, where the extra edges share a vertex. If ∂^L_{n-3}(G) = ∂^L_{n-2}(G), from Proposition 6, G ≅ W₆ or, for n ≥ 6, G ≅ S_n + 2e, where the extra edges are independent, or G ≅ S_n + 3e, where the extra edges induce a K₃.
- $|V(F_1)| = 2$, then $F_1 = K_2$ and its *L*-spectrum is (2, 0). From Propositions 4, 5, 6, $\partial_1^L(G) n > 2$. So, the *L*-spectrum of F_2 is $(\partial_1^L(G) n, \ldots, \partial_1^L(G) n, \alpha, 0)$. Then, from Proposition 3, for $n \ge 6$, $G \cong K_{2,n-2} + e$, where the extra edge is incident to vertices of the largest class.
- $|V(F_1)| = 3$, then $F_1 = K_3$ or $F_1 = P_3$ with L-spectrum, respectively, equal to (3, 3, 0)and (3, 1, 0). If n = 6, then $G \cong K_{3,3} + 2e$, where the extra edges are in different classes. For $n \ge 7$, from Propositions 3, 4, 5, 6, as $|V(F_2)| \ge 4$, it follows that $\partial_1^L(G) - n > 3$. So, the *L*-spectrum of F_2 is $(\partial_1^L(G) - n, \ldots, \partial_1^L(G) - n, 0)$. Thus, if $F_1 = K_3$, then $G \cong K_{3,n-3}, n \ge 7$. If $F_1 = P_3$, then $G = K_{3,n-3} + e, n \ge 7$, where the extra edge is incident to vertices of the smallest class.
- $|V(F_1)| = p > 3$,

Case I. the *L*-spectrum of F_1 is $(\partial_1^L(G) - n, \ldots, \partial_1^L(G) - n, \partial_{n-2}^L(G) - n, \partial_{n-3}^L(G) - n, 0)$ and of F_2 is $(\partial_1^L(G) - n, \ldots, \partial_1^L(G) - n, 0)$. If $\partial_{n-2}^L(G) > \partial_{n-3}^L(G)$, and $|V(F_1)| = 4$, it follows, from Proposition 5, that $G \cong K_{4,4} + 2e$, where the extra edges share a vertex. If $\partial_{n-2}^L(G) > \partial_{n-3}^L(G)$, and $|V(F_1)| > 4$, then, from Proposition 4, $G \cong K_{p,p} + 2e$, $p \ge 5$, where the extra edges share a vertex. If $\partial_{n-2}^L(G) = \partial_{n-3}^L(G)$, from Proposition 6, $G \cong K_{p,p} + 2e$, $p \ge 5$, where the extra edges are in the same class and they are independent, $G \cong K_{p,p} + 3e$, $p \ge 5$, where the extra edges induce a K_3 , $G \cong K_{4,4} + 2e$,

Table 2	\mathcal{D}^L -spectrum	of some	graphs
---------	---------------------------	---------	--------

Graph	\mathcal{D}^L -spectrum
W ₆	$(9.62^{(2)}, 7.38^{(2)}, 6, 0)$
$S_n + 2e, n \ge 6,$	$((2n-1)^{(n-4)}, 2n-2, 2n-4, n, 0)$
extra edges share a vertex	
$S_n + 2e, n \ge 6,$	$((2n-1)^{(n-4)}, (2n-3)^{(2)}, n, 0)$
extra edges are independent	
$S_n + 3e, n \ge 6,$	
extra edges induce a K_3	$((2n-1)^{(n-4)}, (2n-4)^{(2)}, n, 0)$
$K_{2,n-2}+e, n \ge 6,$	$((2n-2)^{(n-4)}, 2n-4, n+2, n, 0)$
extra edge is in the largest class	
$K_{p,p} + 2e, p \ge 3,$	$\left(\left(\frac{3n}{2}\right)^{(n-4)}, \left(\frac{3n-4}{2}\right)^{(2)}, n, 0\right)$
extra edges are in different classes	
$K_{3,n-3}, n \ge 7,$	$((2n-3)^{(n-4)}, (n+3)^{(2)}, n, 0)$
$K_{3,n-3}+e, n \ge 7,$	$((2n-3)^{(n-4)}, n+3, n+1, n, 0)$
extra edge is in the smallest class	
$K_{p,p} + 2e, p \ge 4$	$\left(\left(\frac{3n}{2}\right)^{(n-4)}, \left(\frac{3n-2}{2}\right), \left(\frac{3n-6}{2}\right), n, 0\right)$
extra edges share a vertex	
$K_{p,p} + 2e, p \ge 4,$	$\left(\frac{3n}{2}^{(n-4)}, \left(\frac{3n-4}{2}\right)^{(2)}, n, 0\right)$
extra edges are independent in the same class	
$K_{p,p} + 3e, \ p \ge 4,$	$\left(\frac{3n}{2}^{(n-4)}, \left(\frac{3n-6}{2}\right)^{(2)}, n, 0\right)$
extra edges induce a K_3	

where the extra edges are in the same class and they are independent, or $G \cong K_{4,4} + 3e$, where the extra edges induce a K_3 .

Case II. the *L*-spectrum of F_1 is $(\partial_1^L(G) - n, \ldots, \partial_1^L(G) - n, \partial_{n-3}^L(G) - n, 0)$ and the *L*-spectrum of F_2 is $(\partial_1^L(G) - n, \ldots, \partial_1^L(G) - n, \partial_{n-2}^L(G) - n, 0)$. From Proposition 3, it follows that $G \cong K_{p,p} + 2e$, $p \ge 4$, where the extra edges are in different classes.

By Proposition 7 we can explicit the D^L -spectra presented in Table 2.

4 Diameter four graphs with forbidden P₆

In this section, we focus on connected graphs with at least six vertices, having P_6 as a forbidden subgraph. In particular, this condition implies investigating graphs with a maximum diameter equal to four and we will consider, specifically, graphs with a diameter four. So, from now on, we denote by v_1 , v_2 , v_3 , v_4 , v_5 the vertices inducing a P_5 , with $d(v_1, v_5) = 4$ and $P = v_1v_2v_3v_4v_5$ been a shortest path between v_1 and v_5 . In Fig. 2 are presented all possible graphs on six vertices having P_5 as an induced subgraph with $d(v_1, v_5) = 4$.

Besides, let *G* be a connected graph on *n* vertices, $n \ge 8$, $m(\partial_1^L(G)) = n - 4$ and let *M* be a principal submatrix of $\mathcal{D}^L(G)$, of order $k \in \{6, 7\}$, with largest eigenvalue λ . By Cauchy Interlacing, we get $\lambda = \partial_1^L(G)$ and $m(\lambda) \ge k - 4$. So, as **1**, the all ones vector

Fig. 2 Graphs on six vertices and P_5 as an induced subgraph

with appropriate order, is an eigenvector for $\mathcal{D}^{L}(G)$, it is possible to get a vector z of M corresponding to λ with at least k - 5 entries equal to zero, which can be arbitrarily chosen (Proposition 3.1, Fernandes et al. 2018), such that $z \perp 1$. This fact will be fundamental for what follows in this work.

Theorem 9 (da Silva et al. 2016) If G is a connected graph then $\partial_1^L(G) \ge \max_{v_i \in V} Tr(v_i) + 1$. Equality is attained if and only if $G \cong K_n$.

The next propositions are similar to the results that appeared in Lu et al. (2017). Since they have analogous proofs we omit them.

Proposition 10 Let G be a connected graph with $n \ge 8$ vertices. If $m(\partial_1^L) = n - 4$ then ∂_1^L is an integer number.

Proposition 11 Let G be a connected graph with n vertices such that $G \ncong K_n$ and ∂_1^L is an integer number. Then, $\partial_1^L \ge \max_{v \in V} Tr(v) + 2$. Moreover, if there exists $v_0 \in V$ such that $\partial_1^L = Tr(v_0) + 2$, then $Tr(v_0) = \max_{v \in V} Tr(v)$.

We will now state two results from matrix theory that will be useful in what follows. We denote by 0 and 1 vectors with a given size and all entries equal to zero and all entries equal to one, respectively.

Lemma 12 Let

$$M = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -a \\ -1 & t_2 & -1 & -2 & -3 & -b \\ -2 & -1 & t_3 & -1 & -2 & -c \\ -3 & -2 & -1 & t_4 & -1 & -d \\ -4 & -3 & -2 & -1 & t_5 & -e \\ -a & -b & -c & -d & -e & t_6 \end{bmatrix}$$

and $a, b, c, d, e, t_1, t_2, t_3, t_4, t_5, t_6 \in \mathbb{N}$. Let λ_1 be an eigenvalue of M and $z = (z_1, z_2, z_3, z_4, 0, z_6)$ be an eigenvector of M associated to λ_1 such that $z \perp 1$.

- 1. If e = d + 1 and $t_4 \neq \lambda_1$, then $z = (z_1, z_2, z_3, 0, 0, z_6)$ and $-2z_1 z_2 (d 1)z_6 = 0$.
- 2. If e = d + 1 = c + 2, $t_4 \neq \lambda_1$ and $t_3 \neq \lambda_1$, then $z = (z_1, z_2, 0, 0, 0, z_6)$ and $-z_1 (c 1)z_6 = 0$.
- 3. If e = d + 1 = c + 2 = 3, $t_4 \neq \lambda_1$ and $t_3 \neq \lambda_1$, then $z = (0, z_2, 0, 0, 0, z_6)$. Moreover, a = 1.
- 4. If e = d + 1 = c + 2 = b + 3 = 4, $t_4 \neq \lambda_1$, $t_2 \neq \lambda_1$ and $t_3 \neq \lambda_1$, then $z = (z_1, 0, 0, 0, 0, z_6)$.
- **Proof** 1. Using the fifth entry of both sides of $Mz = \lambda_1 z$ we get $-4z_1 3z_2 2z_3 z_4 ez_6 = 0$. Since $z \perp 1$, we obtain $-3z_1 2z_2 z_3 (e 1)z_6 = 0$. Using the fourth entry of $Mz = \lambda_1 z$ we get $-3z_1 2z_2 z_3 + t_4z_4 dz_6 = \lambda_1 z_4$. As d = e 1, we conclude that $t_4z_4 = \lambda_1 z_4$. So, $z_4 = 0$, because $t_4 \neq \lambda_1$, $z = (z_1, z_2, z_3, 0, 0, z_6)$ and $-3z_1 2z_2 z_3 dz_6 = 0$. This implies that $-2z_1 z_2 (d 1)z_6 = 0$.
- 2. From Item 1 and the third entry of $Mz = \lambda_1 z$, we get $-2z_1 z_2 + t_3 z_3 cz_6 = \lambda_1 z_3$. As c = d - 1, we conclude that $t_3 z_3 = \lambda_1 z_3$. So, $z_3 = 0$, because $t_3 \neq \lambda_1$, $z = (z_1, z_2, 0, 0, 0, z_6)$ and $-2z_1 - z_2 - cz_6 = 0$. This implies that $-z_1 - (c - 1)z_6 = 0$. 3. From Item 2.
- since c = 1, then $z_1 = 0$ and $z = (0, z_2, 0, 0, 0, z_6)$. If $a \neq 1$, using the first entry of $Mz = \lambda_1 z$ we get $-z_2 az_6 = 0$. Consequently, $z_2 = z_6 = 0$ and z = 0, which is impossible.
- 4. The result is immediate from Item 2.

Using a similar arguments as before, we get the next proposition.

Lemma 13 Let

Deringer Springer

$$M = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -a \\ -1 & t_2 & -1 & -2 & -3 & -b \\ -2 & -1 & t_3 & -1 & -2 & -c \\ -3 & -2 & -1 & t_4 & -1 & -d \\ -4 & -3 & -2 & -1 & t_5 & -e \\ -a & -b & -c & -d & -e & t_6 \end{bmatrix}$$

and $a, b, c, d, e, t_1, t_2, t_3, t_4, t_5, t_6 \in \mathbb{N}$. Let λ_1 be an eigenvalue of M and $z = (0, z_2, z_3, z_4, z_5, z_6)$ be an eigenvector of M associated to λ_1 such that $z \perp \mathbf{1}$.

- 1. If a = b + 1, and $t_2 \neq \lambda_1$, then $z = (0, 0, z_3, z_4, z_5, z_6)$ and $-z_4 2z_5 (b 1)z_6 = 0$.
- 2. If a = b + 1 = c + 2, $t_2 \neq \lambda_1$ and $t_3 \neq \lambda_1$, then $z = (0, 0, 0, z_4, z_5, z_6)$ and $-z_5 (c 1)z_6 = 0$.
- 3. If a = b + 1 = c + 2 = 3, $t_2 \neq \lambda_1$ and $t_3 \neq \lambda_1$, then $z = (0, 0, 0, z_4, 0, z_6)$. Moreover, e = 1.

Proposition 14 Let G be a connected graph with $n \ge 6$ vertices, diam(G) = 4 and $m(\partial_1^L) = n - 4$. Then, H_7 and H_8 are not induced subgraphs of G.

Proof The principal submatrices of $\mathcal{D}^L(G)$ with respect to H_7 and H_8 are, respectively,

$$M_{1} = \begin{bmatrix} t_{1} & -1 & -2 & -3 & -4 & -1 \\ -1 & t_{2} & -1 & -2 & -3 & -1 \\ -2 & -1 & t_{3} & -1 & -2 & -1 \\ -3 & -2 & -1 & t_{4} & -1 & -2 \\ -4 & -3 & -2 & -1 & t_{5} & -3 \\ -1 & -1 & -1 & -2 & -3 & t_{6} \end{bmatrix}, M_{2} = \begin{bmatrix} t_{1} & -1 & -2 & -3 & -4 & -2 \\ -1 & t_{2} & -1 & -2 & -3 & -1 \\ -2 & -1 & t_{3} & -1 & -2 & -1 \\ -3 & -2 & -1 & t_{4} & -1 & -1 \\ -4 & -3 & -2 & -1 & t_{5} & -2 \\ -2 & -1 & -1 & -1 & -2 & t_{6} \end{bmatrix}.$$

For each of the principal submatrices, there exists an eigenvector associated with ∂_1^L , $z = (z_1, z_2, z_3, z_4, 0, z_6), z \perp \mathbf{1}$.

Case 1: If H_7 is an induced subgraph of G, by Lemma 12, $z = (0, z_2, 0, 0, 0, z_6)$. Considering the second entry of $M_1 z = \partial_1^L z$, it follows that $(t_2 + 1 - \partial_1^L) z_2 = 0$. Since $t_2 + 1 < \partial_1^L$, then $z_2 = 0$. Consequently, z = 0, which is impossible.

Case 2: If H_8 is an induced subgraph of G, by Lemma 12, $z = (z_1, z_2, z_3, 0, 0, z_6)$ and $-2z_1 - z_2 = 0$. From this, considering the third and sixth entries of $M_2 z = \partial_1^L z$, as $t_3 \neq \partial_1^L$, it follows, respectively, that $z_3 = \frac{1}{t_3 - \partial_1^L} z_6$, and $z_3 = (t_6 - \partial_1^L) z_6$. Consequently, $\frac{1}{t_3 - \partial_1^L} z_6 = (t_6 - \partial_1^L) z_6$.

If $z_6 = 0$, then $z_3 = 0$, implying $z_1 + z_2 = 0$ and $-2z_1 - z_2 = 0$. In this case, z = 0, which is impossible. So, $z_6 \neq 0$ and $\frac{1}{t_3 - \partial_1^L} = (t_6 - \partial_1^L)$. Therefore, $1 = (t_6 - \partial_1^L)(t_3 - \partial_1^L)$. This is impossible because $t_3 + 1 < \partial_1^L$ and $t_6 + 1 < \partial_1^L$.

Proposition 15 Let G be a connected graph with $n \ge 8$ vertices, diam(G) = 4 and $m(\partial_1^L) = n - 4$. Then, H_3 is not an induced subgraph of G.

Proof Suppose that H_3 is an induced subgraph of G. Then, the principal submatrix of $\mathcal{D}^L(G)$ with respect to H_3 is

$$M_{1} = \begin{bmatrix} t_{1} & -1 & -2 & -3 & -4 & -1 \\ -1 & t_{2} & -1 & -2 & -3 & -1 \\ -2 & -1 & t_{3} & -1 & -2 & -2 \\ -3 & -2 & -1 & t_{4} & -1 & -2 \\ -4 & -3 & -2 & -1 & t_{5} & -3 \\ -1 & -1 & -2 & -2 & -3 & t_{6} \end{bmatrix}$$
 or
$$M_{2} = \begin{bmatrix} t_{1} & -1 & -2 & -3 & -4 & -1 \\ -2 & -1 & t_{3} & -1 & -2 & -2 \\ -3 & -2 & -1 & t_{4} & -1 & -3 \\ -4 & -3 & -2 & -1 & t_{5} & -4 \\ -1 & -1 & -2 & -3 & -4 & t_{6} \end{bmatrix}$$
 or
$$M_{3} = \begin{bmatrix} t_{1} & -1 & -2 & -3 & -4 & -1 \\ -1 & t_{2} & -1 & -2 & -3 & -1 \\ -2 & -1 & t_{3} & -1 & -2 & -2 \\ -3 & -2 & -1 & t_{4} & -1 & -3 \\ -4 & -3 & -2 & -1 & t_{5} & -3 \\ -4 & -3 & -2 & -1 & t_{5} & -3 \\ -1 & -1 & -2 & -3 & -3 & t_{6} \end{bmatrix}.$$

- Suppose it is M_1 . Let $z = (z_1, z_2, z_3, z_4, 0, z_6)$ be a vector satisfying $z \perp 1$ and $M_1 z = \partial_1^L z$. By Lemma 12, $z = (z_1, z_2, z_3, 0, 0, z_6)$ and $-2z_1 z_2 z_6 = 0$. Considering the second entry of $M_1 z = \partial_1^L z$, since $t_2 + 1 \neq \partial_1^L$, it follows that $z_2 = 0$ and, then, $z_1 = z_3$. Considering the first entry of both sides of $M_1 z = \partial_1^L z$, it follows that $z_1 = 0$. Consequently, $z_6 = 0$ and z = 0, which is impossible.
- In case it is M_2 , the proof is analogous to the case M_1 , by taking $z = (z_1, 0, 0, 0, 0, z_6)$ and considering the first entry of $M_2 z = \partial_1^L z$.

• Suppose it is M_3 . Let $z = (z_1, z_2, z_3, z_4, z_5, 0)$ be a vector satisfying $z \perp 1$ and $M_3 z = \partial_1^L z$. Considering, respectively, the sixth and fifth entries of $M_3 z = \partial_1^L z$ and, then, looking at the first four lines of this eigenequation, we get:

$$z_{1} = \frac{1}{t_{1} + 1 - \partial_{1}^{L}} z_{5}, \quad z_{2} = \frac{t_{5} + 2 - \partial_{1}^{L}}{t_{2} - \partial_{1}^{L}} z_{5},$$
$$z_{3} = \frac{t_{5} + 2 - \partial_{1}^{L}}{t_{3} + 1 - \partial_{1}^{L}} z_{5}, \quad z_{4} = \frac{t_{5} + 2 - \partial_{1}^{L}}{t_{4} - \partial_{1}^{L}} z_{5}.$$

Since $z_1 + z_2 + z_3 + z_4 = -z_5$, then

$$\left[\frac{1}{t_1+1-\partial_1^L} + \frac{t_5+2-\partial_1^L}{t_2-\partial_1^L} + \frac{t_5+2-\partial_1^L}{t_3+1-\partial_1^L} + \frac{t_5+2-\partial_1^L}{t_4-\partial_1^L}\right]z_5 = -z_5$$

and, as z is an eigenvector, then $z_5 \neq 0$ and

$$\left[\frac{1}{t_1+1-\partial_1^L} + \frac{t_5+2-\partial_1^L}{t_2-\partial_1^L} + \frac{t_5+2-\partial_1^L}{t_3+1-\partial_1^L} + \frac{t_5+2-\partial_1^L}{t_4-\partial_1^L}\right] = -1.$$

This is impossible because

$$\begin{aligned} (t_1 + 1 - \partial_1^L)(t_4 - \partial_1^L)(t_2 - \partial_1^L)(t_3 + 1 - \partial_1^L) &> 0, \\ \left[(t_2 - \partial_1^L)(t_3 + 1 - \partial_1^L) + (t_2 - \partial_1^L)(t_4 - \partial_1^L) + (t_3 + 1 - \partial_1^L)(t_4 - \partial_1^L) \right] &> 0, \\ (t_1 + 1 - \partial_1^L)(t_5 + 2 - \partial_1^L) &\ge 0 \end{aligned}$$

and

$$0 > \frac{(t_2 - \partial_1^L)(t_3 + 1 - \partial_1^L)(t_4 - \partial_1^L)}{(t_1 + 1 - \partial_1^L)(t_4 - \partial_1^L)(t_2 - \partial_1^L)(t_3 + 1 - \partial_1^L)} > -1.$$

Proposition 16 Let G be a connected graph with $n \ge 8$ vertices, diam(G) = 4 and $m(\partial_1^L) = n - 4$. Then, H_5 is not an induced subgraph of G.

Proof Suppose that H_5 is an induced subgraph of G. Then, the principal submatrix of $\mathcal{D}^L(G)$ with respect to H_5 is

$$N_{1} = \begin{bmatrix} t_{1} & -1 & -2 & -3 & -4 & -2 \\ -1 & t_{2} & -1 & -2 & -3 & -1 \\ -2 & -1 & t_{3} & -1 & -2 & -1 \\ -3 & -2 & -1 & t_{4} & -1 & -2 \\ -4 & -3 & -2 & -1 & t_{5} & -3 \\ -2 & -1 & -1 & -2 & -3 & t_{6} \end{bmatrix} \quad \text{or} \quad N_{2} = \begin{bmatrix} t_{1} & -1 & -2 & -3 & -4 & -2 \\ -1 & t_{2} & -1 & -2 & -3 & -1 \\ -2 & -1 & t_{3} & -1 & -2 & -1 \\ -3 & -2 & -1 & t_{4} & -1 & -2 \\ -4 & -3 & -2 & -1 & t_{5} & -2 \\ -2 & -1 & -1 & -2 & -2 & t_{6} \end{bmatrix}$$

- Suppose it is N_1 and let $z = (z_1, z_2, z_3, z_4, 0, z_6)$ be a vector satisfying $z \perp 1$ and $N_1 z = \partial_1^L z$. By Lemma 12, we get a contradiction.
- Suppose it is N_2 . Since $d(v_6, v_5) = 2$ and $v_1v_2v_3v_4v_5$ is a path between v_1 and v_5 , then there is a vertex v_7 adjacent to v_5 and v_6 such that there is neither adjacent to v_2 nor v_1 . If v_7 is adjacent to v_4 and it is not adjacent to v_3 , then the subgraph of *G* induced by vertices $v_1, v_2, v_3, v_4, v_5, v_7$ is isomorphic to H_3 . In case v_7 is adjacent to both, v_4 and

 v_3 , the subgraph of G induced by vertices v_1 , v_2 , v_3 , v_4 , v_5 , v_7 is isomorphic to H_8 . In any of these cases we have a contradiction.

If v_7 is adjacent to v_3 and it is not adjacent to v_4 , then the principal submatrix of $\mathcal{D}^L(G)$ with respect to the subgraph of G induced by vertices $v_1, v_2, v_3, v_4, v_5, v_6, v_7$ is

$$F_{1} = \begin{bmatrix} t_{1} & -1 & -2 & -3 & -4 & -2 & -3 \\ -1 & t_{2} & -1 & -2 & -3 & -1 & -2 \\ -2 & -1 & t_{3} & -1 & -2 & -1 & -1 \\ -3 & -2 & -1 & t_{4} & -1 & -2 & -2 \\ -4 & -3 & -2 & -1 & t_{5} & -2 & -1 \\ -2 & -1 & -1 & -2 & -2 & t_{6} & -1 \\ -3 & -2 & -1 & -2 & -1 & -1 & t_{7} \end{bmatrix}$$

Let $z = (0, z_2, z_3, 0, z_5, z_6, z_7)$ be a vector satisfying $z \perp 1$ and $F_1 z = \partial_1^L z$. Considering, respectively, the equations from first, second, fourth and seventh entries of $F_1 z = \partial_1^L z$, we get z = 0, a contradiction.

If v_7 is neither adjacent to v_3 nor to v_4 , then the principal submatrix of $\mathcal{D}^L(G)$ associated with vertices $v_1, v_2, v_3, v_4, v_5, v_6, v_7$ is

$$F_{2} = \begin{bmatrix} t_{1} - 1 - 2 - 3 - 4 - 2 - 3 \\ -1 t_{2} - 1 - 2 - 3 - 1 - 2 \\ -2 - 1 t_{3} - 1 - 2 - 1 - 2 \\ -3 - 2 - 1 t_{4} - 1 - 2 - 2 \\ -4 - 3 - 2 - 1 t_{5} - 2 - 1 \\ -2 - 1 - 1 - 2 - 2 t_{6} - 1 \\ -3 - 2 - 2 - 2 - 1 - 1 t_{7} \end{bmatrix}$$

Analogously to the case of F_1 , we have a contradiction.

Proposition 17 Let *G* be a connected graph with $n \ge 8$ vertices, diam(G) = 4 and $m(\partial_1^L) = n - 4$. Then, H_2 is not an induced subgraph of *G*.

Proof Suppose that H_2 is an induced subgraph of G. Then, the principal submatrix of $\mathcal{D}^L(G)$ with respect to H_2 is

$$U_{1} = \begin{bmatrix} t_{1} & -1 & -2 & -3 & -4 & -3 \\ -1 & t_{2} & -1 & -2 & -3 & -2 \\ -2 & -1 & t_{3} & -1 & -2 & -1 \\ -3 & -2 & -1 & t_{4} & -1 & -2 \\ -4 & -3 & -2 & -1 & t_{5} & -3 \\ -3 & -2 & -1 & -2 & -3 & t_{6} \end{bmatrix} \text{ or } U_{2} = \begin{bmatrix} t_{1} & -1 & -2 & -3 & -4 & -2 \\ -1 & t_{2} & -1 & -2 & -3 & -2 \\ -2 & -1 & t_{3} & -1 & -2 & -1 \\ -3 & -2 & -1 & t_{5} & -3 \\ -2 & -2 & -1 & -2 & -3 & t_{6} \end{bmatrix},$$
$$U_{3} = \begin{bmatrix} t_{1} & -1 & -2 & -3 & -4 & -3 \\ -1 & t_{2} & -1 & -2 & -3 & -2 \\ -2 & -1 & t_{3} & -1 & -2 & -1 \\ -3 & -2 & -1 & t_{4} & -1 & -2 \\ -4 & -3 & -2 & -1 & t_{5} & -2 \\ -3 & -2 & -1 & -2 & -2 & t_{6} \end{bmatrix} \text{ or } U_{4} = \begin{bmatrix} t_{1} & -1 & -2 & -3 & -4 & -2 \\ -1 & t_{2} & -1 & -2 & -3 & -2 \\ -2 & -1 & t_{3} & -1 & -2 & -1 \\ -3 & -2 & -1 & t_{4} & -1 & -2 \\ -4 & -3 & -2 & -1 & t_{5} & -2 \\ -2 & -2 & -1 & -2 & -2 & t_{6} \end{bmatrix}.$$

- Suppose it is U_1 (or U_2). Let $z = (z_1, z_2, z_3, z_4, 0, z_6)$ be a vector satisfying $z \perp 1$ and $U_1 z = \partial_1^L z$ (or $U_1 z = \partial_1^L z$). By Lemma 12, we get a contradiction.
- Suppose it is U_3 . Let $z = (0, z_2, z_3, z_4, z_5, z_6)$ be a vector satisfying $z \perp 1$ and $U_3 z = \partial_1^L z$. By Lemma 13, we get a contradiction.

D Springer

• Suppose it is U_4 . Since $d(v_6, v_5) = 2 = d(v_1, v_6)$ and $v_1v_2v_3v_4v_5$ is a path between v_1 and v_5 , then there are vertices v_7 and v_8 such that v_8 is adjacent to v_1 and v_6 and v_7 is adjacent to v_5 and v_6 . Moreover, v_8 is neither adjacent to v_4 nor v_5 , and v_7 is neither adjacent to v_1 nor v_2 . So, v_7 can be adjacent to v_3 or v_4 and v_8 can be adjacent to v_3 or v_2 .

If v_3 is adjacent to v_7 and to v_8 , then the subgraph of *G* induced by vertices $v_1, v_3, v_5, v_6, v_7, v_8$ is isomorphic to H_8 . If v_3 is adjacent to v_7 or to v_8 , but not both, then the subgraph of *G* induced by vertices $v_1, v_3, v_5, v_6, v_7, v_8$ is isomorphic to H_5 . If v_3 is neither adjacent to v_7 nor to v_8 , but v_4 is adjacent to v_7 , then the subgraph of *G* induced by vertices $v_1, v_2, v_3, v_4, v_5, v_7$ is isomorphic to H_3 . In any of these cases we have a contradiction.

If v_3 is neither adjacent to v_7 nor to v_8 and v_4 is not adjacent to v_7 , then the principal submatrix of $\mathcal{D}^L(G)$ with respect to the subgraph of G, induced by vertices $v_1, v_2, v_3, v_4, v_5, v_6, v_7$, is given by W_1 or W_2 , respectively defined as:

$$\begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 & -3 \\ -1 & t_2 & -1 & -2 & -3 & -2 & -2 \\ -2 & -1 & t_3 & -1 & -2 & -1 & -2 \\ -3 & -2 & -1 & t_4 & -1 & -2 & -2 \\ -4 & -3 & -2 & -1 & t_5 & -2 & -1 \\ -2 & -2 & -1 & -2 & -2 & t_6 & -1 \\ -3 & -2 & -2 & -2 & -1 & -1 & t_7 \end{bmatrix}, \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 & -3 \\ -1 & t_2 & -1 & -2 & -3 & -2 & -3 \\ -2 & -1 & t_3 & -1 & -2 & -1 & -2 \\ -3 & -2 & -1 & t_4 & -1 & -2 & -2 \\ -4 & -3 & -2 & -1 & t_5 & -2 & -1 \\ -2 & -2 & -1 & -2 & -2 & t_6 & -1 \\ -3 & -3 & -2 & -2 & -1 & -1 & t_7 \end{bmatrix}$$

Suppose it is W_1 . Let $z = (0, 0, z_3, z_4, z_5, z_6, z_7)$ be a vector satisfying $z \perp 1$ and $W_1 z = \partial_1^L z$. Considering, respectively, the first, second, sixth and fifth entries of $W_1 z = \partial_1^L z$, we obtain that $z = \mathbf{0}$, contradiction.

In case it is W_2 , we get also get a contradiction from considering $z = (0, 0, z_3, z_4, z_5, z_6, z_7)$ be a vector satisfying $z \perp \mathbf{1}$ and $W_2 z = \partial_1^L z$ and, respectively, first, second, fourth and fifth entries of this eigenequation.

Proposition 18 Let G be a connected graph with $n \ge 8$ vertices, diam(G) = 4 and $m(\partial_1^L) = n - 4$. If P_6 is not an induced subgraph of G, then H_6 is not an induced subgraph of G.

Proof Suppose that H_6 is an induced subgraph of G. Then, the principal submatrix of $\mathcal{D}^L(G)$ with respect to H_6 is

$$Y = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 \\ -1 & t_2 & -1 & -2 & -3 & -1 \\ -2 & -1 & t_3 & -1 & -2 & -2 \\ -3 & -2 & -1 & t_4 & -1 & -1 \\ -4 & -3 & -2 & -1 & t_5 & -2 \\ -2 & -1 & -2 & -1 & -2 & t_6 \end{bmatrix}$$

Let $z = (z_1, z_2, z_3, z_4, 0, z_6)$ be a vector satisfying $z \perp 1$ and $Yz = \partial_1^L z$. By Lemma 12, we get $z = (z_1, z_2, z_3, 0, 0, z_6)$ and $-2z_1 - z_2 = 0$. Considering the third entry of $Yz = \partial_1^L z$, it follows that $z_3 = \frac{2}{t_1 - \partial_1^L} z_6$. If $z_6 = 0$, then $z_3 = 0$ and z = 0, which is impossible. So, $z_6 \neq 0$. Considering the sixth entry of $Yz = \partial_1^L z$, it follows that $z_3 = \frac{t_6 - \partial_1^L}{2} z_6$ and, then, $\frac{2}{t_1 - \partial_1^L} = \frac{t_6 - \partial_1^L}{2}$.

Since $n \ge 8$, we get $\partial_1^L \ge t_6 + 2$ and $\partial_1^L \ge t_3 + 2$. Consequently, $\partial_1^L = t_6 + 2 = t_3 + 2$ and v_3 is a vertex of *G* with maximum transmission. Because $\sum_{i=1,i\neq 3}^6 Y_{3i} = 8 < \sum_{i=1,i\neq 5}^6 Y_{5i} = 12$, there is a vertex v_7 such that $d(v_7, v_5) = 1 < d(v_7, v_3)$.

Concluding, as P_6 is not an induced subgraph of G and v_7 is not adjacent to v_3 , v_1 , v_2 , then v_7 is adjacent to v_4 and the subgraph of G induced by vertices v_1 , v_2 , v_3 , v_4 , v_5 , v_7 is isomorphic to H_3 . So, we get an impossible situation.

Proposition 19 Let G be a connected graph with $n \ge 8$ vertices, diam(G) = 4 and $m(\partial_1^L) = n - 4$. If P_6 is not an induced subgraph of G, then H_1 is not an induced subgraph of G.

Proof Suppose that H_1 is an induced subgraph of G.

• If $d(v_6, v_5) = 2$, then there is a vertex v_7 adjacent to v_6 and v_5 . Since $d(v_1, v_5) = 4$, then v_7 is neither adjacent to v_1 nor v_2 . Since P_6 is not an induced subgraph of G, then v_7 is adjacent to v_3 or v_4 .

If v_7 is adjacent to v_3 and v_4 , then the subgraph of *G* induced by vertices $v_1, v_2, v_3, v_4, v_5, v_7$ is isomorphic to H_7 . If v_7 is adjacent to v_3 and it is not adjacent to v_4 , then the subgraph of *G* induced by vertices $v_1, v_2, v_6, v_7, v_5, v_4$ is isomorphic to P_6 . If v_7 is adjacent to v_4 and it is not adjacent to v_3 , then the subgraph of *G* induced by vertices $v_1, v_2, v_6, v_7, v_5, v_4$ is isomorphic to by vertices $v_1, v_2, v_3, v_4, v_5, v_7$ is isomorphic to H_3 . In any of these cases we get a contradiction.

- If $d(v_6, v_5) = 3$, then there are vertices v_7 and v_8 such that v_7 is adjacent to v_6 and v_8 and the vertex v_8 is adjacent to v_7 and v_5 . Since $d(v_1, v_5) = 4$, then v_8 is neither adjacent to v_1 nor v_2 . Using similar argument, as used when $d(v_6, v_5) = 2$, with v_8 instead of v_7 , we get a contradiction.
- If $d(v_6, v_5) = 4$, then the principal submatrix of $\mathcal{D}^L(G)$ with respect to H_1 is

$$M = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 \\ -1 & t_2 & -1 & -2 & -3 & -1 \\ -2 & -1 & t_3 & -1 & -2 & -2 \\ -3 & -2 & -1 & t_4 & -1 & -3 \\ -4 & -3 & -2 & -1 & t_5 & -4 \\ -2 & -1 & -2 & -3 & -4 & t_6 \end{bmatrix}$$

Let $z = (z_1, z_2, z_3, z_4, 0, z_6)$ be a vector satisfying $z_1 + z_2 + z_3 + z_4 + z_6 = 0$ and $Mz = \partial_1^L z$. By Lemma 12, $z = (z_1, 0, 0, 0, 0, z_6)$. Considering the first entry of both sides of $Mz = \partial_1^L z$, we have $t_1z_1 - 2z_6 = \partial_1^L z_1$. Since $n \ge 8$, then $t_1 + 2 = \partial_1^L$ and v_1 is a vertex with maximum transmission in *G*. Because $\sum_{i=1,i\neq 1}^6 M_{3i} = 12 < \sum_{i=1,i\neq 5}^6 M_{5i} = 14$ there is a vertex v_7 such that $d(v_7, v_5) < d(v_7, v_1)$. Considering all cases we have just seen, the subgraph of *G* induced by vertices $v_1, v_2, v_3, v_4, v_5, v_6, v_7$ is isomorphic to graphs R_1 or R_2 (Fig. 3).

Since $d(v_6, v_5) = 4$, then, in both cases, we have v_6 is not adjacent to v_7 . Let *E* be the principal submatrix of $\mathcal{D}^L(G)$ with respect to R_1 :

$$E = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 & -3 \\ -1 & t_2 & -1 & -2 & -3 & -1 & -2 \\ -2 & -1 & t_3 & -1 & -2 & -2 & -1 \\ -3 & -2 & -1 & t_4 & -1 & -3 & -2 \\ -4 & -3 & -2 & -1 & t_5 & -4 & -1 \\ -2 & -1 & -2 & -3 & -4 & t_6 & -3 \\ -3 & -2 & -1 & -2 & -1 & -3 & t_7 \end{bmatrix}.$$

Fig. 3 Graphs R_1 and R_2

and $z = (0, z_2, z_3, 0, z_5, z_6, z_7)$ be a vector satisfying $z \perp 1$ and $Ez = \partial_1^L z$. Considering, respectively, the first, second, fourth and fifth entries of this eigenequation, we conclude that z = 0.

If R_2 (Fig. 3) is an induced subgraph of G, then $d(v_6, v_7) = 2$ or $d(v_6, v_7) = 3$ or $d(v_6, v_7) = 4$.

If $d(v_6, v_7) = 2$ and $d(v_6, v_5) = 4$, then there is a vertex v_8 adjacent to v_6 and v_7 , and v_8 is neither adjacent to v_4 nor v_5 . So, v_8 can be adjacent to v_1 or v_2 or v_3 . If v_8 is adjacent to v_3 , then P_6 or H_2 or H_5 or H_7 is an induced subgraph of G. If v_8 is not adjacent to v_3 , then P_6 or H_3 is an induced subgraph of G. In any case of these cases we get a contradiction.

If $d(v_6, v_7) = 3$ and $d(v_6, v_5) = 4$, then there are vertices v_8 and v_9 such that v_9 is adjacent to v_6 and v_8 , and v_8 is adjacent to v_7 . Moreover, v_8 is not adjacent to v_5 , and v_9 is neither adjacent to v_4 nor v_5 . If v_8 is not adjacent to v_4 , then the subgraph of *G* induced by vertices $v_6, v_9, v_8, v_7, v_4, v_5$ is isomorphic to P_6 . If v_8 is adjacent to v_4 , then P_6 or H_5 or H_6 or H_8 is an induced subgraph of *G*. All cases are not possible.

If $d(v_6, v_7) = 3$, then $d(v_1, v_7) = 4$, $d(v_2, v_7) = 3$ and the principal submatrix of $\mathcal{D}^L(G)$ with respect to R_2 is

$$J = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 & -4 \\ -1 & t_2 & -1 & -2 & -3 & -1 & -3 \\ -2 & -1 & t_3 & -1 & -2 & -2 & -2 \\ -3 & -2 & -1 & t_4 & -1 & -3 & -1 \\ -4 & -3 & -2 & -1 & t_5 & -4 & -2 \\ -2 & -1 & -2 & -3 & -4 & t_6 & -4 \\ -4 & -3 & -2 & -1 & -2 & -4 & t_7 \end{bmatrix}$$

Let $z = (0, z_2, z_3, z_4, 0, z_6, z_7)$ be a vector satisfying $z \perp 1$ and $Jz = \partial_1^L z$. Considering, respectively, the first, second, fifth and fourth entries of $Jz = \partial_1^L z$, we conclude that z = 0.

For the last results, we need to introduce a definition and a lemma.

Definition 1 Let *a*, *b* be two positive integers. We denote by S(a, b) the graph obtained from $K_{a,1} \cup K_1 \cup K_{b,1}$ by joining each pendant vertex of $K_{a,1}$ and $K_{b,1}$ with the vertex of K_1 .

Proposition 20 Let a, b be two positive integers such that $a \le b$. Let v be a pendant vertex of $K_{a,1}$ and u be its central vertex. Let w be a pendant vertex of $K_{b,1}$. Then, in S(a, b) it follows that Tr(v) = Tr(w) < Tr(u).

Proof It is easy to check that Tr(v) = 3 + 2(a + b) = Tr(w) and Tr(u) = 6 + a + 3b. Also, Tr(v) < Tr(u) since $a \le b$.

Proposition 21 Let G be a connected graph with $n \ge 8$ vertices, diam(G) = 4 and $m(\partial_1^L) = n - 4$. If P_6 is not an induced subgraph of G, then H_4 is not an induced subgraph of G.

Proof Suppose that H_4 is an induced subgraph of G. Then, the principal submatrix of $\mathcal{D}^L(G)$ with respect to H_4 is

$$M = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -1 \\ -1 & t_2 & -1 & -2 & -3 & -2 \\ -2 & -1 & t_3 & -1 & -2 & -1 \\ -3 & -2 & -1 & t_4 & -1 & -2 \\ -4 & -3 & -2 & -1 & t_5 & -3 \\ -1 & -2 & -1 & -2 & -3 & t_6 \end{bmatrix}$$

Let $z = (z_1, z_2, z_3, z_4, 0, z_6)$ be a vector satisfying $z \perp 1$ and $Mz = \partial_1^L z$. By Lemma 12, $z = (0, z_2, 0, 0, 0, z_6)$. Consider the second entry of $Mz = \partial_1^L z$ and, since $n \ge 8$, then $t_2 + 2 = \partial_1^L$ and v_2 is a vertex with maximum transmission in *G*. Because $\sum_{i=1, i \ne 2}^6 M_{3i} =$ $9 < \sum_{i=1, i \ne 5}^6 M_{5i} = 15$, there is a vertex v_7 such that $d(v_7, v_5) < d(v_7, v_2)$. Considering all cases we have just seen we conclude v_7 is adjacent to v_4 and v_5 . Using a similar argument, as we used before, we get v_4 is a vertex of *G* with a maximum transmission. Consequently, *G* has an induced subgraph isomorphic to S(a, b), with $a, b \ge 1, v_1, v_5$ as the central vertices of the stars in $S(a, b), v_3$ as the vertex of K_1, v_4 as a pendent vertex of the star with central vertex v_5 and a + 1 vertices, and v_2 as a pendent vertex of the star with central vertex v_1 and b + 1 vertices. By Proposition 20, if $a \le b$, then $Tr(v_5) > Tr(v_2)$ and if $a \ge b$, then $Tr(v_1) > Tr(v_2)$. So, we get a contradiction.

As any diameter four graph with P_6 as a forbidden subgraph must have an induced subgraph isomorphic to some of the graphs H_i , $1 \le i \le 8$, from Propositions 14, 15, 16, 17, 18, 19, 21, we can state:

Theorem 22 Let G be a connected graph with $n \ge 8$ vertices such that $m(\partial_1^L) = n - 4$. If P_6 is not an induced subgraph of G, then $diam(G) \le 3$.

Concluding, based on results presented in Sect. 3 and a computational search for graphs on *n* vertices, $6 \le n \le 11$, we could not find a graph with $m(\partial_1^L(G)) = n - 4$ and P_6 as an induced subgraph. So, we propose the following conjecture:

Conjecture 23 Let *G* be a connected graph with $n \ge 6$ vertices. If $m(\partial_1^L(G)) = n - 4$, then P_6 is a forbidden subgraph.

In case that P_6 is a forbidden subgraph, Theorem 22 presents some advances in an effort to determine all graphs such that $m(\partial_1^L) = n - 4$.

Acknowledgements The research of the first author is supported by FCT-Fundação para a Ciência e a Tecnologia, under project UIDB/00297/2020. The research of the second, third and fourth author is partially supported by the National Council for Scientific and Technological Development (CNPq) with CNPq Grant 313335/2020-6; CNPq Grant 403963/2021-4; CNPq Grant 306262/2019-3 and CNPq Grant 403963/2021-4, respectively. The research of the third author is partially supported by FAPERJ with Grant E-20/2022-284573.

Data availability Files used to support Conj. 23 are available from the authors upon request.

Declarations

Conflict of interest No potential conflict of interest was reported by the authors.

References

- Aouchiche M, Hansen P (2013) Two Laplacians for the distance matrix of a graph. Linear Algebra Appl 439(1):21–33
- Aouchiche M, Hansen P (2014) Some properties of the distance Laplacian eigenvalues of a graph. Czechoslov Math J 64(3):751–761
- Brouwer AE, Haemers WH (2011) Spectra of graphs. Springer Science and Business Media, New York
- da Silva CM Jr, de Freitas MAA, Del-Vecchio RR (2016) A note on a conjecture for the distance Laplacian matrix. Electron J Linear Algebra 31:60–68
- Fernandes R, de Freitas MAA, da Silva Jr CM, Del-Vecchio RR (2018) Multiplicities of distance Laplacian eigenvalues and forbidden subgraphs. Linear Algebra Appl 541:81–93
- Khan S, Pirzada S, Somasundaram A (2023) On graphs with distance Laplacian eigenvalues of multiplicity n – 4. AKCE Int J Graphs Comb 1–5. https://doi.org/10.1080/09728600.2023.2219335
- Lin H, Wu B, Chen Y, Shu J (2016) On the distance and distance Laplacian eigenvalues of graphs. Linear Algebra Appl 492:128–135
- Lu L, Huang Q, Huang X (2017) On graphs with distance Laplacian spectral radius of multiplicity n 3. Linear Algebra Appl 530:485–499
- Ma X, Qi L, Tian F, Wong D (2018) Graphs with some distance Laplacian eigenvalue of multiplicity n-3. Linear Algebra Appl 557:307–326
- McKay BD, Piperno A (2014) Practical graph isomorphism, II. J Symb Comput 60:94–112
- Merris R (1994) Laplacian matrices of graphs: a survey. Linear Algebra Appl 197-198:143-176
- Mohammad G, Kanso A, Stevanovic D (2019) Graph6java: a researcher-friendly java framework for testing conjectures in chemical graph theory. MATCH Commun Math Comput Chem 81:737–770
- Mohammadian A, Tayfeh-Rezaie B (2011) Graphs with four distinct Laplacian eigenvalues. J Algebraic Comb 34:671–682

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.