

On the multiplicities of distance Laplacian eigenvalues

Rosário Fernandes¹ · Maria A. A. de Freitas² · Celso M. da Silva Jr.[3](http://orcid.org/0000-0002-5075-7373) · Renata R. Del-Vecchio⁴

Received: 29 December 2022 / Revised: 3 August 2023 / Accepted: 6 September 2023 / Published online: 29 September 2023 © The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023

Abstract

In this work, connected graphs of order *n* and largest eigenvalue of the distance Laplacian matrix with multiplicity equal to $n - 4$ are investigated. A complete characterization is presented if *n* is one of its distance Laplacian eigenvalues with multiplicity one. We also present a conjecture about forbidden subgraphs of *G* when the multiplicity of its largest eigenvalue is $n - 4$, and we analyze the case where *G* has diameter four.

Keywords Distance Laplacian matrix · Laplacian matrix · Multiplicity of eigenvalues

Mathematics Subject Classification 05C12 · 05C50 · 15A18

1 Introduction

Let $G = (V, E)$ be a connected graph of order *n* and let $d_{i,j}$ be the distance (the length of the shortest path) between vertices v_i and v_j of G . The diameter of a connected graph G is max_{vi}, $y_i \in V$ *d*_{*i*},*j*. The distance matrix of *G*, denoted by $\mathcal{D}(G)$, is the *n* × *n* matrix whose

Communicated by Carlos Hoppen.

Rosário Fernandes mrff@fct.unl.pt

Maria A. A. de Freitas maguieiras@im.ufrj.br

Renata R. Del-Vecchio rrdelvecchio@id.uff.br

- ¹ CMA and Department of Mathematics, FCT, UNL, 2829-516 Caparica, Portugal
- ² IM and COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- ³ DEMET, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Rio de Janeiro, Brazil
- ⁴ IME, Universidade Federal Fluminense, Niterói, Brazil

 \boxtimes Celso M. da Silva Jr. celso.silva@cefet-rj.br

 (i, j) -entry is equal to $d_{i,j}$, for $i, j = 1, 2, \ldots, n$. For $1 \le i \le n$, the sum of the distances from v_i to all other vertices in G is known as the transmission of the vertex v_i and is denoted by $Tr(v_i)$. Let $Tr(G)$ be the transmission matrix of *G*, the diagonal matrix of order *n* whose (i, i) -entry is equal to $Tr(v_i)$. The distance Laplacian matrix of *G*, $\mathcal{D}^L(G)$, is the difference between the transmission matrix and the distance matrix, that is, $\mathcal{D}^L(G) = Tr(G) - \mathcal{D}(G)$ (Aouchiche a[n](#page-15-0)d Hansen [2013\)](#page-15-0). Let $Spec_{D^L}(G) = (\partial_1^L(G), \partial_2^L(G), \dots, \partial_n^L(G) = 0)$ be the distance Laplacian spectrum of the connected graph G , denoted by $\mathcal{D}^L(G)$ -spectrum, where $\partial_1^L(G) \geq \partial_2^L(G) \geq \ldots \geq \partial_n^L(G) = 0$. The multiplicity of the eigenvalue $\partial_i^L(G)$, $i =$ 1, ..., *n*, is denoted by $m(\partial_i^L(G))$. We often use exponents to exhibit the multiplicity of the distance Laplacian eigenvalues, when we write the \mathcal{D}^L -spectrum. We recall that $\partial_{n-1}^L(G) = n$ if a[n](#page-15-0)d only if \overline{G} , the complement of G , is disconnected (Aouchiche and Hansen [2013\)](#page-15-0). Moreover, $\partial_{n-1}^L(G) \ge n$ and the multiplicity of *n* as an eigenvalue of $\mathcal{D}^L(G)$ is one less than the [n](#page-15-0)umber of components of \overline{G} (Aouchiche and Hansen [2013](#page-15-0)).

In recent years, several works investigated the connected graphs on *n* vertices in which one of its distance Laplacian eigenvalues has a high multiplicity, *n* −*r*. The characterization of such graphs is completely made for *r* equal to one (Aouchiche and Hanse[n](#page-15-1) [2014](#page-15-1)), two (Fernandes et al[.](#page-15-2) [2018;](#page-15-2) Lin et al[.](#page-15-3) [2016;](#page-15-3) da Silva et al[.](#page-15-4) [2016\)](#page-15-4), or three (Fernandes et al[.](#page-15-2) [2018](#page-15-2); Lu et al[.](#page-15-5) [2017](#page-15-5); Ma et al[.](#page-15-6) [2018;](#page-15-6) da Silva et al[.](#page-15-4) [2016](#page-15-4)). In a recent paper (Khan et al[.](#page-15-7) [2023\)](#page-15-7), the case $r = 4$, under the condition that *n* is a distance Laplacian eigenvalue with multiplicity two or three, was studied. In this work, we consider the remaining cases where the largest distance Laplacian eigenvalue has multiplicity equal to $n - 4$. In Sect. [3,](#page-4-0) we describe all possible graphs with such multiplicity that also has *n* in its distance Laplacian spectrum, with multiplicity one, i.e., $\partial_{n-1}^L(G) = n$ and $m(\partial_{n-1}^L(G)) = 1$. For the case $\partial_{n-1}^L(G) \neq n$, we first recall the following central result for $r = 2$ or $r = 3$, where P_{r+2} denotes the path on $r + 2$ vertices.

Proposition 1 (da Silva et al[.](#page-15-4) [2016](#page-15-4)) *If G is a connected graph on n vertices such that* $m(\partial_1^L(G)) = n - r$, $1 \le r \le 3$, *then G has no P_{r+2} as an induced subgraph.*

Thus, based on Proposition [1,](#page-1-0) a natural way of trying to characterize the connected graphs such that $m(\partial_1^L(G)) = n - 4$ is investigating its relation with the existence of *P*⁶ as an induced subgraph. Computationally, using the software nauty and Traces (McKay and Pipern[o](#page-15-8) [2014\)](#page-15-8), and Graph6Java (Mohammad et al[.](#page-15-9) [2019\)](#page-15-9), we looked for graphs *G* on *n* vertices, $6 \le n \le 11$, $m(\partial_1^L(G)) = n - 4$ and $\partial_{n-1}^L(G) \ne n$. In addition to C_6 , all other obtained graphs, for $6 \le n \le 8$, are presented in Fig. [1.](#page-2-0) No graphs were found if $9 \le n \le 11$. Note that, besides C_6 , we have two graphs and their complements, with the following spectra: $Spec_{D_{\text{L}}}(C_6) = (13^{(2)}, 10, 9^{(2)}, 0)$, $Spec_{D^{L}}(G_{1}) = (14.16^{(2)}, 10, 7.84^{(2)}, 0),$ $Spec_{D^{L}}(\overline{G_{1}}) = (10.3^{(2)}, 8, 6.7^{(2)}, 0),$ $Spec_{D^{L}}(G_{2}) = (12.41^{(3)}, 9.59^{(3)}, 0), Spec_{D^{L}}(\overline{G_{2}}) = (11.41^{(3)}, 8.59^{(3)}, 0).$ In any case, *P*⁶ is a forbidden subgraph. Considering these facts, in Sect. [4](#page-5-0) we focus our attention to investigate if there could be a connected graph G with at least six vertices, P_6 as a forbidden subgraph and $m(\partial_1^L(G)) = n - 4$. Such graph has diameter at most four. We conclude that this condition is not feasible if diameter of *G* is equal to four.

2 Preliminaries

In what follows, $G = (V, E)$, or just G, denotes a connected graph with *n* vertices and *G* denotes its complement. The diameter of a connected graph *G* is denoted by *diam*(*G*).

Fig. 1 Graphs with $m(\partial_1^L(G)) = n - 4$ and $\partial_{n-1}^L(G) \neq n$

As usual, we write, respectively, P_n , C_n , S_n , W_n and K_n , for the path, the cycle, the star, the wheel and the complete graph, all with *n* vertices. We denote by K_{l_1, l_2, \dots, l_k} the complete *k*-partite graph. If $e \in E$, the graph obtained from *G* by deleting the edge *e* is denoted $G - e$. If $e \notin E$, the graph obtained from *G* by adding the edge *e* is denoted $G + e$. Sometimes, we write $G + 2e$ meaning that we have added two edges in G .

Now, we recall the definitions of some operations with graphs that will be used. For this, let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be vertex disjoint graphs. The *union* of G_1 and G_2 is the graph $G_1 \cup G_2$, whose vertex set is $V_1 \cup V_2$ and whose edge set is $E_1 \cup E_2$. The union of *r* copies of G_1 will be denoted by rG_1 . The *join* of G_1 and G_2 is the graph $G_1 \vee G_2$ obtained from $G_1 \cup G_2$ by joining each vertex of G_1 with every vertex of G_2 .

The Laplacian matrix of *G* is the *n* × *n* matrix $L(G) = Deg(G) - A(G)$, where $Deg(G)$ is the diagonal matrix of vertex degrees of *G* and *A*(*G*) is its adjacency matrix. We denote by $(\mu_1(G), \mu_2(G), \ldots, \mu_n(G))$ the *L*-spectrum of *G*, i.e., the spectrum of the Laplacian matrix of *G*, and we assume that the eigenvalues are labelled such that $\mu_1(G) \geq \mu_2(G) \geq \cdots \geq$ $\mu_n(G) = 0$. It is well known that the multiplicity of the Laplacian eigenvalue 0 is equal to the number of components of *G* and that $\mu_{n-i}(\overline{G}) = n - \mu_i(G), i = 1, \ldots, n - 1$ (see Merri[s](#page-15-10) [1994](#page-15-10) for more details).

The following result relates the spectra of the matrices L and D^L .

Theorem 2 (Aouchiche and Hanse[n](#page-15-0) [2013\)](#page-15-0) *Let G be a connected graph on n vertices with* $diam(G) \leq 2$ *. Let* $\mu_1(G) \geq \mu_2(G) \geq \cdots \geq \mu_{n-1}(G) > \mu_n(G) = 0$ be the Laplacian *spectrum of G. Then, the distance Laplacian spectrum of G is* $2n - \mu_{n-1}(G) \geq 2n \mu_{n-2}(G)$ ≥ ··· ≥ 2*n* − $\mu_1(G) > \partial_n^L(G) = 0$ *. Moreover, for every i* ∈ {1, 2, ..., *n* − 1} *the eigenspaces corresponding to* $\mu_i(G)$ *and to* $2n - \mu_i(G)$ *are the same.*

Propositions [3,](#page-2-1) [4,](#page-2-2) [5](#page-2-3) provide the *L*-spectrum of some graphs that will be analyzed later. Proposition [5](#page-2-3) can be easily checked.

Proposition 3 (Fernandes et al[.](#page-15-2) [2018\)](#page-15-2) *Let G be a connected graph of order n* \geq 4*. Then,* $G \cong K_{n-2} \vee \overline{K_2}$ *if and only if the L-spectrum of G is* $(\mu_1^{(n-2)}(G), \mu_2(G), 0)$ *, with* $\mu_1(G)$ > $\mu_2(G) > 0.$

Proposition 4 (Mohammadian and Tayfeh-Rezai[e](#page-15-11) [2011\)](#page-15-11) *Let G be a connected graph on* $n \geq 5$ *vertices whose distinct Laplacian eigenvalues are* $0 < \alpha < \beta < \gamma$ *. Then, the multiplicity of* γ *is n* − 3 *if and only if* $G \cong K_{n-3} \vee \overline{K_{1,2}}$ *.*

Proposition 5 *Let G be a connected graph on n* = 4 *vertices whose distinct Laplacian eigenvalues are* $0 < \alpha < \beta < \gamma$ *. Then,* $G \cong P_4$ *or* $G \cong K_{3,1} + e$ *.*

For proving the next result, we recall that a connected graph *G* has at least $diam(G) + 1$ distinct Laplacian eigenvalues (Brouwer and Haemer[s](#page-15-12) [2011](#page-15-12), Proposition 1.3.3).

² Springer JDMX

Graph	L-spectrum	Graph	L-spectrum
P_4	(3.4, 2, 0.6, 0)	$K_{2,2}$	$(4, 2^{(2)}, 0)$
$K_{3,1}$	$(4, 1^{(2)}, 0)$	C_5	$(3.62^{(2)}, 1.38^{(2)}, 0)$
$K_{3,1} + e$	(4, 3, 1, 0)	K_n	$(n^{(n-1)}, 0)$
K_n-e	$(n^{(n-2)}, n-2, 0)$	$K_{n-3} \vee \overline{K_{2.1}}$	$(n^{(n-3)}, n-1, n-3, 0)$
$K_{n-4} \vee K_{2,2}$	$(n^{(n-3)}$, $(n-2)^{(2)}$, 0)	$K_{n-3} \vee 3K_1$	$(n^{(n-3)}$, $(n-3)^{(2)}$, 0)

Table 1 *L*-spectrum of some graphs

Proposition 6 *Let G be a connected graph on n* ≥ 4 *vertices whose distinct Laplacian eigenvalues are* $\gamma > \alpha > 0$. Then, the multiplicity of γ *is n*−3 *if and only if* $G \cong K_{n-4} \vee K_{2,2}$, *or G* \cong *K_{n−3}* \vee 3*K*₁, *or G* \cong *C*₅*, for n* \geq 5*, or G* \cong *K*_{2,2}*, or G* \cong *K*_{3,1}*, for n* = 4.

Proof As *G* has three distinct Laplacian eigenvalues, so $diam(G) = 2$ and its D^L -spectrum is $((2n - \alpha)^{(2)}, (2n - \gamma)^{(n-3)}, 0)$. For $n \ge 5$, these graphs are precisely determined in Theorems 4.4 and 4.5 of Fernandes et al[.](#page-15-2) [\(2018](#page-15-2)) and in Theorem 1.2 of Ma et al[.](#page-15-6) [\(2018](#page-15-6)). For $n = 4$, by Theorem 3[.](#page-15-4)5 in da Silva et al. [\(2016\)](#page-15-4), we get the result.

In Table [1](#page-3-0) are presented the *L*-spectra of some connected graphs that are well known and will be useful in this work. Also, in Proposition [7](#page-3-1) we provide the D^L -spectra of the complete *k*-partite graph and of graphs obtained from it by adding edges. As these graphs have diameter two, each D^L -spectrum can be easily determined by considering the relation between the Laplacian spectrum of a graph and its complement, the spectra contained in Table [1](#page-3-0) and Theorem [2.](#page-2-4)

Proposition 7 *Let* $l_1 \geq l_2 \geq \ldots \geq l_k \geq 1, k \geq 2$, *and n be integers such that* $l_1 + l_2 + \cdots$ $l_k = n$. *If* $G = K_{l_1, l_2, \dots, l_k}$ *and* $p = |\{i : l_i \geq 2\}|$, *then:*

- *The* \mathcal{D}^L -spectrum of G is $((n + l_1)^{(l_1 1)}, (n + l_2)^{(l_2 1)}, \ldots, (n + l_p)^{(l_p 1)}, n^{(k-1)}, 0)$.
- *The* D^L -spectrum of the graph G plus one extra edge in the class with l_i vertices, if *possible, is obtained from* $Spec_{\mathcal{D}^L}(G)$ *, by replacing one eigenvalue n* + *l*_i *by* n + *l*_i − 2*.*
- *The* D^L -spectrum of the graph G plus two extra edges, one in the class with l_i vertices *and other in the class with* l_f *vertices, if possible, is obtained from* $Spec_{\mathcal{D}^L}(G)$ *, by replacing one eigenvalue* $n + l_j$ *and one* $n + l_f$ *by* $n + l_j - 2$ *and* $n + l_f - 2$ *.*
- *The ^D^L -spectrum of the graph G plus two extra edges sharing a common vertex in the class with* l_j *, if possible, is obtained from* $Spec_{\mathcal{D}^L}(G)$ *, by replacing two eigenvalues* $n + l_j$ *by* $n + l_j - 3$ *and* $n + l_j - 1$.
- *The* \mathcal{D}^L -spectrum of the graph G plus two extra independent edges in the class with l_i *vertices, if possible, is obtained from* $Spec_{\mathcal{D}^L}(G)$ *, by replacing two eigenvalues* $n + l_i$ *by* $n + l_i - 2$.
- *The* D^L -spectrum of the graph G plus three extra edges determining a K_3 in the class *with l_i vertices, if possible, is obtained from* $Spec_{\mathcal{D}^L}(G)$ *, by replacing two eigenvalues* $n + l_i$ *by* $n + l_j - 3$.

3 On graphs with *n* **as a distance Laplacian eigenvalue**

In this section, we completely characterize the graphs for which $m(\partial_1^L(G)) = n - 4$, $\partial_{n-1}^L(G) = n$ and $m(n) = 1$. In this case, *G* has diameter of two and its distance Laplacian spectrum is related with the Laplacian spectrum (Theorem [2\)](#page-2-4).

Theorem 8 *Let G be a connected graph with n* \geq 6 *vertices such that* $m(\partial_1^L(G)) = n - 4$ *and* $\partial_{n-1}^L(G) = n$. Then, $m(\partial_{n-1}^L(G)) = 1$ *if and only if* $G \cong W_6$, *or G is isomorphic to one of the following graphs:*

- *for n* > 6, S_n + 2*e* (where the extra edges can share a vertex or they are independent), *Sn* +3*e (where the extra edges induce a K*3*), K*2,*n*−² +*e (where the extra edge is incident to vertices of the largest class) and* $K_{p,p} + 2e$ (where the extra edges are in different *classes);*
- *in addition to the previous graphs, for* $n \geq 7$ *,* $K_{3,n-3}$ *and* $K_{3,n-3}$ *+ <i>e (where the extra edge is incident to vertices of the smallest class);*
- *in addition to the previous graphs, for* $n \geq 8$, $K_{p,p} + 2e$ (where the extra edges are in *the same class and they can share a vertex or they are independent) and* $G \cong K_{p,p} + 3e$ *(where the extra edges induce a K*3*).*

Proof Since $m(\partial_{n-1}^L(G)) = 1$, the graph \overline{G} has two components, say $\overline{G} \cong F_1 \cup F_2$. So, $diam(G) = 2$ and the *L*-spectrum of \overline{G} is written as

$$
(\partial_1^L(G) - n, \ldots, \partial_1^L(G) - n, \partial_{n-3}^L(G) - n, \partial_{n-2}^L(G) - n, 0, 0),
$$

that is, the largest Laplacian eigenvalue of \overline{G} has multiplicity *n* − 4. Suppose that $|V(F_1)| \le$ $|V(F_2)|$. We have the following possibilities:

- $|V(F_1)| = 1$, then $F_1 = K_1$ and $(\partial_1^L(G) n, \dots, \partial_1^L(G) n, \partial_{n-3}^L(G) n, \partial_{n-2}^L(G) n)$ *n*, 0) is the *L*-spectrum of F_2 . If $\partial_{n-3}^L(G) > \partial_{n-2}^L(G)$, from Proposition [4,](#page-2-2) $G \cong$ $S_n + 2e, n \ge 6$, where the extra edges share a vertex. If $\partial_{n-3}^L(G) = \partial_{n-2}^L(G)$, from Proposition [6,](#page-2-5) $G \cong W_6$ or, for $n \ge 6$, $G \cong S_n + 2e$, where the extra edges are independent, or $G \cong S_n + 3e$, where the extra edges induce a K_3 .
- $|V(F_1)| = 2$, then $F_1 = K_2$ and its *L*-spectrum is (2, 0). From Propositions [4,](#page-2-2) [5,](#page-2-3) [6,](#page-2-5) $\partial_1^L(G) - n > 2$. So, the *L*-spectrum of *F*₂ is $(\partial_1^L(G) - n, \dots, \partial_1^L(G) - n, \alpha, 0)$. Then, from Proposition [3,](#page-2-1) for $n \ge 6$, $G \cong K_{2,n-2} + e$, where the extra edge is incident to vertices of the largest class.
- $|V(F_1)| = 3$, then $F_1 = K_3$ or $F_1 = P_3$ with L-spectrum, respectively, equal to (3, 3, 0) and (3, 1, 0). If $n = 6$, then $G \cong K_{3,3} + 2e$, where the extra edges are in different classes. For *n* ≥ 7, from Propositions [3,](#page-2-1) [4,](#page-2-2) [5,](#page-2-3) [6,](#page-2-5) as $|V(F_2)| \ge 4$, it follows that $\partial_1^L(G) - n > 3$. So, the *L*-spectrum of F_2 is $(\partial_1^L(G) - n, \dots, \partial_1^L(G) - n, 0)$. Thus, if $F_1 = K_3$, then *G* \cong *K*_{3,*n*−3}, *n* \geq 7. If *F*₁ = *P*₃, then *G* = *K*_{3,*n*−3} + *e*, *n* \geq 7, where the extra edge is incident to vertices of the smallest class.
- $|V(F_1)| = p > 3$,

Case I. the *L*-spectrum of F_1 is $(\partial_1^L(G) - n, \ldots, \partial_1^L(G) - n, \partial_{n-2}^L(G) - n, \partial_{n-3}^L(G) - n, 0)$ and of F_2 is $(\partial_1^L(G) - n, \dots, \partial_1^L(G) - n, 0)$. If $\partial_{n-2}^L(G) > \partial_{n-3}^L(G)$, and $|V(F_1)| = 4$, it follows, from Proposition [5,](#page-2-3) that $G \cong K_{4,4} + 2e$, where the extra edges share a vertex. If $\partial_{n-2}^L(G) > \partial_{n-3}^L(G)$, and $|V(F_1)| > 4$, then, from Proposition [4,](#page-2-2) *G* ≅ $K_{p,p} + 2e$, *p* ≥ 5, where the extra edges share a vertex. If $\partial_{n-2}^L(G) = \partial_{n-3}^L(G)$, from Proposition [6,](#page-2-5) *G* \cong *K_{p,p}* + 2*e*, *p* ≥ 5, where the extra edges are in the same class and they are independent, $G \cong K_{p,p} + 3e$, $p \ge 5$, where the extra edges induce a K_3 , $G \cong K_{4,4} + 2e$,

2 Springer JDMW

where the extra edges are in the same class and they are independent, or $G \cong K_{4,4} + 3e$, where the extra edges induce a *K*3.

Case II. the *L*-spectrum of *F*₁ is $(\partial_1^L(G) - n, \ldots, \partial_1^L(G) - n, \partial_{n-3}^L(G) - n, 0)$ and the *L*-spectrum of F_2 is $(\partial_1^L(G) - n, \dots, \partial_1^L(G) - n, \partial_{n-2}^L(G) - n, 0)$. From Proposition [3,](#page-2-1) it follows that *G* $\cong K_{p,p} + 2e$, $p \ge 4$, where the extra edges are in different classes.

By Proposition [7](#page-3-1) we can explicit the D^L -spectra presented in Table [2.](#page-5-1)

4 Diameter four graphs with forbidden *P***⁶**

In this section, we focus on connected graphs with at least six vertices, having P_6 as a forbidden subgraph. In particular, this condition implies investigating graphs with a maximum diameter equal to four and we will consider, specifically, graphs with a diameter four. So, from now on, we denote by v_1 , v_2 , v_3 , v_4 , v_5 the vertices inducing a P_5 , with $d(v_1, v_5) = 4$ and $P = v_1v_2v_3v_4v_5$ $P = v_1v_2v_3v_4v_5$ $P = v_1v_2v_3v_4v_5$ been a shortest path between v_1 and v_5 . In Fig. 2 are presented all possible graphs on six vertices having P_5 as an induced subgraph with $d(v_1, v_5) = 4$.

Besides, let *G* be a connected graph on *n* vertices, $n \ge 8$, $m(\partial_1^L(G)) = n - 4$ and let *M* be a principal submatrix of $D^{\tilde{L}}(G)$, of order $k \in \{6, 7\}$, with largest eigenvalue λ . By Cauchy Interlacing, we get $\lambda = \partial_1^L(G)$ and $m(\lambda) \geq k - 4$. So, as 1, the all ones vector

Fig. 2 Graphs on six vertices and P_5 as an induced subgraph

with appropriate order, is an eigenvector for $\mathcal{D}^L(G)$, it is possible to get a vector *z* of *M* corresponding to λ with at least $k - 5$ entries equal to zero, which can be arbitrarily chosen (Proposition 3[.](#page-15-2)1, Fernandes et al. [2018\)](#page-15-2), such that $z \perp 1$. This fact will be fundamental for what follows in this work.

Theorem 9 (da Silva et al[.](#page-15-4) [2016](#page-15-4)) *If G is a connected graph then* $\partial_1^L(G) \ge \max_{v_i \in V} Tr(v_i) + 1$. *Equality is attained if and only if* $G \cong K_n$.

The next propositions are similar to the results that appeared in Lu et al[.](#page-15-5) [\(2017\)](#page-15-5). Since they have analogous proofs we omit them.

Proposition 10 *Let G be a connected graph with n* ≥ 8 *vertices. If* $m(\partial_1^L) = n - 4$ *then* ∂_1^L *is an integer number.*

Proposition 11 Let G be a connected graph with n vertices such that $G \ncong K_n$ and ∂_1^L is an *integer number. Then,* $\partial_1^L \ge \max_{v \in V} Tr(v) + 2$ *. Moreover, if there exists* $v_0 \in V$ such that $\partial_1^L = Tr(v_0) + 2$, *then* $Tr(v_0) = \max_{v \in V} Tr(v)$.

We will now state two results from matrix theory that will be useful in what follows. We denote by **0** and **1** vectors with a given size and all entries equal to zero and all entries equal to one, respectively.

Lemma 12 *Let*

$$
M = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -a \\ -1 & t_2 & -1 & -2 & -3 & -b \\ -2 & -1 & t_3 & -1 & -2 & -c \\ -3 & -2 & -1 & t_4 & -1 & -d \\ -4 & -3 & -2 & -1 & t_5 & -e \\ -a & -b & -c & -d & -e & t_6 \end{bmatrix}
$$

and a, *b*, *c*, *d*, *e*, *t*₁, *t*₂, *t*₃, *t*₄, *t*₅, *t*₆ \in N. *Let* λ_1 *be an eigenvalue of M and z* = $(z_1, z_2, z_3, z_4, 0, z_6)$ *be an eigenvector of M associated to* λ_1 *such that* $z \perp 1$ *.*

- 1. *If* $e = d + 1$ *and* $t_4 \neq \lambda_1$, *then* $z = (z_1, z_2, z_3, 0, 0, z_6)$ *and* $-2z_1 z_2 (d 1)z_6 = 0$. 2. *If* $e = d + 1 = c + 2$, $t_4 \neq \lambda_1$ and $t_3 \neq \lambda_1$, then $z = (z_1, z_2, 0, 0, 0, z_6)$ and $-z_1 - (c - 1)$ $1)z_6 = 0.$
- 3. *If* $e = d + 1 = c + 2 = 3$, $t_4 \neq \lambda_1$ and $t_3 \neq \lambda_1$, then $z = (0, z_2, 0, 0, 0, z_6)$. Moreover, $a=1$.
- 4. If $e = d + 1 = c + 2 = b + 3 = 4$, $t_4 \neq \lambda_1$, $t_2 \neq \lambda_1$ and $t_3 \neq \lambda_1$, then $z =$ (*z*1, 0, 0, 0, 0,*z*6).
- *Proof* 1. Using the fifth entry of both sides of $Mz = \lambda_1 z$ we get $-4z_1 3z_2 2z_3 z_4 ez_6 =$ 0. Since *z* ⊥ **1**, we obtain $-3z_1 - 2z_2 - z_3 - (e - 1)z_6 = 0$. Using the fourth entry of $Mz = \lambda_1 z$ we get $-3z_1 - 2z_2 - z_3 + t_4z_4 - dz_6 = \lambda_1 z_4$. As $d = e - 1$, we conclude that $t_4z_4 = \lambda_1z_4$. So, $z_4 = 0$, because $t_4 \neq \lambda_1$, $z = (z_1, z_2, z_3, 0, 0, z_6)$ and $-3z_1 - 2z_2 - z_3 - dz_6 = 0$. This implies that $-2z_1 - z_2 - (d - 1)z_6 = 0$.
- 2. From Item 1 and the third entry of $Mz = \lambda_1 z$, we get $-2z_1 z_2 + t_3z_3 cz_6 = \lambda_1 z_3$. As $c = d - 1$, we conclude that $t_3z_3 = \lambda_1z_3$. So, $z_3 = 0$, because $t_3 \neq \lambda_1$, $z =$ $(z_1, z_2, 0, 0, 0, z_6)$ and $-2z_1 - z_2 - cz_6 = 0$. This implies that $-z_1 - (c - 1)z_6 = 0$.
- 3. From Item 2,

since $c = 1$, then $z_1 = 0$ and $z = (0, z_2, 0, 0, 0, z_6)$. If $a \neq 1$, using the first entry of $Mz = \lambda_1 z$ we get $-z_2 - az_6 = 0$. Consequently, $z_2 = z_6 = 0$ and $z = 0$, which is impossible.

4. The result is immediate from Item 2.

Using a similar arguments as before, we get the next proposition.

Lemma 13 *Let*

$$
M = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -a \\ -1 & t_2 & -1 & -2 & -3 & -b \\ -2 & -1 & t_3 & -1 & -2 & -c \\ -3 & -2 & -1 & t_4 & -1 & -d \\ -4 & -3 & -2 & -1 & t_5 & -e \\ -a & -b & -c & -d & -e & t_6 \end{bmatrix}
$$

and a, *b*, *c*, *d*, *e*, *t*₁, *t*₂, *t*₃, *t*₄, *t*₅, *t*₆ \in N. Let λ_1 *be an eigenvalue of M and z* = $(0, z_2, z_3, z_4, z_5, z_6)$ *be an eigenvector of M associated to* λ_1 *such that* $z \perp 1$ *.*

- 1. *If* $a = b + 1$ *, and* $t_2 \neq \lambda_1$ *, then* $z = (0, 0, z_3, z_4, z_5, z_6)$ *and* $-z_4 2z_5 (b 1)z_6 = 0$ *.*
- 2. If $a = b + 1 = c + 2$, $t_2 \neq \lambda_1$ and $t_3 \neq \lambda_1$, then $z = (0, 0, 0, z_4, z_5, z_6)$ and $-z_5 - (c - 1)z_6 = 0.$
- 3. *If* $a = b + 1 = c + 2 = 3$, $t_2 \neq \lambda_1$ and $t_3 \neq \lambda_1$, then $z = (0, 0, 0, z_4, 0, z_6)$. Moreover, $e = 1$.

Proposition 14 *Let G be a connected graph with n* \geq 6 *vertices, diam*(*G*) = 4 *and m*(∂_1^L) = *n* − 4*. Then, H*⁷ *and H*⁸ *are not induced subgraphs of G.*

 \Box

Proof The principal submatrices of $\mathcal{D}^L(G)$ with respect to H_7 and H_8 are, respectively,

$$
M_1 = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -1 \\ -1 & t_2 & -1 & -2 & -3 & -1 \\ -2 & -1 & t_3 & -1 & -2 & -1 \\ -3 & -2 & -1 & t_4 & -1 & -2 \\ -4 & -3 & -2 & -1 & t_5 & -3 \\ -1 & -1 & -1 & -2 & -3 & t_6 \end{bmatrix}, M_2 = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 \\ -1 & t_2 & -1 & -2 & -3 & -1 \\ -2 & -1 & t_3 & -1 & -2 & -1 \\ -3 & -2 & -1 & t_4 & -1 & -1 \\ -4 & -3 & -2 & -1 & t_5 & -2 \\ -2 & -1 & -1 & -1 & -2 & t_6 \end{bmatrix}.
$$

For each of the principal submatrices, there exists an eigenvector associated with ∂_1^L , $z = (z_1, z_2, z_3, z_4, 0, z_6), z \perp 1.$

Case 1: If H_7 is an induced subgraph of *G*, by Lemma [12,](#page-6-1) $z = (0, z_2, 0, 0, 0, z_6)$. Considering the second entry of $M_1z = \partial_1^L z$, it follows that $(t_2 + 1 - \partial_1^L)z_2 = 0$. Since $t_2 + 1 < \partial_1^L$, then $z_2 = 0$. Consequently, $z = 0$, which is impossible.

Case 2: If H_8 is an induced subgraph of *G*, by Lemma [12,](#page-6-1) $z = (z_1, z_2, z_3, 0, 0, z_6)$ and $-2z_1 - z_2 = 0$. From this, considering the third and sixth entries of $M_2z = \partial_1^L z$, as *t*₃ $\neq \partial_1^L$, it follows, respectively, that *z*₃ = $\frac{1}{t_3 - \partial_1^L}$ *z*₆, and *z*₃ = (*t*₆ − ∂_1^L)*z*₆. Consequently, $\frac{1}{t_3-\partial_1^L}z_6 = (t_6-\partial_1^L)z_6.$

If $z_6 = 0$, then $z_3 = 0$, implying $z_1 + z_2 = 0$ and $-z_1 - z_2 = 0$. In this case, $z = 0$, which is impossible. So, $z_6 \neq 0$ and $\frac{1}{t_3-\theta_1^L} = (t_6 - \theta_1^L)$. Therefore, $1 = (t_6 - \theta_1^L)(t_3 - \theta_1^L)$. This is impossible because $t_3 + 1 < \partial_1^L$ and $t_6 + 1 < \partial_1^L$ \mathbf{I}^L .

Proposition 15 *Let G be a connected graph with n* ≥ 8 *vertices, diam*(*G*) = 4 *and m*(∂_1^L) = $n-4$ *. Then, H₃ is not an induced subgraph of G.*

Proof Suppose that H_3 is an induced subgraph of *G*. Then, the principal submatrix of $\mathcal{D}^L(G)$ with respect to H_3 is

$$
M_1 = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -1 \\ -1 & t_2 & -1 & -2 & -3 & -1 \\ -2 & -1 & t_3 & -1 & -2 & -2 \\ -3 & -2 & -1 & t_4 & -1 & -2 \\ -4 & -3 & -2 & -1 & t_5 & -3 \\ -1 & -1 & -2 & -2 & -3 & t_6 \end{bmatrix} \text{ or } M_2 = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -1 \\ -1 & t_2 & -1 & -2 & -3 & -1 \\ -2 & -1 & t_3 & -1 & -2 & -2 \\ -3 & -2 & -1 & t_4 & -1 & -3 \\ -4 & -3 & -2 & -1 & t_5 & -4 \\ -1 & -1 & -2 & -3 & -4 & t_6 \end{bmatrix}
$$

or
$$
M_3 = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -1 \\ -1 & t_2 & -1 & -2 & -3 & -1 \\ -2 & -1 & t_3 & -1 & -2 & -2 \\ -3 & -2 & -1 & t_4 & -1 & -3 \\ -4 & -3 & -2 & -1 & t_5 & -3 \\ -1 & -1 & -2 & -3 & -3 & t_6 \end{bmatrix}.
$$

- Suppose it is M_1 . Let $z = (z_1, z_2, z_3, z_4, 0, z_6)$ be a vector satisfying $z \perp 1$ and $M_1z =$ $\partial_1^L z$. By Lemma [12,](#page-6-1) $z = (z_1, z_2, z_3, 0, 0, z_6)$ and $-z_1 - z_2 - z_6 = 0$. Considering the second entry of $M_1z = \partial_1^L z$, since $t_2 + 1 \neq \partial_1^L$, it follows that $z_2 = 0$ and, then, $z_1 = z_3$. Considering the first entry of both sides of $M_1 z = \partial_1^L z$, it follows that $z_1 = 0$. Consequently, $z_6 = 0$ and $z = 0$, which is impossible.
- In case it is M_2 , the proof is analogous to the case M_1 , by taking $z = (z_1, 0, 0, 0, 0, z_6)$ and considering the first entry of $M_2z = \partial_1^L z$.

2 Springer JDMNC

• Suppose it is M_3 . Let $z = (z_1, z_2, z_3, z_4, z_5, 0)$ be a vector satisfying $z \perp 1$ and $M_3z =$ $\partial_1^L z$. Considering, respectively, the sixth and fifth entries of $M_3 z = \partial_1^L z$ and, then, looking at the first four lines of this eigenequation, we get:

$$
z_1 = \frac{1}{t_1 + 1 - \partial_1^L} z_5, \quad z_2 = \frac{t_5 + 2 - \partial_1^L}{t_2 - \partial_1^L} z_5,
$$

$$
z_3 = \frac{t_5 + 2 - \partial_1^L}{t_3 + 1 - \partial_1^L} z_5, \quad z_4 = \frac{t_5 + 2 - \partial_1^L}{t_4 - \partial_1^L} z_5.
$$

Since $z_1 + z_2 + z_3 + z_4 = -z_5$, then

$$
\left[\frac{1}{t_1+1-\partial_1^L}+\frac{t_5+2-\partial_1^L}{t_2-\partial_1^L}+\frac{t_5+2-\partial_1^L}{t_3+1-\partial_1^L}+\frac{t_5+2-\partial_1^L}{t_4-\partial_1^L}\right]z_5=-z_5
$$

and, as *z* is an eigenvector, then $z_5 \neq 0$ and

$$
\left[\frac{1}{t_1+1-\partial_1^L}+\frac{t_5+2-\partial_1^L}{t_2-\partial_1^L}+\frac{t_5+2-\partial_1^L}{t_3+1-\partial_1^L}+\frac{t_5+2-\partial_1^L}{t_4-\partial_1^L}\right]=-1.
$$

This is impossible because

$$
(t_1 + 1 - \partial_1^L)(t_4 - \partial_1^L)(t_2 - \partial_1^L)(t_3 + 1 - \partial_1^L) > 0,
$$

\n
$$
\left[(t_2 - \partial_1^L)(t_3 + 1 - \partial_1^L) + (t_2 - \partial_1^L)(t_4 - \partial_1^L) + (t_3 + 1 - \partial_1^L)(t_4 - \partial_1^L) \right] > 0,
$$

\n
$$
(t_1 + 1 - \partial_1^L)(t_5 + 2 - \partial_1^L) \ge 0
$$

and

$$
0 > \frac{(t_2 - \partial_1^L)(t_3 + 1 - \partial_1^L)(t_4 - \partial_1^L)}{(t_1 + 1 - \partial_1^L)(t_4 - \partial_1^L)(t_2 - \partial_1^L)(t_3 + 1 - \partial_1^L)} > -1.
$$

Proposition 16 *Let G be a connected graph with n* ≥ 8 *vertices, diam*(*G*) = 4 *and m*(∂_1^L) = $n-4$ *. Then, H₅ is not an induced subgraph of G.*

Proof Suppose that H_5 is an induced subgraph of *G*. Then, the principal submatrix of $\mathcal{D}^L(G)$ with respect to H_5 is

$$
N_1 = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 \\ -1 & t_2 & -1 & -2 & -3 & -1 \\ -2 & -1 & t_3 & -1 & -2 & -1 \\ -3 & -2 & -1 & t_4 & -1 & -2 \\ -4 & -3 & -2 & -1 & t_5 & -3 \\ -2 & -1 & -1 & -2 & -3 & t_6 \end{bmatrix} \quad \text{or} \quad N_2 = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 \\ -1 & t_2 & -1 & -2 & -3 & -1 \\ -2 & -1 & t_3 & -1 & -2 & -1 \\ -3 & -2 & -1 & t_4 & -1 & -2 \\ -4 & -3 & -2 & -1 & t_5 & -2 \\ -2 & -1 & -1 & -2 & -2 & t_6 \end{bmatrix}.
$$

- Suppose it is N_1 and let $z = (z_1, z_2, z_3, z_4, 0, z_6)$ be a vector satisfying $z \perp 1$ and $N_1 z = \partial_1^L z$. By Lemma [12,](#page-6-1) we get a contradiction.
- Suppose it is N_2 . Since $d(v_6, v_5) = 2$ and $v_1v_2v_3v_4v_5$ is a path between v_1 and v_5 , then there is a vertex v_7 adjacent to v_5 and v_6 such that there is neither adjacent to v_2 nor v_1 . If v_7 is adjacent to v_4 and it is not adjacent to v_3 , then the subgraph of *G* induced by vertices $v_1, v_2, v_3, v_4, v_5, v_7$ is isomorphic to H_3 . In case v_7 is adjacent to both, v_4 and

 \Box

 v_3 , the subgraph of *G* induced by vertices v_1 , v_2 , v_3 , v_4 , v_5 , v_7 is isomorphic to H_8 . In any of these cases we have a contradiction.

If v_7 is adjacent to v_3 and it is not adjacent to v_4 , then the principal submatrix of $\mathcal{D}^L(G)$ with respect to the subgraph of *G* induced by vertices v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , v_7 is

$$
F_1 = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 & -3 \\ -1 & t_2 & -1 & -2 & -3 & -1 & -2 \\ -2 & -1 & t_3 & -1 & -2 & -1 & -1 \\ -3 & -2 & -1 & t_4 & -1 & -2 & -2 \\ -4 & -3 & -2 & -1 & t_5 & -2 & -1 \\ -2 & -1 & -1 & -2 & -2 & t_6 & -1 \\ -3 & -2 & -1 & -2 & -1 & -1 & t_7 \end{bmatrix}
$$

.

Let $z = (0, z_2, z_3, 0, z_5, z_6, z_7)$ be a vector satisfying $z \perp 1$ and $F_1z = \partial_1^L z$. Considering, respectively, the equations from first, second, fourth and seventh entries of $F_1z = \partial_1^L z$, we get $z = 0$, a contradiction.

If v_7 is neither adjacent to v_3 nor to v_4 , then the principal submatrix of $\mathcal{D}^L(G)$ associated with vertices $v_1, v_2, v_3, v_4, v_5, v_6, v_7$ is

$$
F_2 = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 & -3 \\ -1 & t_2 & -1 & -2 & -3 & -1 & -2 \\ -2 & -1 & t_3 & -1 & -2 & -1 & -2 \\ -3 & -2 & -1 & t_4 & -1 & -2 & -2 \\ -4 & -3 & -2 & -1 & t_5 & -2 & -1 \\ -2 & -1 & -1 & -2 & -2 & t_6 & -1 \\ -3 & -2 & -2 & -2 & -1 & -1 & t_7 \end{bmatrix}.
$$

Analogously to the case of F_1 , we have a contradiction.

Proposition 17 *Let G be a connected graph with n* ≥ 8 *vertices, diam*(*G*) = 4 *and m*(∂_1^L) = *n* − 4*. Then, H*² *is not an induced subgraph of G.*

Proof Suppose that H_2 is an induced subgraph of *G*. Then, the principal submatrix of $\mathcal{D}^L(G)$ with respect to H_2 is

$$
U_1 = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -3 \\ -1 & t_2 & -1 & -2 & -3 & -2 \\ -2 & -1 & t_3 & -1 & -2 & -1 \\ -3 & -2 & -1 & t_4 & -1 & -2 \\ -4 & -3 & -2 & -1 & -2 & -3 \end{bmatrix} \text{ or } U_2 = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 \\ -1 & t_2 & -1 & -2 & -3 & -2 \\ -2 & -1 & t_3 & -1 & -2 & -1 \\ -3 & -2 & -1 & t_4 & -1 & -2 \\ -4 & -3 & -2 & -1 & t_5 & -3 \\ -2 & -2 & -1 & -2 & -3 & t_6 \end{bmatrix},
$$

\n
$$
U_3 = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -3 \\ -1 & t_2 & -1 & -2 & -3 & -2 \\ -2 & -1 & t_3 & -1 & -2 & -1 \\ -3 & -2 & -1 & t_4 & -1 & -2 \\ -3 & -2 & -1 & t_4 & -1 & -2 \\ -3 & -2 & -1 & t_5 & -2 \\ -3 & -2 & -1 & -2 & -2 & t_6 \end{bmatrix} \text{ or } U_4 = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 \\ -1 & t_2 & -1 & -2 & -3 & -2 \\ -2 & -1 & t_3 & -1 & -2 & -1 \\ -2 & -1 & t_3 & -1 & -2 & -1 \\ -3 & -2 & -1 & t_4 & -1 & -2 \\ -4 & -3 & -2 & -1 & t_5 & -2 \\ -2 & -2 & -1 & -2 & -2 & t_6 \end{bmatrix}.
$$

- Suppose it is U_1 (or U_2). Let $z = (z_1, z_2, z_3, z_4, 0, z_6)$ be a vector satisfying $z \perp 1$ and $U_1 z = \partial_1^L z$ (or $U_1 z = \partial_1^L z$). By Lemma [12,](#page-6-1) we get a contradiction.
- Suppose it is U_3 . Let $z = (0, z_2, z_3, z_4, z_5, z_6)$ be a vector satisfying $z \perp 1$ and $U_3z =$ $\partial_1^L z$. By Lemma [13,](#page-7-0) we get a contradiction.

2 Springer JDMAC

.

• Suppose it is U_4 . Since $d(v_6, v_5) = 2 = d(v_1, v_6)$ and $v_1v_2v_3v_4v_5$ is a path between v_1 and v_5 , then there are vertices v_7 and v_8 such that v_8 is adjacent to v_1 and v_6 and v_7 is adjacent to v_5 and v_6 . Moreover, v_8 is neither adjacent to v_4 nor v_5 , and v_7 is neither adjacent to v_1 nor v_2 . So, v_7 can be adjacent to v_3 or v_4 and v_8 can be adjacent to v_3 or v_2 .

If v_3 is adjacent to v_7 and to v_8 , then the subgraph of *G* induced by vertices $v_1, v_3, v_5, v_6, v_7, v_8$ is isomorphic to H_8 . If v_3 is adjacent to v_7 or to v_8 , but not both, then the subgraph of *G* induced by vertices v_1 , v_3 , v_5 , v_6 , v_7 , v_8 is isomorphic to H_5 . If v_3 is neither adjacent to v_7 nor to v_8 , but v_4 is adjacent to v_7 , then the subgraph of *G* induced by vertices v_1 , v_2 , v_3 , v_4 , v_5 , v_7 is isomorphic to H_3 . In any of these cases we have a contradiction.

If v_3 is neither adjacent to v_7 nor to v_8 and v_4 is not adjacent to v_7 , then the principal submatrix of $\mathcal{D}^L(G)$ with respect to the subgraph of *G*, induced by vertices $v_1, v_2, v_3, v_4, v_5, v_6, v_7$, is given by W_1 or W_2 , respectively defined as:

$$
\begin{bmatrix}\n t_1 & -1 & -2 & -3 & -4 & -2 & -3 \\
-1 & t_2 & -1 & -2 & -3 & -2 & -2 \\
-2 & -1 & t_3 & -1 & -2 & -1 & -2 \\
-3 & -2 & -1 & t_4 & -1 & -2 & -2 \\
-4 & -3 & -2 & -1 & t_5 & -2 & -1 \\
-3 & -2 & -1 & -2 & -2 & t_6 & -1 \\
-3 & -2 & -2 & -2 & -1 & -1 \\
-3 & -2 & -2 & -2 & -1 & -1 \\
-3 & -2 & -2 & -2 & -1 & -1 \\
\end{bmatrix}, \begin{bmatrix}\n t_1 & -1 & -2 & -3 & -4 & -2 & -3 \\
-1 & t_2 & -1 & -2 & -3 & -2 & -3 \\
-2 & -1 & t_3 & -1 & -2 & -3 & -2 \\
-3 & -2 & -1 & t_4 & -1 & -2 & -2 \\
-4 & -3 & -2 & -1 & -2 & -2 & t_6 & -1 \\
-3 & -3 & -2 & -2 & -1 & -1 & t_7\n \end{bmatrix}
$$

Suppose it is W_1 . Let $z = (0, 0, z_3, z_4, z_5, z_6, z_7)$ be a vector satisfying $z \perp 1$ and $W_1 z =$ $\partial_1^L z$. Considering, respectively, the first, second, sixth and fifth entries of $W_1 z = \partial_1^L z$, we obtain that $z = 0$, contradiction.

In case it is W_2 , we get also get a contradiction from considering $z = (0,0, z_3, z_4, z_5, z_6, z_7)$ be a vector satisfying $z \perp 1$ and $W_2z = \partial_1^L z$ and, respectively, first, second, fourth and fifth entries of this eigenequation. \Box

Proposition 18 *Let G be a connected graph with n* ≥ 8 *vertices, diam*(*G*) = 4 *and m*(∂_1^L) = $n-4$. If P₆ is not an induced subgraph of G, then H₆ is not an induced subgraph of G.

Proof Suppose that H_6 is an induced subgraph of *G*. Then, the principal submatrix of $\mathcal{D}^L(G)$ with respect to H_6 is

$$
Y = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 \\ -1 & t_2 & -1 & -2 & -3 & -1 \\ -2 & -1 & t_3 & -1 & -2 & -2 \\ -3 & -2 & -1 & t_4 & -1 & -1 \\ -4 & -3 & -2 & -1 & t_5 & -2 \\ -2 & -1 & -2 & -1 & -2 & t_6 \end{bmatrix}.
$$

Let $z = (z_1, z_2, z_3, z_4, 0, z_6)$ be a vector satisfying $z \perp 1$ and $Yz = \partial_1^L z$. By Lemma [12,](#page-6-1) we get $z = (z_1, z_2, z_3, 0, 0, z_6)$ and $-2z_1 - z_2 = 0$. Considering the third entry of $Yz = \partial_1^L z$, it follows that $z_3 = \frac{2}{t_1 - \partial_1^2} z_6$. If $z_6 = 0$, then $z_3 = 0$ and $z = 0$, which is impossible. So, *z*₆ \neq 0. Considering the sixth entry of *Y*_z = $\partial_1^L z$, it follows that $z_3 = \frac{t_6 - \partial_1^L}{2} z_6$ and, then, $\frac{2}{t_1 - \partial_1^L} = \frac{t_6 - \partial_1^L}{2}.$

2 Springer JDMAC

Since $n \ge 8$, we get $\partial_1^L \ge t_6 + 2$ and $\partial_1^L \ge t_3 + 2$. Consequently, $\partial_1^L = t_6 + 2 = t_3 + 2$ and v_3 is a vertex of *G* with maximum transmission. Because $\sum_{i=1, i \neq 3}^{6} Y_{3i} = 8 < \sum_{i=1, i \neq 5}^{6} Y_{5i} =$ 12, there is a vertex v_7 such that $d(v_7, v_5) = 1 < d(v_7, v_3)$.

Concluding, as P_6 is not an induced subgraph of *G* and v_7 is not adjacent to v_3 , v_1 , v_2 , then v_7 is adjacent to v_4 and the subgraph of *G* induced by vertices v_1 , v_2 , v_3 , v_4 , v_5 , v_7 is isomorphic to H_3 . So, we get an impossible situation.

Proposition 19 *Let G be a connected graph with n* ≥ 8 *vertices, diam*(*G*) = 4 *and m*(∂_1^L) = *n* − 4*. If P*⁶ *is not an induced subgraph of G*, *then H*¹ *is not an induced subgraph of G.*

Proof Suppose that H_1 is an induced subgraph of G .

• If $d(v_6, v_5) = 2$, then there is a vertex v_7 adjacent to v_6 and v_5 . Since $d(v_1, v_5) = 4$, then v_7 is neither adjacent to v_1 nor v_2 . Since P_6 is not an induced subgraph of *G*, then v_7 is adjacent to v_3 or v_4 .

If v_7 is adjacent to v_3 and v_4 , then the subgraph of *G* induced by vertices $v_1, v_2, v_3, v_4, v_5, v_7$ is isomorphic to H_7 . If v_7 is adjacent to v_3 and it is not adjacent to v_4 , then the subgraph of *G* induced by vertices v_1 , v_2 , v_6 , v_7 , v_5 , v_4 is isomorphic to P_6 . If v_7 is adjacent to v_4 and it is not adjacent to v_3 , then the subgraph of *G* induced by vertices $v_1, v_2, v_3, v_4, v_5, v_7$ is isomorphic to H_3 . In any of these cases we get a contradiction.

- If $d(v_6, v_5) = 3$, then there are vertices v_7 and v_8 such that v_7 is adjacent to v_6 and v_8 and the vertex v_8 is adjacent to v_7 and v_5 . Since $d(v_1, v_5) = 4$, then v_8 is neither adjacent to v_1 nor v_2 . Using similar argument, as used when $d(v_6, v_5) = 2$, with v_8 instead of v_7 , we get a contradiction.
- If $d(v_6, v_5) = 4$, then the principal submatrix of $\mathcal{D}^L(G)$ with respect to H_1 is

$$
M = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 \\ -1 & t_2 & -1 & -2 & -3 & -1 \\ -2 & -1 & t_3 & -1 & -2 & -2 \\ -3 & -2 & -1 & t_4 & -1 & -3 \\ -4 & -3 & -2 & -1 & t_5 & -4 \\ -2 & -1 & -2 & -3 & -4 & t_6 \end{bmatrix}.
$$

Let $z = (z_1, z_2, z_3, z_4, 0, z_6)$ be a vector satisfying $z_1 + z_2 + z_3 + z_4 + z_6 = 0$ and $Mz =$ $\partial_1^L z$. By Lemma [12,](#page-6-1) $z = (z_1, 0, 0, 0, 0, z_6)$. Considering the first entry of both sides of $Mz = \partial_1^L z$, we have $t_1z_1 - 2z_6 = \partial_1^L z_1$. Since $n \geq 8$, then $t_1 + 2 = \partial_1^L$ and v_1 is a vertex with maximum transmission in *G*. Because $\sum_{i=1, i \neq 1}^{6} M_{3i} = 12 < \sum_{i=1, i \neq 5}^{6} M_{5i} = 14$ there is a vertex v_7 such that $d(v_7, v_5) < d(v_7, v_1)$. Considering all cases we have just seen, the subgraph of *G* induced by vertices v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , v_7 is isomorphic to graphs R_1 or R_2 (Fig. [3\)](#page-13-0).

Since $d(v_6, v_5) = 4$, then, in both cases, we have v_6 is not adjacent to v_7 . Let *E* be the principal submatrix of $\mathcal{D}^L(G)$ with respect to R_1 :

$$
E = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 & -3 \\ -1 & t_2 & -1 & -2 & -3 & -1 & -2 \\ -2 & -1 & t_3 & -1 & -2 & -2 & -1 \\ -3 & -2 & -1 & t_4 & -1 & -3 & -2 \\ -4 & -3 & -2 & -1 & t_5 & -4 & -1 \\ -2 & -1 & -2 & -3 & -4 & t_6 & -3 \\ -3 & -2 & -1 & -2 & -1 & -3 & t_7 \end{bmatrix}.
$$

2 Springer JDMW

Fig. 3 Graphs R_1 and R_2

and $z = (0, z_2, z_3, 0, z_5, z_6, z_7)$ be a vector satisfying $z \perp 1$ and $Ez = \partial_1^L z$. Considering, respectively, the first, second, fourth and fifth entries of this eigenequation, we conclude that $z = 0$.

If R_2 (Fig. [3\)](#page-13-0) is an induced subgraph of *G*, then $d(v_6, v_7) = 2$ or $d(v_6, v_7) = 3$ or $d(v_6, v_7) = 4.$

If $d(v_6, v_7) = 2$ and $d(v_6, v_5) = 4$, then there is a vertex v_8 adjacent to v_6 and v_7 , and v_8 is neither adjacent to v_4 nor v_5 . So, v_8 can be adjacent to v_1 or v_2 or v_3 . If v_8 is adjacent to v_3 , then P_6 or H_2 or H_5 or H_7 is an induced subgraph of *G*. If v_8 is not adjacent to v_3 , then P_6 or H_3 is an induced subgraph of *G*. In any case of these cases we get a contradiction.

If $d(v_6, v_7) = 3$ and $d(v_6, v_5) = 4$, then there are vertices v_8 and v_9 such that v_9 is adjacent to v_6 and v_8 , and v_8 is adjacent to v_7 . Moreover, v_8 is not adjacent to v_5 , and v_9 is neither adjacent to v_4 nor v_5 . If v_8 is not adjacent to v_4 , then the subgraph of *G* induced by vertices v_6 , v_9 , v_8 , v_7 , v_4 , v_5 is isomorphic to P_6 . If v_8 is adjacent to v_4 , then P_6 or H_5 or H_6 or H_8 is an induced subgraph of *G*. All cases are not possible.

If $d(v_6, v_7) = 3$, then $d(v_1, v_7) = 4$, $d(v_2, v_7) = 3$ and the principal submatrix of $\mathcal{D}^L(G)$ with respect to R_2 is

$$
J = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -2 & -4 \\ -1 & t_2 & -1 & -2 & -3 & -1 & -3 \\ -2 & -1 & t_3 & -1 & -2 & -2 & -2 \\ -3 & -2 & -1 & t_4 & -1 & -3 & -1 \\ -4 & -3 & -2 & -1 & t_5 & -4 & -2 \\ -2 & -1 & -2 & -3 & -4 & t_6 & -4 \\ -4 & -3 & -2 & -1 & -2 & -4 & t_7 \end{bmatrix}.
$$

Let $z = (0, z_2, z_3, z_4, 0, z_6, z_7)$ be a vector satisfying $z \perp 1$ and $Jz = \partial_1^L z$. Considering, respectively, the first, second, fifth and fourth entries of $Jz = \partial_1^L z$, we conclude that $z = 0$.

For the last results, we need to introduce a definition and a lemma.

Definition 1 Let *a*, *b* be two positive integers. We denote by $S(a, b)$ the graph obtained from *K*_{a,1} ∪ *K*₁ ∪ *K*_{*b*,1} by joining each pendant vertex of *K*_{a,1} and *K*_{*b*,1} with the vertex of *K*₁.

Proposition 20 Let a, *b* be two positive integers such that $a \leq b$. Let v be a pendant vertex *of* $K_{a,1}$ *and u be its central vertex. Let w be a pendant vertex of* $K_{b,1}$ *. Then, in* $S(a, b)$ *it follows that* $Tr(v) = Tr(w) < Tr(u)$.

Proof It is easy to check that $Tr(v) = 3 + 2(a + b) = Tr(w)$ and $Tr(u) = 6 + a + 3b$.
Also, $Tr(v) < Tr(u)$ since $a \leq b$. Also, $Tr(v) < Tr(u)$ since $a \leq b$.

Proposition 21 *Let G be a connected graph with* $n \ge 8$ *vertices, diam*(*G*) = 4 *and* $m(\partial_1^L)$ = *n* − 4*. If P*⁶ *is not an induced subgraph of G*, *then H*⁴ *is not an induced subgraph of G.*

Proof Suppose that H_4 is an induced subgraph of *G*. Then, the principal submatrix of $\mathcal{D}^L(G)$ with respect to H_4 is

$$
M = \begin{bmatrix} t_1 & -1 & -2 & -3 & -4 & -1 \\ -1 & t_2 & -1 & -2 & -3 & -2 \\ -2 & -1 & t_3 & -1 & -2 & -1 \\ -3 & -2 & -1 & t_4 & -1 & -2 \\ -4 & -3 & -2 & -1 & t_5 & -3 \\ -1 & -2 & -1 & -2 & -3 & t_6 \end{bmatrix}
$$

.

Let $z = (z_1, z_2, z_3, z_4, 0, z_6)$ be a vector satisfying $z \perp 1$ and $Mz = \partial_1^L z$. By Lemma [12,](#page-6-1) $z = (0, z_2, 0, 0, 0, z_6)$. Consider the second entry of $Mz = \partial_1^L z$ and, since $n \ge 8$, then $t_2 + 2 = \partial_1^L$ and v_2 is a vertex with maximum transmission in *G*. Because $\sum_{i=1, i \neq 2}^6 M_{3i} =$ $9 < \sum_{i=1, i \neq 5}^{6} M_{5i} = 15$, there is a vertex v_7 such that $d(v_7, v_5) < d(v_7, v_2)$. Considering all cases we have just seen we conclude v_7 is adjacent to v_4 and v_5 . Using a similar argument, as we used before, we get v_4 is a vertex of *G* with a maximum transmission. Consequently, *G* has an induced subgraph isomorphic to $S(a, b)$, with $a, b > 1$, v_1, v_5 as the central vertices of the stars in $S(a, b)$, v_3 as the vertex of K_1 , v_4 as a pendent vertex of the star with central vertex v_5 and $a + 1$ vertices, and v_2 as a pendent vertex of the star with central vertex v_1 and *b* + 1 vertices. By Proposition [20,](#page-13-1) if $a \leq b$, then $Tr(v_5) > Tr(v_2)$ and if $a \geq b$, then $Tr(v_1) > Tr(v_2)$. So, we get a contradiction. $Tr(v_1)$ > $Tr(v_2)$. So, we get a contradiction.

As any diameter four graph with *P*⁶ as a forbidden subgraph must have an induced subgraph isomorphic to some of the graphs H_i , $1 \le i \le 8$, from Propositions [14,](#page-7-1) [15,](#page-8-0) [16,](#page-9-0) [17,](#page-10-0) [18,](#page-11-0) [19,](#page-12-0) [21,](#page-13-2) we can state:

Theorem 22 *Let G be a connected graph with* $n \geq 8$ *vertices such that* $m(\partial_1^L) = n - 4$ *. If P*₆ *is not an induced subgraph of G*, *then diam*(G) \leq 3.

Concluding, based on results presented in Sect. [3](#page-4-0) and a computational search for graphs on *n* vertices, $6 \le n \le 11$, we could not find a graph with $m(\partial_1^L(G)) = n - 4$ and P_6 as an induced subgraph. So, we propose the following conjecture:

Conjecture 23 *Let G be a connected graph with n* ≥ 6 *vertices. If* $m(\partial_1^L(G)) = n - 4$, *then P*⁶ *is a forbidden subgraph.*

In case that P_6 is a forbidden subgraph, Theorem [22](#page-14-0) presents some advances in an effort to determine all graphs such that $m(\partial_1^L) = n - 4$.

Acknowledgements The research of the first author is supported by FCT-Fundação para a Ciência e a Tecnologia, under project UIDB/00297/2020. The research of the second, third and fourth author is partially supported by the National Council for Scientific and Technological Development (CNPq) with CNPq Grant 313335/2020-6; CNPq Grant 403963/2021-4; CNPq Grant 306262/2019-3 and CNPq Grant 403963/2021-4, respectively. The research of the third author is partially supported by FAPERJ with Grant E-20/2022-284573.

Data availability Files used to support Conj. 23 are available from the authors upon request.

Declarations

Conflict of interest No potential conflict of interest was reported by the authors.

References

- Aouchiche M, Hansen P (2013) Two Laplacians for the distance matrix of a graph. Linear Algebra Appl 439(1):21–33
- Aouchiche M, Hansen P (2014) Some properties of the distance Laplacian eigenvalues of a graph. Czechoslov Math J 64(3):751–761
- Brouwer AE, Haemers WH (2011) Spectra of graphs. Springer Science and Business Media, New York
- da Silva CM Jr, de Freitas MAA, Del-Vecchio RR (2016) A note on a conjecture for the distance Laplacian matrix. Electron J Linear Algebra 31:60–68
- Fernandes R, de Freitas MAA, da Silva Jr CM, Del-Vecchio RR (2018) Multiplicities of distance Laplacian eigenvalues and forbidden subgraphs. Linear Algebra Appl 541:81–93
- Khan S, Pirzada S, Somasundaram A (2023) On graphs with distance Laplacian eigenvalues of multiplicity *n* − 4. AKCE Int J Graphs Comb 1–5. <https://doi.org/10.1080/09728600.2023.2219335>
- Lin H, Wu B, Chen Y, Shu J (2016) On the distance and distance Laplacian eigenvalues of graphs. Linear Algebra Appl 492:128–135
- Lu L, Huang Q, Huang X (2017) On graphs with distance Laplacian spectral radius of multiplicity *n* − 3. Linear Algebra Appl 530:485–499
- Ma X, Qi L, Tian F, Wong D (2018) Graphs with some distance Laplacian eigenvalue of multiplicity n-3. Linear Algebra Appl 557:307–326
- McKay BD, Piperno A (2014) Practical graph isomorphism, II. J Symb Comput 60:94–112
- Merris R (1994) Laplacian matrices of graphs: a survey. Linear Algebra Appl 197–198:143–176
- Mohammad G, Kanso A, Stevanovic D (2019) Graph6java: a researcher-friendly java framework for testing conjectures in chemical graph theory. MATCH Commun Math Comput Chem 81:737–770
- Mohammadian A, Tayfeh-Rezaie B (2011) Graphs with four distinct Laplacian eigenvalues. J Algebraic Comb 34:671–682

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

