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Abstract
This work refers to methods for solving convex-constrained monotone nonlinear equations.
We first propose a framework, which is obtained by combining a safeguard strategy on
the search directions with a notion of approximate projections. The global convergence of
the framework is established under appropriate assumptions and some examples of meth-
ods which fall into this framework are presented. In particular, inexact versions of steepest
descent-based, spectral gradient-like, Newton-like and limited memory BFGS methods are
discussed. Numerical experiments illustrating the practical behavior of the algorithms are
discussed and comparisons with existing methods are also presented.

Keywords Monotone nonlinear equations · Approximate projection · Global convergence ·
Steepest descent-based method · Spectral gradient-like method · Newton-like method
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1 Introduction

We consider the convex-constrained monotone nonlinear equations problem: finding x∗ ∈ C
such that

F(x∗) = 0, (1)

where C ⊂ R
n is a nonempty closed convex set and F : Rn → R

n is a continuous and
monotone nonlinear function, not necessarily differentiable. The monotonicity of F : Rn →
R
n here means 〈 F(x)− F(y), x − y〉 ≥ 0, for all x, y ∈ R

n . We assume that the solution set
of (1), denoted byC∗, is nonempty. Problems of this nature appear in many applications such
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as power engineering, chemical equilibrium systems and economic equilibrium problems;
see, e.g., (Dirkse and Ferris 1995; El-Hawary 1996; Meintjes and Morgan 1987; Wood and
Wollenberg 1996).

Recently, many methods have been proposed for solving (1); see, for example, Liu and
Feng (2019), Liu and Li (2015), Ou and Liu (2017), Wang and Wang (2009), Wang and Xu
(2007), Yu et al. (2009). They are extensions of Newton, spectral gradient and conjugate
gradient methods for solving the unconstrained case of (1). In general, these constrained
(projected) methods require to compute the exact orthogonal projection of a point onto the
constrained set C . However, it is well-known that, depending on the geometry of C , the
projection onto it neither has a closed-form nor can be easily computed; for example, if C
is a polyhedral or a spectrahedron. Therefore, one of the goals of this article is to present
some improvements in existing projected methods for solving (1). Basically, we present
some methods for solving (1) in which approximate projections are allowed. Moreover, a
new algorithmwith inexact projections is also proposed to solve (1). It is inspired by Solodov
and Svaiter (1999a), Algorithm 2.1 for solving variational inequalities. In the context that the
projection operator is computationally expensive, Solodov andSvaiter (1999a),Algorithm2.1
was devised in order to minimize the total number of performed projection operations.

Toward the aforementioned goals, we first present a framework for solving convex-
constrained monotone nonlinear equations. More precisely, at each iteration, the framework
imposes a safeguard strategy on the search directions. A suitable linesearch procedure based
on Solodov and Svaiter (1999b) is considered, which, in particular, provides a hyperplane
that strictly separates the current iteration from zeroes of the system of equations. Then, we
compute an approximate projection of a point, which belongs to the aforementioned hyper-
plane, onto the intersection between C and the hyperplane (or onto the constrained set C).
Under mild assumptions, we prove that the sequence generated by the proposed framework
converges to a solution of (1). Some examples of methods which fall into this framework are
presented. In particular, inexact versions of steepest descent-based, spectral gradient-like,
Newton-like and limited memory BFGS methods are discussed. A new algorithm inspired
by Solodov and Svaiter (1999a), Algorithm 2.1 is also proposed and analyzed by means of
the general framework.

In order to illustrate the robustness and effectiveness among the instances of the framework,
we report some preliminary numerical experiments on a set of monotone nonlinear equations
with polyhedral constraints problems. Moreover, we also applied the methods for solving
the constrained absolute value equation and compare their performances with the inexact
Newton method with feasible inexact projections Oliveira and Ferreira (2020).

The remainder of this paper is organized as follows. In Sect. 2, we list some notations
and introduce a concept of an approximate solution for a specific quadratic problem with
some of its properties. In Sect. 3, a framework, which combines a safeguard strategy on
the search directions with approximate projections, is proposed and its global convergence
is established. In Sect. 4, we present some instances of the framework by means of some
examples of search directions dk that satisfy the safeguard conditions. Some preliminary
numerical experiments are reported in Sect. 5 and final remarks are given in Sect. 6.

2 Notation and preliminary results

This section presents some definitions and notations used in this paper. A concept of approxi-
mate solution for a specific quadratic problem is introduced and some of its useful properties
are discussed.
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Let L ∈ R++. We denote by Sn,L(R) be the set of n × n symmetric positive definite
matrices such that, for all B ∈ Sn,L(R)

‖B‖ ≤ L and ‖B−1‖ ≤ L, (2)

where ‖.‖ is a sub-multiplicative matrix norm. Note that Sn,L(R) is a compact set of Rn×n .
Consider an inner product on Rn by setting 〈x, z〉B = 〈x, Bz〉, where B ∈ Sn,L(R) and 〈., .〉
denotes the usual inner product. Hence, the corresponding induced norm ‖.‖B is equivalent
to the usual norm on Rn , since the following inequalities hold

1

‖B−1‖‖x‖2 ≤ ‖x‖2B ≤ ‖B‖‖x‖2. (3)

We next present the definition of an approximate solution for a specific quadratic problem.

Definition 1 Given B ∈ Sn,L(R),w ∈ R
n , ε ≥ 0 and a nonempty closed convex set� ⊂ R

n ,
we say that ỹ B�(w, ε) is an ε–approximate solution for the problem

min
y∈�

1

2
〈By, y〉 − 〈w, y〉, (4)

iff

ỹ B�(w, ε) ∈ � and 〈B ỹB�(w, ε) − w, y − ỹ B�(w, ε)〉 ≥ −ε, ∀ y ∈ �. (5)

Remark 1 Depending on the geometry of�, the exact solution of (4) neither has a closed-form
nor can be easily computed; even for the case where (4) reduces to orthogonal projection onto
� (i.e., B = I in (4)). Since in (4) we areminimizing a strictly convex quadratic function over
a convex set, (5) is a natural condition for an approximate solution. Indeed, the optimality
condition for (4) is

〈B ỹB�(w, 0) − w, y − ỹ B�(w, 0)〉 ≥ 0, ∀ y ∈ �,

which can be obtained from (5) by setting ε = 0.Note that, if ỹ B�(w, 0) is a zero–approximate
solution, then ỹ B�(w, 0) is the unique exact solution of (4), which we will denote by yB�(w).
Moreover, in situations in which an algorithm must be used to compute an approximate
solution, Definition (1) is suitable since it provides a checkable criterion of inexactness for
(4). In fact, as will be discussed below, if the conditional gradient method is used to solve
(4), then the verifications of (5) come for free.

Note that if w := Bx − F(z) with x, z ∈ R
n , then problem (4) can be rewritten, ignoring

constant terms, as

min
y∈�

1

2
‖y − (x − B−1F(z))‖2B . (6)

and (5) is equivalent to

〈x − B−1F(z) − ỹ B�(w, ε), y − ỹ B�(w, ε)〉B ≤ ε, ∀ y ∈ �. (7)

In this case, we can say that ỹ B�(Bx − F(z), ε) is an approximate projection (in the norm
‖ · ‖B) of the direction x − B−1F(z).

Our condition (5) can be checked when, for example, � is bounded and the conditional
gradient (CondG)method, also known as Frank-Wolfe method (Dunn 1980; Frank andWolfe
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1956), is used to solve (4). The CondG method is designed to solve the convex optimization
problem

min
z∈Z f (z) (8)

where Z is a nonempty compact convex set and f is a differentiable convex function such that
∇ f is Lipschitz continuous on Z . Given z j−1 ∈ Z , its j-th step first finds y j as a minimum
of the linear function 〈∇ f (z j−1), ·〉 over Z and then set z j = (1− αk)z j−1 + αk z̄ j for some
αk ∈ [0, 1]. Its major distinguishing feature compared to other first-order algorithms such
as the projected gradient method is that it replaces the usual projection onto Z by a linear
oracle which computes z̄ j as above. Now, if we apply the CondG method to (4), we generate
a sequence {z j } ⊂ �, where z j = z j−1 + α j (z̄ j − z j−1), with α j ∈ (0, 1), and z̄ j is a
solution of the subproblem

min 〈Bz j−1 − w, z − z j−1〉.
s.t. z ∈ �

(9)

If the CondG iterations are stopped when

〈Bz j−1 − w, z̄ j − z j−1〉 ≥ −ε, (10)

then condition (5) holds with ỹ B�(w, ε) = z j−1.
We next establish a useful relationship between exact and inexact solutions of (4).

Lemma 1 For every w, ŵ ∈ R
n and ε ≥ 0, we have

‖ỹ I�(w, ε) − y I�(ŵ)‖2 ≤ ‖w − ŵ‖2 + 2ε.

Proof Since ỹ I�(w, ε) ∈ � and y I�(ŵ) ∈ �, it follows from Definition 1 that

〈ỹ I�(w, ε) − w, ỹ I�(w, ε) − y I�(ŵ)〉 ≤ ε, 〈ŵ − y I�(ŵ), ỹ I�(w, ε) − y I�(ŵ)〉 ≤ 0. (11)

On the other hand, after some simple algebraic manipulations we have

‖w − ŵ‖2 =‖ỹ I�(w, ε) − y I�(ŵ)‖2 + 2〈w − ỹ I�(w, ε) − (ŵ − y I�(ŵ)), ỹ I�(w, ε)

− y I�(ŵ)〉 + ‖(w − ỹ I�(w, ε)) − (ŵ − y I�(ŵ))‖2,
which implies that

‖ỹ I�(w, ε) − y I�(ŵ)‖2 ≤ ‖w − ŵ‖2 + 2〈ỹ I�(w, ε) − w, ỹ I�(w, ε) − y I�(ŵ)〉
+ 2〈ŵ − y I�(ŵ), ỹ I�(w, ε) − y I�(ŵ)〉.

By the last inequality, (11) and (2), it yields

‖ỹ I�(w, ε) − y I�(ŵ)‖2 ≤ ‖w − ŵ‖2 + 2ε,

which is equivalent to the desired inequality. 
�

3 A framework for solving convex-constrainedmonotone equations

This section describes a framework for solving (1) and presents its global convergence anal-
ysis. The framework imposes a safeguard strategy on the search directions which, combined
with a suitable linesearch procedure, turns it a globalized scheme. Approximate projections

123



A framework for convex-constrained monotone... Page 5 of 20 306

are also considered in order to deal with the case where projecting exactly onto C is expen-
sive. Formally, the framework is described as follows.

Framework 1. A framework for solving (1)

Step 0. Let x0 ∈ C , η1, η2 > 0, γ, σ ∈ (0, 1), μ̄ ∈ [0, 1) and {μk} ⊂ [0, μ̄] be given, and
set k = 0.

Step 1. If ‖F(xk)‖ = 0, then stop.
Step 2. Compute the direction dk in R

n such that

F(xk)
T dk ≤ −η1‖F(xk)‖2, (12)

‖dk‖ ≤ η2‖F(xk)‖. (13)

Step 3. Find zk = xk + αkdk , where αk = γmk with mk being the smallest nonnegative
integer m such that

−〈F(xk + γmdk), dk〉 ≥ σγm‖dk‖2. (14)

Step 4. Define ξk := (〈F(zk), xk − zk〉) /‖F(zk)‖2, wk := xk − ξk F(zk) and εk :=
μ2
k‖ξk F(zk)‖2. Set

xk+1 := ỹ IC∩Hk
(wk, εk), (15)

where Hk := {x ∈ R
n; 〈F(zk), x − zk〉 ≤ 0}.

Step 5. Set k ← k + 1 and go to Step 1.

end

Remark 2 i) If F is the gradient of some function f : Rn → R, then condition (12) implies
that dk is a sufficient descent direction for f at xk . In its turn, condition (13) essentially says
that the length of d(xk) should be proportional to the length of F(xk). The way to obtain dk
satisfying (12) and (13)will depend on the particular instance of the framework; see Sect. 4 for
some examples. (ii) Note that condition (12) implies that there exists a nonnegative number
mk satisfying (14), for all k ≥ 1. Indeed, suppose that there exists k0 ≥ 1 such that (14) is
not satisfied for any nonnegative integer m, i.e.,

−〈F(xk0 + γmdk0), dk0〉 < σγm‖dk0‖2, ∀ m ≥ 1.

Let m → ∞ and by continuity of F , we have

− 〈F(xk0), dk0〉 ≤ 0. (16)

On the other hand, by (12), we obtain

−〈F(xk0), dk0〉 ≥ η1‖F(xk0)‖2 > 0,

which contradicts (16). Therefore, the linesearch procedure in Step 3 is well defined. iii) In
Step 4, note that wk is the projection of xk in Hk (which has a closed-form) and xk+1 is
an εk–approximate solution of the problem (4) with B := I , w := wk , � := C ∩ Hk and
ε := μ2

k‖ξk F(zk)‖2. Another choice of xk+1 in (15) would be

xk+1 := ỹ IC (wk, εk). (17)
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For this choice, we mention that Lemma 2 and Theorem 1 also holds. iv) It will follow form
(19) and (20) that the hyperplane Hk strictly separates the current iteration from the elements
of the solution set C∗.

In order to investigate the global convergence of Framework 1, the following properties
of the sequences {xk} and {zk} will be needed.
Lemma 2 LetC ⊂ R

n be a nonempty closed convex set and let F : Rn → R
n be a continuous

and monotone nonlinear function. Assume that C∗ is nonempty. Then, the sequences {xk}
and {zk} generated by Framework 1 are both bounded. Furthermore, it holds that

lim
k→∞ ‖xk − zk‖ = 0. (18)

Proof From Step 3, we have

〈F(zk), xk − zk〉 = −αk〈F(zk), dk〉 ≥ σα2
k‖dk‖2 = σ‖xk − zk‖2. (19)

Note that ‖xk − zk‖ > 0, for all k ≥ 0. Otherwise, since (12) and the Cauchy-Schwartz
inequality imply that η1‖F(xk)‖ ≤ ‖dk‖, we would have F(xk) = 0.

Let x∗ ∈ C∗ be given. By the monotonicity of F and the fact that F(x∗) = 0, we obtain

〈F(zk), x∗ − zk〉 ≤ 0. (20)

Hence, x∗ ∈ Hk (see the definition of Hk in Step 4). Since xk+1 = ỹ IC∩Hk
(wk, εk), it follows

from the fact that x∗ ∈ C ∩ Hk and Lemma 1 with x = wk and x̂ = x∗ that

‖xk+1 − x∗‖2 = ‖ỹ IC∩Hk
(wk, εk) − y IC∩Hk

(x∗)‖2 ≤ ‖wk − x∗‖2 + 2εk

= ‖xk − x∗‖2 − 2ξk〈F(zk), xk − x∗〉 + ξ2k ‖F(zk)‖2 + μ2
kξ

2
k ‖F(zk)‖2.

(21)

where we used that ε2k = (μ2
k‖ξk F(zk)‖2)/2 in the last equality. It is easy to see that (21)

also holds when xk+1 = ỹ IC (wk, εk). By the monotonicity of the mapping F and the fact that
x∗ ∈ C∗, we get

〈F(zk), xk − zk〉 = 〈F(x∗), zk − x∗〉 + 〈F(zk), xk − zk〉
≤ 〈F(zk), zk − x∗〉 + 〈F(zk), xk − zk〉
= 〈F(zk), xk − x∗〉. (22)

By combining (21) and (22), we find

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2ξk〈F(zk), xk − zk〉 + ξ2k ‖F(zk)‖2 + μ2
kξ

2
k ‖F(zk)‖2

≤ ‖xk − x∗‖2 + (μ2
k − 1)

〈F(zk), xk − zk〉2
‖F(zk)‖2

≤ ‖xk − x∗‖2 + (μ̄2 − 1)σ 2 ‖xk − zk‖4
‖F(zk)‖2 ,

(23)

where the second inequality follows from the definition of ξk and the last inequality is due
to the fact that μk ≤ μ̄ and (19). By (23) and the fact that μ̄ < 1, we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2, k ≥ 0, (24)
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which implies that the sequence {xk} is bounded. It follows from the Cauchy-Schwartz
inequality, the monotonicity of F and (19) that

‖F(xk)‖ ≥ 〈F(xk), xk − zk〉
‖xk − zk‖ ≥ 〈F(zk), xk − zk〉

‖xk − zk‖ ≥ σ‖xk − zk‖.
Therefore, by the continuity of F and the boundedness of {xk}, we have that {zk} is also
bounded. Since {zk} is bounded and F is continuous on R

n , there exists a constant M > 0
such that ‖F(zk)‖ ≤ M for all k ≥ 0, which, combined with (23), yields

(1 − μ̄2)σ 2

M2

∞∑

k=0

‖xk − zk‖4 ≤
∞∑

k=0

(‖xk − x∗‖2 − ‖xk+1 − x∗‖2
)

< ∞,

which implies limk→∞ ‖xk − zk‖ = 0. 
�
We are now ready to establish the global convergence of Framework 1.

Theorem 1 Let C ⊂ R
n be a nonempty closed convex set and let F : Rn → R

n be a con-
tinuous and monotone nonlinear function. Assume that C∗ is nonempty. Then, the sequence
{xk} generated by Framework 1 converges to a solution of (1).

Proof Since zk = xk + αkdk , from Lemma 2, it holds that

lim
k→∞ αk‖dk‖ = lim

k→∞ ‖xk − zk‖ = 0. (25)

We also have, from Lemma 2, that {xk} is bounded and therefore {F(xk)} is bounded as well.
Thus, it follows from the second inequality in (13) that {dk} is bounded. Consider now two
different cases: (i) lim infk→∞ ‖dk‖ = 0 or (ii) lim infk→∞ ‖dk‖ > 0.
Case (i). Note that (12) and the Cauchy–Schwartz inequality imply that η1‖F(xk)‖ ≤ ‖dk‖.
Hence, since lim infk→∞ ‖dk‖ = 0, it follows that lim infk→∞ ‖F(xk)‖ = 0. Since F is
continuous, we have that the sequence {xk} has some cluster point x̄ such that F(x̄) = 0.
Replacing x∗ by x̄ in (24), we obtain

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2,
which implies that {‖xk− x̄‖} converges. Therefore, we can conclude that the whole sequence
{xk} converges to x̄ , a solution of (1).
Case (ii). Since lim infk→∞ ‖dk‖ > 0, it follows from (25) that there exists a subsequence
of indices K ⊂ N such that limk→∞ αk = 0, where k ∈ K . By (14), we have

−〈F(xk + γmk−1dk), dk〉 < σγmk−1‖dk‖2.
Since {xk} and {dk} are bounded, we can choose a subsequence K1 ⊂ K such that

{(xk, dk)} K1−→ (x̄, d̄). Hence, using the continuity of F and taking the limit in the last
inequality as k → ∞ with k ∈ K1, we have

− 〈F(x̄), d̄〉 ≤ 0. (26)

On the other hand, by taking the limit in (12) as k → ∞ with k ∈ K1, we obtain

−〈F(x̄), d̄〉 ≥ δ‖F(x̄)‖2 > 0,

where the last inequality is due to the inequality in (13) and the fact that lim infk→∞ ‖dk‖ > 0.
Thus, the last inequality contradicts (26). Hence, lim infk→∞ ‖dk‖ = 0. Therefore, using a
similar argument as in the first case, we conclude that the whole sequence {xk} converges to
a solution of (1). This completes the proof. 
�
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4 Some instances of Framework 1

This section presents some examples of search directions dk that satisfy the safeguard condi-
tions (12) and (13) and, as a consequence, some instances of Framework 1. These instances
of methods allow approximate projections onto C ∩ Hk , which can be advantageous when
the exact projections are difficult (where the projection cannot be easily performed).

Let us begin by presenting inexact versions of two well-known methods.
1) Steepest descent-based method with approximate projections (SDM-AP). This method
corresponds to Framework 1 with the direction dk in the Step 2 defined by dk = −F(xk), for
every k ≥ 0. It is easy to see that this choice of dk satisfies the conditions (12) and (13) with
η1 = 1 and η2 ≥ 1. Therefore, from Theorem 1, it holds that the sequence {xk} generated by
SDM-AP converges to a solution of (1).
2) Newton method with approximate projections (NM-AP). Assume that F is continuously
differentiable. By taking dk in the Step 2 of Framework 1 as dk = −B(xk)−1F(xk) for every
k ≥ 0, where B(xk) is a positive definite matrix, we obtain a variant of the Newton method
proposed in Wang and Xu (2007) with approximate projections. Note that B(xk) may be the
Jacobian of F at xk or an approximation of it. Assuming that there exist constants 0 < a ≤ b
such that aI ≺ B(xk) ≺ bI , for every k, then dk satisfies (12) and (13) with η1 = 1/b and
η2 = 1/a. Indeed, since Bkdk = −F(xk), we obtain

〈dk, F(xk)〉 = 〈−B−1
k F(xk), F(xk)〉 = −‖F(xk)‖2B−1

k
≤ −

(
1

b

)
‖F(xk)‖2

and

a‖dk‖2 ≤ ‖dk‖2Bk = 〈Bkdk, dk〉 = −〈F(xk), dk〉 ≤ ‖F(xk)‖‖dk‖,
which proves the statement. Therefore, since this method can be seen as an instance of
Framework 1, we trivially have, from Theorem 1, that the sequence {xk} generated by it
converges to a solution of (1).

We next present two examples of methods, in the spirit of the one in example 2, for the
nonsmooth case. Recall that F : Rn → R

n is said to be τ -strongly monotone if there is a
constant τ > 0 such that 〈x − y, F(x) − F(y)〉 ≥ τ‖x − y‖2, for all x, y ∈ R

n , and the
function F : Rn → R

n is said to be L-Lipschitz continuous if there is a constant L > 0 such
that ‖F(x) − F(y)‖ ≤ L‖x − y‖, for all x, y ∈ R

n .
3) Spectral gradient-like methods with approximate projections (SGM-AP). Consider dk =
−λk F(xk) for every k ≥ 0, where λk is the spectral coefficient which is related to the
Barzilai-Borwein choice of the step-size (Barzilai and Borwein 1988). Firstly, let us discuss
some existing choices of λk .

3.1) In La Cruz and Raydan (2003), λk is defined by

λk = 〈sk, sk〉
〈sk, uk〉 , (27)

where sk := xk − xk−1 and uk := F(xk) − F(xk−1). Under the assumption that F
is τ -strongly monotone and L-Lipschitz continuous, we have that dk = −λk F(xk)
satisfies (12) and (13) with η1 = 1/L and η2 = 1/τ . Indeed, using that F is τ -strongly
monotone, we have

〈sk, uk〉 = 〈xk − xk−1, F(xk) − F(xk−1)〉 ≥ τ 〈xk − xk−1, xk − xk−1〉 = τ 〈sk, sk〉 > 0,
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for some τ > 0, and therefore, λk ≤ 1/τ . Now, using the Cauchy-Schwarz inequality
and that F is L-Lipschitz continuous, we obtain

〈sk, uk〉 = 〈sk, F(xk) − F(xk−1)〉 ≤ ‖F(xk) − F(xk−1)‖‖sk‖ ≤ L〈sk, sk〉,
which implies 1/L ≤ λk . Thus, 1/L ≤ λk ≤ 1/τ and, as a consequence, the statement
trivially follows from the fact that dk = −λk F(xk).

3.2) In Yu et al. (2009), Zhang and Zhou (2006), the coefficient λk is as in (27) with sk :=
xk − xk−1 and uk := F(xk) − F(xk−1) + rsk , where r > 0 is a given scalar. Using that
F is monotone, we have

〈sk, uk〉 = 〈sk, F(xk) − F(xk−1) + rsk〉
= 〈xk − xk−1, F(xk) − F(xk−1)〉 + r〈sk, sk〉
≥ r〈sk, sk〉 > 0,

which implies that λk ≤ 1/r . Now, by assuming that F is L-Lipschitz continuous, we
obtain

〈sk, uk〉 = 〈sk, F(xk) − F(xk−1) + rsk〉
= 〈xk − xk−1, F(xk) − F(xk−1)〉 + r〈sk, sk〉
≤ (L + r)〈sk, sk〉,

which yields 1/(L + r) ≤ λk . Therefore, as 1/(L + r) ≤ λk ≤ 1/r , we can conclude,
from the fact that dk = −λk F(xk), that dk satisfies the conditions (12) and (13) with
η1 = 1/(L + r) and η2 = 1/r .

3.3) In the works (Abubakar et al. 2020; Mohammad 2017) the coefficient λk is a convex
combination of the default spectral coefficient in Barzilai and Borwein (1988) and the
positive spectral coefficient in Dai et al. (2015). More specifically, λk is defined by

λk = (1 − t)θ∗
k + tθ∗∗

k ,

where t ∈ [0, 1], θ∗
k = ‖sk‖2/〈uk, sk〉, θ∗∗

k = ‖sk‖/‖uk‖, sk := xk − xk−1, uk :=
F(xk) − F(xk−1) + rsk and r > 0. In Abubakar et al. (2020), Lemma 2, it was shown
that if F is L-Lipschitz continuous, then dk = −λk F(xk) satisfies (12) and (13) with
η1 = max{1, 1/(L + r)} and η2 = min{1, 1/r}.

Since the search directions in examples 3.1, 3.2 and 3.3 satisfy (12) and (13) for specific
values of η1 and η2, we can conclude, from Theorem 1, that the SGM-AP (i.e., Framework 1
with the above three choice of search directions) converges to a solution of (1).
4) Limited memory BFGS method with approximate projections (L-BFGS-AP). Consider the
L-BFGSdirection dk proposed inZhou andLi (2007),which is obtained by solving the system
Bkdk = −F(xk), where the sequence {Bk} is given by B0 = I and Bk+1 is computed by the
following modified L-BFGS update process: letm > 0 be given and set m̃ = min{k + 1,m},
B(0)
k = B0 = I . Choose a set of increasing integers Lk = { j0, . . . , jm̃−1} ⊂ {0, . . . , k}.

Update Bk+1 by using the pairs {y jl , s jl }m̃−1
l=0 , i.e., for l = 0, . . . , m̃ − 1,

Bk+1 := B(l+1)
k+1 =

⎧
⎪⎨

⎪⎩
B(l)
k − B(l)

k s jl s
T
jl
B(l)
k

sTjl
B(l)
k s jl

+ y jl y
T
jl

yTjl
s jl

, i f
yTjl

s jl
‖s jl ‖2

≥ ε,

B(l)
k , otherwise,

where sk := xk+1 − xk and yk := F(xk+1) − F(xk). If dk in the Step 2 of Framework 1
is defined as above, we obtain an L-BFGS method with approximate projections. Under the
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assumption that F is L-Lipschitz continuous, it was proven in Zhou and Li (2007) that Bk

and B−1
k are bounded for all k ≥ 0, i.e., {Bk} ⊂ Sn,L(R). Since Bkdk = −F(xk) and using

(3), we obtain

〈dk, F(xk)〉 = 〈−B−1
k F(xk), F(xk)〉 = −‖F(xk)‖2B−1

k
≤ −

(
1

‖Bk‖
)

‖F(xk)‖2,

which yields 〈dk, F(xk)〉 ≤ −1/L‖F(xk)‖2. Now, from the Cauchy–Schwarz inequality, we
have

‖dk‖2Bk = 〈Bkdk, dk〉 = −〈F(xk), dk〉 ≤ ‖F(xk)‖‖dk‖,
which, combined with (3) and ‖B−1

k ‖ ≤ L , yields (1/L)‖dk‖ ≤ ‖F(xk)‖. Thus, dk satisfies
(12) and (13) with η1 = 1/L and η2 = L . Therefore, we conclude, from Theorem 1, that the
sequence {xk} generated by L-BFGS-AP (i.e., Framework 1 with the above choice of search
direction) converges to a solution of (1).

We end this section by proposing a new convergent method for solving (1), which is an
instance of Framework 1. This method is inspired by Solodov and Svaiter (1999a), Algo-
rithm 2.1 for solving variational inequalities. In the context that the projection operator is
computationally expensive, the latter algorithm was devised in order to minimize the total
number of performed projection operations. Let us now present our extension of Solodov
and Svaiter (1999a), Algorithm 2.1 to the convex-constrained monotone nonlinear equations
setting.
5) Modified Newton-like method with approximate projections (MNM-AP). Consider the
direction dk defined as follows: let η > 0, θ̄ ∈ [0, η) and {θk} ⊂ [0, θ̄ ] be given. Let
Bk ∈ Sn,L(R), and set w1

k := Bkxk − F(xk) and ε1k := θ2k ‖F(xk)‖2. Compute s1k in Rn such
that

s1k = ỹ BkC (w1
k , ε

1
k ) − xk, (28)

where ỹ BkC (w1
k , ε

1
k ) is an ε1k–approximate solution of the problem (4). If η‖F(xk)‖ ≤ ‖s1k ‖Bk ,

then dk := s1k . Otherwise, compute s2k in R
n such that

F(xk) + Bks
2
k = 0, (29)

and set dk := s2k . Note that the matrix Bk can be taken as those in the examples 3 and 4.
We will now prove that the dk described above satisfies (12) and (13), for all k ≥ 0. If
η‖F(xk)‖ ≤ ‖s1k ‖Bk , then dk = ỹ BkC (w1

k , ε
1
k ) − xk . By (5) with B = Bk , w = w1

k , ε = ε1k
and y = xk , we have

θ2k ‖F(xk)‖2 ≥〈Bk(xk − ỹ BkC (w1
k , ε

1
k )) − F(xk), xk − ỹ BkC (w1

k , ε
1
k )〉

=‖ỹ BkC (w1
k , ε

1
k ) − xk‖2Bk − 〈F(xk), xk − ỹ BkC (w1

k , ε
1
k )〉, ∀ k ≥ 0,

which, combined with the definition of dk , yields

−〈F(xk), dk〉 + θ2k ‖F(xk)‖2 ≥ ‖dk‖2Bk ≥ ‖F(xk)‖2η2, ∀ k ≥ 0, (30)

or, equivalently,

−〈F(xk), dk〉 ≥ ‖F(xk)‖2(η2 − θ2k ), ∀ k ≥ 0.

Therefore, since θk ≤ θ̄ for all k ≥ 0 and θ̄ ∈ [0, η), we have

〈F(xk), dk〉 ≤ −(η2 − θ̄2)‖F(xk)‖2.

123



A framework for convex-constrained monotone... Page 11 of 20 306

Hence, (12) holds with η1 = (η2− θ̄2). From (30) and using the Cauchy–Schwarz inequality,
we have

‖dk‖2Bk ≤ θ2k ‖F(xk)‖2 − 〈B−1
k F(xk), dk〉Bk ≤ θ2k ‖F(xk)‖2 + ‖B−1

k F(xk)‖Bk‖dk‖Bk ,
which, after some algebraic manipulations, yields

‖dk‖2Bk ≤ θ2k ‖F(xk)‖2 + ‖B−1
k F(xk)‖2Bk

2
+ ‖dk‖2Bk

2
.

Using the definition of scalar product 〈·, ·〉B = 〈·, B·〉 and (3), we obtain

‖dk‖2Bk
2

≤ θ2k ‖F(xk)‖2 +
‖F(xk)‖2B−1

k

2
≤ θ2k ‖F(xk)‖2 + ‖F(xk)‖2‖B−1

k ‖
2

=
(

θ2k + ‖B−1
k ‖
2

)
‖F(xk)‖2,

which implies that

‖dk‖2Bk ≤
(
2θ2k + ‖B−1

k ‖
)

‖F(xk)‖2.

Therefore, by (3), ‖B−1
k ‖ ≤ L and θk ≤ θ̄ for all k ≥ 0, we have

‖dk‖2 ≤ L
(
2θ̄2 + L

) ‖F(xk)‖2,

and hence (13) holds with η2 =
√
L

(
2θ̄2 + L

)
. On the other hand, if dk := s2k , the proof is

similar to the one in example 4. Therefore, we conclude, from Theorem 1, that the sequence
{xk} generated by theMNM-AP (i.e., Framework 1with the above choice of search direction)
converges to a solution of (1).

5 Numerical experiments

This section summarizes the numerical experiments carried out to verify the efficiency of the
instances of Framework 1. Numerical experiments are divided into two sections. In Sect. 5.1,
the methods are tested for a group of convex-constrained monotone nonlinear equations,
whereas in Sect. 5.2 they are tested for solving the system of constrained absolute value
equations (CAVE). The computational results are obtained using MATLAB R2018a on a
2.4 GHz Intel(R) i5 with 8GB of RAM and Windows 10 as ultimate system. The codes
supporting the numerical experiments are freely available in https://maxlng.ime.ufg.br/p/
17888-publications.

5.1 Monotone nonlinear equations with polyhedral constraints

In this subsection, our aim is to illustrate the behavior of the methods to solve 52 monotone
nonlinear equations with polyhedral constraints (i.e., C = {x ∈ R

n : a ≤ x ≤ b, Ax ≤ c},
where a, b ∈ R

n, c ∈ R
m and A ∈ R

m×n); see Table 1. Some of these problems are originally
unconstrained ones, for which constrains were added. In Pb11, the matrix A ∈ R

10×n is
randomly generated so that a solution of the problem 11 belongs to the feasible set.

The tolerance in the stopping criterion ‖F(xk)‖ < ε was set to ε = 10−6. If the stopping
criterion is not satisfied, the method stops when a maximum of 500 iterations has been
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performed. In this first group of test problems, we set σ = 10−4, γ = 1/2 and μk =
μ̄ = 0.25, for every k, in all algorithms. Moreover, the εk–approximate solution in (15)
was computed by the conditional gradient method, which stopped when either the stopping
criterion is satisfied or a maximum of 300 iterations is performed. In order to avoid an
excessive number of inner iterations, input εk was replaced by max{μ2

k‖ξk F(zk)‖2, 10−2}.
Linear optimization subproblems in the conditional gradient method (see (9)) were solved via
the MATLAB command linprog. We denote by SGM-AP1, SGM-AP2 and SGM-AP3,
the method SGM-AP, with the coefficient λk given in examples 3.1, 3.2 and 3.3, respectively.
In SGM-AP2, we set r = 0.01, whereas, in SGM-AP3, we set t = 1/(exp(k + 1)k+1) and
r = 1/(k + 1)2. In the L-BFGS-AP, we used m = 1. Finally, we set η = 0.5, θk = θ̄ = 0.25
in the MNM-AP.

We consider 4 different starting points (following the suggestions from the original
sources of the problems) for each problem of Table 1: For problem 1, x1 = (0.1, . . . , 0.1),
x2 = (1, . . . , 1), x3 = ((n − 1)/n, 0.1, . . . , 0.1, (n − 1)/n) and x4 = (−1, . . . ,−1). For
problem 2, x1 = (0.1, . . . , 0.1), x2 = (1, . . . , 1), x3 = (0, . . . , 0) and x4 = (−1, . . . ,−1).
For problem 3, x1 = (10, 0, . . . , 0), x2 = (9, 0, . . . , 0), x3 = (3, 0, 3, 0, 3) and x4 =
(0, 2, 2, 2, 2). For problem 5, x1 = (0, . . . , 0), x2 = (3, 0, 0, 0), x3 = (1, 1, 1, 0) and
x4 = (0, 1, 1, 1). For problems 14 and 16, x1 = (−1, . . . ,−1), x2 = (−0.1, . . . ,−0.1),
x3 = (−1/2,−1/22, . . . ,−1/2n) and x4 = (−1,−1/2, . . . ,−1/n). For problem 17,
x1 = ((n−1)/n, 0.1, . . . , 0.1, (n−1)/n), x2 = (0.1, . . . , 0.1), x3 = (1/2, 1/22, . . . , 1/2n)
and x4 = (1, 1/2, . . . , 1/n). For problems 4, 6 to 13, 15 and 18, x1 = (1, . . . , 1),
x2 = (0.1, . . . , 0.1), x3 = (1/2, 1/22, . . . , 1/2n) and x4 = (1, 1/2, . . . , 1/n). Figures 1, 2, 3
and 4 report the numerical results of SDM-AP, SGM-AP1, SGM-AP2, SGM-AP3, L-BFGS-
AP and MNM-AP for solving the 52 problems using performance profiles (Dolan and Moré
2002). Recall that in the performance profile, efficiency and robustness can be accessed on
the left and right extremes of the graphic, respectively. We consider that a method is the
most efficient if its number of iterations (resp. runtime) does not exceed in 5% the number of
iterations (resp. CPU time) of the fastest one. We also display in Tables 2 and 3 the numerical
results of the algorithms for the first problem dimension n in Table 1 and x1 as initial point. In
the tables, It and Time denote the number of iterations and CPU time in seconds, respectively,
whereas the symbol “-" indicates a failure.

From Figs. 1–4, we can see that all the variations of the SGM-AP achieved a better
performance (in terms of efficiency and robustness) compared to L-BFGS-AP and MNM-
AP. In the group of SGM-AP variants, SGM-AP1 and SGM-AP2 were better than the others.

5.2 Absolute value equations with polyhedral constraints

In this subsection, we consider the problem of finding a solution of the CAVE problem:

find x ∈ C such that Ax − |x | = b, (31)

where C := {x ∈ R
n;∑n

i=1 xi ≤ d, xi ≥ −1, i = 1, . . . , n}, A ∈ R
n×n , b ∈ R

n ≡ R
n×1,

and |x | denotes the vector whose i-th component is equal to |xi |. The problem (31) draws
attention for its simple formulation when compared to its equivalent linear complementarity
problem (LCP) (see Cottle and Dantzig 1968; Cottle et al. 2009; Mangasarian and Meyer
2006) which in turn includes linear programs, quadratic programs, bimatrix games and other
problems. Hence, interesting algorithms related to Newton-type methods to solve (31) have
been developed; see, for example, Cruz et al. (2016), Mangasarian (2009) and Oliveira and
Ferreira (2020) for the unconstrained and constrained case, respectively.
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Table 3 Performance of the methods with xk+1 as in (17) for the first problem dimension n in Table 1 and x1
as initial point

SDM-AP SGM-AP1 SGM-AP2 SGM-AP3 L-BFGS-AP MNM-AP
Pb It/Time It/Time It/Time It/Time It/Time It/Time

Pb 1 22/2.7e-01 14/1.3e-01 5/3.8e-01 8/1.2e-01 14/1.8e+00 5/1.4e-01

Pb 2 7/8.2e-02 23/2.5e-01 23/1.8e-01 22/1.7e-01 23/1.9e+00 15/3.0e-01

Pb 3 22/2.2e+00 36/3.9e+00 64/2.0e+00 – – –

Pb 4 360/4.0e+01 – – – – –

Pb 5 219/ 3.9e-01 169/2.8e-01 169/2.5e-01 312/3.7e-01 – –

Pb 6 31/2.8e-01 23/2.0e-01 23/1.6e-01 28/1.8e-01 31/2.6e+00 25/4.3e-01

Pb 7 18/1.8e-01 24/2.2e-01 24/1.6e-01 9/5.5e-02 24/2.0e+00 15/2.5e-01

Pb 8 25/2.9e-01 20/1.9e-01 6/4.6e-02 9/5.4e-02 20/1.7e+00 6/1.2e-01

Pb 9 29/2.3e-01 27/3.7e+00 14/9.4e-02 12/7.5e-02 28/2.3e+00 –

Pb 10 26/2.1e-01 26/1.9e-01 21/2.2e-01 9/1.2e-01 26/2.3e+00 9/3.2e-01

Pb 11 – 94/9.0e-01 71/9.2e-01 – – 62/1.2e+00

Pb 12 – – – – – –

Pb 13 201/2.7e+02 81/1.0e+02 82/1.6e+02 117/1.7e+02 215/3.6e+02 –

Pb 14 – 430/3.6e+00 375/3.4e+00 – – –

Pb 15 202/1.2e+00 116/7.3e-01 115/8.5e-01 113/8.2e-01 118/9.0e+00 –

Pb 16 59/6.4e-02 52/6.2e-02 53/1.1e-01 42/6.0e-02 65/2.7e-01 138/7.5e+00

Pb 17 328/2.5e+00 33/2.2e-01 36/2.8e-01 160/1.2e+00 – –

Pb 18 229/3.2e+01 87/3.5e+01 86/4.0e+01 113/1.1e+02 215/2.1e+01 –

Fig. 1 Performance profile for the number of iterations of SDM-AP, SGM-AP1, SGM-AP2, SGM-AP3, L-
BFGS-AP and MNM-AP with xk+1 as in (15)
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Fig. 2 Performance profile for CPU time of SDM-AP, SGM-AP1, SGM-AP2, SGM-AP3, L-BFGS-AP and
MNM-AP with xk+1 as in (15)

Fig. 3 Performance profile for the number of iterations of SDM-AP, SGM-AP1, SGM-AP2, SGM-AP3, L-
BFGS-AP and MNM-AP with xk+1 as in (17)

Under the assumption that ‖A−1‖ ≤ 1, it was proven in Mangasarian and Meyer (2006),
Proposition 4 that the problem (31), with C = R

n , is uniquely solvable for any b. Now, if
A is symmetric positive definite, then F(x) = Ax − |x | − b is monotone. In fact, for all
x, y ∈ R

n , we have

〈F(x) − F(y), x − y〉 = 〈Ax − |x | − Ay + |y|, x − y〉 = ‖x − y‖2A + 〈|y| − |x |, x − y〉
≥ ‖x − y‖2 1

‖A−1‖ + 〈|y| − |x |, x − y〉
≥ ‖x − y‖2 + 〈|y| − |x |, x − y〉. (32)

where in the second equality we use that 〈·, ·〉B = 〈·, B·〉, (3) and ‖A−1‖ ≤ 1. Note that |x |
can be written as |x | = PRn+(x) + PRn+(−x). So, from (32), the Cauchy-Schwarz inequality
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Fig. 4 Performance forCPU time of SDM-AP, SGM-AP1, SGM-AP2, SGM-AP3, L-BFGS-AP andMNM-AP
with xk+1 as in (17)

and the fact that PRn+(·) is monotone and nonexpansive, we obtain

〈F(x) − F(y),x − y〉
≥‖x − y‖2 + 〈PRn+(y) + PRn+(−y) − PRn+(x) − PRn+(−x), x − y〉
=‖x − y‖2 − 〈PRn+(x) − PRn+(y), x − y〉 + 〈PRn+(−y) − PRn+(−x), x − y)〉
≥‖x − y‖2 − ‖PRn+(x) − PRn+(y)‖‖x − y‖
≥‖x − y‖2 − ‖x − y‖2 = 0,

which proves the statement. In our implementation, we used theMatlab routinesprandsym
to construct matrix A randomly, which generates a symmetric positive definite sparse matrix
with predefined dimension, density and singular values. For this process, the density of
matrix A was set to 0.003 and the vector of singular values was randomly generated from
a uniform distribution on (0, 1). In this case, as the vector of singular values (rc) is a vec-
tor of length n, then A has eigenvalues rc. Thus, if rc is a positive (nonnegative) vector,
then A is a positive (nonnegative) definite matrix. We chose a random solution x∗ from
a uniform distribution on (0.1, 10) and computed b = Ax∗ − |x∗| and d = ∑n

i=1(x∗)i ,
where (x∗)i denotes the i-th component of the vector x∗. The initial points were defined as
x0 = (0, . . . , 0, d/2, 0, . . . , 0, d/2, 0, . . . , 0) ∈ R

n , where the two positions of d/2 were
generated randomly on the set {1, 2, . . . , n}.

For the CAVE problem, we consider only the SGM-AP2 since it was the best method
in our first class of experiments described in Sect. 5.1. For a comparative purpose, we also
run the inexact Newton method with feasible inexact projections (INM-InexP) of Oliveira
and Ferreira (2020). INM-InexP is an algorithm designed for solving smooth and nonsmooth
equations subject to a set of constraints. We rescale the vector of singular values to ensure
that the condition ‖A−1‖ ≤ 1/3 < 1 is fulfilled and, consequently, ensure the good definition
of INM-InexP (see Mangasarian 2009, Theorem 2 for more details). In INM-InexP, we set
θ = θ̄ = μ̄ = 0.25 and the other parameters were set as in Oliveira and Ferreira (2020). For
both algorithms, a failure was declared if the number of iterations was greater than 500. The
procedure to obtain inexact projections used in the implementation of INM-InexP was also
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Fig. 5 Performance profile for
the number of iterations of
SGM-AP2-C, SGM-AP2-CH and
INM-InexP for CAVE

Fig. 6 Performance profile for
the CPU time of SGM-AP2-C,
SGM-AP2-CH and INM-InexP
for CAVE

the CondG method and the procedure stopped when either the condition as in Oliveira and
Ferreira (2020), Algorithm 1 was satisfied or a maximum of 10 iterations were performed.
For our algorithms, the procedure stopped when either the stopping criterion was satisfied or
a maximum of 10 iterations were performed.

As in Sect. 5.1, Figs. 5 and 6 report numerical results of algorithms using performance
profiles. We generated 50 CAVEs of dimensions 1000, 5000 and 10000 and for each of them
we test the algorithm for 5 different initial points. The numerical results of the algorithms are
also displayed in Table 4, where “% solve" indicates the percentage of runs that has reached
a solution, and for the successful runs It and Time denote the number of iterations and CPU
time in seconds, respectively. We see, from Figs. 5 and 6 , that the SGM-AP2-C (with xk+1 as
in (17)) was the most robust one whereas INM-InexP was more efficient than SGM-AP2-C
and SGM-AP2-CH (with xk+1 as in (15)).

6 Final remarks

In this paper, we proposed and analyzed some methods with approximate projections for
solving constrained monotone equations. When necessary, such inexact projections can
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Table 4 Performance of the SGM-AP2-C, SGM-AP2-CH and INM-InexP for CAVE

n SGM-AP2-C SGM-AP2-CH INM-InexP

% solve It Time % solve It Time % solve It Time

1000 84.00 109.64 2.56 78.00 109.83 2.69 73.00 33.01 1.88

5000 59.00 280.29 97.97 41.00 316.83 118.48 48.00 61.31 58.57

10000 12.00 285.83 331.13 11.00 285.27 349.46 37.00 184.00 625.55

be obtained by using suitable iterative algorithms; for example, the conditional gradient
(Frank-Wolfe) method (Dunn 1980; Frank and Wolfe 1956). Inexact versions of steepest
descent-based, spectral gradient-like, Newton-like and limited memory BFGSmethods were
discussed. A new algorithm inspired by Solodov and Svaiter (1999a), Algorithm 2.1 for
solving variational inequalities was also presented. The global convergences of the afore-
mentionedmethodswere obtained by first presenting and establishing the global convergence
of a framework and then showing that the new methods fall in this framework. Preliminary
numerical experiments showed that the proposed methods performed well to solve con-
strained monotone nonlinear equations, and they are competitive in terms of robustness with
the Inexact Newton method with feasible inexact projections in Oliveira and Ferreira (2020)
for solving absolute value equations with polyhedral constraints.

Funding The work of these authors was supported in part by CAPES and CNPq Grants 405349/2021-1 and
304133/2021-3.
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