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Abstract
This study is devoted to find the numerical solution of the surface heat flux history and tem-
perature distribution in a non linear source term inverse heat conduction problem (IHCP).
This type of inverse problem is investigated either with a temperature over specification con-
dition at a specific point or with an energy over specification condition over the computational
domain. A combination of the meshless local radial point interpolation and the finite differ-
ence method are used to solve the IHCP. The proposed method does not require any mesh
generation and since this method is local at each time step, a system with a sparse coefficient
matrix is solved. Hence, the computational cost will be much low. This non linear inverse
problem has a unique solution, but it is still ill-posed since small errors in the input data cause
large errors in the output solution. Consequently, when the input data is contaminated with
noise, we use the Tikhonov regularization method in order to obtain a stable solution. Three
different kinds of schemes are applied to choose the regularization parameter which are in
agreement with each other. Numerical results show that the solution is accurate for exact data
and stable for noisy data.
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1 Introduction

Parabolic inverse problems play a major task in modeling some physical phenomena. They
appear in various fields of physics and engineering such as analysis of heat conduction,
thermoplasticity, chemical diffusion and control theory.

Inverse problems are in nature ’unstable’ because the unknown solutions and parameters
have to be determined from indirect observable data which contain measurement error. The
main difficulty in establishing any numerical algorithm for approximating the solution is due
to the severe ill-posedness of the problem and the ill-conditioning of the resultant discretized
matrix (Hon and Wei 2004).

Among the species of parabolic inverse problems such as theworks (Cannon 1984;Cannon
and Du Chateau 1988; Kanca and Ismailov 2012; Yousefi et al. 2012; Hao and Reinhardt
1996; Shivanian and Jafarabadi 2018b), inverse heat conduction problem (IHCP) is greatly
ill-posed in the sense that any small change on the input data can result in a sizeable change to
the solution. The IHCP arises in themodelling and control of process with heat propagation in
thermophysics and mechanics of continuous media. It befall whenever surface temperatures
and surface heat fluxes should be determined at inaccessible portions of the surface from the
correspondingmeasurements at accessible parts (Hon andWei 2004). For instance, physicists
and engineers often come across problems such as estimation of boundary conditions and
bulk radiation properties in emitting, absorbing and scattering translucent materials and
approximation of boundary heat flux and inlet condition inside ducts, arising due to forced
convection. In this respect, the direct problem observes a reduction in error (arising from the
boundary or interior measurements) as a result of the diffusive nature of the process of heat
conduction. Hence the inverse problem which is under-determined in nature is considered
highly ill-posed. The mathematical techniques employed for solving the problems of heat
conduction in anisotropic bodies vary extensively from the problems in isotropic media.
The tensorial character corresponding to the heat transfer, differs for both anisotropic and
isotropic cases, resulting in the presence of mixed partial derivatives in the corresponding
differential equation. This just complicates the task of obtaining a solution, be it analytical or
numerical. Thus, the application of the principle method of separation of variables becomes
impossible owing to the presence of the mixed derivatives with respect to space variables
as they can’t be separated. Moreover, the application of integral methods such as Green’s
functions or Laplace and Fourier transforms requires that the calculating regions be unlimited
on no less than one side (Arora and Dabas 2019).

As a non-exhaustive andmore recent list, we canmention to the followingworks that stud-
ied various modes of inverse heat conduction problem. Amore complete list is given in Arora
and Dabas (2019). The authors of Arora and Dabas (2019) proposed a linear combination of
fundamental solutions and heat polynomials for a two-dimensional space inverse heat con-
duction problem in an anisotropic medium. Shidfar et al. approximated the heat flux through
Chebyshev polynomials in Shidfar et al. (2006). Two numerical procedures based upon the
Bernstein multi-scaling approximation and the cubic B-spline scaling functions for solving
the IHCP with a nonlinear source term presented by Dehghan et al. (2013). The authors
of Xiong et al. (2020) presented a sequential conjugate gradient method to reconstruct the
undetermined surface heat flux for nonlinear inverse heat conduction problem (IHCP). Their
modified method combines the merits of sequential function specification method (SFSM)
and conjugate gradient method (CGM). The work Fernandes et al. (2015) proposes a transfer
function identification (or impulse response) method to solve inverse heat conduction prob-
lems. Its technique is based on Green’s function and the equivalence between thermal and
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dynamic systems. The authors of Cheng-Yu et al. (2021) applied a collocation method using
the space-time radial polynomial series function (SRPSF) for dealing with two-dimensional
inverse heat conduction problems (IHCPs) with arbitrary shapes. Different approaches to
solving the boundary-value inverse heat conduction problem based on the use of Laplace and
Fourier transforms are proposed in Yaparova (2014).

During the last few decades, numerous meshless approaches have been extensively devel-
oped for tackling the IHCPs (Hon and Wei 2004; Cheng-Yu et al. 2021; Hussen et al. 2022;
Ismail 2017; Deng et al. 2020; Grabski et al. 2019) inwhich among them, (Hon andWei 2004;
Cheng-Yu et al. 2021; Hussen et al. 2022) investigate the IHCP in one dimension. Although
many researchers have studied IHCPs in one dimension through diverse techniques (Hon
and Wei 2004; Frankel and Keyhani 1997; Jonas and Louis 2000; Lesnic and Elliott 1999;
Lesnic et al. 1996; Liu 1996; Shen 1999), we consider the following one-dimensional time-
dependent parabolic heat equation that already introduced in Shidfar et al. (2006), Dehghan
et al. (2013):

∂u(x, t)

∂t
= ∂2u(x, t)

∂x2
+ F(u(x, t)), x ∈ � = (0, 1), t ∈ (0, T ], (1)

with the initial condition

u(x, 0) = u0(x), x ∈ [0, 1], (2)

and Neumann boundary conditions

∂u(x, t)

∂x
|x=0 = a(t), t ∈ [0, T ], (3)

∂u(x, t)

∂x
|x=1 = g(t), t ∈ [0, T ], (4)

where u(x, t) is the temperature distribution and T represents the maximum time of interest
for the time evolution of the problem. Also, F , u0(x) and g(t) are considered as known
functions. Equations (1)–(3) represent the Neumann direct problem which is nonlinear and
well-posed if the function a(t) is given. The function F(u(x, t)) is interpreted as a heat or
material source, while in a chemical or biochemical application, it may be interpreted as a
reaction term (Shidfar et al. 2006). The conditions under which one can find the solution
u(x, t) to the direct problem are given in Cannon (1984). A brief review on the solution of
direct heat conduction problem are as follows. Let θ(x, t) denote the theta function defined
by

θ(x, t) =
∞∑

m=−∞
K (x + 2m, t), t > 0,

where K (x, t) is the free-space heat kernel

K (x, t) = 1√
4π t

e
−x2
4t , −∞ < x < ∞, t > 0,

also, by assumption that the functions F , u0, g, a in direct problem have the following
properties:

(a) u0(x), a(t), g(t) ∈ C[0,∞),

(b) The function F(u(x, t)) is a given piecewise differentiable function on the set {u|−∞ <

u < ∞},
(c) There exists a constant CF such that |F(u) − F(v)| ≤ CF |u − v|,

123



284 Page 4 of 29 A. Dinmohammadi, A. Jafarabadi

(d) F is a bounded and uniformly continuous function in u,

then u(x, t), called the unique solution of the direct problem (1)–(4), has the form Cannon
(1984); Shidfar et al. (2006)

u(x, t) =
1∫

0

{θ(x − ξ, t) + θ(x + ξ, t)}u0(ξ)dξ − 2

t∫

0

θ(x, t − τ)a(τ )d(τ )

+ 2

t∫

0

θ(x − 1, t − τ)g(τ )dτ

+
t∫

0

1∫

0

{θ(x − ξ, t − τ) + θ(x + ξ, t − τ)}F(u(ξ, τ ))dξdτ.

The function p(t) = u(1, t; F, a) will be viewed as an output corresponding to the input
g(t), in the presence of the heat flux ∂xu(0, t) = a(t). Now, we look at the interaction of a
change �a with the corresponding change �p in the measured output p(t).

Theorem 1 Suppose that the data functions g = g(t), F = F(u) and the heat flux terms
a1 and a2 at x = 0 satisfy assumptions (a)-(d). Let un = u(x, t; F, g, u0, an) and pn(t) =
un(1, t), for n = 1, 2. Then for any τ , 0 ≤ τ ≤ T ,

τ∫

0

(p1(t) − p2(t))ν(t)dt =
τ∫

0

(a1(t) − a2(t))φ(0, t)dt,

where φ(x, t) denotes a solution of the following suitable adjoint problem with input data
ν(t):

∂tφ(x, t) + ∂xxφ(x, t) + λ(x, t)φ(x, t) = 0, 0 < x < 1, 0 < t < τ,

φ(x, τ ) = 0, 0 < x < 1,
φx (1, t) = ν(t), 0 < t < τ,

φx (0, t) = 0, 0 < t < τ.

Proof Refer to Shidfar et al. (2006). ��
The above adjoint problem is backward in time, but is well posed Shidfar et al. (2006)

thus the solution is controlled by the inhomogeneous Neumann condition at x = 0.
Inmutuality to the direct problem, in the inverse problem the heat flux a(t) is unknown and

clearly, additional information is required in order to render a unique solution. With respect
to what additional information can be provided by experiment, in this study we specify two
inverse problems, as follows:

1. Inverse Problem 1 (IP1). If the additional measurement be the internal temperature mea-
surement in time at x∗ ∈ [0, 1], namely

u(x∗, t) = p(t), t ∈ [0, T ], (5)

then Eqs. (1)–(5) are called the IP1. Notice that if the internal point x∗ = 0, then the
problems (1)–(2) with (4)–(5) is a well-posed forward heat conduction problem. Further-
more, if x∗ = 1, the problems (1)–(2) with (4)–(5) is called a Cauchy problem for heat
equation.
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2. Inverse Problem 2 (IP2). In the situation that the additional measurement is the L1-norm
of u(x, t) over the space domain (0, 1), i.e. the following equation

1∫

0

u(x, t)dx = E(t) t ∈ [0, T ], (6)

then Eqs. (1)–(4) with (6) are recognized as the IP2.

A general IHCP is then to determine the temperature and heat flux on the surface x = 0. This
problem is well known for being highly ill-posed since small errors in the input data cause
large errors in the output solution.

The IHCP is difficult because it is extremely sensitive to measurement errors. Other
important effects can be the presence of the lag and damping on experimental data. Another
problem that appears in IHCP is related to the time sample. For example, the use of small
times steps frequently introduces instabilities in the solution of the IHCP. It can be observed
that the conditions of small time steps have the opposite effect in the IHCP compared to that
in the numerical solution of the heat conduction equation.

This study has three main objects. The first is to provide a local radial point interpolation
meshless method to obtain the numerical solution of the IP1 and IP2. This method has
been widely applied in solving some kind of partial differential equations(PDEs), such as
fractional PDEs and inverse problems in two and three dimensional cases Shivanian and
Jafarabadi (2017a, b, 2018a). The second objective is to demonstrate the efficiency of the
meshless proposed method in dealing with the highly ill-posed IP1 and IP2 through the
detailed numerical results underlyingmethods such as forward finite difference and Tikhonov
regularization. InShidfar et al. (2006),Dehghan et al. (2013), the authors has been investigated
only the IP1 and addition, does not provide a comparison with the other methods whiles in
the current work, we study both the IP1 and the IP2, and also numerical comparisons will be
done with their results. As the end aim of this study, we will obtain a simple scheme to find
the regularization parameter which can be a good competitor to the famous methods such as
the L-curve and discrepancy principle methods.

The structure of the article is as follows. In Sect. 2, themethod is briefly described and some
preliminaries are given which are useful for our main results. In Sects. 3 and 4 the numerical
solutions of the direct and inverse problems are given, respectively. The main results of
approach are demonstrated through some examples to show its validity and efficiency in
Sect. 5, and a brief conclusion is given in Sect. 6.

2 Proposedmethod

To prevent the singularity problem in the polynomial point interpolation method (PIM), the
radial basis function (RBF) is used to expand the radial point interpolation method (RPIM)
shape functions for meshless weak and strong form methods (Wang and Liu 2002). Suppose
a continuous function u(x) defined in a domain � ⊂ R, which is represented by a set of field
nodes. The u(x) at a point of interest x is approximated in the form of

s(x) =
n∑

i=1

Ri (x)ai +
np∑

j=1

Pj (x)b j = Rtr (x)a + Ptr (x)b, (7)

where Ri (x) is a radial basis function (RBF), n is the number of RBFs, Pj (x) is monomial in
the space coordinate x , and np is the number of polynomial basis functions. For the second-
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order partial differential equation, in this case the IHCP, we choose the second-order thin
plate spline (TPS) as radial basis functions in Eq. (7). This RBF is defined as follows:

R(x) = r2log(r). (8)

In the radial basis function Ri (x), the variable is only the distance between the point of
interest x and a node at xi which is defined as

r = |x − xi |, (in 1-D). (9)

Also, The Pj (x) in Eq. (7) is built using Pascal’s triangle and a complete basis is usually
preferred. In the current work, we consider

Ptr (x) = {
1, x, x2, x3, x4, x5

}
. (10)

To obtain unknown coefficients ai and b j in Eq. (7), a support domain is built at the point of
interest x , and n field nodes which are included in the support domain. The coefficients ai and
b j can be specified by performing Eq. (7) to be satisfied at these n nodes surrounding the point
of interest x , i.e s(xi ) = u(xi ), i = 1, 2, ..., n. So, we have a linear system corresponding to
each node. These equations in matrix form are as follows:

Us = Rna + Pnpb, (11)

where the vector of function values Us is

Us = {u(x1), u(x2), u(x3), . . . , u(xn)}tr , (12)

the RBFs moment matrix is

Rn =

⎛

⎜⎜⎜⎝

R1(r1) R2(r1) · · · Rn(r1)
R1(r2) R2(r2) · · · Rn(r2)

...
...

. . .
...

R1(rn) R2(rn) · · · Rn(rn)

⎞

⎟⎟⎟⎠

n×n

, (13)

and the polynomial moment matrix is

Pnp =

⎛

⎜⎜⎜⎜⎝

1 x1 x21 · · · xnp−1
1

1 x2 x22 · · · xnp−1
2

...
...

...
. . .

...

1 xn x2n · · · xnp−1
n

⎞

⎟⎟⎟⎟⎠

n×np

. (14)

Also, the vector of unknown coefficients for RBFs is

atr = {a1, a2, · · · , an}, (15)

and the vector of unknown coefficients for polynomial is

btr = {b1, b2, · · · , bnp}. (16)

Since there are n + np unknown variables in Eq. (7), to guarantee the uniqueness of the
approximation, we add np conditions as follows

n∑

i=1

Pj (xi )ai = Ptr
npa = 0, j = 1, 2, · · · , np. (17)
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By combining Eqs. (7) and (17) yields the following system of equations in the matrix form:

Ũs =
⎛

⎝
Us

0

⎞

⎠ =
⎛

⎝
Rn Pnp

Ptr
np 0

⎞

⎠

⎛

⎝
a

b

⎞

⎠ = G̃a, (18)

where

Ũ
tr
s = {u(x1), u(x2), · · · , u(xn), 0, 0, · · · , 0}, ãtr = {a1, a2, · · · , an, b1, b2, · · · , bnp}.

(19)

By solving Eq. (18), we obtain

ã =
⎛

⎝
a

b

⎞

⎠ = G−1Ũs . (20)

Eq. (7) can be rewritten as

s(x) = {Rtr (x),Ptr (x)}G−1Ũs = �̃tr (x)Ũs, (21)

where

�̃tr (x) = {Rtr (x),Ptr (x)}G−1 = {φ1, φ2, · · · , φn, φn+1, φn+2, · · · , φn+np}. (22)

The first n functions of the above vector function are called the radial point interpolation
(RPIM) shape functions corresponding to the nodal displacements, and we denote

�tr (x) = {φ1, φ2, · · · , φn}, (23)

then Eq. (21) is transformed to the following one

s(x) = �tr (x)Us =
n∑

i=1

φi (x)u(xi ). (24)

The derivative of s(x) is easily obtained as

ds(x)

dx
=

n∑

i=1

dφi (x)
dx

u(xi ). (25)

It is significant that the RPIM shape functions have the Kronecker delta function property,
that is

φi (x j ) =
{
1 for i = j, j = 1, 2, ..., n

0 for i 
= j, i, j = 1, 2, ..., n
. (26)

This is because the RPIM shape functions are created to pass through nodal values.Moreover,
the shape functions are the partitions of unity, that is,

n∑

i=1

φi (x) = 1. (27)

In the presentmethod, it does not require any kind of integration locally over small quadrature
domains because we choose the Dirac delta function instead of the Heaviside step function,
the Gaussian weight function, etc. Therefore, computational costs of the present method is
less expensive.
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When the Lagrangian form of the proposed method is used in the context of solving a
time-dependent PDE problem, the solution u(x, t) is approximated by

s(x, t) =
n∑

i=1

φi (x)ui (t) (28)

where ui (t) � u(xi , t) are the unknown functions to determine.
Finally, we assume that the number of total nodes covering � = (� ∪ ∂�) is N . Also,

consider the nx , instead n, the number of nodes included in support domain�x corresponding
to the point of interest x . For example, �x can be an interval centered at x with radius rs .
Therefore, we have nx ≤ N and Eq. (24) can be modified as

s(x) = �tr (x)Us =
N∑

j=1

φ j (x)u(x j ). (29)

If we define �c
x = {x j : x j /∈ �x } and since corresponding to node x j there is a shape

function φ j (x), j = 1, 2, ..., N , then from Eq. (26) we have

∀x j ∈ �c
x : φ j (x) = 0. (30)

The derivative of s(x) is easily obtained as

ds(x)

dx
=

N∑

j=1

dφ j (x)

dx
u(x j ), (31)

and generally higher order derivative of s(x) is given as

dms(x)

dxm
=

N∑

j=1

dmφ j (x)

dxm
u(x j ), (32)

where
dm(.)

dxm
ism’th derivative. If we substitute x = xi in Eq. (32), thenwe have the following

matrix–vector multiplication

U (m)
x = D(m)

x U , (33)

where

U (m)
x =

(
u(m)(x1), u

(m)(x2), ..., u
(m)(xN )

)tr
, (34)

D(m)
xi j = dmφ j (xi )

dxm
, (35)

and

U = (u(x1), u(x2), ..., u(xN ))tr . (36)

Also from Eq. (30), it is clear that ∀x j ∈ �c
x : dmφ j (x)/dxm = 0,m = 1, 2, ....

3 Numerical solution of the direct problem

In this section, we consider the direct initial boundary value problem (1)–(4). To introduce
a finite difference approximation in order to discretize the time derivative, we need some
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preliminaries. Here, the time derivatives are approximated by the time-stepping method. For
this purpose the following approximation can be used

∂u(x, t)

∂t
� uk+1(x) − uk(x)

δt
. (37)

Also the Crank–Nicolson scheme is used to approximate the Laplacian operator ∂2(.)/∂x2

at two respective times, as follows

∂2u(x, t)

∂x2
� 1

2

(
∂2uk+1(x)

∂x2
+ ∂2uk(x)

∂x2

)
, (38)

where uk(x) = u(x, kδt) and δt is the time step. To eliminate the nonlinearity, an iterative
approach in this case a simple predictor-corrector (P-C) scheme is performed. Using the
above discussion, Eq. (1) can be written as

u(k+1)(x) − u(k)(x)

δt
= 1

2

(
∂2u(k+1)(x)

∂x2
+ ∂2u(k)(x)

∂x2

)
+ F(ũ). (39)

We can rewrite Eq. (39) as follows

u(k+1)(x) − λ
∂2u(k+1)(x)

∂x2
= u(k)(x) + λ

∂2u(k)(x)

∂x2
+ δt F(ũ), (40)

where λ = δt/2 and ũ is the latest available approximation of u. We assume that u(k)(xi ) are
known, and our aim is to compute u(k+1)(xi ) for i = 1, 2, ..., N . By substituting approximate
formulas (29) and (32) into Eq. (40) yields

N∑

j=1

φ j (x)u
(k+1)
j − λ

N∑

j=1

∂2φ j (x)

∂x2
u(k+1)
j =

N∑

j=1

φ j (x)u
(k)
j + λ

N∑

j=1

∂2φ j (x)

∂x2
u(k)
j + δt F(ũ).

(41)

In the previous equation, we put x = xi , i = 1, 2, ..., N�, (N� is the number of nodes in �),
and then by applying the notations (33)–(36), implies

u(k+1)
i − λ

N∑

j=1

D(2)
xi j u

(k+1)
j = u(k)

i + λ

N∑

j=1

D(2)
xi j u

(k)
j + δt F(ũi ), i = 1, 2, ..., N�.

(42)

For xi = 0 and 1, i.e the nodal points on the boundary of � which we display it by ∂�, using
Eqs. (3) and (4), we have the following relation

N∑

j=1

D(1)
xi j u

(k+1)
j = a((k + 1)δt), xi = 0, (43)

N∑

j=1

D(1)
xi j u

(k+1)
j = g((k + 1)δt), xi = 1. (44)

Also, we have the following equation to compute the favorable output (6) using Simpson’s
composite numerical integration rule

E((k + 1)δt) =
N∑

j=1

d ju
(n+1)
j , (45)
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where d j ’s are the coefficients in the Simpson rule and N is the total number of nodes
covering �̄, i.e. N = N� + N∂�. According to the above discussions, we consider the
following system

AU (k+1) = BU (k) + C, (46)

where the matrices A and B are N by N , whereas C and U (k+1) are columnar matrices. We
define these matrices as follows:

Ai j =
{

δi j − λD(2)
xi j , i = 1, 2, ..., N�

D(1)
xi j , xi ∈ ∂� = {0, 1} , j = 1, 2, ..., N , (47)

Bi j =
{

δi j + λD(2)
xi j , i = 1, 2, ..., N�

0, xi ∈ ∂� = {0, 1} , j = 1, 2, ..., N , (48)

Ci =

⎧
⎪⎨

⎪⎩

δt F(ũi ), i = 1, 2, ..., N�

a((k + 1)δt), xi = 0

g((k + 1)δt), xi = 1

, (49)

U (k+1) = [
u(k+1)
1 , u(k+1)

2 , ..., u(k+1)
N

]tr
. (50)

In Eqs. (47) and (48), δ is the Kronecker delta function, i.e.

δi j =
{
1, i = j

0, i 
= j
. (51)

To deal with the nonlinear term in system (46), we explain a simple predictor-corrector
scheme. At the first time level, when k = 0, according to the initial condition (2), we apply
the following assumption

U (0) = [u0(x1), u0(x2), ..., u0(xN )]tr . (52)

Now, we perform the following procedure Dehghan and Ghesmati (2010):
At first we put ũ = U (k), k = 0, and so system (46) can be solved as a system of linear

algebraic equations for the unknownU (1), thenwe use the followingCrank–Nicolson scheme

U = 1

2

(
U (0) +U (1)). (53)

From Eq. (53), we set ũ = U and using the new ũ, Eq. (46) is solved using the new U for
unknown U (1) in iteration (l = 2). We are at the time level (k + 1) yet, and iterate between
calculating ∼ũ and computing the approximation values of the unknown U (k+1)

l (where l
denotes the number of iterations in each time level). We put

U = 1

2

(
U (k) +U (k+1)

l

)
. (54)

In the current work, we iterate this process until the following condition is true for each time
level

||U (k+1)
l −U (k+1)

l−1 ||∞ < 10−15, (55)

Finally, we putU (k+1) = U (k+1)
l . Then, we can go to the next time level. So the nonlinearity

of system (46) is eliminated by the above discussion. This process is iterated until reaching
to the desirable time t .
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4 Numerical solution of the inverse problem

We now consider the inverse initial boundary value problem (1)–(4) with either additional
conditions (5) or (6) when both the surface heat flux a(t) and the temperature distribution
u(x, t) are unknown. In this case, Eqs. (42) and (44) are hold similar to the direct problem,
but Eq. (43) converts to the following equality

N∑

j=1

D(1)
xi j u

(k+1)
j − a(k+1) = 0, xi = 0. (56)

In practice, either the additional observations (5) or (6) come from measurements which are
inherently contaminated with errors. We therefore model this by replacing the exact data
p
(
(k + 1)δt

)
and E

(
(k + 1)δt

)
with the noisy data

pγ

(
(k + 1)δt

) = p
(
(k + 1)δt

)(
1 + γ ε

)
, for IP1, (57)

Eγ

(
(k + 1)δt

) = E
(
(k + 1)δt

)(
1 + γ ε

)
, for IP2, (58)

where γ is the percentage of noise and ε are random variables generated from a uniform
distribution in the interval [−1, 1]. Overall, we have N� + N∂� + 1 equations, i.e., N + 1
equations and N + 1 unknown as {u(k+1)

1 , u(k+1)
2 , ..., u(k+1)

N } and a(k+1). If we show the
sparse system as the following matrix form

AU (k+1) = BU (k) + C, (59)

then matrices A and B are (N + 1) by (N + 1), C and U (k+1) are columnar matrices which
we define them as follows

Ai j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δi j − λD(2)
xi j , i = 1, 2, ..., N�

D(1)
xi j , xi ∈ ∂� = {0, 1}

1n0 , i = N + 1(for IP1)

OR

d j , i = N + 1(for IP2)

,j = 1, 2, ..., N , (60)

where n0 is the index of x∗ in the nodal points.

Ai j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i = 1, 2, ..., N�

−1, xi = 0

0, xi = 1

0, i = N + 1

, j = N + 1, (61)

Bi j =

⎧
⎪⎨

⎪⎩

δi j + λD(2)
xi j , i = 1, 2, ..., N�

0, xi ∈ ∂� = {0, 1}
0, i = N + 1

, j = 1, 2, ..., N , (62)

Bi j = 0, i = 1, 2, ..., N + 1, j = N + 1, (63)
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Table 1 Condition number of the matrix A

Example 1 Example 2
IP1 IP2 IP1 IP2

h = δt = 1/4 2.4237e + 03 3.5568e + 02 1.3213e + 02 3.5568e + 02

h = 1/8, δt = 1/64 4.0888e + 07 5.6761e + 03 7.1778e + 05 5.6761e + 03

h = 1/16, δt = 1/1024 7.3833e + 12 9.3326e + 04 3.9925e + 17 9.3326e + 04
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Fig. 1 Normalised singular values σn/σ1 for n = 1 : T /δt for IP1 and IP2 in Example 1

Ci =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

δt F(ũi ), i = 1, 2, ..., N�,

0, xi = 0

g
(
(k + 1)δt

)
, xi = 1

pγ

(
(k + 1)δt

)
, i = N + 1(for IP1)

OR

Eγ

(
(k + 1)δt

)
, i = N + 1(for IP2)

, (64)

U (k+1) = [
u(k+1)
1 , u(k+1)

2 , ..., u(k+1)
N , a(k+1)]tr . (65)

In the first time level, i.e when k = 0, we need to the value a(0) that a combination of Eqs.
(2) and (3) leads to a(0) = u′

0(0).
Condition numbers of the matrixA in Eq. (59) given in Table 1 are ofO(102) toO(1017).

These large condition numbers express that the system of equations (59) is highly ill-
conditioned. The ill-conditioning nature of the matrix A can also be revealed by plotting
its normalised singular values σn/σ1 for n = 1 : T /δt , in Fig. 1.

5 Numerical results

For numerical purposes, we take T = 1 as final time, �̄ = [0, 1] as the domain all over and
rs = 4.2h as the radius of support domain where h is the spatial step. In two test problems
that will be discussed, we use an agreement as follows. If we consider the IP1 then we set
x∗ = 1, otherwise, we will mention to its value. We implement the proposed method in the
foregoing sections with MATLAB 7.0 software in a CI5 machine with 4 Gb of memory.
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Fig. 2 The absolute errors between the exact (66) and numerical solutions u(x, t) and E(t) obtained by solving
the direct problem with h = 1/20, δt = 0.01 (a, b), and h = 1/26, δt = 0.0005 (c,d) for Example 1

5.1 Example 1

We consider Eqs. (1)–(4) with the exact solution

u(x, t) = xe2t , (66)

where the other functions can be obtained using the exact solution. Moreover, the source
term is F(u) = 2u. Also, the desired output (6) is given by E(t) = 0.5e2t where t ∈ [0, 1].
The absolute errors between the numerical and exact solutions for u(x, t) and E(t) with
h = 1/20, δt = 0.01 (a, b) and h = 1/26, δt = 0.0005 (c, d), are shown in Fig. 2.

5.1.1 Exact data

In this subsection, we consider the case of exact data, i.e. there is no noise in the input data (5)
and (6) so that the exact solutions are as {u(x, t), a(t)} = {xe2t , e2t }. In the other words, we
assume thatγ = 0 inEqs. (57) and (58). The absolute errors corresponding toa(t) andu(x, T )

by solving the IP1 and IP2 are plotted in Fig. 3 with h = 1/50, δt = 1/7. The results in Fig. 3
related to the IP1 are the best results that we could obtain. This event as for the given condition
numbers in Table 1 corresponding to IP1 is not strange. The more accurate numerical results
corresponding to IP2 have been depicted in Fig. 4 with h = 1/50, δt = 0.001. In order to
a comparison between the proposed meshless method and another numerical technique, we
simulate the well-known method of implicit finite differences which is adapted from Shidfar
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Fig. 3 The absolute errors corresponding to u(x, T ) and a(t) obtained by solving the IP1 and IP2 with
h = 1/50, δt = 1/7, γ = 0, and no regularization for Example 1
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Fig. 4 The absolute errors corresponding to u(x, T ) and a(t) obtained by solving the IP2 with h = 1/50,
δt = 0.001, γ = 0, and no regularization for Example 1
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Fig. 5 The exact and numerical solutions of u(x, T ) and a(t) obtained by solving the IP1 with h = 1/32,
δt = 0.2,(Meshless proposed method) and N = 41, M = 31 (Implicit finite difference method) γ = 0, and
no regularization for Example 1
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Fig. 6 The exact solution for a(t) in comparison with the numerical solution for h = 1/40, δt = 1/20,
γ = 1% noise, and no regularization, for the IP1 and IP2 in Example 1

et al. (2006).Weassume that {0 = t0 < t1 < ... < tM } and {0 = x0 < x1 < ... < xN = 1} are
two partitions of [0, T ] and [0, 1], respectively. The implicit finite difference approximation
for IP1 may be written in the following form

Ui, j+1 −Ui, j

δt
= Ui−1, j+1 − 2Ui, j+1 +Ui+1, j+1

h2
+ F(Ui, j ), (67)

Ui,0 = u0(xi ), 0 ≤ i ≤ N , (68)
UN+1, j −UN−1, j

2h
= g(t j ), 0 ≤ j ≤ M, (69)

UN , j = p(t j ), 0 ≤ j ≤ M, (70)
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Fig. 7 The exact (−) and numerical (−�−) results of a(t) beside the choice regularization parameter curve
obtained using the zeroth-order Tikhonov regularization for γ = 1% and γ = 5%, by solving the IP1 with
h = 1/40, δt = 0.1 for Example 1

Table 2 The values of regularization parameters and the maximum norms for the zeroth-order Tikhonov
regularization for different percentages of noise with h = 1/45 and δt = 0.1, for Example 1

γ (%) IP1 IP2
‖a(t)‖∞ ‖u(x, T )‖∞ λopt ‖a(t)‖∞ ‖u(x, T )‖∞ λopt

10−2 3.6529e − 01 2.1558e − 01 2.1176e − 04 2.7748e − 02 1.6079e − 02 1.3235e − 04

10−1 4.2352e − 01 3.1074e − 01 3.3881e − 04 3.4665e − 02 1.4732e − 02 8.2718e − 05

1 4.9040e − 01 3.2685e − 01 3.3881e − 04 9.6034e − 02 6.0201e − 02 1.3235e − 04

5 7.1899e − 01 4.8710e − 01 8.2718e − 05 6.9585e − 01 2.8485e − 01 3.3881e − 04

where δt and h are the step length in time and space coordinates, respectively, and Ui, j is
the approximate value of u(xi , t j ). If we obtain Ui−1, j+1 from (67) and the assumption that
r = δt

h2
, we have

UN−1, j+1 =
(
1 + 1

2r

)
UN , j+1 − 1

2r
UN , j − hg(t j+1) − h2

2
F

(
UN , j

)
,

0 ≤ j ≤ M − 1, (71)

Ui−1, j+1 =
(
2 + 1

r

)
Ui, j+1 − 1

r
Ui, j −Ui+1, j+1 − h2F(Ui, j ),

1 ≤ i ≤ N − 1, 0 ≤ j ≤ M − 1. (72)

Here similar to previous sections, to deal with the nonlinear term in above system, we apply
the predictor-corrector scheme. Finally, the approximate values of the heat flux at x = 0 can
be obtained using the second-order finite-difference approximationSmith (1985)
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Fig. 8 The exact (−) and numerical (−�−) results of a(t) obtained using the zeroth-order Tikhonov regu-
larization for γ ∈ {10−2, 10−1, 1, 5}%, by solving the IP1 with h = 1/45, δt = 0.1 for Example 1

a(t j ) = ∂u

∂x
(0, t j ) = 4U1, j −U2, j − 3U0, j

2h
, 0 ≤ j ≤ M . (73)

In Shidfar et al. (2006) the heat flux is approximated with Chebyshev polynomials by using
the least-squares method.The numerical results of simulation the functions u(x, T ) and a(t)
throughmeshless proposedmethod and implicit finite difference have been depicted in Fig. 5.
The absolute errors of u(x, T ) for themeshless proposedmethod and implicit finite difference
are 4.3412×10−2 and 3.1109×10−2, respectively. These errors for a(t) are 1.2172×10−1,
meshless proposed method, and 8.1011 × 10−2, implicit finite difference. In Fig. 5, the
parameters are as h = 1/32, δt = 0.2, meshless proposed method, and N = 41, M = 31,
implicit finite difference method.

5.1.2 Noisy data

In order to investigate the stability of the numerical solution, we include γ = 1% noise into
the input data (5) and (6), as given by Eqs. (57) and (58). The numerical solution for a(t)
obtained with h = 1/40, δt = 1/20 and no regularization has been found highly oscillatory
and unstable, as shown in Fig. 6.

The numerical methods for solving discrete ill-posed problems have been presented in
many papers. These methods are based on the so-called regularization techniques and the
main aimof the regularization is to stabilize the problem andfind a stable solution (Krawczyk-
Stańdo and Rudnicki 2007). The most usual form of regularization is that of Tikhonov. In
order to apply the Tikhonov regularization in the time level “k + 1”, we first rewrite the
system (59) as follows

Aa = bε, (74)
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Fig. 9 The exact (−) and numerical (−�−) results of a(t) obtained using the zeroth-order Tikhonov regu-
larization for γ ∈ {10−2, 10−1, 1, 5}%, by solving the IP2 with h = 1/45, δt = 0.1 for Example 1

where a = [u(k+1)
1 , u(k+1)

2 , ..., u(k+1)
N , a(k+1)]tr and bε = BU (k) +C in which the right hand

side of Eq. (74) includes the noisy data (57) or (58). Now, the Tikhonov regularization gives
the regularized solution as

aλ = (
AtrA + λDtr

j D j
)−1Atrbε, (75)

where Dj is the regularization derivative operator of order j ∈ {0, 1, 2} and λ ≥ 0 is the
regularization parameter. In the current work, we set j = 0, i.e the zeroth-order Tikhonov
regularization, namely D0 = I . The regularization parameter λ can be chosen according to
either the L-curve method (Hansen 1999), or the discrepancy principle (Morozov 1966). The
L-curve method suggests choosing λ at the corner of the L-curve which is a plot of the norm
of the residual ‖Aaλ − bε‖ versus the solution norm ‖aλ‖. Alternatively, the discrepancy
principle chooses λ > 0 such that the residual ‖Aaλ −bε‖ ≈ ε. Since, in this paper, the exact
solution is available, a simple procedure to choose the regularization parameter is proposed
as follows. Firstly using the knowledge of the desired solution aex , we compute the norm
‖aex −aλ‖ versus the regularization parameter λ. Now, we determine the λopt corresponding
to smallest norm ‖aex − aλ‖ as the optimal regularization parameter. We apply the above
procedure to obtain the regularized solution in every time level.

Figure7 shows the analytical and numerical solutions of a(t) beside the choice regulariza-
tion parameter curve for γ = 1% and γ = 5%, by solving the IP1 with h = 1/40, δt = 1/10.
Two optimal regularization parameters λopt , in Fig. 7, are corresponding to last iteration of
time level. Table 2 lists the maximum norms for a(t) and u(x, T ) with h = 1/45, δt = 1/10
and various percentages of noise γ ∈ {10−2, 10−1, 1, 5}% for IP1 and IP2. Figures8 and 9
are corresponding to the Table 2 so that they exhibit a comparison between the exact a(t)
and its regularized solutions in some different percentages of noise. The aim of the Fig. 10
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Fig. 10 A comparison between the discrepancy principle curve, L-curve and proposed method, the exact and
numerical results of u(x, T ) and a(t) obtained using the zeroth-order Tikhonov regularization, by solving the
IP1 with h = 1/46, δt = 0.1, γ = 1% for Example 1

Table 3 Comparison between the
numerical results of heat flux a(t)
for the proposed method with
h = 1/32, δt = 1/5 and the CBF
(Dehghan et al. 2013), by solving
the IP1, for Example 1

t Proposed method CBF Dehghan et al. (2013) Exact
1% 5% 1% 5%

0 1.0000 1.0000 1.0000 1.0000 1.0000

0.2 1.5715 1.3894 1.4713 1.7018 1.4918

0.4 2.1919 2.0451 2.2133 2.3084 2.2255

0.6 3.3078 3.1098 3.3488 3.0459 3.3201

0.8 4.9351 4.5299 5.0076 4.5255 4.9530

1 7.4546 7.5404 7.3550 7.7725 7.3890
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Fig. 11 The absolute errors between the exact (77) and numerical solutions u(x, t) and E(t) obtained by
solving the direct problem with h = 1/20, δt = 0.01 (a, b), and h = 1/26, δt = 0.0005 (c, d) for Example 2

Table 4 The values of regularization parameters and the maximum norms for the zeroth-order Tikhonov
regularization for different percentages of noise with h = 1/56 and δt = 1/5, for Example 2

γ (%) IP1 IP2
‖a(t)‖∞ ‖u(x, T )‖∞ λopt ‖a(t)‖∞ ‖u(x, T )‖∞ λopt

10−2 2.1112e − 02 1.2451e − 02 9.0949e − 03 4.1464e − 03 1.2092e − 03 8.2718e − 05

10−1 4.3861e − 02 1.2865e − 02 5.6843e − 03 5.6853e − 03 1.2469e − 03 8.2718e − 05

1 5.8309e − 02 2.1507e − 02 5.6843e − 03 4.3925e − 02 2.8140e − 03 8.2718e − 05

5 1.0403e − 01 5.5260e − 02 1.4552e − 02 5.2151e − 02 9.0226e − 03 8.2718e − 05

is a comparison between the discrepancy principle curve, L-curve and proposed method to
obtain the regularization parameters in first and last time level, i.e t f irst = δt and tlast = T .
It is worth noting that the discrepancy principle uses the knowledge of the level of noise

ε ≈ ‖Aaλ − bε‖∞ =‖ p − pγ ‖∞ . (76)

Also, Fig. 10 displays a comparison between the exact and their regularized solutions of
u(x, T ) and a(t) with h = 1/46, δt = 1/10 and γ = 1% by solving the IP1. Clearly, it can
be seen that the numerical solutions are stable and that they are more accurate as the amount
of noise γ decreases. Also from Fig. 10, it is obvious that the proposed method to obtain the
regularization parameter, in this work, is in good agreement with the discrepancy principle
curve and L-curve. Finally in Table 3, we compare the obtained results via the proposed
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Fig. 12 The absolute errors corresponding to u(x, T ) and a(t) obtained by solving the IP1 and IP2 with
h = 1/50, δt = 1/7, γ = 0, and no regularization for Example 2
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Fig. 13 The absolute errors corresponding to u(x, T ) and a(t) obtained by solving the IP2 with h = 1/50,
δt = 0.001, γ = 0, and no regularization for Example 2
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Fig. 14 The exact and numerical solutions of u(x, T ) and a(t) obtained by solving the IP1 with h = 1/40,
δt = 0.2 (meshless proposed method) and N = 41, M = 31 (Implicit finite difference method) γ = 0, and
no regularization for Example 2
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Fig. 15 The exact (−) and numerical (−�−) results of a(t) beside the choice regularization parameter curve
obtained using the zeroth-order Tikhonov regularization for γ = 1% and γ = 5%, by solving the IP2 with
h = 1/26, δt = 0.1 for Example 2
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Fig. 16 The exact (−) and numerical (−�−) results of a(t) obtained using the zeroth-order Tikhonov regu-
larization for γ ∈ {10−2, 10−1, 1, 5}%, by solving the IP1 with h = 1/56, δt = 1/5 for Example 2
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Fig. 17 The exact (−) and numerical (−�−) results of a(t) obtained using the zeroth-order Tikhonov regu-
larization for γ ∈ {10−2, 10−1, 1, 5}%, by solving the IP2 with h = 1/56, δt = 1/5 for Example 2

method with h = 1/32, δt = 1/5 and γ ∈ {1, 5}% to method of Dehghan et al. (2013),
by solving the IP1. From Table 3, the more accurate results of our proposed method with
respect to CBF (Dehghan et al. 2013) is evident so that the maximum norm corresponding
to columns 1% and 5% are 7.9718 × 10−2 and 4.2318 × 10−1, respectively.
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Fig. 18 A comparison between the discrepancy principle curve, L-curve and proposed method, the exact and
numerical results of u(x, T ) and a(t) obtained using the zeroth-order Tikhonov regularization, by solving the
IP1 with h = 1/56, δt = 1/5, γ = 1% for Example 2

5.2 Example 2

As another example, we first consider the direct problem (1)–(4) with the exact solution

u(x, t) = cos(x + t). (77)

We can obtain the required functions using the exact solution as Eq. (77). Moreover, the
nonlinear source term is F(u) = u − √

1 − u2. Also, the desired output (6) is given by
E(t) = sin(1 + t) − sin(t) where t ∈ [0, 1]. The absolute errors between the numerical
and exact solutions for u(x, t) and E(t) with h = 1/20, δt = 1/100 (a, b) and h = 1/26,
δt = 1/2000 (c, d), have been depicted in Fig. 11.
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Table 5 Comparison between the numerical results of heat flux a(t) for the proposed method with h = 1/20,
δt = 1/10 and results in Dehghan et al. (2013), for percentage of noise γ = 1%, for Example 2

t Proposed method Ref. Dehghan et al. (2013) Exact
IP1 IP2 BMF CBF

0 0.0000 0.0000 0.0000 0.0000 0.0000

0.1 −0.0537 −0.0921 −0.1019 −0.1117 −0.099833

0.2 −0.2411 −0.2177 −0.1975 −0.2033 −0.19867

0.3 −0.2955 −0.3052 −0.2886 −0.2869 −0.29552

0.4 −0.4148 −0.3700 −0.3768 −0.3714 −0.38942

0.5 −0.4814 −0.4768 −0.4639 −0.4624 −0.47943

0.6 −0.5517 −0.5484 −0.5518 −0.5623 −0.56464

0.7 −0.6469 −0.6471 −0.6427 −0.6703 −0.64422

0.8 −0.7168 −0.7184 −0.7385 −0.7825 −0.71736

0.9 −0.7829 −0.7782 −0.8415 −0.8917 −0.78333

1 −0.8369 −0.8274 −0.9540 −0.9873 −0.84147

Table 6 The values of regularization parameters and the maximum norms for the zeroth-order Tikhonov
regularization for different percentages of noise with h = 1/20 and δt = 1/7, for Example 2

γ (%) x∗ = 0.2 x∗ = 0.5
‖a(t)‖∞ ‖u(x, T )‖∞ λopt ‖a(t)‖∞ ‖u(x, T )‖∞ λopt

10−2 2.7986e − 03 6.5926e − 04 1.2037e − 06 4.9975e − 03 1.1137e − 03 4.4842e − 08

10−1 8.0308e − 03 5.0413e − 04 1.2037e − 06 8.0168e − 03 7.0850e − 04 2.2204e − 03

1 7.7608e − 02 7.4695e − 03 2.3283e − 02 8.8413e − 02 1.0348e − 02 1.4552e − 02

5 2.2956e − 01 1.9458e − 02 3.7253e − 02 2.0181e − 01 4.9574e − 02 3.7253e − 02
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Fig. 19 The exact (−) and numerical (−�−) results of a(t) obtained using the zeroth-order Tikhonov reg-
ularization for γ ∈ {10−2, 10−1, 1, 5}%, by solving the IP1 with h = 1/20, δt = 1/7 and x∗ = 0.2 for
Example 2
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Fig. 20 The exact (−) and numerical (−�−) results of a(t) obtained using the zeroth-order Tikhonov reg-
ularization for γ ∈ {10−2, 10−1, 1, 5}%, by solving the IP1 with h = 1/20, δt = 1/7 and x∗ = 0.5 for
Example 2
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Fig. 21 The exact (−) and numerical (.−) results of u(0.2, t) and u(0.5, t) obtained using the zeroth-order
Tikhonov regularization for γ ∈ {1, 2}%, by solving the IP1 with h = 1/20, δt = 1/10, x∗ = 0.2 and
x∗ = 0.5 for Example 2

5.2.1 Exact data

The inverse problem is given by IP1 and IP2 with the exact solutions as follows

{u(x, t), a(t)} = {cos(x + t),− sin(t)}. (78)
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We first consider the case of exact data, i.e. γ = 0 in Eqs. (57) and (58). The absolute
errors corresponding to a(t) and u(x, T ) have been displayed in Fig. 12 by solving the IP1
and IP2, with h = 1/50, δt = 1/7. Also, the acceptable errors corresponding to IP2 have
been shown in Fig. 13 with h = 1/50 and δt = 0.001 in which confirms the efficiency of
the present method. Once again, we compare the ability of meshless proposed method to
implicit finite difference that have been shown in Fig. 14. We simulate the u(x, T ) and a(t)
in IP1 with h = 1/40, δt = 0.2, meshless proposed method, and N=41, M=31, implicit finite
difference method in Fig. 14. The absolute errors corresponding to Fig. 14 are 2.1804×10−2

and 1.4206 × 10−2 for a(t) and u(x, T ), respectively in meshless prposed method. These
values in implicit finite difference are as 7.7569 × 10−3 and 1.7396 × 10−3 for a(t) and
u(x, T ), respectively.

5.2.2 Noisy data

In order to investigate the stability of the numerical solution, we include some γ ∈ {1, 5}%
noise into the input data (6), as given by Eq. (58). So in Fig. 15, we exhibit the analytical
and numerical solutions of a(t) beside the choice regularization parameter curve, by solving
the IP2 with h = 1/26, δt = 1/10. Here, the optimal regularization parameters λopt , in
Fig. 15, are corresponding to last iteration of time level, moreover the maximum norms
corresponding to percentages of noise γ = 1% and 5% are 4.5783×10−2 and 1.5792×10−1,
respectively. Table 4 collects the maximum norms for a(t) and u(x, T ) with h = 1/56, δt =
1/5 and different percentages of noise γ ∈ {10−2, 10−1, 1, 5}%. Corresponding to Table 4,
we produce a comparison between the exact a(t) and its regularized solution in Figs. 16 and
17 by solving the IP1 and IP2. Obviously, it can be seen that the numerical solutions are
stable and that they are more accurate as the amount of noise γ decreases. Figure18 displays
a comparison between the discrepancy principle curve, L-curve and proposed method to
obtain the regularization parameters in the first and last time level with h = 1/56, δt = 1/5
and γ = 1% by solving the IP1. Moreover in Fig. 18, the exact solutions of u(x, T ) and a(t)
have been shown versus their approximate solutions with maximum norms 1.1930 × 10−2

and 9.9502×10−2 for u(x, T ) and a(t), respectively. Once we can see the proposed method
to obtain the regularization parameter, in this work, is confirmed by the discrepancy principle
curve and L-curve. We compare the numerical results of heat flux a(t) through the present
method with h = 1/20, δt = 1/10 and γ = 1% to method of Dehghan et al. (2013), by
solving the IP1 and IP2 in Table 5.More accurate results of the present methodwith respect to
method ofDehghan et al. (2013) is clear so that themaximumnorm corresponding to columns
IP1 and IP2 are 4.6141 × 10−2 and 1.9396 × 10−2, respectively. As the last simulation, we
consider IP1 with x∗ = 0.2 and x∗ = 0.5 that the numerical results are presented in Table
6. Also, Figs. 19 and 20 are corresponding to Table 6 with h = 1/20, δt = 1/7, x∗ = 0.2
and x∗ = 0.5, respectively. Figure21 depicts the exact solutions of u(0.2, t) and u(0.5, t)
versus the approximate solutions for percentages of noise γ = 1% and 2% with h = 1/20,
δt = 1/10 by solving the IP1 in the cases of x∗ = 0.2 and x∗ = 0.5.

6 Conclusion

In this work, a kind of meshless local radial point interpolation method was successfully
employed for solving the IHCP with a nonlinear source term. The problem is discretized
numerically using the FDM, and in order to stabilize the solution, the Tikhonov regulariza-
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tion method has been used.Two illustrative examples have been solved numerically which
demonstrate the validity and applicability of the technique. Although the numerical method
and results have been presented for the one-dimensional IHCP, a similar meshless proposed
method can easily be extended to higher dimensions. Future workwill consist in investigating
the IHCP in higher dimensions (Arora and Dabas 2019).
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