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Abstract
Multi-patch and multi-city models have been proposed to investigate the dynamics of disease
propagation in discrete regions characterized by varying connectivity and movement rates.
This paper aims to comprehensively explore the impact of network topology and travel rates
on disease spread within a population represented by random networks of interconnected
cities. This approach enables a more comprehensive analysis of disease outbreaks across
spatial domains compared to conventional multi-patch models, which typically consider a
limited number of homogeneous links among subpopulations within distinct spatial units
(i.e., patches). In this study, cities are represented using a probabilistic cellular automaton
model that incorporates local interactions among individuals, while the network’s edges rep-
resent the travel rates between pairs of cities (i.e., nodes). Two types of complex networks
are considered, namely small-world and Barabási–Albert networks. By employing a flexible
numerical model, this study surpasses previous models in its capacity to accommodate a
larger number of patches or cities. The primary findings of this research reveal that reducing
the travel rates within the network can potentially “flatten the curve” of infected cases; how-
ever, it does not impact the population’s basic reproduction number. To effectively reduce the
reproduction number, localized interventions targeting disease transmissibility are required.
Additionally, concentrating control efforts on “central” cities within the network may prove
crucial in impeding the rapid propagation of the disease. In summary, this study employs a
rigorous framework to investigate the influence of network topology and travel rates on dis-
ease spreading within a population represented by random networks of interconnected cities.
The findings contribute to a comprehensive understanding of disease dynamics in complex
spatial settings and inform targeted intervention strategies for controlling and mitigating
infectious disease outbreaks.
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1 Introduction

One of the fundamental assumptions in mathematical modeling of epidemiological dynamics
involves the utilization of large populations, where individuals are uniformly distributed in
space, and there is homogeneous mixing among individuals in different stages of the disease
(Anderson andMay 1991; Kermack andMcKendrick 1927; Rock et al. 2014). Initially, these
models were formulated based on differential equations. However, as research progressed,
Cellular Automata (CA) emerged as an alternative approach to capture spatial characteristics
of the host and heterogeneous populations (Ahmed et al. 1998; Johansen 1996; Sirakoulis
et al. 2000; Yakowitz et al. 1990; Wolfram 1994). These studies explored variations of the
classical SIR model (Susceptible–Infected–Removed) (Anderson and May 1991) within the
context of cellular automata frameworks.

Cellular Automata have been extensively employed to investigate various aspects of
epidemiological dynamics. Different neighborhood configurations have been considered to
facilitate local interactions among individuals, as demonstrated in previous studies Ahmed
et al. (1998), Sirakoulis et al. (2000), Yakowitz et al. (1990), Ramos and Schimit (2019) and
Monteiro et al. (2020). Moreover, researchers have explored the incorporation of long-range
connections into cellular automata models (Ogren and Martin 2000; Schimit and Monteiro
2009), as well as the integration of global components (Cissé et al. 2016). Furthermore, the
heterogeneity of population dispersion in a landscape has been addressed through diverse
approaches. Some studies have explored the variation in individuals’ density per cell in
cellular automata models (Medrek and Pastuszak 2021). Others have focused on the use of
multi-agent systems concentrated in specific areas interconnected through complex networks
(Gwizdałła 2020) or demographic structures (Castellazzo et al. 2012). Complex networks
have also been utilized to replicate population dynamics, employing classical network mod-
els such as small world (Moore and Newman 2000) and scale free (Colizza et al. 2007),
as well as networks with complex connection structures (Franc 2004; Sander et al. 2002).
Additionally, complex networks have proven valuable in the analysis of spatial patterns of
disease propagation (Dorjee et al. 2013; Rautureau et al. 2010; Schimit and Pereira 2018;
van Ravensway et al. 2012; Westgarth et al. 2009).

Another approach to model the heterogeneous spatial distribution of individuals involves
the concept of multi-patches (Salmani 2006;Wang and Zhao 2006) or multi-cities (Arino and
VanDenDriessche 2003). In these studies, the population is dispersed among discrete patches
or cities, with local interactions occurring within each patch and movement rates between
patches. While some analytical studies have considered a large number of patches, the cor-
responding numerical results typically involve a limited number of patches. For instance,
previous works have utilized two (Wang and Zhao 2006; Kheiri and Jafari 2019; Kouokam
et al. 2008; Liu et al. 2018; Prosper et al. 2012; Wang and Zhao 2008), five (Senapati et al.
2019), nine (Allen et al. 2007; Zakary et al. 2017), and fifteen (Arino et al. 2007) patches.
Variations of the SIR model have been employed to examine diseases such as HIV/AIDS
(Kheiri and Jafari 2019), tuberculosis (Kheiri and Jafari 2019), and dengue (Senapati et al.
2019) in these multi-patch frameworks.
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Splitting individuals into distinct patches introduces heterogeneity in population disper-
sion across space. Instead of considering a single large homogeneous population, multi-patch
models involve the division of the population into large, homogeneous subpopulations that
are spatially separated. The interplay between these subpopulations is characterized by the
movement or travel rate of individuals. This modeling approach aims to investigate the spread
of diseases within the system, taking into account the connections among patches, and to pro-
pose control measures for managing outbreaks. Examples of such control measures include
travel-blocking (Zakary et al. 2016), optimal control strategies for travel-blocking (Zakary
et al. 2017), mosquito control strategies to study dengue prevalence within patches (Senapati
et al. 2019), and the distribution of vaccinations across patches (Cui et al. 2017). Notably,
the COVID-19 pandemic has also been studied within a multi-patch framework, examining
regions such as the Hubei province and areas outside of it (Chandrasekaran and Fernandes
2020).

Although some models have taken into account an asymmetric connectivity matrix for
the network of patches (Chen et al. 2020; Mpolya et al. 2014), the majority of studies have
focused on regular networks with uniform connections between patches. These connections
range from sparse links among patches (Senapati et al. 2019) to star networks, where one
city is connected to all others (Allen et al. 2007; Zakary et al. 2017; Mpolya et al. 2014).
Consequently, the objective of this paper is to examine cities and their connections as random
networks to investigate the influence of network topology and travel rates on disease propa-
gation throughout the entire population. To achieve this, numerical simulations are conducted
to encompass a diverse range of undirected network types and population mobility patterns
within and between cities. Subsequently, we adopt the term “city” as a unifying nomencla-
ture to represent discrete geographical regions in which a fraction of the overall population
resides.

The movement of individuals between cities within a region is driven by various fac-
tors, including services, health facilities, employment, and housing (Aranha 2005; Fiocruz
2020). However, quantifying the specific impact of each category on the spread of diseases
such as COVID-19 has proven challenging. During the COVID-19 pandemic, researchers
conducted statistical analyses comparing pre-pandemic patterns of intercity mobility to the
period when border lockdown measures were implemented, aiming to assess the resulting
reduction in COVID-19 transmission (Chinazzi et al. 2020). The technical reports published
by the Oswaldo Cruz Foundation (Fiocruz) shed light on the influence of intercity flows on
the dynamics of COVID-19 transmission in Brazilian cities, taking into account factors such
as hospital access and vaccine distribution (Notas 2022). Consequently, the utilization of
multi-city models based on random network theory enables the emulation of various cate-
gories of individual mobility, facilitating the derivation of general conclusions irrespective
of specific network topologies.

In this study, we adopt a probabilistic cellular automaton (PCA) framework to model
individual behavior within a city, with each cell representing an individual in one of the
SAIRmodel states (Susceptible, infectedAsymptomatic, infected Symptomatic, Recovered),
similar to Monteiro (2020). By considering cities as nodes and the connections between
them as edges in a network, we simulate the spread of disease throughout the population.
Specifically,we assume an initial outbreak in one of the cities, and the rate atwhich individuals
travel between connected cities determines the transmission of the disease across the network.

Using this framework,we conduct simulations to gain insights into the dynamics of disease
outbreaks and explore strategies for outbreak control across various network topologies.
To assess the characteristics of the networks, we examine several parameters, including
average shortest path, density, diameter, clustering coefficient, average degree, andmaximum
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degree. Among thesemeasures, the clustering coefficient emerges as particularly informative,
as it quantifies the fraction of connections among neighbors of the same node, averaged
over the entire network. Moreover, we employ additional metrics such as degree centrality,
closeness centrality, and betweenness centrality to identify central cities within the network
and compare the effectiveness of disease control actions.

By employing a flexible numerical model, the scope of patch consideration surpasses
that of conventional models discussed earlier. By augmenting the number of patches, the
model effectively captures the intricate interplay of various factors and interactions among
neighboring regions, thereby providing a more authentic representation of disease spread.
Furthermore, an increased number of patches allows for a more meticulous examination
of the impact of spatial heterogeneity on disease transmission. In this context, the spatial
heterogeneity of population distribution is modeled through the network of patches.

Lastly, a higher number of patches facilitate a comprehensive evaluation of interven-
tion strategies. With an expanded patch count, it is possible to explore the effectiveness of
interventions aimed at specific regions, evaluate the repercussions of travel restrictions, and
investigate the role of vaccination campaigns across multiple patches (Klepac et al. 2016;
Zhao et al. 2018). This provides valuable insights into optimizing interventions at both local
and global levels to control and mitigate the spread of infectious diseases.

This paper is structured as follows. Section2 provides a detailed description of the pro-
posed model, including its key components and underlying assumptions. The simulation
results are presented in Sect. 3, where the numerical outcomes of the model under various
scenarios are analyzed and interpreted. In Sect. 4, a discussion is presented.

2 Methods

2.1 The PCAmodel

One city is represented by a cellular automaton structured as an n × n lattice with N cells,
where each cell accommodates a single individual. To avoid edge effects, the borders of the
lattice are connected, such that the top row is linked to the bottom row and the first column
is connected to the last column. The neighborhood of a given cell encompasses C randomly
selected cells within this a r Moore radius (Wolfram 1994). The probability of having a
neighbor from a specific layer i (defined by the Chebyshev distance i) is calculated using the
expressionqi,r = 2(r+1−i)/r(r+1) (Schimit andMonteiro 2009). For instance, considering
a Moore radius of 4, the probabilities of having a neighbor from layers 1, 2, 3, and 4 are,
respectively, given by q1,4 = 0.4, q2,4 = 0.3, q3,4 = 0.2, and q4,4 = 0.1. Subsequently, after
randomly selecting the layer, one cell from the chosen layer is considered as the neighbor
(Schimit and Monteiro 2009).

In this lattice, individuals are classified into four distinct states based on their COVID-19
status: Susceptible (S), Asymptomatic Infected (IA), Symptomatic Infected (IS), and Recov-
ered (R). The state transitions are as follows: susceptible individuals can be infected with a
probability denoted by PI (v) = 1 − e−kv , where v represents the total number of infected
neighbors (IA + IS), and k is a parameter associated with the disease’s infectivity. Asymp-
tomatic (symptomatic) infected individuals can either recover with a probability denoted by
PCA (PCS ) and transition to the recovered state, or they may succumb to the disease with
a probability denoted by PDA (PDS ). Recovered individuals may also experience mortality
due to other causes, characterized by a probability denoted by PN . To maintain a constant
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population size, susceptible individuals replace those who have died. Consequently, each
time-step of the simulation consists of establishing C connections per individual, evaluating
the state transitions based on the respective probabilities, and synchronously updating the
states at the end of the time-step. The total number of time-steps in a simulation is denoted
as ts .

The next step is to describe the model in terms of ordinary differential equations (ODE).

2.2 The ODEmodel

The state transitions can be interpreted as rates. When considering a large population where
individuals in susceptible, both infected, and recovered states are uniformly distributed across
the lattice, an Ordinary Differential Equations (ODE) model can be employed to provide a
mean-field approximation for the Probabilistic Cellular Automata (PCA) simulation of a
single city:

dS(t)

dt
= −aAS(t)[IA(t) + IS(t)] − aSS(t)[IA(t) + IS(t)] + cA IA(t) + cS IS(t) + eR(t),

dIA(t)

dt
= aAS(t)[IA(t) + IS(t)] − bA IA(t) − cA IA(t),

dIS(t)

dt
= aSS(t)[IA(t) + IS(t)] − bS IS(t) − cS IS(t),

dR(t)

dt
= bA IA(t) + bS IS(t) − eR(t), (1)

where aA represents the infection rate constant that generates asymptomatic individuals,
aS denotes the infection rate constant responsible for generating symptomatic individuals,
bA signifies the recovering rate constant of asymptomatic individuals, bS represents the
recovering rate constant of symptomatic individuals, cA indicates the death rate constant due
to the disease for asymptomatic individuals, cS represents the death rate constant resulting
from the disease for symptomatic individuals, and e denotes the death rate constant due to
other causes.

In line with the PCA model, the total population size remains constant, as indicated by
the equation dS(t)/dt + dIA(t)/dt + dIS(t)/dt + dRi (t)/dt = 0. Consequently, it holds
that S(t) + IA(t) + IS(t) + R(t) = N . Furthermore, the parameters aA, aS , bA, bS , cA, cS ,
and e can be estimated through simulations, given that the ODE model serves as a mean-
field approximation. The interconnections between these models, as outlined in Schimit and
Monteiro (2009), are expressed as follows:

aA � �IA(t)S→IA

S(t)(IA(t) + IS(t))�t
,

aS � �IA(t)S→IS

S(t)(IA(t) + IS(t))�t
,

bA � �R(t)IA→R

IA(t)�t
,

bS � �R(t)IS→R

IA(t)�t
,

cA � �S(t)IA→S

Ii (t)�t
,
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cS � �S(t)IS→S

Ii (t)�t
,

e � �S(t)R→S

R(t)�t
, (2)

where �IA(t)S → IA represents the increase in asymptomatic infections IA(t) due to new
cases per time-step, �IS(t)S → IS represents the increase in symptomatic infections IS(t)
due to new cases per time-step,�R(t)IA → R represents the increase in recoveries R(t) from
asymptomatic infections per time step, �R(t)IS → R represents the increase in recoveries
R(t) from symptomatic infections per time-step, �S(t)IA → S represents the increase in
susceptible population S(t) due to deaths caused by asymptomatic infections, �S(t)IS → S
represents the increase in susceptible population S(t) due to deaths caused by symptomatic
infections, and�S(t)R→S represents the increase in susceptible population S(t) due to deaths
from other causes per time-step. Therefore, each city is modeled independently using PCA
and ODE.

An equilibrium point in the state space S × IA × IS × R corresponds to a stationary
solution that satisfies the following conditions: dS(t)/dt = 0, dIA(t)/dt = 0, dIS(t)/dt = 0,
and dR(t)/dt = 0. Of particular interest is the disease-free equilibrium (DFE) denoted as
(S, IA, IS, R) = (1, 0, 0, 0). The DFE is commonly used to calculate the basic reproduction
number (R0) using the next generation matrix method proposed by Van Den Driessche and
Watmough (2002). In the context of considering � cities, the basic reproduction number can
be determined using the method presented in Arino and Van Den Driessche (2003). Since
we are analyzing the system in a permanent regime to calculate R0, where all cities are in an
equilibrium state, we can disregard the individuals’ travel rates among cities. By examining
the equations given in Eq.1, the infectious subsystem for all cities, with the exponent denoting
the city number, can be expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dI 1A(t)
dt = a1AS

1(t)[I 1A(t) + I 1S (t)] − b1A I
1
A(t) − c1A I

1
A(t)

dI 1S (t)
dt = a1S S

1(t)[I 1A(t) + I 1S (t)] − b1S I
1
S (t) − c1S I

1
S (t)

dI 2A(t)
dt = a2AS

2(t)[I 2A(t) + I 2S (t)] − b2A I
2
A(t) − c2A I

2
A(t)

dI 2S (t)
dt = a2S S

2(t)[I 2A(t) + I 2S (t)] − b2S I
2
S (t) − c2S I

2
S (t)

...
dI�

A (t)
dt = a�

A S
�(t)[I�

A (t) + I�
S (t)] − b�

A I
�
A (t) − c�

A I
�
A (t)

dI�
S (t)
dt = a�

S S
�(t)[I�

A (t) + I�
S (t)] − b�

S I
�
S (t) − c�

S I
�
S (t).

(3)

For this subsystem, the Jacobianmatrix in the disease-free equilibrium ((S∗, I ∗
A, I ∗

S , R∗) =
(1, 0, 0, 0) for each city), is
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J(I 1A ,...,I�
S )

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1A − (b1A + c1A) a1A 0 0 . . . 0 0

a1S a1S − (b1S + c1S) 0 0 . . . 0 0

0 0 a2A − (b2A + c2A) a2A . . . 0 0

0 0 a2S a2S − (b2S + c2S) . . . 0 0
.
.
.

.

.

.
.
.
.

.

.

.
. . . 0 0

0 0 0 0 . . . a�
A − (b�

A + c�
A ) a�

A

0 0 0 0 . . . a�
S a�

S − (b�
S + c�

S )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4)

Then, the Jacobian matrix is decomposed into two components: the transmission part,
denoted as T , which captures the production of new infections, and the transition part,
denoted as �, which accounts for changes in the infected states (Diekmann et al. 2010).
Specifically, the transition part applies solely to the infected states. Utilizing these matrices,
we compute the dominant eigenvalue, also known as the spectral radius, denoted as ρ, of the
matrix −T�−1. Hence, we have the following expression:

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1A a1A 0 0 . . . 0 0

a1S a1S 0 0 . . . 0 0

0 0 a2A a2A . . . 0 0

0 0 a2S a2S . . . 0 0
...

...
...

...
. . . 0 0

0 0 0 0 . . . a�
A a�

A

0 0 0 0 . . . a�
S a�

S

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−(b1A + c1A) 0 0 0 . . . 0 0
0 (b1S + c1S) 0 0 . . . 0 0
0 0 (b2A + c2A) 0 . . . 0 0
0 0 0 (b2S + c2S) . . . 0 0
...

...
...

...
. . . 0 0

0 0 0 0 . . . −(b�
A + c�

A ) 0
0 0 0 0 . . . 0 −(b�

S + c�
S )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The eingenvalues of −T�−1 are: aiA/(biA + ciA) + aiS/(b
i
S + ciS), for i = 1, 2, . . . , �.

Then, R0 is given by

R0 = max
1≤i≤�

(
aiA

biA + ciA
+ aiS

biS + ciS

)

. (5)

Since the disease parameters (PCA , PCS , PDA , PDS , PN , k) are equal and the contact rate
(C , r ) is uniform across all cities, the condition Ri

0 < 1 for all i implies R0 < 1, leading to
local asymptotic stability of the Disease-Free Equilibrium (DFE). Conversely, if Ri

0 > 1 for
all i , then R0 > 1, indicating the instability of the DFE. This finding aligns with the specific
case examined in the study by Arino and Van Den Driessche (2003), where the influence of
mobility between cities does not affect the value of R0.
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2.3 The network of cities

The main objective of this study is to propose a novel model in which � cities are intercon-
nected through a network that reflects the physical transportation infrastructure, including
roads, buses, and train lines. In this model, each city is represented as a node in the network,
and the edges symbolize the movement of individuals between two cities. The rate of individ-
uals traveling from one city to another is denoted as θ . Consequently, within the framework
of the PCA simulation for all cities in the network, at the beginning of a time-step, a quantity
of θ individuals is exchanged between every pair of connected cities, thereby illustrating the
intercity trips undertaken by individuals. A time-step is deemed complete when all individu-
als in this configuration have contacts with neighbors, return to original cities and the states
are synchronously updated at the end of the time-step.

The networks under discussion in this paper serve as representations of interconnected
cities. Two models of undirected networks will be considered, namely the small-world and
Barabási–Albert models, with a fixed size of � nodes. To construct these networks, the
parameters will be systematically varied to encompass a suitable range of topological char-
acteristics. The generation of these networks and the extraction of their topological properties
are facilitated by employing the iGraph library (Csardi and Nepusz 2006).

In the case of the small-world model (SW), we begin with a regular network in which
each node is connected to msw neighbors. Subsequently, each edge is randomly rewired to
a different node with a probability of psw . On the other hand, the Barabási–Albert (BA)
model involves determining the probability, denoted by πba(ki ), of selecting a node i with
degree ki to form an edge. This probability follows a non-linear preferential attachment
mechanism, given byπba(ki ) = (ki/

∑mba
j=1 k j )

γba , wheremba nodes are selected accordingly.
The exponent γba influences the attachment probability, and when γba = 1, it corresponds
to the linear and traditional form of the Barabási–Albert (BA) model (Barabási and Albert
1999). In the iGraph library, the input parameters for generating these networks are msw ,
psw , γba , and mba .

We conducted an analysis of various network measures to characterize the simulated net-
works, including the average clustering coefficient, number of edges, shortest path length,
density, and diameter. Among these measures, the clustering coefficient emerged as a par-
ticularly effective metric for examining the simulation results. In the context of a network
comprising a set of vertices V and a set of edges E , where an edge ei j connects nodes vi and
v j , the neighborhood ni of a node vi is defined as the set of nodes with which node i shares an
edge. For an undirected network, ni can be represented as ni = v j : ei j ∈ E . The clustering
coefficient of a node i reflects the fraction of potential edges among its ki (ki − 1)/2 neigh-
bors (Boccaletti et al. 2006). Mathematically, the clustering coefficient can be expressed as
follows:

gicc = 2|e jk : v j , vk ∈ ni , e jk ∈ E |
ki (ki − 1)

and the average clustering coefficient can be written as gcc = 1

|V |
∑|V |

i=1 Ci .

Concerningmeasures of graph centralization, the study considered several centrality mea-
sures, namely betweenness, closeness, degree, and eigenvector centrality (Boccaletti et al.
2006). As the results yielded similar outcomes across these parameters, the degree centrality,
which denotes the number of edges connected to a node, was chosen as the basis for compar-
ison due to its simplicity. Following the determination of centrality, the centralization index
at the graph level was calculated as the sum of the deviations from the maximum degree
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Fig. 1 Simulation diagram of the model

centrality. Consequently, a higher centralization index indicates a more centralized graph
structure. For the purpose of denoting the centralization derived from the degree centrality
of the nodes, the symbol gdeg is employed.

2.4 Simulation summary

Therefore, each simulation entails the generation of a network based on the specified network
parameters. Initially, all cities within the network are assigned exclusively susceptible indi-
viduals. Subsequently, a single city is randomly selected to serve as the origin of the disease
outbreak, wherein infected individuals are introduced into the initial state. Each time-step of
the simulation involves the movement of individuals to neighboring cities, adhering to the
defined rules and θ . Then, individuals engage in interactions with their respective neighbor-
hoods. Following this, individuals return to their original cities, and state transitions occur,
with the synchronous updating of individual states transpiring at the conclusion of each
time-step. An overview of a simulation of the model is presented in Fig. 1.
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3 Results

In this section, we present the simulation results, which are divided into the following sub-
sections:

3.1 Simulation of the model for a single city.
3.2 Visualization of disease spreading across selected network examples. This includes the

depictionof network images and the temporal evolutionof infected individuals in different
cities.

3.3 Simulations conducted with a diverse range of network input parameters to explore
networks with varying properties.

3.4 Repeated simulations from the previous subsection, but with the variation of the infectiv-
ity parameter k to determine the minimum value necessary for the disease to propagate
throughout the entire network of cities.

3.5 Use of the data obtained from the previous subsection to analyze the relationship between
the basic reproduction number and variables k and θ .

The epidemiological parameters utilized in this study are estimations derived from the
initial waves of the COVID-19 pandemic. Consequently, a time-step equivalent to 1 day is
adopted, and the recovery periods for asymptomatic and symptomatic infected individuals
are estimated to be 10 and 14 days, respectively, yielding PCA = 1/10 and PCS = 1/14. It
is assumed that asymptomatic individuals do not experience mortality directly attributable
to the disease, while approximately 1% of symptomatic individuals may succumb to dis-
ease complications. Thus, we set PDA = 0 and PDS = 0.01 to reflect these probabilities.
Considering an average life expectancy of 78 years (based on Brazilian data) and assuming
immunity lasts for four months (or until a new variant is introduced to the population), the
probability PN is calculated as 1/(78× 365) + 1/120 ≈ 0.00837. The parameter values are
derived from relevant studies (Gostic et al. 2020; Ma et al. 2020; Wu et al. 2020). Moreover,
it is assumed that 20% of new infections manifest as symptomatic cases, while the remaining
80% are asymptomatic. Lastly, the values of C , r , and k are adjusted to yield an estimated
R0 within the range of 1–6, as reported in previous studies (Gostic et al. 2020; Singhal 2020;
Zhou et al. 2020). Consequently, we set C = 4, r = 4, and k = 0.1. A summary of the input
parameters is provided in Table 1.

It is worth noting that additional parameters were examined in the simulations. The proba-
bilities of recovery andmortalitywere chosen in accordancewith values commonly employed
in the literature for analogous models. Simulations incorporating slightly different values for
PCA , PCS , PDA , PDS , and PN exhibited similar trends in the transient behavior of the infected
individuals curve, with variations primarily observed in the concentrations of the different
disease states during the steady state. However, the variables associated with the infection
process (C , r , and k) exerted a more pronounced influence. Notably, higher values of disease
infectiousness within the population resulted in earlier peaks of infected states during the
simulation’s initial stages. Furthermore, depending on the magnitude of these variables and
θ , the peaks in the cities tended to synchronize during these early stages.

3.1 Simulation for one city

The first result of this study involves the simulation of the PCAmodel for a single city, which
is not connected to any other cities. The lattice size is set to 200×200, accommodating a total
of N = 40,000 cells. The initial conditions are as follows: S(0) = 0.995, IA(0) = 0.004,
IS(0) = 0.001, and R(0) = 0. The initial states are randomly distributed across the lattice.

123



A multi-city epidemiological model based... Page 11 of 24 288

Ta
bl
e
1

D
es
cr
ip
tio

n
of

in
pu
tp

ar
am

et
er
s
us
ed

fo
r
PC

A
m
od
el
.*
N
ot
e
th
at
C
,r

an
d
k
w
er
e
ch
os
en

to
ha
ve

an
R
0
va
lu
e
w
ith

in
th
e
ra
ng

e
of

[1,
6]

Pa
ra
m
et
er

D
es
cr
ip
tio

n
V
al
ue

R
ef
er
en
ce
s

�
N
um

be
r
of

ci
tie
s
in

th
e
ne
tw
or
k

–
–

θ
N
um

be
r
of

tr
av
el
er
s
pe
r
ci
ty

pe
r
ed
ge

of
th
e
ne
tw
or
k

–
–

m
sw

,
p s

w
Pa
ra
m
et
er
s
fo
r
cr
ea
tin

g
sm

al
l-
w
or
ld

ne
tw
or
ks

–
–

γ
ba
,m

ba
Pa
ra
m
et
er
s
fo
r
cr
ea
tin

g
B
ar
ab
ás
i–
A
lb
er
tn

et
w
or
ks

–
–

n
L
at
tic
e
si
de

20
0

–

N
To

ta
ln

um
be
r
of

ce
lls

40
,0
00

–

k
In
fe
ct
iv
ity

pa
ra
m
et
er

0.
1

*G
os
tic

et
al
.(
20

20
),
Si
ng

ha
l(
20

20
)
an
d
Z
ho

u
et
al
.(
20

20
)

P C
A

Pr
ob

ab
ili
ty

of
cu
re

of
as
ym

pt
om

at
ic
in
fe
ct
ed

in
di
vi
du

al
s

1/
10

Fe
rg
us
on

et
al
.(
20

20
),
H
u
et
al
.(
20

20
)
an
d
Si
ng

ha
l(
20

20
)

P C
S

Pr
ob

ab
ili
ty

of
cu
re

of
sy
m
pt
om

at
ic
in
fe
ct
ed

in
di
vi
du

al
s

1/
14

Fe
rg
us
on

et
al
.(
20

20
),
H
u
et
al
.(
20

20
)
an
d
Si
ng

ha
l(
20

20
)

P
D
A

Pr
ob

ab
ili
ty

of
dy

in
g
du

e
to

di
se
as
e
fo
r
as
ym

pt
om

at
ic
in
fe
ct
ed

in
di
vi
du

al
s

0
Fe
rg
us
on

et
al
.(
20

20
),
H
u
et
al
.(
20

20
)
an
d
Si
ng

ha
l(
20

20
)

P
D
S

Pr
ob

ab
ili
ty

of
dy

in
g
du

e
to

di
se
as
e
fo
r
sy
m
pt
om

at
ic
in
fe
ct
ed

in
di
vi
du

al
s

0.
01

Fe
rg
us
on

et
al
.(
20

20
),
H
u
et
al
.(
20

20
)
an
d
Si
ng

ha
l(
20

20
)

P
N

Pr
ob

ab
ili
ty

of
dy

in
g
du

e
to

ot
he
r
ca
us
es

0.
00

83
7

IB
G
E
(2
02

1)

C
N
um

be
r
of

co
nt
ac
ts
pe
r
in
di
vi
du
al

4
*G

os
tic

et
al
.(
20

20
),
Si
ng

ha
l(
20

20
)
an
d
Z
ho

u
et
al
.(
20

20
)

r
M
ax
im

um
ra
di
us

fo
r
co
nt
ac
ti
n
th
e
la
tti
ce

4
*
G
os
tic

et
al
.(
20

20
),
Si
ng

ha
l(
20

20
)
an
d
Z
ho

u
et
al
.(
20

20
)

Si
(0

)
N
um

be
r
of

su
sc
ep
tib

le
in
di
vi
du
al
s
in

ci
ty

i
at
tim

e
t
=

0
–

–

Ii A
(0

)
N
um

be
r
of

as
ym

pt
om

at
ic
in
fe
ct
ed

in
di
vi
du
al
s
in

ci
ty

i
at
tim

e
t
=

0
–

–

Ii S
(0

)
N
um

be
r
of

sy
m
pt
om

at
ic
in
fe
ct
ed

in
di
vi
du
al
s
in

ci
ty

i
at
tim

e
t
=

0
–

–

R
i (
0)

N
um

be
r
of

re
co
ve
re
d
in
di
vi
du

al
s
in

ci
ty

i
at
tim

e
t
=

0
–

–

123



288 Page 12 of 24 C. L. Quiroga, P. H. T. Schimit

0 50 100 150 200 250
time steps

0   

0.25

0.5 

0.75

1   

no
rm

al
iz

ed
 c

on
ce

nt
ra

tio
ns

of
 in

di
vi

du
al

s S(t)
I
A
(t)

I
S
(t)

R(t)
I
A
(t)+I

S
(t)I( )

Fig. 2 Time evolution of susceptible, asymptomatic and symptomatic infected, and recovered individuals for
one city with no connection to other cities. The point indicated by I (τ ) and τ is the peak of infected individuals
in the simulation and the instant when it occurred

Figure2 displays the temporal evolution of the simulation for the four states over a duration
of ts = 250 time-steps. It is worth noting that the time-step at which the peak of infected
individuals I (τ ) occurs is denoted as τ . In this case, τ is found to be 78, with a corresponding
value of I (τ ) = 0.32. Furthermore, in the equilibrium state (occurring after time-step 350,
not depicted in the figure), the calculated value of the basic reproduction number R0 is 3.61.
This value is obtained by averaging the values of aA, aS , bA, bS , cA, and cS over the last 20
time-steps.

3.2 Simulations for a network of cities

When simulating a network of cities, there exist differences in the initial conditions.
Specifically, only one random city, denoted as i , begins with the following initial values:
Si (0) = 0.995, I iA(0) = 0.004, I iS(0) = 0.001, and Ri (0) = 0. These values are uniformly
distributed over the lattice of that particular city. Figure3 presents a simulation for each type
of network at time instants t = 1, t = 10, t = 30, t = 50, and t = 70. The networks were
created with the following parameters: � = 16 for all networks, msw = 16 and psw = 0.35
for small-world-1, msw = 4 and psw = 0.95 for small-world-2, mba = 2 and γba = 4.8
for Barabási–Albert-1, and mba = 4 and γba = 2.9 for Barabási–Albert-2. A city with no
infected cases is depicted without a border. As the disease begins to spread within a city, a
black line border is displayed, and a black-filled node represents the peak number of infected
individuals in that city. The grayscale intensity is proportional to the number of infection
cases. The proportion of individuals traveling per time-step in this study is θ = 50.

The graphs presented in Fig. 3 provide preliminary evidence suggesting asynchronous
occurrence of disease peaks across the cities. Prior to conducting a comprehensive analysis
of this phenomenon, Fig. 4 illustrates the temporal evolution of the number of infected indi-
viduals for four randomly generated networks, each with two different values of the traveling
rate denoted as θ . The colored lines represent the normalized concentration of infected indi-
viduals (IA(t)+ IS(t)) in each city. It is noteworthy that simulations with smaller values of θ

exhibit delayed and reduced peaks in the number of infected cases. Conversely, simulations
with θ = 50 demonstrate synchronized peaks across cities. Specifically, the small-world
(SW) instance represents a fully connected network characterized by a clustering coefficient
of 1 and zero centralization, while the Barabási–Albert (BA) instance depicts a centralized
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t=1 t=10 t=30 t=50 t=70

SW-1

SW-2

BA-1

BA-2

Fig. 3 Infection cases in four networks for time-steps t = 1, t = 10, t = 30, t = 50, and t = 70. The
parameters for creating the networks were � = 16; msw = 16 and psw = 0.35 for small-world-1; msw = 4
and psw = 0.95 for small-world-2; mba = 2 and γba = 4.8 for Barabási–Albert-1, and mba = 4 and
γba = 2.9 for Barabási–Albert-2. The traveling rate is θ = 50. A city with no infected case has no border. A
node filled in black represents the peak of infected individuals for that city, and the grayscale is proportional
to the infection cases

networkwith a low clustering coefficient and high centralization. These outcomes underscore
the necessity of simulating a diverse range of networks to comprehend the dynamic behavior
of the disease within the entire population.

The relevant output variables analyzed in this study are presented in Table 1. It is impor-
tant to note that we define I (t) = ∑�

i=1 I
i
A(t) + I iS(t), which represents the time series of

infected individuals for the entire network. Within this notation, the variable τ denotes the
time instant at which the maximum value of the temporal series I (t) is observed (Table 2).
Additionally, we consider another variable, the standard deviation of the peak infected cases
across cities, denoted as σ .

3.3 A complete set of networks

The objective here is to construct networks encompassing a broad spectrum of topological
parameters within a given model, in order to assess the impact of network properties on the
maximumnumber of infected individuals, the timing of the peak, and the standard deviation of
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Parameters Evolution of the infected state in the cities

SW, θ = 5,

gcc = 0.65,

gdeg = 32.00

SW, θ = 50,

gcc = 1,

gdeg = 0

BA, θ = 5,

gcc = 0.85,

gdeg = 42.00

BA, θ = 50,

gcc = 0.65,

gdeg = 90.00

Fig. 4 Time evolution of infected individuals (I iA(t) + I iS(t)) of all cities i for two small-world and two
Barabási–Albert networks, alongwith respective traveling rate, clustering coefficient and degree centralization.
Each color represents a city (color figure online)

Table 2 Description of the output variables

Parameter Description

τ Instant when the peak of infected individuals occurs for the entire network

I (τ ) Peak of infected individuals for the entire network

σ Standard deviation of the cities’ peak of infected

gcc Clustering coefficient of the network

gdeg Degree centrality of the network
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peak values across cities. The networkswere constructed and their topological propertieswere
obtained using the iGraph library (Csardi and Nepusz 2006). Subsequently, 1000 simulations
per network were conducted by running twenty simulations for each value of the traveling
rate, θ , where θ takes on values ranging from 1 to 50. These simulations run for ts = 500 to
guarantee that the system achieves the permanent regime. Random input network parameters
were utilized in each simulation. For the small-world network model, the number of close
neighbors connected to each node, denoted as msw , and the fraction of rewired connections,
denoted as psw , were randomly selectedwithin the intervals 2 ≤ msw ≤ 16 and 0 ≤ psw ≤ 1,
respectively. In the case of the Barabási–Albert network model, the number of connections
generated per node, represented by mba , and the exponent of the probability of a node being
selected to receive an edge, denoted as γba , were randomly chosen within the intervals
2 ≤ mba ≤ 16 and 1 ≤ γba ≤ 5. It is important to note that only connected networks were
considered in the analysis.

Therefore, Fig. 5 illustrates the peak of infected individuals (I (τ )) for all cities as a function
of the clustering coefficient (Fig. 5a, c), degree centralization (Fig. 5b, d), and the traveling
rate. The simulations are performed on small-world networks (Fig. 5a, b) and Barabási–
Albert networks (Fig. 5b, d). The time instant of the peak (τ ) for the entire network and the
standard deviation of the peak time for each city are depicted in Figs. 6 and 7, respectively,
corresponding to the same categories as presented in Fig. 5.

Consider Figs. 5, 6, and 7. When a network with a control parameter of θ = 50 regulates
the flow of travelers among cities and the travel rate is reduced to θ = 25, the peak of
infected individuals in the network, denoted as I (t), decreases from approximately 0.32 to
0.25, resulting in a reduction of 22% in the peak value. Furthermore, the occurrence of this
peak is delayed from approximately τ ≈ 75 to τ ≈ 105, and the standard deviation of the
peaks in the cities increases.

Analyzing these same figures, it becomes evident that the primary factor contributing to
the flattening of the infected cases curve, thus reducing and delaying the peak, is the traveling
rate parameter θ . Another factor that has a minor influence on the infected cases curve is
the clustering coefficient for small-world networks (subfigures a). The small-world model,
originally proposed by Watts and Strogatz (1998), can generate networks with small-world
properties, as well as random and random regular networks when the rewiring probability
is low. As a result, it allows for uniform neighborhood connections, which increases the
clustering coefficient. This effect enhances the propagation of the disease by increasing the
peak value of infected cases I (τ ), decreasing the time of occurrence τ , and causing the peak
to happen within a narrower time frame in the cities. It was the simultaneous occurrence
of this peak at the early stages of the COVID-19 pandemic that led to a surge in cases,
overwhelming healthcare systems in many countries (Ferguson et al. 2020; Tanne et al.
2020; Verelst et al. 2020). Conversely, none of the topological parameters calculated from
the Barabási–Albert model networks significantly influenced the evolution of infected cases
during the initial time-steps of the simulation. Additionally, the network centralization did
not affect this transient phase.

3.4 Quantifying infectivity levels and disease spreading for the entire network

In this section, we aim to examine the influence of the parameter k, which represents the infec-
tivity of the disease, on the spread of the disease within the network of cities. Specifically, we
investigate theminimumvalueof k required for the disease to affect all cities in thenetwork.To
achieve this, we conduct twenty simulations for each value of k = 50, 49, 48, . . . , 22, 21, 20,
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Fig. 5 Peak of infected individuals for the entire cities network in function of the clustering coefficient (a, c),
degree centralization (b, d) and the traveling rate. Results for small-world (a, b) and Barabási–Albert (b, d)
networks simulations

employing randomly selected parameters using the same process as the previous simulation
set. For the small-world network, we consider 2 ≤ msw ≤ 16 and 0 ≤ psw ≤ 1, while for
the Barabási–Albert network, we consider 2 ≤ mba ≤ 16 and 1 ≤ γba ≤ 5. Only connected
networks are considered. Using the simulation data, we determine the minimum k values
based on θ , clustering coefficient intervals, and degree centralization, as illustrated in Fig.8.

Figure8 presents the minimum infectivity parameter k required for the disease to prop-
agate throughout the entire network of cities, in relation to the clustering coefficient (Fig.
8a, b), degree centralization (Fig. 8c, d), and the traveling rate. It is noteworthy that net-
works with higher clustering coefficients, indicating greater interconnectedness, and lower
centralization, denoting more uniform connections among nodes, necessitate lower values
of the infectivity parameter k for the disease to spread across the entire network of cities.
Conversely, networks exhibiting higher centralization tend to exhibit similar levels of the
minimum k value. Therefore, disease propagation throughout the network is facilitated in
highly interconnected or centralized city networks, where diseases with lower infectivity
parameter values can propagate to all cities effectively. Consequently, reducing the traveling
rate implies that diseasesmust possess higher values of k to achieve widespread transmission.
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Fig. 6 Instant of peak of infected individuals for the entire cities network in function of the clustering coefficient
(a, c), degree centralization (b, d) and the traveling rate. Results for small-world (a, b) and Barabási–Albert
networks simulations

3.5 The basic reproduction number

The determination of the basic reproduction number for a network comprising equal-sized
cities, characterized by uniformity in shape, population size, epidemiological parameters,
and interconnections among individuals, was established in Arino and Van Den Driessche
(2003). According to the analysis presented in Sect. 2 and expressed by Eq. (1), this definition
posits that the highest value of the reproduction number (R0) among the patches serves as an
indicator of disease propagation within the population. It is important to note that R0 is solely
dependent on the disease situation within cities that have reported cases. However, it may not
accurately reflect the dynamics occurring across the network, as the disease may be endemic
in certain cities without spreading to the entirety of the network (it is worth mentioning that
only connected networks were considered in this study).

Consequently, by considering the average value of R0 across all cities (R0), we can have
insights into the absence of disease transmission across some patches. Figure 2, which corre-
sponds to the same simulation setup as before, depicts R0 as a function of the travel rate (θ )
and the infectivity parameter (k). Notably, higher travel rates are associated with a discernible
step-wise increase in R0, indicating an endemic state of the disease across the majority of
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Fig. 7 Standard deviation of the instant of peak of infected individuals on each city in function of the clustering
coefficient (a, c), degree centralization (b, d), and the traveling rate. Results for small-world (a, b) and
Barabási–Albert networks simulations

cities. Conversely, lower travel rates correspond to diminished values of R0, not because the
disease is inherently less severe, but rather due to its limited spread among cities.

This is an important result, because it contains data from all small-world and Barabási–
Albert networks simulated. If the analytical analysis of the system returns that the R0 of the
system is the maximum value among cities, Fig. 9 shows that the average value of the basic
reproduction number in the network is a function only of k and θ . If previous results showed
that reducing the individuals’ travel rates among cities can flatten the infected curve, here we
can see that such reduction can also prevent the disease to achieve every city, reducing R0.

4 Discussion

In this paper, we present a novel multi-patch model that investigates the propagation of
diseases in random networks of interconnected cities. By incorporating local interactions
within cities and the traveling rate among them, we examine how network topologies influ-
ence disease outbreaks and their subsequent evolution. We extend existing city connection
models by considering two types of random networks: small world and Barabási–Albert. The
progression of disease spread across the network is dependent on both the network topol-
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Fig. 8 Minimum value of k required for the disease to spread in all the cities in the network in function of the
clustering coefficient (a, b), degree centralization (c, d) and the traveling rate

Fig. 9 Average basic
reproduction number for all the
cities (R0) in function of the
traveling rate (θ ) and the
infectivity parameter (k)

ogy and the rate at which individuals travel. Our findings reveal that networks characterized
by high traveling rates experience an earlier and more extensive peak of infections, which
occurs almost simultaneously across all cities. Conversely, networks with lower traveling
rates exhibit a delayed and reduced peak of infections, manifesting at different time-steps
across the cities. This disparity in outbreak peaks aligns with observations made in models
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that incorporate spatially distributed subpopulations, such as the study investigating contact
patterns in Russian cities by Leonenko et al. (2020).

Topological parameters of the network, including the clustering coefficient and the cen-
tralization degree, do not provide direct insights into the dynamics of infected cases, except
for small-world networks where the clustering coefficient can offer some information regard-
ing the peak of infected cases, denoted as I (t) (see Fig. 5a). However, these parameters can
be employed to assess the likelihood of disease dissemination across all cities within the
network. As demonstrated in Fig. 8, highly interconnected networks characterized by a high
clustering coefficient and a low centralization degree necessitate lower values of the infec-
tivity parameter k to facilitate the spread of the disease to all cities. Conversely, networks
with fewer connections (thus exhibiting a low clustering coefficient) and a low centralization
degree require a more transmissible disease (higher k) for it to pervade the entire network.

The analysis of network parameters presented in this manuscript has been made possible
by the inclusion of a larger network size. This enlarged network has allowed for meaningful
insights into the spread of disease across the network in relation to its infectivity parameter,
emphasizing the significance of considering the topology of patches when planning con-
trol strategies. Certain results remain consistent regardless of the network size, such as the
observed delay in the infection curve between the city with the initial case and the other
cities (Salmani 2006; Arino et al. 2007; Cui et al. 2017), the effectiveness of global control
measures impacting all patches (Zakary et al. 2017), and the analysis of synchronized and
desynchronized infection curves among patches (Nipa and Allen 2020). However, given the
homogeneity of the patches in this study, the influence of variations among the patches (e.g.,
susceptible and infected travel rates, epidemiological parameters) (Chen et al. 2020; Mpolya
et al. 2014; Prosper et al. 2012), R0 is a function only of the epidemiological parameters of
a single city within the network, even if the value is the same for all cities when the disease
spreads throughout the entire network.

Other studies have indicated that in a multi-city model, the basic reproduction number
(R0) serves as an indicator of disease endemicity within the population (Arino and Van Den
Driessche 2003). The extension of R0 from a single city to a multi-city environment aids in
assessing the global stability of the disease (Arino and Van Den Driessche 2003; Kheiri and
Jafari 2019; Wang and Zhao 2006). In this study, we consider two values for R0: R0 = 0 for
the disease-free scenario and R0 > 1 for the endemic situation, where R0 remains the same
for all cities within the network. Figure9 illustrates this relationship for higher values of the
traveling rate (θ ), representing the presence of the disease in every city. It is worth noting
that in Schimit and Monteiro (2009), a very similar model was applied to a single city, and
they found that both the number of connections individuals make per time-step (C) and the
maximum connection radius (r ) influence the value of R0 in the system.

Therefore, simulation studies have suggested that if the disease exhibits an initial repro-
duction number R0 > 1, implementing interventions at themicro-level can effectively reduce
R0 by decreasing local contacts between individuals. On the other hand, macro-level inter-
ventions are instrumental in delaying and mitigating the infection peak on a global scale,
a strategy commonly referred to as “flattening the curve.” This approach gained significant
attention during the early stages of the global COVID-19 pandemic as a means of reducing
the strain on healthcare systems caused by a high number of infected individuals (Verelst et al.
2020). At the micro-level, control measures can be implemented by reducing the infectivity
parameter k, for instance, through the use of masks and practising social distancing. These
actions effectively decrease the number of contacts C between individuals, resulting in a
similar reduction of R0. Conversely, at the macro-level, control measures focus on reducing
the traveling rate θ , thereby flattening the curve of infections and subsequently decreasing
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the magnitude and delaying the occurrence of the infection peak. Furthermore, even within
the context of the network of cities considered in this study, with equal population sizes, it is
crucial to concentrate efforts on central cities to effectively combat the outbreak of the pan-
demic. In networks characterized by higher centralization, even a lower level of infectivity is
sufficient for the disease to trigger an epidemic outbreak in all cities. This effect becomes even
more pronounced in metropolitan areas where central cities tend to have larger populations.

In Xi et al. (2020), the authors demonstrate a significant correlation between mobility and
the transmission of COVID-19 in China. They found that a reduction in human mobility was
followed by a decline in transmission, with an average lag time of 10 days. Notably, cities
with high influxes of individuals from Wuhan exhibited shorter lag periods, highlighting
the importance of adopting multi-city approaches to disease control. Fiocruz’s technical
notes (Notas 2022) (Technical Note 15-December 18th) report a synchronization of epidemic
curves in Brazil in 2020, following the expansion of COVID-19 cases in smaller cities and
rural areas. According to the same report, it was estimated that an 80% reduction in mobility
in metropolitan regions could decrease the basic reproduction number (R0) from 2.5 to 1.7
and delay the peak of infections by up to 75 days.

The role of vaccination in the context of individual mobility across different patches dur-
ing an infectious disease outbreak is of paramount importance. However, in the absence
of interregional coordination, regions surrounded by non-vaccinated populations necessi-
tate heightened efforts (Klepac et al. 2016). Moreover, individuals may engage in strategic
decision-makingwhenchoosing their travel destinations basedonprevailing conditions (Zhao
et al. 2018). Incorporating the dynamic decision-making of individuals into the analysis intro-
duces an additional layer of complexity, potentially resulting in patches exhibiting different
stages of the outbreak. This underscores the necessity for processes that effectively segment
regions while considering a global perspective of the outcomes, as exemplified in the present
study.

The subsequent stages of this research aim to extend the scope by considering cities of
varying sizes and travel rates to simulate a metropolitan area alongside satellite cities. Fur-
thermore, the utilization of real data will be incorporated to fine-tune the network parameters
in the context of the COVID-19 outbreak and to determine optimal strategies for global pan-
demic control (Balcan et al. 2010). The inherent flexibility of the proposed model enables the
exploration and evaluation of diverse aspects explored in multi-city studies, including but not
limited to demographic and seasonal variability (Nipa and Allen 2020), the impact of vac-
cination campaigns (Cui et al. 2017), travel restrictions between cities (Zakary et al. 2017),
and the implementation of quarantine measures to reduce interpersonal contacts (Arino et al.
2007).
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