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Abstract
In these days, rough set theory has emerged as an invaluable tool for expressing uncertainty
in various optimization problems as it takes into account both the consistency and the exper-
tise of all the involved experts and thus leads to more realistic decisions. In view of this
characteristic of the rough set theory, in this study, a fractional transportation problem in
rough environment is investigated which is of great benefit because of being able to study the
relative efficiency in various fields such as transportation, resource allocation, information
theory, education, administration, etc. In particular, for many real-life transportation prob-
lems the objective may be interpreted as the ratio of physical and economic values, such as
profit/cost, delivery speed/wastage, actual cost/standard cost, actual time/standard time, etc.
A new methodology has been developed to solve the multi-objective fractional transporta-
tion problem with rough parameters in which, firstly, the problem is decomposed into two
sub-models namely, the upper interval model and the lower interval model. Then the upper
interval model is decomposed into two crisp fractional transportation problems to character-
ize the possibly Pareto-optimal solution and the lower interval model is decomposed into two
crisp fractional transportation problems to characterize the surely Pareto-optimal solution,
respectively. The proposed methodology incorporates the variable transformation method
to address the non-linearity of the objective functions. Thereafter, the Pareto-optimal solu-
tion of the linearized model is obtained by using the weighted-sum method. The proposed
approach provides a wide range for the obtained optimal compromise solution and allows
the decision-maker to choose the best one as per the practical uses. At last, a case study is
solved to demonstrate the applicability of the proposed methodology.
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1 Introduction

The transportation problem is a special kind of linear programming problem which was
invented by Hitchcock (1941) in 1941 to minimize the transportation cost of items between
sources and destinations. The basic model of classical transportation problem includes the
objective function and two types of constraints viz., the supply constraints and the demand
constraints. To solve the classical transportation problemmany strategies (Dantzig and Thapa
2006; Ahmed et al. 2016; Amaliah et al. 2022a, b; Karagul and Sahin 2020) have been
developed in the literature. Sometimes, in a real-life transportation system, the decision-
maker needs to optimize the ratio of two objective functions. These kinds of problems lie
in the category of fractional transportation problem (FTP), which was developed by Swarup
(1966) in 1966. In FTP, the objective function is considered in the ratio of two linear functions.
The interpretation of FTP in the ratio of physical and economical values represents the
efficiency of any system. Many researchers have carried out work on FTP such as Joshi
and Gupta (2011) investigated FTP by varying the demand and the supply quantities. A
novel algorithm was proposed by Khurana and Arora (2006) to address the linear plus linear
fractional transportation problems. Gupta et al. (1993) presented a paradox in linear FTPwith
mixed constraints. But all these problems investigated by the researchers are single objective
problems.

However, in practical situations, decision-maker may need to simultaneously optimize
multiple objectives. For instance, in the transportation system, the fundamental goal of the
decision-maker is to reduce the total cost of transportation. The problem becomes a multi-
objective transportation problem if, in the meantime, the decision-maker wants to minimize
the transport time of the item, the rate of breakability, the amount of carbon emitted from the
transport system, etc. In a multi-objective transportation problem, the concept of the optimal
solution is replaced by the concept of the Pareto-optimal solution or optimal compromise
solution. Numerous researchers (Gupta et al. 2020; Bagheri et al. 2020; Roy et al. 2019;
Ghosh and Roy 2021; Giri and Roy 2022; Ghosh et al. 2022; Mardanya et al. 2022) have
given their investigations onmulti-objective transportation problem.When the FTP addresses
multiple objectives, then it is referred to as amulti-objective fractional transportation problem
(MOFTP). Javaid et al. (2017) studiedMOFTPwith uncertain parameters and used fuzzy goal
programming approach to solve it.Mardanya andRoy (2022) investigated time-variantmulti-
objective FTP with interval-valued parameters. Sadia et al. (2016) solved multi-objective
capacitated FTP with mixed constraints by using fuzzy programming technique with linear
as well as non-linear membership functions. In this investigation, researchers considered
crisp parameters.

However, in real-life problems, it is almost impossible for the decision-maker to exactly
define the parameters of the transportation problems due to the instability of the financial
market, lack of information, or many other uncontrollable factors. To handle this situation,
Zadeh (1965) established the idea of fuzzy set, which is very helpful when dealing with
imprecise data. In a fuzzy set, the degree of membership ∈ [0, 1] represents the uncertainty
of the parameters. Following the development of fuzzy set, Atanassov (1986) proposed the

123



On solving fully rough multi-objective… Page 3 of 27 266

idea of an intuitionistic fuzzy set, in which the uncertainty of the parameters was defined
by both the membership and the non-membership degree. Since then, numerous researchers
(Sharma et al. 2021;Garg et al. 2021;Khalifa et al. 2021;Anukokila andRadhakrishnan 2019;
El Sayed and Abo-Sinna 2021; Bhatia et al. 2022; Saini et al. 2022) have investigated FTP
in fuzzy/intuitionistic fuzzy environment. The two-stage fractional transshipment problem,
in which all of the parameters are defined by fuzzy numbers, was studied by Garg et al.
(2021). Khalifa et al. (2021) applied fuzzy programming approach to obtain the Pareto-
optimal solution of the two-stage FTP under a fuzzy environment. In these studies, the
researchers found a crisp solution to the fuzzy problem, but the solution evaluated in the
form of fuzzy numbers is more instructive. Therefore, Anukokila and Radhakrishnan (2019)
formulated the model of fully fuzzy FTP and solved it using the goal programming approach.
El Sayed and Abo-Sinna (2021) developed the model of fully intuitionistic fuzzy MOFTP
and used the intuitionistic fuzzy programming approach to solve it. Bharati (2019) proposed a
solution methodology for the intuitionistic fuzzy FTP in which uncertainty of the parameters
is represented by trapezoidal intuitionistic fuzzy numbers. Midya et al. (2021) solved multi-
objective fixed-charge FTP using two different kinds of uncertainty.

Moreover, for assessing the ambiguity or uncertainty in optimization problems, the rough
set theory proposed by Pawlak (1982) plays a significant role. Rough set theory is free from
any extra data-related information such as probability distribution in statistics, degree of
membership, or degree of possibility and necessity in fuzzy set theory. Therefore, the opti-
mization process will become more flexible and practical if we employ the rough set theory
to address the ambiguity in optimization problems. The rough set has the limitation that it
can only be applied to discrete data problems and cannot be utilized to solve continuous
variable problems. To solve this shortcoming in rough set theory, Rebolledo (2006) invented
the concept of rough interval, which is a specific instance of the rough set. Rough interval
can describe continuous variables and also satisfy the characteristics and essential notions of
the rough set. Rough interval also has the ability to handle parameters that are ill-defined or
partially unknown. Several investigators have paid their attention towards rough set theory to
deal with imprecision and vagueness such as Velazquez Rodriguez et al. (2020) in granular
computing, Arabani (2006) in civil engineering problems, and Bouzayane and Saad (2020),
Sharma et al. (2020), Stankovic et al. (2019), Naouali et al. (2020) and Zhao et al. (2020) have
used the concept of rough set theory in different fields. Few researchers have also used the
rough set theory to tackle the uncertainty of transportation problems. Garg and Rizk-Allah
(2021) suggested an innovative strategy to solve the rough interval multi-objective trans-
portation problems. Bera and Mondal (2020) introduced the rough and bi-rough variables
to tackle the uncertainty of two-stage multi-objective transportation problems. The multi-
objective fixed-charge transportation problem with rough parameters is solved by Midya
and Roy (2020) with three different approaches. Profit-maximizing four-dimensional trans-
portation problem with multi-item is investigated by Bera et al. (2018) in the rough interval
context.

But as per our knowledge, no one has used the rough set theory to represent the uncertainty
of FTP. Therefore, in the present study, the model of MOFTP is developed in which all the
parameters and decision variables are rough intervals and the problem is called as fully rough
multi-objective fractional transportation problem (FRMOFTP). The rough intervals which
are derived from the intersection and union of the experts knowledge are used to depict the
lower and upper approximation intervals. In this way, the FRMOFTP is divided into two
sub-interval models: the upper interval model (UIM) and the lower interval model (LIM).
The proposed solution methodology has two distinctive characteristics, firstly, the suggested
approach divides the UIM into two crisp FTPs using the boundaries of its interval in order to
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describe the probably Pareto-optimal solution. Furthermore, the suggested method identifies
the surely Pareto-optimal solution by splitting the LIM into two crisp FTPs utilizing the
boundaries of its interval. To discover the non-dominated solution, the proposed approach
utilizes the advantages of the weighted-summethod (WSM). The formulation of theMOFTP
in rough interval environment and getting the solution in the same environment is the novelty
of the proposed methodology.

Motivation for the proposed research work

• Garg and Rizk-Allah (2021) suggested an innovative approach to solve the rough interval
multi-objective linear transportation problems.But, the approach is not applicable onFTP.
As a result, the methodology proposed by the authors has been extended in the present
study to solve the MOFTP.

• Sadia et al. (2016) and Veeramani et al. (2021) have solved the FTP in which the value
of the parameters is considered as crisp numbers. But, as we know the crisp data may
not represent the real-life factors precisely. Hence, the method proposed by the authors
lacks practical implications.

• Many authors (Anukokila and Radhakrishnan 2019; Agrawal andGanesh 2020; El Sayed
and Abo-Sinna 2021) have addressed the uncertainty aspect of FTP using stochastic,
fuzzy, intuitionistic fuzzy set theory, etc. However, no one has examined the FTP with
rough parameters by analyzing the benefits of the rough set theory over the existing
theories.

• Liu (2016) and Mahmoodirad et al. (2019) have solved the FTP but the said techniques
can not be applied to the problemwithmultiple objectives.Whereas, the solutionmethod-
ology proposed in the present study effectively addresses the uncertainty-based FTPwith
multiple objectives.

• Amethod forMOFTP that is based on the ranking function of intuitionistic fuzzy number
is proposed by El Sayed and Abo-Sinna (2021). But, while applying the various ranking
techniques, there is a risk of hesitancy or ambiguity and hence such a technique may not
provide the best solution for the uncertain problem.

Contribution of the proposed study

• The model of FRMOFTP is composed on the basis of rough set theory.
• Anewmethod is proposed to find the rough Pareto-optimal solution of FRMOFTPwhich

operates by decomposing the problem into two sub-models namely, theUIMand theLIM,
where each sub-model is decomposed into two crisp FTPs by using the boundaries of
this interval.

• To deal with fractional objectives, the variable transformation method (VTM) is embed-
ded in the proposed approach.

• The WSM is utilized for scaling down the multi-objective problem to single objective
problem.

• The validation of the proposed methodology is done on a case study.

The remainder of the paper is structured as follows: Sect. 2 presents the basic definitions
and theorems related to the rough set theory. Section 3 depicts the crisp model of MOFTP
and the VTM to linearise the fractional problem. The mathematical model of the proposed
FRMOFTP and the stepwise procedure to solve it, is presented in Sect. 4. The advantages
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and some limitations of the proposed solution methodology are mentioned in Sect. 5. A case
study is solved in Sect. 6 to show the applicability of the proposed solution strategy. Section
7 gives results and discussion. Conclusions and scope of the future research are given in Sect.
8.

2 Preliminaries

The fundamental definitions and theorems related to the rough set theory are presented in
this section.

Rough space and the rough set

Definition 1 (Liu 2009) Let � be a non-empty set, ϒ be σ algebra of subset of �, � be an
element in ϒ and τ be an additive set function with positive, real-valued coefficient. Then,
(�,�,ϒ, τ) is referred to as a rough space.

Definition 2 (Tao and Xu 2012) Let U be the non-empty universe, R be an equivalence
relation on U and R(π) be an equivalence class of the relation that includes π ∈ U . Then
for any � ⊆ U , the lower and upper approximations of � are given as follows:

R(�) =
⋃

π∈�

{R(π) : R(π) ⊆ �}

R(�) =
⋃

π∈�

{R(π) : R(π) ∩ � �= φ}

Clearly, the lower approximationR(�) represents the set of all objects that can be categorize
as � with respect to R with surety, whereas the upper approximation R(�) represents the
set of all objects that can be categorize as�with respect toR with possibility. The boundary
region bnR (�) of the rough set � is defined as

bnR (�) = R(�) − R(�)

The area described as the boundary is that which cannot be classified as belonging to either
� or its complement U − �. The boundary region transform into an empty set when both
the upper and lower approximations of the defined set are equal. In Fig. 1, the rough set is
depicted graphically.

Rough interval

Rebolledo developed the concept of rough interval in his work (Rebolledo 2006) as an
example of the rough set that keeps all of the essential and defining characteristics of the
rough set, including the lower and upper approximation intervals. These are specified in the
following definitions:

Definition 3 (XuandTao2011)A rough interval is defined as T̃ RI = [ωLL , ωUL ][ωLU , ωUU ]
where ωLL , ωUL , ωLU , ωUU are all real numbers and ωLU ≤ ωLL ≤ ωUL ≤ ωUU . The
interval [ωLL , ωUL ] is called lower approximation interval and [ωLU , ωUU ] is called upper
approximation interval such that

• If π ∈ [ωLL , ωUL ], then T̃ RI definitely takes π.
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Fig. 1 Graphical representation of rough set

• If π ∈ [ωLU , ωUU ], then T̃ RI probably takes π .
• If π /∈ [ωLU , ωUU ], then T̃ RI definitely does not takes π .

Anupper approximation interval [ωLU , ωUU ] and a lower approximation interval [ωLL , ωUL ]
are the two parts of the rough interval. It means that the variable takes values in lower approxi-
mation in normal cases and takes values in upper approximation in rare cases, i.e., the variable
does not accept any values outside of the upper approximation range. If ωLL = ωLU and
ωUL = ωUU , i.e., no exceptional cases happen, the rough interval T̃ RI degenerates into a
crisp interval.

Remark 1: The rough interval T̃ RI = [0, 0][0, 0] is referred as a zero rough interval.

Example 1 Let γ stand for the “waste generation rate” in a city, which normally ranges from
800 to 820 ton/day. The rate of waste generation varies between 780 and 840 ton/day during
holidays, festivals, and other special occasions. The following rough interval: γ = (γ , γ ) =
[800, 820][780, 840] can be used to represent this “waste generation rate”. It implies, the
waste generation rate in a city is surely between [800, 820] ton/day and probably between
[780, 840] ton/day.
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Definition 4 A rough interval T̃ RI = [ωLL , ωUL ][ωLU , ωUU ] is said to be non-negative iff
ωLU ≥ 0.

Definition 5 Let T̃ RI = [ωLL , ωUL ][ωLU , ωUU ] and S̃RI = [σ LL , σUL ][σ LU , σUU ] be
two positive rough intervals. Then

• T̃ RI ⊕ S̃RI = [ωLL + σ LL , ωUL + σUL ][ωLU + σ LU , ωUU + σUU ],
• T̃ RI 	 S̃RI = [ωLL − σUL , ωUL − σ LL ][ωLU − σUU , ωUU − σ LU ],
• k Q̃RI =

{
[kωLL , kωUL ][kωLU , kωUU ], if k ≥ 0

[kωUL , kωLL ][kωUU , kωLU ], if k < 0,

• T̃ RI ⊗ S̃RI = [ωLLσ LL , ωULσUL ][ωLUσ LU , ωUUσUU ],
• T̃ RI � S̃RI = [ωLL/σUL , ωUL/σ LL ][ωLU/σUU , ωUU/σ LU ].

Example 2 Let T̃ RI = [6, 8][5, 10] and S̃RI = [3, 6][2, 8] be two rough inter-
vals. Then T̃ RI + S̃RI = [9, 14][7, 18], T̃ RI − S̃RI = [0, 5][−3, 8], T̃ RI ∗ S̃RI =
[18, 48][10, 80], T̃ RI /S̃RI = [1, 8/3][5/8, 5], 4T̃ RI = [24, 32][20, 40], and −4T̃ RI =
[−32,−24][−40,−20].
Definition 6 Let T̃ RI = [ωLL , ωUL ][ωLU , ωUU ] and S̃RI = [σ LL , σUL ][σ LU , σUU ] be
two rough intervals, then T̃ RI = S̃RI if and only if ωLL = σ LL , ωUL = σUL , ωLU =
σ LU , ωUU = σUU .

Expected value of rough interval

Definition 7 (Xu and Tao 2011) Let � be an event defined by {π |σ(π) ∈ �}, where σ is a
function from the universeU to real lineR, if T ⊆ R, and� be approximated by (�,�) in
accordance with the similarity relationR. The lower expected value of� is therefore defined
as

E[σ ] =
∫ ∞

0
Appr{σ ≥ r}dr −

∫ 0

−∞
Appr{σ ≤ r}dr

where Appr = |� ∩ �|
�

and |� ∩ �| represents the cardinality of � ∩ �.

and the upper expected value of � is defined by

E[σ ] =
∫ ∞

0
Appr{σ ≥ r}dr −

∫ 0

−∞
Appr{σ ≤ r}dr

where Appr = |�|
�

and |�| represents the cardinality of �.

Hence, the expected value of � is defined as

E[�] =
∫ ∞

0
Appr{σ ≥ r}dr −

∫ 0

−∞
Appr{σ ≤ r}dr

Theorem 1 (Xu and Tao 2011) Let T̃ RI = [ωLL , ωUL ][ωLU , ωUU ] be a rough interval.
Then, the expected-value of T̃ RI is denoted by E(T̃ RI ) and is defined as

E(T̃ RI ) = 1

2

[
δ(ωLL + ωUL) + (1 − δ)(ωLU + ωUU )

]
, where δ ∈ [0, 1] is a parameter.

Remark 2: If δ = 0.5, then expected-value of T̃ RI is calculated as E(T̃ RI ) = 1
4

(
ωLL +

ωUL + ωLU + ωUU
)
.
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Theorem 2 (Xu and Tao 2011) Let T̃ RI = [ωLL , ωUL ][ωLU , ωUU ] and S̃RI = [σ LL , σUL ]
[σ LU , σUU ] be two rough intervals. Then E[ηT̃ RI +φ S̃RI ] = ηE[T̃ RI ]+φE[S̃RI ] for any
two positive real numbers η, φ.

Proof: Let T̃ RI = [ωLL , ωUL ][ωLU , ωUU ] and S̃RI = [σ LL , σUL ][σ LU , σUU ] are two
rough intervals and η, φ be any two positive real numbers. Then using the arithmetic oper-
ations on rough intervals

ηT̃ RI + φ S̃RI = [ηωLL + φσ LL , ηωUL + φσUL ][ηωLU + φσ LU , ηωUU + φσUU ]
is also a rough interval.

From Theorem 1, the expected value of rough interval ηT̃ RI + φ S̃RI is given as

E
[
ηT̃ RI + φ S̃RI ] = 1

2

[
δ(ηωLL + φσ LL + ηωUL + φσUL)

+(1 − δ)(ηωLU + φσ LU + ηωUU + φσUU )
]

= η

2

[
δ(ωLL + ωUL) + (1 − δ)(ωLU + ωUU )

]

+φ

2

[
δ(σ LL + σUL) + (1 − δ)(σ LU + σUU )

]

= ηE[T̃ RI ] + φE[S̃RI ]
This completes the proof of theorem.

3 Multi-objective fractional transportation problem (MOFTP) in crisp
environment

The crisp model of MOFTP in which each parameter is taken into account as a crisp number
is presented in this section. Also, the linearization process of the fractional problem using
the VTM is described here.

3.1 MOFTP in crisp environment

The general MOFTP mathematically can be defined as:

(P1) Max Ok(x) = Nk(x)

Dk(x)
=

∑p
l=1

∑q
m=1 p

k
lmxlm + μk

∑p
l=1

∑q
m=1 c

k
lmxlm + νk

, k = 1, 2, . . . , K (3.1)

subject to
q∑

m=1

xlm = al , l = 1, 2, . . . , p (3.2)

p∑

l=1

xlm = bm, m = 1, 2, . . . , q (3.3)

xlm ≥ 0, l = 1, 2, . . . , p; m = 1, 2, . . . , q. (3.4)

where O = {O1(x), O2(x), . . . , OK (x)} is the set of K objective functions. The coefficients
of the kth objective function are denoted by pklm and cklm respectively, in the numerator Nk(x)
and denominator Dk(x). The relative constant values for the numerator and denominator of
the kth objective function are indicated by μk and νk, respectively. The product is shipped
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from p(l = 1, 2, . . . , p) sources to q(m = 1, 2, . . . , q) destinations and xlm denotes the
units of the product transported from lth source tomth destination. The supply capacity of lth
source and demand ofmth destination are depicted by al and bm respectively.We assumes that
Dk(x) > 0, Nk(x) ≥ 0, μk ≥ 0, νk ≥ 0 ∀ k = 1, 2, . . . , K and

∑p
l=1 al = ∑q

m=1 bm .

Definition 8 A feasible solution x∗ = {x∗
lm : l = 1, 2, . . . , p; m = 1, 2, . . . q} of problem

(P1) is said to be a Pareto-optimal (optimal-compromise) solution if there exist no other
feasible solution x = {xlm : l = 1, 2, . . . , p; m = 1, 2, . . . q} such that Ok(x) ≥ Ok(x∗) ∀
k = 1, 2, . . . , K and Ok(x) > Ok(x∗) for at least one k.

3.2 Variable transformationmethod (VTM)

Charnes and Cooper (1962) proposed the VTM to transform the single objective fractional
programming problem into a linear programming problem. Later on, Arya et al. (2020); El
Sayed and Abo-Sinna (2021) used Charnes–Cooper transformation technique to transform
themulti-objective fractional programming problem intomulti-objective linear programming
problem by introducing a new variable zlm = xlm ∗ t; t > 0. Since Dk(x) > 0, Nk(x) ≥
0, μk ≥ 0, νk ≥ 0 ∀ k = 1, 2, . . . K and xlm ≥ 0. In this circumstance, we take the least
value of 1

Dk (x)
= t, i.e.,

⋂ 1
∑p

l=1

∑q
m=1 c

k
lmxlm + νk

= t; k = 1, 2, . . . , K . (3.5)

In general, it can also be written as:

1
∑p

l=1

∑q
m=1 c

k
lmxlm + νk

≥ t; k = 1, 2, . . . , K . (3.6)

Using the transformation zlm = xlm ∗ t; t > 0 and equation (3.6), problem (P1) is converted
into an equivalent multi-objective linear transportation problem as shown below:

(P2) Max Ok(z, t) = t Nk

(
zlm
t

)
, ∀ l, m; k = 1, 2, . . . , K (3.7)

subject to

t Dk

(
zlm
t

)
≤ 1, ∀ l, m; k = 1, 2, . . . , K (3.8)

q∑

m=1

(
zlm
t

)
= al , l = 1, 2, . . . , p (3.9)

p∑

l=1

(
zlm
t

)
= bm, m = 1, 2, . . . , q (3.10)

zlm ≥ 0, t > 0, l = 1, 2, . . . , p; m = 1, 2, . . . , q. (3.11)

Theorem 3 (El Sayed and Abo-Sinna 2021) The solution x∗
lm is a Pareto-optimal solution of

problem (P1) iff the solution (z∗lm, t∗) is a Pareto-optimal solution of problem (P2).

Proof: Contrarily, suppose that {x∗
lm = z∗lm

t∗ } is a Pareto-optimal solution of (P1), but the
solution (z∗lm, t∗) is not a Pareto-optimal solution of problem (P2). Therefore, there exist a
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feasible solution {zlm} ∈ F
′
, where F

′
is the set of feasible solutions of problem (P2), such

that

t∗Nk

(
z∗lm
t∗

)
≤ t Nk

(
zlm
t

)
, ∀ k = 1, 2, . . . , K

and t∗Nk

(
z∗lm
t∗

)
< t Nk

(
zlm
t

)
, for at least one k.

Using the transformation technique of Chakraborty and Gupta (2002) andArya et al. (2020),
we infer:

t∗Nk
(
x∗
lm

) ≤ t Nk

(
zlm
t

)
, ∀ k = 1, 2, . . . , K

and t∗Nk
(
x∗
lm

)
< t Nk

(
zlm
t

)
, for at least one k.

This implies that

Nk(x∗
lm)

Dk(x∗
lm)

≤ Nk(xlm)

Dk(xlm)
, ∀ k = 1, 2, . . . , K

and
Nk(x∗

lm)

Dk(x∗
lm)

<
Nk(xlm)

Dk(xlm)
, for at least one k.

This demonstrates that {x∗
lm} is not a Pareto-optimal solution of problem (P1), which is the

contradiction of our supposition. Therefore, concludes that solution (z∗lm, t∗) is a Pareto-
optimal solution of problem (P2).
Conversely, let (z∗lm, t∗) is a Pareto-optimal solution to problem (P2), but {x∗

lm} is not a
Pareto-optimal solution to problem (P1). Then, theremust exist a feasible solution {xlm} ∈ F,

where F is the set of feasible solutions of problem (P1), such that

Nk(x∗
lm)

Dk(x∗
lm)

≤ Nk(xlm)

Dk(xlm)
, ∀ k = 1, 2, . . . , K

and
Nk(x∗

lm)

Dk(x∗
lm)

<
Nk(xlm)

Dk(xlm)
, for at least one k

Now by using the transformation z∗lm = x∗
lm ∗ t∗ we infer that:

t∗Nk

(
z∗lm
t∗

)
≤ Nk(xlm)

Dk(xlm)
, ∀ k = 1, 2, . . . , K

and t∗Nk

(
z∗lm
t∗

)
<

Nk(xlm)

Dk(xlm)
, for at least one k

This shows that (z∗lm, t∗) is not a Pareto-optimal solution to problem (P2) , which is the
contradiction to our supposition. Therefore, {x∗

lm} is a Pareto-optimal solution to problem
(P1).
Hence, proved the theorem.

3.3 Weighted-summethod (WSM)

The WSM proposed by Zadeh (1963) is an effective method to solve the multi-objective
optimization problems. This approach is based on the idea of combining the set of objectives
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into a single objective by assigning weights to each objective. Based on the importance of
a particular objective, the decision-maker determines/decides its weight. The sum of the
weights assigned to the objectives should be equal to one. For the multi-objective problem
(P2), the following single-objective problem (P3) is obtained by applying the WSM:

(P3) Max O(z, t) = w1O1(z, t) + w2O2(z, t) + · · · + wK OK (z, t)

subject to constraints from (3.8) to (3.11)

and
K∑

k=1

wk = 1, wk ≥ 0,

where wk represents the weights assigned to the kth objectives.

Theorem 4 If (z∗, t∗) = {(z∗lm, t∗) : l = 1, 2, . . . , p; m = 1, 2, . . . , q} is an optimal
solution of (P3), then it is also a Pareto-optimal solution of (P2).
Proof: This theorem is proved by contradiction. Assume that (z∗, t∗) is not a Pareto-optimal
solution of (P2). Therefore, by Definition 8, there exist at least one solution (z, t) such that

Ok(z, t) ≥ Ok(z
∗, t∗) for k = 1, 2, . . . , K and

Ok(z, t) > Ok(z
∗, t∗) for at least one k.

As wk > 0 for k = 1, 2, . . . , K. Therefore,

wk Ok(z, t) ≥ wk Ok(z
∗, t∗) for k = 1, 2, . . . , K and (3.12)

wk Ok(z, t) > wk Ok(z
∗, t∗) for at least one k. (3.13)

From (3.12) and (3.13), we get

K∑

k=1

wk Ok(z, t) >

K∑

k=1

wk Ok(z
∗, t∗)

which is a contradiction to the fact that (z∗, t∗) is an optimal solution of (P3). Thus, (z∗, t∗)
is a Pareto-optimal solution of (P2).

4 Mathematical formulation and solutionmethodology for fully rough
multi-objective fractional transportation problem (FRMOFTP)

In this section, the model of FTP has been formulated with K (k = 1, 2, . . . , K ) objective
functions which may represent the ratio of total profit to total transportation cost, total deliv-
ery speed to total wastage along the shipping route, total actual transportation time to total
standard transportation time, etc. The assumption made in the suggested model is that the
product is transported from p(l = 1, 2, . . . , p) sources to q(m = 1, 2, . . . , q) destinations.
The aim of this model formulation is to evaluate the amount of product transported from
lth source to mth destination in a way that gives the decision-maker the best value for each
objective function with in the given constraints. All of the parameters and decision variables
have been treated as rough intervals due to the incomplete information. To formulate the
proposed mathematical model of FRMOFTP, the following notations and assumptions are
utilized :
Notations:
p : number of sources (l = 1, 2, . . . , p),
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q : number of destinations (m = 1, 2, . . . , q),

Ñ RI
k : coefficient vector for the numerator of the kth objective ,

D̃RI
k : coefficient vector for the denominator of the kth objective ,

p̃(k)RI
lm : rough interval elements of the set Ñ RI

k for the kth objective ,

c̃(k)RI
lm : rough interval elements of the set D̃RI

k for the kth objective ,

ã RI
l : rough interval availability of the product at lth source,
b̃RIm : rough interval demand of the product at mth destination.
x̃ R Ilm : rough interval amount of the product shipped from lth source to mth destination ,

Assumptions:

• The problem is assumed as a balanced problem. The proposedmethodology is not directly
applicable for obtaining a rough optimal solution to an unbalanced FRMOFTP. To solve
the unbalanced FRMOFTP with proposed methodology, one first requires to convert it
into a balanced problem either by introducing a dummy source or dummy destination
(Shivani et al. 2022).

• In proposed FRMOFTP, the relative constant value for the numerator and denominator
of the kth objective function is assumed to be zero rough interval, i.e., [0, 0][0, 0].

• p̃(k)RI
lm = [p(k)LL

lm , p(k)UL
lm ][p(k)LU

lm , p(k)UU
lm ], (k = 1, 2, 3, . . . , K )

• c̃(k)RI
lm = [c(k)LL

lm , c(k)UL
lm ][c(k)LU

lm , c(k)UU
lm ], (k = 1, 2, 3, . . . , K )

• ã RI
l = [aLLl , aUL

l ][aLUl , aUU
l ], b̃RIm = [bLLm , bUL

m ][bLUm , bUU
m ],

• x̃ R Ilm = [x LLlm , xUL
lm ][x LUlm , xUU

lm ],
• D̃RI

k > 0, Ñ RI
k ≥ 0.

The proposed model of FRMOFTP mathematically can be formulated as below:

(P4) Max Õ RI
k (x) = Ñ RI

k (x)

D̃RI
k (x)

=
∑p

l=1

∑q
m=1[p(k)LL

lm , p(k)UL
lm ][p(k)LU

lm , p(k)UU
lm ] ⊗ [x LLlm , xUL

lm ][x LUlm , xUU
lm ]

∑p
l=1

∑q
m=1[c(k)LL

lm , c(k)UL
lm ][c(k)LU

lm , c(k)UU
lm ] ⊗ [x LLlm , xUL

lm ][x LUlm , xUU
lm ]

, (k = 1, 2, . . . , K )

(4.1)

subject to
q∑

m=1

[x LLlm , xUL
lm ][x LUlm , xUU

lm ] = [aLLl , aUL
l ][aLUl , aUU

l ], l = 1, 2, . . . , p (supply constraints)

(4.2)
p∑

l=1

[x LLlm , xUL
lm ][x LUlm , xUU

lm ] = [bLLm , bUL
m ][bLUm , bUU

m ], m = 1, 2, . . . , q (demand constraints)

(4.3)
p∑

l=1

[aLLl , aUL
l ][aLUl , aUU

l ] =
q∑

m=1

[bLLm , bUL
m ][bLUm , bUU

m ] (4.4)

[x LLlm , xUL
lm ][x LUlm , xUU

lm ] ≥ 0 ∀ l, m. (4.5)

The lower and upper approximation intervals are represented by the rough intervals, which
takes its inspiration from the intersection of expert knowledge and the union of expert knowl-
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edge. In this way, the FRMOFTP (P4) is divided into two sub-interval models: UIM and LIM.
The UIM is defined by using the upper interval of the problem (P4), which is defined as (P5),
and the LIM is defined by using the lower interval of the problem (P4), which is defined as
(P6). These definitions are presented below:

UIM:

(P5) Max OU
k (x) =

∑p
l=1

∑q
m=1[p(k)LU

lm , p(k)UU
lm ] ⊗ [x LUlm , xUU

lm ]
∑p

l=1

∑q
m=1[c(k)LU

lm , c(k)UU
lm ] ⊗ [x LUlm , xUU

lm ]
, (k = 1, 2, . . . , K )

subject to
q∑

m=1

[x LUlm , xUU
lm ] = [aLUl , aUU

l ], l = 1, 2, . . . , p

p∑

l=1

[x LUlm , xUU
lm ] = [bLUm , bUU

m ], m = 1, 2, . . . , q

p∑

l=1

[aLUl , aUU
l ] =

q∑

m=1

[bLUm , bUU
m ]

[x LUlm , xUU
lm ] ≥ 0 ∀ l, m.

LIM:

(P6) Max OL
k (x) =

∑p
l=1

∑q
m=1[p(k)LL

lm , p(k)UL
lm ] ⊗ [x LLlm , xUL

lm ]
∑p

l=1

∑q
m=1[c(k)LL

lm , c(k)UL
lm ] ⊗ [x LLlm , xUL

lm ]
, (k = 1, 2, . . . , K )

subject to
q∑

m=1

[x LLlm , xUL
lm ] = [aLLl , aUL

l ], l = 1, 2, . . . , p

p∑

l=1

[x LLlm , xUL
lm ] = [bLLm , bUL

m ], m = 1, 2, . . . , q

p∑

l=1

[aLLl , aUL
l ] =

q∑

m=1

[bLLm , bUL
m ]

[x LLlm , xUL
lm ] ≥ 0 ∀ l, m.

From themodelsUIMandLIM, four crisp fractional transportation problems named asUpper
Upper fractional transportation problem (T PUU ), Upper Lower fractional transportation
problem (T PUL),Lower Lower fractional transportation problem (T PLL) and LowerUpper
fractional transportation problem (T PLU ) have been constructed. The models (T PUU ),

(T PLU ) represent the possibly Pareto-optimal solution by using the boundary of UIM and
the models (T PLL), (T PUL) represent the surely Pareto-optimal solution by using the
boundary of LIM, as follows:
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(T PUU ) : Max OUU
k =

∑p
l=1

∑q
m=1 p(k)UU

lm ⊗ xUU
lm

∑p
l=1

∑q
m=1 c

(k)LU
lm ⊗ xLUlm

(k = 1, 2, . . . , K )

subject to

q∑

m=1

xUU
lm = aUU

l , l = 1, 2, . . . , p,

p∑

l=1

xUU
lm = bUU

m , m = 1, 2, . . . , q,

q∑

m=1

xLUlm = aLUl , l = 1, 2, . . . , p,

p∑

l=1

xLUlm = bLUm , m = 1, 2, . . . , q,

xLUlm , xUU
lm ≥ 0 ∀ l, m.

(T PUL ) : Max OUL
k =

∑p
l=1

∑q
m=1 p(k)UL

lm ⊗ xUL
lm

∑p
l=1

∑q
m=1 c

(k)LL
lm ⊗ xLLlm

(k = 1, 2, . . . , K )

subject to

q∑

m=1

xUL
lm = aUL

l , l = 1, 2, . . . , p,

p∑

l=1

xUL
lm = bUL

m , m = 1, 2, . . . , q,

q∑

m=1

xLLlm = aLLl , l = 1, 2, . . . , p,

p∑

l=1

xLLlm = bLLm , m = 1, 2, . . . , q,

xLLlm , xUL
lm ≥ 0 ∀ l, m.

(T PLL ) : Max OLL
k =

∑p
l=1

∑q
m=1 p(k)LL

lm ⊗ xLLlm
∑p

l=1
∑q

m=1 c
(k)UL
lm ⊗ xUL

lm

(k = 1, 2, . . . , K )

subject to

q∑

m=1

xLLlm = aLLl , l = 1, 2, . . . , p,

p∑

l=1

xLLlm = bLLm , m = 1, 2, . . . , q,

q∑

m=1

xUL
lm = aUL

l , l = 1, 2, . . . , p,

p∑

l=1

xUL
lm = bUL

m , m = 1, 2, . . . , q,

xLLlm , xUL
lm ≥ 0 ∀ l, m.

(T PLU ) : Max OLU
k =

∑p
l=1

∑q
m=1 p(k)LU

lm ⊗ xLUlm
∑p

l=1
∑q

m=1 c
(k)UU
lm ⊗ xUU

lm

(k = 1, 2, . . . , K )

subject to

q∑

m=1

xLUlm = aLUl , l = 1, 2, . . . , p,

p∑

l=1

xLUlm = bLUm , m = 1, 2, . . . , q,

q∑

m=1

xUU
lm = aUU

l , l = 1, 2, . . . , p,

p∑

l=1

xUU
lm = bUU

m , m = 1, 2, . . . , q,

xLUlm , xUU
lm ≥ 0 ∀ l, m.

Theorem 5 If xUU∗, xUL∗, x LL∗, and xLU∗ be a Pareto-optimal solution of (T PUU ),

(T PUL), (T PLL), and (T PLU ), respectively, then x̃ RI = [x LL∗
, xUL∗][x LU∗, xUU∗] is a

Pareto-optimal solution of problem (P4).
Proof: Let ỹRI = [yLL∗, yUL∗][yLU∗, yUU∗] be a feasible solution of the problem (P4).
Therefore, yUU∗, yUL∗, yLL∗, and yLU∗ are feasible solution to the problem (T PUU ),

(T PUL), (T PLL), and (T PLU ), respectively. Now, since xUU∗, xUL∗, x LL∗, and xLU∗
are Pareto-optimal solution of (T PUU ), (T PUL), (T PLL), and (T PLU ) respectively, then
OUU
k (xUU∗) ≥ OUU

k (yUU )

OUL
k (xUL∗) ≥ OUL

k (yUL )

OLL
k (x LL∗) ≥ OLL

k (yLL)

OLU
k (x LU∗) ≥ OLU

k (yLU ) ∀ k = 1, 2, . . . , K
and OUU

k (xUU∗) > OUU
k (yUU )

OUL
k (xUL∗) > OUL

k (yUL)

OLL
k (x LL∗) > OLL

k (yLL )

OLU
k (x LU∗) > OLU

k (yLU ) for at least one k.
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Therefore, Ok (̃x RI ) ≥ Ok(ỹ R I ) ∀ k = 1, 2, . . . , K and Ok (̃x RI ) > Ok(ỹ R I ) for at least
one k. Therefore, x̃ RI = [x LL∗

, xUL∗][x LU∗, xUU∗] is a Pareto-optimal solution of problem
(P4).
Hence, the theorem is proved ��.

For the fractional models (T PUU ), (T PUL), (T PLL), and (T PLU ), equivalent linear
models can be written by applying the VTM discussed in Sect. 3.2. For model (T PUU ),

considering x LUlm = xUU
lm − ψUU

lm and substituting zUU
lm = xUU

lm ∗ t LU , χUU
lm = ψUU

lm ∗
t LU ; t LU > 0, the equivalent linear model T PUU ′

is presented below. Similarly for model
T PUL , the equivalent model T PUL ′

is written by taking x LLlm = xUL
lm −ψUL

lm and substituting
zUL
lm = xUL

lm ∗ t LL , χUL
lm = ψUL

lm ∗ t LL ; t LL > 0. Similar models have been written for
(T PLL), and (T PLU ).

(T PUU ′
) : Max OUU ′

k =
p∑

l=1

q∑

m=1

p(k)UU
lm ⊗ zUU

lm

(k = 1, 2, . . . , K )

subject to

p∑

l=1

q∑

m=1

c(k)LU
lm ⊗ (zUU

lm − χUU
lm ) ≤ 1

q∑

m=1

zUU
lm = aUU

l ⊗ t LU , l = 1, 2, . . . , p,

p∑

l=1

zUU
lm = bUU

m ⊗ t LU , m = 1, 2, . . . , q,

q∑

m=1

(zUU
lm − χUU

lm ) = aLUl ⊗ t LU , l = 1, 2, . . . , p,

p∑

l=1

(zUU
lm − χUU

lm ) = bLUm ⊗ t LU , m = 1, 2, . . . , q,

zUU
lm , zUU

lm ≥ χUU
lm ∀ l, m.

(T PUL ′
) : Max OUL ′

k =
p∑

l=1

q∑

m=1

p(k)UL
lm ⊗ zUL

lm

(k = 1, 2, . . . , K )

subject to

p∑

l=1

q∑

m=1

c(k)LL
lm ⊗ (zUL

lm − χUL
lm ) ≤ 1

q∑

m=1

zUL
lm = aUL

l ⊗ t LL , l = 1, 2, . . . , p,

p∑

l=1

zUL
lm = bUL

m ⊗ t LL , m = 1, 2, . . . , q,

q∑

m=1

(zUL
lm − χUL

lm ) = aLLl ⊗ t LL , l = 1, 2, . . . , p,

p∑

l=1

(zUL
lm − χUL

lm ) = bLLm ⊗ t LL , m = 1, 2, . . . , q,

zUL
lm ≥ 0, zUL

lm ≥ χUL
lm ∀ l, m.

(T PLL ′
) : Max OLL ′

k =
p∑

l=1

q∑

m=1

p(k)LL
lm ⊗ zLLlm

(k = 1, 2, . . . , K )

subject to

p∑

l=1

q∑

m=1

c(k)UL
lm ⊗ (zLLlm + χ LL

lm ) ≤ 1

q∑

m=1

zLLlm = aLLl ⊗ tU L , l = 1, 2, . . . , p,

(T PLU ′
) : Max OLU ′

k =
p∑

l=1

q∑

m=1

p(k)LU
lm ⊗ zLUlm

(k = 1, 2, . . . , K )

subject to

p∑

l=1

q∑

m=1

c(k)UU
lm ⊗ (zLUlm + χ LU

lm ) ≤ 1

q∑

m=1

zLUlm = aLUl ⊗ tUU , l = 1, 2, . . . , p,

p∑

l=1

zLLlm = bLLm ⊗ tU L , m = 1, 2, . . . , q,

q∑

m=1

(zLLlm + χ LL
lm ) = aUL

l ⊗ tU L , l = 1, 2, . . . , p,

p∑

l=1

(zLLlm + χ LL
lm ) = bUL

m ⊗ tU L , m = 1, 2, . . . , q,

zLLlm ≥ 0, zLLlm + χ LL
lm ≥ 0 ∀ l, m.

p∑

l=1

zLUlm = bLUm ⊗ tUU , m = 1, 2, . . . , q,

q∑

m=1

(zLUlm + χ LU
lm ) = aUU

l ⊗ tUU , l = 1, 2, . . . , p,

p∑

l=1

(zLUlm + χ LU
lm ) = bUU

m ⊗ tUU , m = 1, 2, . . . , q,

zLUlm , zLUlm + χ LU
lm ≥ 0 ∀ l, m.

Remark 1: In model T PLL there are two variables x LLlm and xUL
lm (xUL

lm > x LLlm ). In the
proposed methodology, these variables are associated by defining the relation xUL

lm = x LLlm +
ψ LL
lm . After that by substituting zLLlm = x LLlm ∗ tU L , χ LL

lm = ψ LL
lm ∗ tU L ; tU L > 0, the
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fractional problem T PLL is transformed into a linear programming problem T PLL ′
. Similar

procedure is applied to transform the fractional problem T PLU to T PLU ′
.

With all of the aforementioned factors taken into consideration, the step-by-step process of
the proposed methodology for solving the FRMOFTP is as follows:
Step 1: Formulate the considered FRMOFTP as model (P4).
Step 2: Decompose the model (P4) into two sub-models as UIM (P5) and LIM (P6).
Step 3: From the UIM and the LIM, construct four crisp fractional transportation problems,
namely, Upper Upper fractional transportation problem (T PUU ), Upper Lower fractional
transportation problem (T PUL), Lower Lower fractional transportation problem (T PLL),
and Lower Upper fractional transportation problem (T PLU ).
Step 4: Linearize the fractional problems (T PUU ), (T PUL), (T PLL) and (T PLU ) as
explained above and get the linear models (T PUU ′

), (T PUL ′
), (T PLL ′

), and (T PLU ′
),

respectively.
Step 5: Solve the multi-objective linearized model (T PUU ′

) using the WSM discussed in
Sect. 3.3 to find the efficient solution {zUU∗

lm , χUU∗
lm , t LU∗} with objective functions value

OUU ′
k

∗
.

Step 6: To maintain the feasibility condition of the proposed model (P4), solve the lin-

earized model (T PUL ′
) with additional constraints

( zUL
lm
t LL

) ≤ ( zUU∗
lm
t LU∗

)
,

( zUL
lm −χUL

lm )

t LL
) ≥

( zUU∗
lm −χUU∗

lm
t LU∗

) ∀ l, m, to find the efficient solution {zUL∗
lm , χUL∗

lm , t LL∗} with objective func-
tions value OUL ′

k
∗
.

Step 7: Solve the linearized model (T PLL ′
) by substituting the solution from Step 6 as

( zLLlm
tUL

) = ( zUL∗
lm −χUL∗

lm
t LL∗

)
to find the efficient solution {zLL∗

lm , χ LL∗
lm , tU L∗}.

Step 8: Solve the linearized model (T PLU ′
) by substituting the solution from Step 5 as

( zLUlm
tUU

) = ( zUU∗
lm −χUU∗

lm
t LU∗

)
to find the efficient solution {zLU∗

lm , χ LU∗
lm , tUU∗}.

Step 9: Find the values of the original parameters from the obtained solutions by using the

substitutions xUU∗
lm = zUU∗

lm
t LU∗ , xUL∗

lm = zUL∗
lm
t LL∗ , x LL∗

lm = zLL∗
lm
tUL∗ , x LU∗

lm = zLU∗
lm
tUU∗ .

Step 10: The set of rough interval {̃x RI∗lm } = {[x LL∗
lm , xUL∗

lm ][x LU∗
lm , xUU∗

lm ]} is a Pareto-
optimal solution to the given FRMOFTPwith the objectives value (Õ RI∗

k ) = [OLL∗
k , OUL∗

k ]
[OLU∗

k , OUU∗
k ].

Remark 2: In the proposed problem, the solution variables are rough intervals, i.e., x̃ R Ilm =
[x LLlm , xUL

lm [x LUlm , xUU
lm ] and each model T PUU , T PUL , T PLL , and T PLU has two variables

one in numerator and other in denominator. Using appropriate substitution, these models are
converted into a single variable problem. For instance, in model T PLL , xUL

lm is considered
as xUL

lm = x LLlm + ψ LL
lm and then using the VTM this fractional model is converted into linear

transportationmodel T PLL ′
by substituting zLLlm = x LLlm ∗tU L , χ LL

lm = ψ LL
lm ∗tU L ; tU L > 0.

A similar justification can be done for the model T PUU , T PUL and T PLU . In the proposed
methodology, to obtain the Pareto-optimal solution of the considered problem,model T PUU ′

is solved and the obtained solution is used to solve model T PUL ′
. To evaluate the objective

function value of models T PLL ′
and T PLU ′

, the previously obtained solutions from T PUU ′

and T PUL ′
are used. To evaluate the objective function value of models T PLL ′

and T PLU ′
,

the previously obtained solutions from T PUU ′
and T PUL ′

are used.
The flowchart representation of the proposed solution algorithm is depicted in Fig. 2.
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Fig. 2 Flow chart of the proposed algorithm

5 Advantages and limitations of the proposedmethodology

In this section, the advantages and limitations of the proposed model and solution procedure
are mentioned.

Advantages

• The proposed technique is applicable for solving the FTP with rough intervals, and the
rough set theory is more capable of dealing with the ambiguity and imprecision of real-
world problems. As a result, the modeling of the problem is realistic.
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• The proposed method does not include any ranking function for the rough intervals and
hence it is free from any ambiguity that may arise from using different ranking functions.

• The proposed method provides the rough interval solution of the rough problem, i.e., the
Pareto-optimal solution is obtained in the same environment, which gives the decision-
maker a wide range and a better understanding of the solutions.

• The FTP is a further extension of the linear transportation problem which plays a vital
role to reduce cost and improve service in logistics and supply management. The solution
methodology suggested in the present study successfully solves the proposed model of
FTP.

• Unlike, the method given by Liu (2016) and Mahmoodirad et al. (2019), the proposed
technique is applicable to problems with multiple objectives.

Limitations

• The proposed method is not applicable for unbalanced FRMOFTP.
• The proposed approach cannot be used for the non-linear FRMOFTP as in this approach

VTM is employed to handle fractional objectives with linear decision variables. But if
the decision variables are non-linear in nature, then VTM could not be applied and the
proposed approach will become inapplicable.

6 A case study-FRMOFTP

A case study has been solved in this section to demonstrate the applicability of the proposed
technique. Two objective functions are considered in this problem: the ratio of total profit
to total transportation costs and the ratio of total delivery speed to total waste along the
transportation route. The products are supplied to four destinations from the three source
locations. Due to the lack of precise information, all the data including profit, transportation
costs, delivery speed, total wastage along the shipping route, supply capacity of sources, and
demand of destinations have been represented as rough intervals and are shown in Tables 1
and 2.
To obtain the rough interval Pareto-optimal solution, the problem is solved by using the
proposed methodology. As per Step 2 of the solution algorithm, the UIM and the LIM for
the proposed problem are formulated as follows

Table 1 Profit ( p̃R Ilm ) and the transportation cost (̃cRIlm )

1 2 3 4 Supply

1 [10, 10][9, 11] [13, 14][13, 16] [7, 9][6, 10] [10, 13][10, 15] [7, 9][6, 10]

[14, 17][12, 17] [11, 13][11, 13] [14, 17][14, 19] [7, 9][5,11]

2 [8, 8][7, 9] [11, 13][9, 15] [13, 16][10, 17] [6, 9][6, 11] [17, 21][16, 22]

[9, 11][8, 12] [5, 7][5, 7] [11, 14][10, 17] [11, 13][9, 15]

3 [8, 10][7, 11] [5, 6][4, 9] [15, 16][12, 17] [9, 10][7, 10] [16, 18][15, 19]

[13, 14][10, 15] [14, 16][13, 17] [11, 12][9, 16] [8, 11][7,14]

Demand [10, 12][9, 13] [2, 4][1, 5] [13, 15][12, 16] [15, 17][15, 17] [40, 48][37, 51]
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Table 2 Delivery speed (̃sRIlm ) and the wastage of product (w̃RI
lm ) during transportation

1 2 3 4 Supply

1 [3, 5][2, 6] [5, 8][3, 10] [3, 6][2, 9] [1, 3][0, 4] [7, 9][6, 10]

[1, 1][0, 2] [2, 3][1, 6] [2, 5][1, 8] [5, 7][5,7]

2 [1, 2][1, 4] [5, 6][3, 6] [0, 2][0, 2] [3, 5][2, 6] [17, 21][16, 22]

[4, 5][2, 5] [2, 3][1, 6] [4, 7][4, 8] [1, 3][0,4]

3 [1, 2][1, 4] [0, 1][0, 3] [2, 5][2, 7] [2, 4][2, 4] [16, 18][15, 19]

[4, 6][3, 7] [3, 4][1, 4] [2, 3][2, 5] [2, 2][1,3]

Demand [10, 12][9, 13] [2, 4][1, 5] [13, 15][12, 16] [15, 17][15, 17] [40, 48][37, 51]

UIM:

Max OU
1 (x) =

[9, 11] ⊗ [x LU11 , xUU
11 ] + [13, 16] ⊗ [x LU12 , ]xUU

12 ] + [6, 10] ⊗ [x LU13 , xUU
13 ] + [10, 15] ⊗ [x LU14 , xUU

14 ]
+[7, 9] ⊗ [x LU21 , xUU

21 ] + [9, 15] ⊗ [x LU22 , xUU
22 ] + [10, 17] ⊗ [x LU23 , xUU

23 ] + [6, 11] ⊗ [x LU24 , xUU
24 ]

+[7, 11] ⊗ [x LU31 , xUU
31 ] + [4, 9] ⊗ [x LU32 , xUU

32 ] + [12, 17] ⊗ [x LU33 , xUU
33 ] + [7, 10] ⊗ [x LU34 , xUU

34 ]
[12, 17] ⊗ [x LU11 , xUU

11 ] + [11, 13] ⊗ [x LU12 , xUU
12 ] + [14, 19] ⊗ [x LU13 , xUU

13 ] + [5, 11] ⊗ [x LU14 , xUU
14 ]

+[8, 12] ⊗ [x LU21 , xUU
21 ] + [5, 7] ⊗ [x LU22 , xUU

22 ] + [10, 17] ⊗ [x LU23 , xUU
23 ] + [9, 15] ⊗ [x LU24 , xUU

24 ]
+[10, 15] ⊗ [x LU31 , xUU

31 ] + [13, 17] ⊗ [x LU32 , xUU
32 ] + [9, 16] ⊗ [x LU33 , xUU

33 ] + [7, 14] ⊗ [x LU34 , xUU
34 ]

Max OU
2 (x)

=

[2, 6] ⊗ [x LU11 , xUU
11 ] + [3, 10] ⊗ [x LU12 , ]xUU

12 ] + [2, 9] ⊗ [x LU13 , xUU
13 ] + [0, 4] ⊗ [x LU14 , xUU

14 ]
+[1, 4] ⊗ [x LU21 , xUU

21 ] + [3, 6] ⊗ [x LU22 , xUU
22 ] + [0, 2] ⊗ [x LU23 , xUU

23 ] + [2, 6] ⊗ [x LU24 , xUU
24 ]

+[1, 4] ⊗ [x LU31 , xUU
31 ] + [0, 3] ⊗ [x LU32 , xUU

32 ] + [2, 7] ⊗ [x LU33 , xUU
33 ] + [2, 4] ⊗ [x LU34 , xUU

34 ]
[0, 2] ⊗ [x LU11 , xUU

11 ] + [1, 6] ⊗ [x LU12 , xUU
12 ] + [1, 8] ⊗ [x LU13 , xUU

13 ] + [5, 7] ⊗ [x LU14 , xUU
14 ]

+[2, 5] ⊗ [x LU21 , xUU
21 ] + [1, 6] ⊗ [x LU22 , xUU

22 ] + [4, 8] ⊗ [x LU23 , xUU
23 ] + [0, 4] ⊗ [x LU24 , xUU

24 ]
+[3, 7] ⊗ [x LU31 , xUU

31 ] + [1, 4] ⊗ [x LU32 , xUU
32 ] + [2, 5] ⊗ [x LU33 , xUU

33 ] + [1, 3] ⊗ [x LU34 , xUU
34 ]

subject to

[x LU11 , xUU
11 ] + [x LU12 , xUU

12 ] + [x LU13 , xUU
13 ] + [x LU14 , xUU

14 ] = [6, 10]
[x LU21 , xUU

21 ] + [x LU22 , xUU
22 ] + [x LU23 , xUU

23 ] + [x LU24 , xUU
24 ] = [16, 22]

[x LU31 , xUU
31 ] + [x LU32 , xUU

32 ] + [x LU33 , xUU
33 ] + [x LU34 , xUU

34 ] = [15, 19]
[x LU11 , xUU

11 ] + [x LU21 , xUU
21 ] + [x LU31 , xUU

31 ] = [9, 13]
[x LU12 , xUU

12 ] + [x LU22 , xUU
22 ] + [x LU32 , xUU

32 ] = [1, 5]
[x LU13 , xUU

13 ] + [x LU23 , xUU
23 ] + [x LU33 , xUU

33 ] = [12, 16]
[x LU14 , xUU

14 ] + [x LU24 , xUU
24 ] + [x LU34 , xUU

34 ] = [15, 17]

LIM:

Max OL
1 (x)

=

[10, 10] ⊗ [x LL11 , xUL
11 ] + [13, 14] ⊗ [x LL12 , ]xUL

12 ] + [7, 9] ⊗ [x LL13 , xUL
13 ] + [10, 13] ⊗ [x LL14 , xUL

14 ]
+[8, 8] ⊗ [x LL21 , xUL

21 ] + [11, 13] ⊗ [x LL22 , xUL
22 ] + [13, 16] ⊗ [x LL23 , xUL

23 ] + [6, 9] ⊗ [x LL24 , xUL
24 ]

+[8, 10] ⊗ [x LL31 , xUL
31 ] + [5, 6] ⊗ [x LL32 , xUL

32 ] + [15, 16] ⊗ [x LL33 , xUL
33 ] + [9, 10] ⊗ [x LL34 , xUL

34 ]
[14, 17] ⊗ [x LL11 , xUL

11 ] + [11, 13] ⊗ [x LL12 , xUL
12 ] + [14, 17] ⊗ [x LL13 , xUL

13 ] + [7, 9] ⊗ [x LL14 , xUL
14 ]

+[9, 11] ⊗ [x LL21 , xUL
21 ] + [5, 7] ⊗ [x LL22 , xUL

22 ] + [11, 14] ⊗ [x LL23 , xUL
23 ] + [11, 13] ⊗ [x LL24 , xUL

24 ]
+[13, 14] ⊗ [x LL31 , xUL

31 ] + [14, 16] ⊗ [x LL32 , xUL
32 ] + [11, 12] ⊗ [x LL33 , xUL

33 ] + [8, 11] ⊗ [x LL34 , xUL
34 ]

Max OL
2 (x)
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=

[3, 5] ⊗ [x LL11 , xUL
11 ] + [5, 8] ⊗ [x LL12 , ]xUL

12 ] + [3, 6] ⊗ [x LL13 , xUL
13 ] + [1, 3] ⊗ [x LL14 , xUL

14 ]
+[1, 2] ⊗ [x LL21 , xUL

21 ] + [5, 6] ⊗ [x LL22 , xUL
22 ] + [0, 2] ⊗ [x LL23 , xUL

23 ] + [3, 5] ⊗ [x LL24 , xUL
24 ]

+[1, 2] ⊗ [x LL31 , xUL
31 ] + [0, 1] ⊗ [x LL32 , xUL

32 ] + [2, 5] ⊗ [x LL33 , xUL
33 ] + [2, 4] ⊗ [x LL34 , xUL

34 ]
[1, 1] ⊗ [x LL11 , xUL

11 ] + [2, 3] ⊗ [x LL12 , xUL
12 ] + [2, 5] ⊗ [x LL13 , xUL

13 ] + [5, 7] ⊗ [x LL14 , xUL
14 ]

+[4, 5] ⊗ [x LL21 , xUL
21 ] + [2, 3] ⊗ [x LL22 , xUL

22 ] + [4, 7] ⊗ [x LL23 , xUL
23 ] + [1, 3] ⊗ [x LL24 , xUL

24 ]
+[4, 6] ⊗ [x LL31 , xUL

31 ] + [3, 4] ⊗ [x LL32 , xUL
32 ] + [2, 3] ⊗ [x LL33 , xUL

33 ] + [2, 2] ⊗ [x LL34 , xUL
34 ]

subject to

[x LL11 , xUL
11 ] + [x LL12 , xUL

12 ] + [x LL13 , xUL
13 ] + [x LL14 , xUL

14 ] = [7, 9]
[x LL21 , xUL

21 ] + [x LL22 , xUL
22 ] + [x LL23 , xUL

23 ] + [x LL24 , xUL
24 ] = [17, 21]

[x LL31 , xUL
31 ] + [x LL32 , xUL

32 ] + [x LL33 , xUL
33 ] + [x LL34 , xUL

34 ] = [16, 18]
[x LL11 , xUL

11 ] + [x LL21 , xUL
21 ] + [x LL31 , xUL

31 ] = [10, 12]
[x LL12 , xUL

12 ] + [x LL22 , xUL
22 ] + [x LL32 , xUL

32 ] = [2, 4]
[x LL13 , xUL

13 ] + [x LL23 , xUL
23 ] + [x LL33 , xUL

33 ] = [13, 15]
[x LL14 , xUL

14 ] + [x LL24 , xUL
24 ] + [x LL34 , xUL

34 ] = [15, 17]

Then as per Step 3 of the solution algorithm, from UIM and LIM four crisp multi-objective
fractional transportation problems have been constructed, which are given below:
(T PUU ) :

Max OUU
1

= 11xUU
11 +16xUU

12 +10xUU
13 +15xUU

14 +9xUU
21 +15xUU

22 +17xUU
23 +11xUU

24 +11xUU
31 +9xUU

32 +17xUU
33 +10xUU

34

12xLU11 + 11xLU12 + 14xLU13 + 5xLU14 + 8xLU21 + 5xLU22 + 10xLU23 + 9xLU24 + 10xLU31 + 13xLU32 + 9xLU33 + 7xLU34

Max OUU
2

= 6xUU
11 + 10xUU

12 + 9xUU
13 + 4xUU

14 + 4xUU
21 + 6xUU

22 + 2xUU
23 + 6xUU

24 + 4xUU
31 + 3xUU

32 + 7xUU
33 + 4xUU

34

0xLU11 + xLU12 + xLU13 + 5xLU14 + 2xLU21 + xLU22 + 4xLU23 + 0xLU24 + 3xLU31 + xLU32 + 2xLU33 + xLU34
subject to

xUU
11 + xUU

12 + xUU
13 + xUU

14 = 10, xUU
21 + xUU

22 + xUU
23 + xUU

24 = 22, xUU
31 + xUU

32 + xUU
33 + xUU

34 = 19,

xUU
11 + xUU

21 + xUU
31 = 13, xUU

12 + xUU
22 + xUU

32 = 5, xUU
13 + xUU

23 + xUU
33 = 16, xUU

14 + xUU
24 + xUU

34 = 17,

xLU11 + xLU12 + xLU13 + xLU14 = 6, xLU21 + xLU22 + xLU23 + xLU24 = 16, xLU31 + xLU32 + xLU33 + xLU34 = 15,

xLU11 + xLU21 + xLU31 = 9, xLU12 + xLU22 + xLU32 = 1, xLU13 + xLU23 + xLU33 = 12, xLU14 + xUL
24 + xLU34 = 15,

xUU
lm , xLUlm ≥ 0 ∀ l = 1, 2, 3; m = 1, 2, 3, 4

(T PUL) :
Max OUL

1

= 10xUL
11 + 14xUL

12 + 9xUL
13 + 13xUL

14 + 8xUL
21 + 13xUL

22 + 16xUL
23 + 9xUL

24 + 10xUL
31 + 6xUL

32 + 16xUL
33 + 10xUL

34

14xLL11 + 11xLL12 + 14xLL13 + 7xLL14 + 9xLL21 + 5xLL22 + 11xLL23 + 11xLL24 + 13xLL31 + 14xLL32 + 11xLL33 + 8xLL34

Max OUL
2

= 5xUL
11 + 8xUL

12 + 6xUL
13 + 3xUL

14 + 2xUL
21 + 6xUL

22 + 2xUL
23 + 5xUL

24 + 2xUL
31 + xUL

32 + 5xUL
33 + 4xUL

34

xLL11 + 2xLL12 + 2xLL13 + 5xLL14 + 4xLL21 + 2xLL22 + 4xLL23 + xLL24 + 4xLL31 + 3xLL32 + 2xLL33 + 2xLL34

subject to

xUL
11 + xUL

12 + xUL
13 + xUL

14 = 9, xUL
21 + xUL

22 + xUL
23 + xUL

24 = 21, xUL
31 + xUL

32 + xUL
33 + xUL

34 = 18,

xUL
11 + xUL

21 + xUL
31 = 12, xUL

12 + xUL
22 + xUL

32 = 4, xUL
13 + xUL

23 + xUL
33 = 15, xUL

14 + xUL
24 + xUL

34 = 17,

xLL11 + xLL12 + xLL13 + xLL14 = 7, xLL21 + xLL22 + xLL23 + xLL24 = 17, xLL31 + xLL32 + xLL33 + xLL34 = 16,

xLL11 + xLL21 + xLL31 = 10, xLL12 + xLL22 + xLL32 = 2, xLL13 + xLL23 + xLL33 = 13, xLL14 + xLL24 + xLL34 = 15,

xLLlm , xUL
lm ≥ 0 ∀ l = 1, 2, 3; m = 1, 2, 3, 4
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(T PLL) :
Max OLL

1

= 10xLL11 + 13xLL12 + 7xLL13 + 10xLL14 + 8xLL21 + 11xLL22 + 13xLL23 + 6xLL24 + 8xLL31 + 5xLL32 + 15xLL33 + 9xLL34

17xUL
11 + 13xUL

12 + 17xUL
13 + 9xUL

14 + 11xUL
21 + 7xUL

22 + 14xUL
23 + 13xUL

24 + 14xUL
31 + 16xUL

32 + 12xUL
33 + 11xUL

34

Max OLL
2

= 3xLL11 + 5xLL12 + 3xLL13 + xLL14 + xLL21 + 5xLL22 + 0xLL23 + 3xLL24 + xLL31 + 0xLL32 + 2xLL33 + 2xLL34

xUL
11 + 3xUL

12 + 5xUL
13 + 7xUL

14 + 5xUL
21 + 3xUL

22 + 7xUL
23 + 3xUL

24 + 6xUL
31 + 4xUL

32 + 3xUL
33 + 2xUL

34

subject to

xLL11 + xLL12 + xLL13 + xLL14 = 7, xLL21 + xLL22 + xLL23 + xLL24 = 17, xLL31 + xLL32 + xLL33 + xLL34 = 16,

xLL11 + xLL21 + xLL31 = 10, xLL12 + xLL22 + xLL32 = 2, xLL13 + xLL23 + xLL33 = 13, xLL14 + xLL24 + xLL34 = 15,

xUL
11 + xUL

12 + xUL
13 + xUL

14 = 9, xUL
21 + xUL

22 + xUL
23 + xUL

24 = 21, xUL
31 + xUL

32 + xUL
33 + xUL

34 = 18,

xUL
11 + xUL

21 + xUL
31 = 12, xUL

12 + xUL
22 + xUL

32 = 4, xUL
13 + xUL

23 + xUL
33 = 15, xUL

14 + xUL
24 + xUL

34 = 17,

xLLlm , xUL
lm ≥ 0 ∀ l = 1, 2, 3; m = 1, 2, 3, 4

(T PLU ) :
Max OLU

1

= 9x LU11 + 13x LU12 + 6x LU13 + 10x LU14 + 7x LU21 + 9x LU22 + 10x LU23 + 6x LU24 + 7x LU31 + 4x LU32 + 12x LU33 + 7x LU34

17xUU
11 + 13xUU

12 + 17xUU
13 + 9xUU

14 + 11xUU
21 + 7xUU

22 + 14xUU
23 + 13xUU

24 + 14xUU
31 + 16xUU

32 + 12xUU
33 + 11xUU

34

Max OLU
2

= 2x LU11 + 3x LU12 + 2x LL13 + 0x LU14 + x LU21 + 3x LU22 + 0x LU23 + 2x LU24 + x LU31 + 0x LU32 + 2x LU33 + 2x LU34

2xUU
11 + 6xUU

12 + 8xUU
13 + 7xUU

14 + 5xUU
21 + 6xUU

22 + 8xUU
23 + 4xUU

24 + 7xUU
31 + 4xUU

32 + 5xUU
33 + 3xUU

34

subject to

x LU11 + x LU12 + x LU13 + x LU14 = 6, x LU21 + x LU22 + x LU23 + x LU24 = 16, x LU31 + x LU32 + x LU33 + x LU34 = 15,

x LU11 + x LU21 + x LU31 = 9, x LU12 + x LU22 + x LU32 = 1, x LU13 + x LU23 + x LU33 = 12, x LU14 + x LU24 + x LU34 = 15,

xUU
11 + xUU

12 + xUU
13 + xUU

14 = 10, xUU
21 + xUU

22 + xUU
23 + xUU

24 = 22, xUU
31 + xUU

32 + xUU
33 + xUU

34 = 19,

xUU
11 + xUU

21 + xUU
31 = 13, xUU

12 + xUU
22 + xUU

32 = 5, xUU
13 + xUU

23 + xUU
33 = 16, xUU

14 + xUU
24 + xUU

34 = 17,

x LUlm , xUU
lm ≥ 0 ∀ l = 1, 2, 3; m = 1, 2, 3, 4

7 Results and discussion

The models (T PUU ), (T PUL), (T PLL), and (T PLU ) are completely deterministic in
nature. By utilizing Step 4 to Step 9 of the proposed solution algorithm defined in Sect.
4, the Pareto-optimal solution of the case study is obtained at different weight sets by using
LINGO 18.0 optimization solver, which is shown in Table 3.
The weights for the objective functions may be assigned by the decision-maker according
to their priority or it may be computed using methods like AHP, TOPSIS, etc. In addition,
the proposed methodology gives the fully rough solution to the given problem, i.e., the
transported amount of product have also been obtained in terms of the rough intervals which
is presented in Table 4 and shown graphically in Fig. 3. In this way, the models (T PUU ),

(T PUL), (T PLL), and (T PLU ) can help the decision-maker in determining the appropriate
transported amount for the customers. Moreover, the best compromise solution is obtained
by calculating the expected value of objective functions.
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Õ
R
I

2
E
(Õ
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Table 4 Optimal transported amount for different weight sets

Case w1 w2 Rough interval optimal transported amount

1 0 1 x̃ R I12 = [1, 3][0, 4], x̃ R I14 = [6, 6][6, 6], x̃ R I21 = [10, 12][9, 13],
x̃ R I22 = [1, 1][1, 1], x̃ R I24 = [6, 8][6, 8],
x̃ R I33 = [13, 15][12, 16], x̃ R I34 = [3, 3][3, 3], and remaining decision
variables are zero rough intervals

2 0.1 0.9 x̃ R I12 = [1, 3][0, 4], x̃ R I14 = [6, 6][6, 6], x̃ R I21 = [10, 12][9, 13],
x̃ R I22 = [1, 1][1, 1], x̃ R I24 = [6, 8][6, 8],
x̃ R I33 = [13, 15][12, 16], x̃ R I34 = [3, 3][3, 3], and remaining decision
variables are zero rough intervals

3 0.2 0.8 x̃ R I12 = [1, 3][0, 4], x̃ R I14 = [6, 6][6, 6], x̃ R I21 = [10, 12][9, 13],
x̃ R I22 = [1, 1][1, 1], x̃ R I24 = [6, 8][6, 8],
x̃ R I33 = [13, 15][12, 16], x̃ R I34 = [3, 3][3, 3], and remaining decision
variables are zero rough intervals

4 0.3 0.7 x̃ R I12 = [1, 3][0, 4], x̃ R I14 = [6, 6][6, 6], x̃ R I21 = [10, 12][9, 13],
x̃ R I22 = [1, 1][1, 1], x̃ R I24 = [6, 8][6, 8],
x̃ R I33 = [13, 15][12, 16], x̃ R I34 = [3, 3][3, 3], and remaining decision
variables are zero rough intervals

5 0.4 0.6 x̃ R I12 = [1, 3][0, 4], x̃ R I14 = [6, 6][6, 6], x̃ R I21 = [10, 12][9, 13],
x̃ R I22 = [1, 1][1, 1], x̃ R I24 = [6, 8][6, 8],
x̃ R I33 = [13, 15][12, 16], x̃ R I34 = [3, 3][3, 3], and remaining decision
variables are zero rough intervals

6 0.5 0.5 x̃ R I12 = [1, 3][0, 4], x̃ R I14 = [6, 6][6, 6], x̃ R I21 = [10, 12][9, 13],
x̃ R I22 = [1, 1][1, 1], x̃ R I24 = [6, 8][6, 8],̃x RI33 = [13, 15][12, 16], x̃ R I34 =
[3, 3][3, 3], and remaining decision variables are zero rough intervals

7 0.6 0.4 x̃ R I12 = [1, 3][0, 4], x̃ R I14 = [6, 6][6, 6], x̃ R I21 = [10, 12][9, 13],
x̃ R I22 = [1, 1][1, 1], x̃ R I24 = [6, 8][6, 8],
x̃ R I33 = [13, 15][12, 16], x̃ R I34 = [3, 3][3, 3], and remaining decision
variables are zero rough intervals

8 0.7 0.3 x̃ R I12 = [1, 1][0, 2], x̃ R I14 = [6, 8][6, 8], x̃ R I21 = [9, 11][9, 11],
x̃ R I22 = [2, 4][1, 5], x̃ R I24 = [6, 6][6, 6],
x̃ R I33 = [13, 15][12, 16], x̃ R I34 = [3, 3][3, 3] , and remaining decision
variables are zero rough intervals

9 0.8 0.2 x̃ R I12 = [1, 1][0, 2], x̃ R I14 = [6, 8][6, 8], x̃ R I21 = [9, 9][9, 9],
x̃ R I22 = [1, 3][1, 3], x̃ R I23 = [1, 3][0, 4], x̃ R I24 = [6, 6][6, 6],
x̃ R I31 = [1, 3][0, 4], x̃ R I33 = [12, 12][12, 12], x̃ R I34 = [3, 3][3, 3], and
remaining decision variables are zero rough intervals

10 0.9 0.1 x̃ R I12 = [1, 1][0, 2], x̃ R I14 = [6, 8][6, 8], x̃ R I21 = [9, 9][9, 9],
x̃ R I22 = [1, 3][1, 3], x̃ R I23 = [7, 9][6, 10], x̃ R I31 = [1, 3][0, 4],
x̃ R I33 = [6, 6][6, 6], x̃ R I34 = [9, 9][9, 9], and remaining decision variables
are zero rough intervals

11 1 0 x̃ R I12 = [1, 1][0, 2], x̃ R I14 = [6, 8][6, 8], x̃ R I21 = [9, 9][9, 9],
x̃ R I22 = [1, 3][1, 3], x̃ R I23 = [7, 9][6, 10], x̃ R I31 = [1, 3][0, 4],
x̃ R I33 = [6, 6][6, 6], x̃ R I34 = [9, 9][9, 9], and remaining decision variables
are zero rough intervals
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Fig. 3 Graphical representation of optimal transported amount for different weight sets

7.1 Discussion

Theproposedmethodgives the rough interval optimal compromise solutionof theFRMOFTP.
A set of compromise solutions has been obtained by altering the weights with respect to the
objective functions. The obtained results are in accordance with the trends, i.e., when more
weightage is given to the first objective then Õ RI

1 gives a better solution, and lesser weightage
to the second objective, decreases the value of Õ RI

2 .

For instance, when maximum weightage is given to Õ RI
1 , i.e., w1 = 1, w2 = 0, the solu-

tion obtained is Õ RI
1 = [0.7831, 1.6049][0.4705, 2.4084] with expected value 1.3167, and

Õ RI
2 = [0.2478, 1.1969] [0.1419, 2.3404] with expected value 0.9817. Similarly, w1 = 0

and w2 = 1 gives Õ RI
1 = [0.7687, 1.4987][0.4764, 2.3310] with expected value 1.2687,

and Õ RI
2 = [0.4021, 1.7768][0.2093, 3.8684] with expected value 1.5641. The solutions

for different weight sets have been given in Table 4 and are graphically represented in Fig.
3. The decision-maker may choose a solution depending upon his/her weightage to the dif-
ferent objectives and as per his/her satisfaction. In the obtained rough interval solution, the
lower interval represents the possible Pareto-optimal solution range and the upper interval
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represents the range of surely Pareto-optimal solution. Expected value has been used to get
the practically working solution out of this range.

8 Conclusions and scope of the future research

The parameters of the real-life transportation problemsmay be uncertain in nature. Therefore,
numerous researchers have studied transportation problems under various uncertain environ-
ments such as interval, stochastic, fuzzy, type-2 fuzzy environment, etc. But the rough set
theory has higher practical implications than other theories since it takes into considera-
tion the opinion of all involved experts (intersection) and respects their knowledge (union)
by lower and upper approximation intervals, respectively In order to examine this benefit,
an algorithm has been proposed in the present study to solve the fully rough multi-objective
fractional transportation problems. The systematic procedure of the proposed approach oper-
ates by decomposing the problem into two sub-models: the upper interval model and the
lower interval model. Then to solve these two sub-models, four crisp multi-objective frac-
tional transportation problems are constructed which are then linearized by using the variable
transformation method. Finally, using the weighted-sum method for different weight sets,
the rough interval solution of the objective functions is obtained. The reformulation of the
fractional transportation problem in terms of the rough set theory and extending the solution
technique adds to the novelty of the proposed work. In contrast to existing approaches that
provide crisp solutions to rough problems, the suggested algorithm obtains the solution in
the same environment, which is a significant advantage. This algorithm, therefore, extends
the scope of the obtained solutions and manages indeterminacy and imprecision in a better
way. The practical visualization of the obtained solutions validates the proposed algorithm.

The extension of the fractional transportation problem in rough set theory exhibits a new
insight for the transportation sector as the obtained results have practical meanings. The
expected value helps the hesitant decision-maker to make better decisions towards choosing
the compromise solution. In the future, interested investigators may extend the proposed
approach for an unbalanced or non-linear fractional transportation problem. The investigation
of the proposed approach for proving the scalability for higher dimensional problems will
also be an interesting research direction.
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