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Abstract

In this article, an operational matrix method based on shifted Vieta—Fibonacci polynomials
is utilised to find the numerical solution of fractional order stochastic integro-differential
equations. In this method, the operational matrices are developed by using the shifted Vieta—
Fibonacci polynomials for the fractional order Caputo differential operator in order to solve
the present concerned problem. Using Newton cotes nodes as collocation points, operational
matrices are employed to convert the above-mentioned equation into a system of linear alge-
braic equations. The coherent procedure for the appropriate numerical technique is described
in this article. Additionally, the convergence analysis and error bound of the suggested method
are well established. In order to illustrate the effectiveness, consistency, plausibility, and reli-
ability of the proposed technique, three numerical examples are given. Moreover, the results
obtained by the proposed method have been compared with those obtained by the Chelyshkov
operational matrix method.

Keywords Fractional stochastic integro-differential equation - It6 integral - Brownian
motion - Vieta—Fibonacci polynomial - Convergence analysis
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1 Introduction

It is generally known that fractional derivatives may characterise the memory and heredity
properties of certain materials and processes in ways that integer order derivatives can not.
Recently, many applications across a wide range of fields, including viscoelastic materials
(Meral et al. 2010), signal processing (Machado and Lopes 2015), meteorology, earthquake
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(El-Misiery and Ahmed 2006), optimal control (Sahu and Saha Ray 2018), fluid-dynamic
(Momani and Odibat 2006), quantum mechanics (Atman and Sirin 2020), finance (Scalas et al.
2000) and in other fields of science and engineering (Sun et al. 2018) have been remodeled
using fractional calculus. Integro-differential equations have a strong physical foundation
and are widely used in fields of study including polymer rheology (Lodge et al. 1978) and
population model (Yzbar et al. 2013). Deterministic fractional equations such as fractional
order pantograph Volterra delay-integro-differential equations (Behera and Saha Ray 2022),
Riemann-Liouville fractional integro-differential equations (Ahmad and Nieto 2011), frac-
tional integro-differential equations (Arikoglu and Ozkol 2009) are used to represent real
physical problems, which often rely on a noise source that is disregarded owing to the absence
of sophisticated computational tools. As computational power has increased recently, real
world phenomena can now be more effectively modeled using stochastic fractional equations
such as stochastic fractional differential equations, stochastic fractional integral equations,
stochastic fractional integro-differential equations (SFIDE).
This article investigates the numerical solution of the following SFIDE:

n n
CDY2(p) = gn) + M /O K10, D)2()E + 2 /0 (0, D)2(0)dB(Q),
ne[0,1], z(0) = zo, (1.1)

where A and A, are constant numbers and € Dy is the Caputo fractional differential operator
of order 0 < « < 1.InEq. (1.1), g() and «; (1, ¢) fori = 1, 2 are known smooth functions,
and z(n) is an unknown function. Brownian motion process is defined as B = {B(t); t > 0}
and z(n) is a stochastic process defined on the probability space (€2, F, IP). This is referred
to as the solution of SFIDE.

There are several numerical methods to solve SFIDE, such as block pulse approximation
(Mirzaee et al. 2019), cubic B spline approximation (Mirzaee and Alipour 2020), meshless
discrete collocation method based on radial basis functions (Mirzaee and Samadyar 2019),
shifted Legendre spectral collocation method (Taheri et al. 2017), Bernstein polynomials
approximation (Mirzaee and Samadyar 2017), Galerkin method (Kamrani 2016), explicit
finite difference method (Saha Ray and Patra 2013) and different other methods that have
been implemented to solve SFIDE.

The main motivation of this study is to solve the SFIDE (Eq. (1.1)) using shifted Vieta—
Fibonacci polynomials. These kinds of equations may be found in many different fields,
including physics, biology, physiology, optics, and climatology. Explicitly solving SFIDE
can be difficult and time-consuming. So, here, the operational matrix method is implemented
to solve these equations. Using shifted Vieta—Fibonacci polynomials, a new stochastic oper-
ational matrix has been derived for the first time in this paper. The proposed method is
effective, applicable, and consistent.

In this study, the numerical results of Eq. (1.1) obtained by the shifted Vieta—Fibonacci
operational matrix (SVFOM) method are further compared with the orthonormal Chelyshkov
operational matrix (OCOM) method and actual solutions. Equation (1.1) can be transformed
into a system of algebraic equations by using operational matrices along with suitable col-
location points. The resultant equations can be easily solved to get the desired approximate
solution.

This article is organised as follows:

A few fundamental concepts about shifted Vieta—Fibonacci polynomials (SVFPs),
stochastic calculus, and fractional calculus have been introduced in Sect. 2. In Sect. 3, oper-
ational matrices (OMs) for product, integral, fractional, and stochastic integrals have been
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constructed using shifted Vieta—Fibonacci polynomial. The SFIDE problem is handled using
the suggested operational matrix approach in Sect. 4, which also provides a review of the
collocation technique. In Sect. 5, theorems relating to error estimation and convergence anal-
ysis are covered. Section 6 represents the reliability and efficiency of the suggested numerical
method using a few illustrative examples, and a brief overview is provided in Sect. 7.

2 Preliminaries

This section covers the properties of SVFPs as well as some fundamental stochastic calculus
concepts.

2.1 Stochastic calculus

Definition 1 (116 Integral (Pksendal 2003)) Let V = V(U, V) be the class functions g(y, §) :
[0,00) x 2 — Rand g € V(U, V). Thus, the definition of the It6 integral of g is given by

v 14
/ 8(y,8)dBy(§) = lim / Y (y. 8)dBy,(8) (limin L*(P)), 2.1
U m—0oQ U
where ¥, is a sequence of elementary functions such that
1%
E [ | 608w 6))%} ~ 045 m - . 2)
U

Theorem 2.1.1 (The 1t6 isometry (@ksendal 2003)). Let g € V(U, V), be elementary and
bounded functions. Then

1% 2 1%
E [(/U g, 5)dBy(5)) j| =E [/U gy, 5)d)/]- (2.3)

2.2 Fractional calculus

Definition2 Consider p — 1 < o < p,a > 0,7 > 0, @, n € R, then the Caputo fractional
differential operator CDgz(n) of order « is defined as (Saha Ray 2015)

1 " o
DYz = —— / (n —o)P 2P (@)dg. (24)
F'(p—a) Jo
Also, the Riemann-Liouville (RL) fractional integral operator J; of order « is defined as
1 n
Iz = —— -0 2de, Tz = z(p). 2.5
pdC)) F(a)/o =0 "z(@)dg, Jyz(n) =z(n) (2.5)

The operators CD;‘ and J;" has the following characteristics:

Jy B1z(n) + 822(m) = 8117 (z(m) + 8277 (z(m)), « = 0.

J,flJ,',Bzz(n) = J,£1+ﬂ22(77), B1, B2 = 0.
Dy Iz = z(m), «=0.

JEEDH) =2 = Y1y %, p—1<a<p, peNl.
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2.3 Shifted Vieta-Fibonacci polynomials and its characteristics

Many problems in mathematical physics have been solved using SVFPs, such as the Lane—
Emden equation, reaction-advection—diffusion, Emden—Fowler equation, etc.
Vieta-Fibonacci polynomials

According to the following relation, the Vieta—Fibonacci polynomials VF,, (1) of degree
m in n are defined on the interval [— 2, 2].

V() = T

sin 6

where n = 2cosf and 6 € [0, 7].
These polynomials can also be generated by the following recurrence relation:

VFu(m) = qVFu-1(m) = VFu—2m), m=2,3,...,

with the initial values VFy(n) =0, VF(n) = 1.
Shifted Vieta—Fibonacci polynomials

Definition 5 The shifted Vieta—Fibonacci polynomials VF (), of degree m in 1 on [0, 1]
are defined as follows (Sadri et al. 2022)

VF, () = VFu(dn —2).
Also, these polynomials, can be generated via the following recurrence relation:
VF, ) = @4n—=DVF, () = VF, ,), m=2.3, ..., (2.6)

using the initial values VF§(n) = 0, VF(n) = 1.
The SVFPs are also defined by using the following series:

m—1

(=D =122 (m + 1+ 1)

me(n):l; Foiraiay T M= 2.7

These polynomials are orthogonal with respect to the weight function w(n) = /n — 12, i.e.

m=n%#0

motn (2.8)

1 T
/0 VFEr MVFimwndn = {5‘

2.4 Function approximation by SVFPs
Let H = LZ)(I), I =10,1],and S = span{VF}(n), VF5 (), ..., V.?-";‘;LH(U)}. Then for any
y(n) € H, y,(n) € S is a best approximation; that is

m+1

Y) 2= ym() = Y aiVF ) = ATVEM), (2.9)
i=1

where A = [a1, a2, ..., au41]" and Vi) = [VFF), VFEZ(), ..., VFr (n]". Fur-
thermore,

1
a; = <§> f yVF (mw(mdn, i=1,2,....,m+ 1. (2.10)
0
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In order to approximate the two-dimensional kernel function « (7, ¢), following approxima-
tion is used.

m+1m+1

K1, 8) = Km0, 8) = D kij VFEFMVFFQ) = VETMKVEE),  (2.11)
i=1 j=I

where Kisa (m + 1) x (m + 1) order kernal matrix.

Here, the orthogonality property of the SVFPs, together with the weight function w(n) in
Eq. (2.8), is used to generate the kernel matrix.

It follows

1 1
K=o (/0 W VE®) (fo K<n,;>V;T(;)w<;>d;)dn) o', @)
where

0 =(VrO), ViT0), -
The matrix form for these SVFPs is as follows:
Vi) = ALn (1), 2.13)
where

VEm) = VFF ), VFE), .. . VF 1T, L) = (L, ....n"1". (2.14)
2.4.1 A matrix

Using Eq. (2.7)

1 0 0
=D'rQ+1)  (—=1)>2’r2+2)

i r2)rQ) re-nre+2)
(—1)mr'(m +2) (—1)m—125F(m +3) (—1)'022'"
F'(m+ DT(Q2) rmr2+2) L)/ msyxom+n

where A is lower triangular non singular matrix, hence A~ exists.
Therefore,

L) = A~'VEm). (2.15)

3 Operational matrix for SVFPs

To solve the SFIDE by operational matrix method, it is necessary to evaluate the following
OMs:

3.1 Product operational matrix

The OM for the product is determined in this section.

VEMVET (P = PVEG), G.1)
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where P is an OM of (m + 1) x (m + 1) order that is found by applying the orthogonality
property of SVFPs with the weight function w (7).

P=(vimVviTap.viTan) o7 (3:2)
w(n)

3.2 Integral operational matrix

In terms of OM, the integration of vector V(1) can be described as follows:
n ~
/ VE(Q)dE = PVE(), (3.3)
0

where P is an integral OM with a (m + 1) x (m + 1) dimension that can be found by utilising
the orthogonality property of SVFPs with the weight function w(n).
Using Eq. (3.3), we obtain

- n
P= << / Vﬁ(c)d;) , V:T<n>> o (3.4)
0 w(n)

3.3 Stochastic operational matrix

Here, the stochastic OM can be used to approximate the Itd integral of the vector V() as
follows:

n
/o Ve©)dB() =~ HyVp(n), (3.5)

where Hj is a stochastic OM with a (m + 1) x (m + 1) dimension that can be found by
utilising the orthogonality property of SVFPs with the weight function w(n).
From Eq. (3.5), we have

n
Hs=<</0 v;f(;)dB@)),v;T(n)> o' 3.6)
w(n)

3.3.1 Calculation for H; matrix
From Eq. (2.13)

ViG) = ALy ().
Now,

n n . ~ n
/0 V;(E)dB(i)Z/O ALm(ﬂ)dB(t)ZA/O L ($)dB(Z), (3.7

n n n n T
/OLm(C)dB(C)Z[/O dB(C),/O CdB(C%m,/O ZmdB(C)} . (3.8)
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Thus,
gd3@> B(n)
o CdB() nB(m) — [y B()d¢
Jo¢2dB©) | — n*B(n) —2 [ ¢B(¢)d¢ — Yo = Dttt (3.9)
Jo ¢mdB(&) "B —m [ ¢V B(¢)d¢
where,

. no.
yi =n/B() — j/ ¢7'B()de and j=0,1,2,...,m.
0
. 1 . . . o
The Simpson’s 3 rule is used to evaluate the integrals in Eq. (3.9), resulting in

I\ J i (N .
yj:(l—6>n/B(n)—Wn/B<§>, i=0,1,2,....m.  (3.10)

Now, B (g) , B(n) in Eq. (3.10) are approximated by B(0.25) and B(0.5), respectively.
Thus,

n
/ Lin(§)dB() =~ ALn(n), G.11)
0
where
B(0.5) 0 0
0 —%B(025)+2B(0.5) ... 0
A=| : _
0 0 o ————=B(0.25 + (1 - 2)B(©S5
3x 2220 (1-8) 8O3 (m+1)x (m+1)

and Ly () = [1, 1, o, 1 1)1
Using Eqgs. (2.15) and (3.11), we get

n ~ ~ o~
/0 VE(Q)AB() = ANLy(n) = ANAT'ViE() = H V(). (3.12)

Hence,

Hy = AANA"L. (3.13)

3.4 Fractional integral operational matrix

The OM for fractional integrals is discussed in this section.
JEVEG) = FAVE), (3.14)

where F“ is a fractional OM with a (m + 1) x (m + 1) dimension that can be found by
utilising the orthogonality property of SVFPs with the weight function w(n).
From Eq. (3.14), we obtain

= (v vil ), 0. (3.15)

where J,"” is defined in Eq. (2.5).
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4 Numerical method

In the operational matrix technique, SVFPs are used to approximate each term in Eq. (1.1).
Let,

D~ Vil (AL = AT Vi), 4.1)
2(0) = zo = AL Vi), 4.2)
g(n) = AT Vi), 4.3)

where A1, As, and A3 are vectors of order (m + 1) x 1, which can be defined in the following
manner as in Egs. (2.9) and (2.10).
By using the RL operator properties

JEEDY) ~ AT IEVE), (4.4)
then, applying Eq. (3.14) into Eq. (4.4),
2(n) — 20 = A{ F*VE(), 45)
by using Eq. (4.2) in Eq. (4.5)
2(n) = 2 () = (A3 + A{FO)VEm) = ATVEm = VE (A, (4.6)

where A = A + (F¥)T Aj and F® is defined in Eq. (3.15).
Now, by substituting Egs. (2.11), (4.1), (4.3), and (4.6) into Eq. (1.1), the following is
obtained:

n
ATVEG) = ATVE®) + 1 /0 VET K VEQOVET (0 A)de
n
+ X2 /0 (VT K VEQVE (©)A)dB(¢)
n
= ATVE®) + M VET (DK, /0 WEOVE (@) A)de

n
+ VT DKy /0 VEOVET () A)B(). @.7)

By using Eq. (3.1) in Eq. (4.7),

~ [T [N
ATVE = ATVEG) + M VET (K A /0 VAL + 1V (Ko A /0 VEQAB(Q),
4.8)

where A = (Vi VT DA, VET (), ) Q7
By substituting Egs. (3.3) and (3.5) in Eq. (4.8),
ATVEm = ATVEGD + M VE KIAPVE®M) + 22 Vil (K AH VE®).  (4.9)
An algebraic system of equations is created by collocating Eq. (4.9) at the Newton cotes
2r — 1
2m+ 1)
algebraic equations, the coefficient vector A is generated. Now, calculate A7 = AZT +A1T F*.

After that the final approximate solution by the SVFPs method is obtained by the equation
z(n) = zm() = AT V().

@ Springer f bMA
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5 Error bound and convergence analysis
5.1 Error bound

Theorem 5.1.1 (Agarwal et al. 2021) Suppose that z(n) € ™10, 11 and 7, (n) be the
approximate solution of z(n) defined in Eq. (4.6), then

Exntl o [x
[lz(m) — zm(MIl = m\/; (5.1)
where
E= nrer}gﬁ]z’”“(n) and ) = max{no, 1 — no}.

Theorem 5.1.2 Let k(n, ¢) be the sufficiently smooth function in Q2 such that k(n,¢) €
L2(£) N C%(RQ), where Q = ([0, L] x [0, T)). Suppose that ky, ,(n, ¢) is the best approxi-
mation to k(n, ¢) out of the linear span I, ,(2). Now assume

an1+lk(n’ ;-)

sup < by,
moeel ot
3n+1k ,

sup (m,¢) < by

moea| ¢t -

am+n+2k ,
SUp | (o i) < b3,
(1.0)eQ aner ag-nJr
then there exists R > 0 such that
1 1 1
k1, 0) = kn.n(n, <R Ve,
1@ ) = Knn (1. £l = |:2m(m+1)! T rarn 2”’+”(m+1)!(n+1)!]

(5.2)

where R = max{bi, ba, b3} and C = [} [[[ wmw(¢)dndc.
According the concept of interpolation, which is similar as Saha Ray and Singh (2021),
we obtain the following desired results.

Theorem 5.1.2 Let z,,(n) = AT ViE(n) be the approximate solution and z(n) be the exact
solution of Eq. (1.1). Furthermore, suppose that if

L. |z(m] = M, V¥n €[0,1],
2. ki, O = Ki,i =1,2,Y(n, ) €[0,1] x [0, 1],

3. F M QKT + 487 m)) +332K5 + 455 (m))] < 1.

Then,

4 p2 2 038711383 m))
Ty - ) +8M F@)’

1= fa M QKT + 48T m) + A3 (2K5 + 483 ()]’

llemIl =

and by the Theorems 5.1.1 and 5.1.2

llg(m) — gm(MIl < P(m), (5.3)
i 1, &) — Pnmylki 1, O < Si(m), i =1,2. (5.4
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where, g,, (1) and Py m)[ki1(n, §) are the approximate polynomials using SVFPs and
Exmt! \/? 1 1
P — = d S; C.
(m) = T an (m) = [Zm—‘(m Y + P n 1 1)!2] Ve
Proof Let z,,(n) be the approximate solution of Eq. (1.1).

n
CD:Zm(T)) = gm(n) + A /() P(m,m)[Kl](n’ ;)Zm(f)df

n
+>»2/0 Pon,my 211, $)zm (A B(E), 1 € [0, 1], (5.5

Let |z(n) — z;m ()| be an error function, then by Eq. (1.1) and (5.5),

CD“(z(n)—zm(n))—g(n) gm(n)+?»1f (k1(n, £)2(8) = Pin,mylic11(n, $)zim ())dE

2 [ 6200200 = Pl Oz @BQ. 60
Now, applying the RL operator (J;f) on both sides of the Eq. (5.6),
TEEDD ) = z2n() = JL (@) — gm(1))

n
+ Jy (M/O (Kl(n,C)Z(C)—P(m,m)[Kl](mC)Zm(i))dé“>

n
+Jy ()»2/ (k2 (1, £)2(8) = Pnm) le2]1(, C)Zm(é“))dBC) )
0
(5.7
where J,‘)" is defined in Eq. (2.5).
By using the properties of Ji which are given in Sect. 2.2, Eq. (5.7) can be written as

_ 1 K _ a—1 _
z(n)—zm(n)—m/(n O (g(¢) — gm(£))d¢

F(a)/ =0 1([ (k1(¥, £)2(8) = Pn,myl11(n, t)zm(C))dC>dV

+ 7/ (-0~ (/ (k2 (s £)2() — Pin,mlr21(n, {)Zm({))dB({)> dy.
(@) Jo 0
(5.8)
Using inequality (c¢1 + ¢2 + x)? < 4(cf + c% + c%), we obtain

lle(I1* = l1z() — zu ()|
2

1 n
4||=— =" N(g(&) — gm(@)d
‘F(a)/o =" (g(0) — gm(£))d¢

2

A n Y
+4Hﬁl)/ -y ! (/ (k1 (v, $)z2(8) — Pan,mylic11(m, C)zm(i))dé) dy

2

f (- ) 1( f (k202 ©)2(0) — P21, ;)zm@))dB@)) dy
(5.9)

Hl“(a)

Let Eq. (5.9) be written as
lleI> < T+ T3 + Ta. (5.10)
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Now,

2

_ 1 ! a—1 _
75—4“@]0 (=0 (g(5) = gm(©))d¢

1 n
=4E||— — ! — gm(¢))d
|:F(oz)/0 =0 (&) — gm(£))d¢

2
:|. (5.11)

Since,0 < ¢ <land0<a<1,0<¢ <n<1.ItimpliesO <n—¢ <1—¢ < 1. Now,
using the Cauchy—Schwarz inequality in Eq. (5.11), the following is obtained:

(F( ))2 [/ 18(0) — gm(;)|2d;]

1g(&) — gm(OI?

47
(F( )?
~ (M(@))?

P(m). (5.12)

Again,

2

Hl—.( )/ (n V)a 1(/ (KI(V 0)z(8) — P(mm)[’(l](n Z)Zn1(§))d§>dy

2

1
(T())?

2

E U /0 (- )= ( fo (17, )2() — Pl 1, cm@»d:) dy

(5.13)

Since, |[n — y| < 1, then by using the Cauchy—Schwarz inequality

;<4 i E [?7 /n (/V(Kl(% 0z(8) — Panmylkc1l(n, §)an(§))d§>2d7i|
(T())? o \Jo '
<4 i E |:TI/H <V /y (K107, 0)2(&) = Ponmy k11 (s §)Zm(C)))2d§) dl/}
(I'(@))? 0 0 '
=4 i E[n/n(yfy lc1 (v, $)(z(8) — zm(£))
(T (@))? 0 0
+ k1 (7. ©) = Ponmy [K11 (1, ©)) % (2 (©)) — 2(8) + 2(0))[*d¢)dy ]
4| M E[n/"(y fy<2|m<y, OGE) — @)
(T'(@))? 0 0
+21(k1 (75 ©) = Pon,my k1100, ) (@ (€)) — 2(2) + 2(©))H)dE)dy]
SUI [772 | ' ( | " K e() 2 + 4S2m) e (@) +4M283<m)>d;) dy]
(T'(e)) 0o \Jo
—4 (r?j))z E [n2(2K%+4312(m))f0n/0y \e({)|2d§dy+4n2./\/l2812(m))/onfoy d{dy].

(5.14)

By changing the order of integration, the following is obtained:

n n n v
E[n2<2ic%+45%<m» /0 le(©)? (/ dy)dc+4n2M28%(m> /0 fo d;dy]
¢

@ Springer f DMAC
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A2 )
=4 Ty |© [”Z(Z’C““Slz(m» /0 |€(§)|Zd§+2n4M2$12(m)]
)\2
=4 (F(oi))2 [n*2KT + 48T m)|le(@)|* + 2n* M> ST (m)]
- )\% i 7 4 22
=4 T@)? 1 (2K3 + 483 m))|le(O)I* + 8 T ))2 MESEm). (5.15)
Now.
)\,2 n . y ,
721=4’ —/ =y (/ (K2(V?{)Z({)_P(m,m)[lQ](m{)Zm(;-))dB{> dy
(@) Jo 0

2

2
(T(@))?

v 2
- (/O (2(y, £)2(8) = Pyn,my [121(n, {)Zm({))dB(é“)) dy ] .

(5.16)
Since, | — y| < 1, then by using the Cauchy—Schwarz inequality

| |

n y 2
77/0 E |:</0 (k2(y, $)z(&) — Pon,myl2](n, f)Zm(C))dB(C)> :|d)/~
(5.17)

2
2

(T())?
2

2
(T'(@))?

T4 <4

n y 2
n/o (/0 (KZ(VvE)Z(C)_P(m,m)[KZ](nvg)Zm(f))dB(§)> dy

Now, by using the It isometry property, following is obtained:

B el :
T4 <4 T@)? n/o E [/0 (k2 (¥, £)2(8) = Pan.mylk2l(m, £)zm (£)) df] dy
4|22 / "El / e ’
< —
=4 T n A ; Qlre2(y, £)(z(€) — zm(£))]
+ 22, &) = Py [k2) (0, £) @m () — 2(8) + 2 ) |P)d¢ 1dy
22 n Y
4| [ E[ / (2/c%|e<;>|2+4S§<m>|e(;>|2+4M28%<m>)d:}dy
=4 & n| (2K3 +483(m)) E f / le(0)2dedy |+ 4M>S3(m ))7
T@)?|” : :
(5.18)
By changing the order of integration
)‘2 2 3 22
T, <4 T n(Q2K3 + 483 (m))|le()||* + 8 . ))2 PM2S3(m).  (5.19)
Now, by substituting Egs. (5.12), (5.15), (5.19) into Eq. (5.10)
leGDII? < ———P2m)
(I(@))?
2 2 2 2 2
+4 T ))2 QKT +4SHm))lle@)I1* + 8 T ))2 MPST(m)
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2
2 M2S2
+4 e ))2 (K3 + 485 (m)le()II” +8 e ))2 MZSy(m).  (5.20)
Then,
(1282 (m)+2352(m))
ﬁpz(m)-i-SMz%
lle(m]] < e i 521)
1= far M QKT + 457 m) + 23(2K3 + 483 (m))]

5.2 Convergence analysis

Theorem 5.2.1 Let z(n) and z,,,(n) be the exact and approximate solutions of Eq. (1.1) respec-
tively. And

L |zml = M, Vn €0, 1],
2. 0ki(n, O = Ki,i =1,2,¥(n, ¢) €[0,1] x [0, 1],
3. payr M QKT + 487 0m) + 25(2K5 + 485 (m))] < 1.

Then 2,y (n) — z(n) as m — oo in L.
Proof Consider the SFIDE as follows:
" n
D%z(n) = g(n) +k1/0 k1 (m, £)z(5)dg +Az/0 k2(n, £)z(¢)dB(&), n€l0,1].
(5.22)

Using the same explanation as that used to prove the previous theorem, we can get to the
following:
By using Eqs. (5.12), (5.15) and(5.18)

2 Pz
lle(m)* < (r( ))2 (m)
22 n
4 <r(<§>)2 E[n2<216%+48%(m>) fo |e<;)|2dc+2n4M23%(m)]
% 2 2 T 2 22 772
(5.23)
Since n < 1, then
lle(m)||? ! P2 (m)
M= T2
+4 M (2K} +48%( ))/ lle()I1>ds + 8 i M2S2(m)
m e m
(T'(@))? (T >>2 !
2 5 2
4| o] @3 st [MielPc +8 | 2 AR 0n,
(5.24)
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Now,
2282 (m) 1282 (m)
2 732 +8 MZ 11 22
lle@ll (F( )? ) (I'(@))? (T(@)?
2 2
2 2 2
+< @ ))2 K3 + 483 (m)) + 4 @ ))2 (2/C2+482(m))>/ lle(O)]1?d¢.
(5.25)
Let,
4 1282 (m) 1282(m)
Sm) = P2(m) + SM2 1°1 292 7
= Ty ™ ( T@)? | | Te)?
2 ) 2
L = 2K3 + 487 +4 2K5 + 48
' ( ek () + 4 e | ¢ 2('")))
Therefore,
¢
IIe(n)II%§8(m)+L1/O lle(2))7dg. (5.26)
Applying Gronwall inequality, we obtain
¢
||e<n)||%§a(m>(1+m/ L1045, (5.27)
0
It implies
||e(n)||% — Oasm — ooinL?2.
S0, zu (1) converges to z(n) as m — oo in L2, m]

6 Applications of the proposed method

Three examples are solved in this section using the proposed numerical approach that was
described in the previous section.

Example 1 Consider the following fractional order stochastic integro-differential equation:

_25,m 6 2.25 n
C no _ ne n n
Dyz(n) = — r(3.25) / e'¢z(§)dt
n
-H»zf e"¢z(0)dBg, ¢, nel0,1], 6.1)
0

with the initial condition z(0) = 0. The exact solution of Eq. (6.1) is not available. If « = 0.75
and A» = 0, the exact solution is z() = n° and the approximate solution is obtained by
the proposed SVFPs method. Table 1 represents the absolute error comparison between
two methods based on the orthonormal Chelyshkov polynomials (OCPs) and SVFPs. For
the numerical solution of Eq. (6.1) for various values of o« with m = 4 and m = 6, the
proposed operational matrix collocation approach is employed. Newton cotes nodes have
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Table 1 Absolute errors for

n—0anda — 075 with m — 5 n OCOM method SVFOM method

(Example 1) 0 0.0000725557 0.0000953178
0.1 0.0000694746 0.0000680866
0.2 0.0000538761 0.0000506387
0.3 0.0000417776 0.0000422924
0.4 0.0000381503 0.0000404573
0.5 0.0000408586 0.0000417578
0.6 0.0000445981 0.0000431565
0.7 0.0000448349 0.0000430771
0.8 0.0000417438 0.0000425288
0.9 0.0000441475 0.0000462289
1 0.0000734549 0.0000637265

been selected from the collocation points. Tables 2 and 3 provide the comparison between
numerical solutions obtained by the operational matrix method based on OCPs and SVFPs
for the above problem for different values of m. The plot of SVFPs solutions for different
values of o« with m = 4 and m = 6 are shown in Figs. 1 and 2, respectively.

Example 2 Consider the following fractional order stochastic integro-differential equation:

C o _l 4_§ 3 2n27o¢ 7717(1 /;7
Dyzn) = 5n —cn' + rG_w Te-w " A (n+)z(0)d¢
n
H/O ¢z(H)dBg, &,nel0,1], (6.2)

with the initial condition z(0) = 0. The exact solution of Eq. (6.2) is not known. For the
numerical solution of Eq. (6.2) for different values of «, the proposed operational matrix
collocation method is utilised. Newton cotes nodes have been selected from the collocation
points. Tables 4 and 5 provide the numerical solutions comparison obtained by the operational
matrix method based on OCPs and SVFPs for the above problem for different values of m.
The plot of SVFPs solutions, for different values of « with m = 4 and m = 6 are shown in
Figs. 3 and 4, respectively.

Example 3 Consider the following fractional order stochastic integro-differential equation:

Cpanmy— M, T@ni !

n2(m) = -3t TC—a) +/ ¢z(5)d¢ +k/ 2(¢)dBg, &m0, 1], (6.3)
o) Jo 0

with the initial condition z(0) = 0. The exact solution of Eq. (6.3) is unknown. The proposed

operational matrix collocation technique is used to solve Eq. (6.3) numerically for different

values of o with m = 4 and m = 6. From the collocation points, Newton cotes nodes

have been chosen. With respect to the above-mentioned problem, Tables 6 and 7 compare

the numerical solutions derived using the operational matrix technique based on OCPs and

SVEPs for different values of m. The plot of SVFPs solutions for different values of o with

m = 4 and m = 6 are shown in Figs. 5 and 6, respectively.
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2(m) —e— a=0.25

a=0.5

—_— a=0.75

— @=0.85

0.2 0.4 0.6 0.8 1.0

Fig. 1 The approximate solution graph by the SVFOM method for m = 4 (Example 1)

z(n) —e— =025
2.0 r a=0.5
1.5 —— a=0.75

: —_— a=0.85
1.0
0.5

0.2 0.4 0.6 0.8 1.0

Fig.2 The approximate solution graph by the SVFOM method for m = 6 (Example 1)

7 Conclusion

The main objective of this work is to apply the operational matrix method to solve SFIDE.
In this study, a novel stochastic operational matrix has been generated for the first time using
shifted Vieta—Fibonacci polynomials. The SFIDE has been transformed into a system of
algebraic equations. With the use of these operational matrices, the resultant algebraic system
of equations is numerically solved by applying the collocation technique. The error bound and
the convergence analysis of the proposed numerical technique have also been described. The
precision and effectiveness of the suggested numerical technique are demonstrated using three
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0.5
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Fig.3 The approximate solution graph by the SVFOM method for m = 4 (Example 2)

z(m)

2.5

2.0

[
e e LA e o s o o e B

0.2 0.4

—e— =025

a=0.5

—— a=0.75

—_— a=0.85

Fig.4 The approximate solution graph by the SVFOM method for m = 6 (Example 2)

different examples. The numerical experiments reveal that the proposed numerical scheme
based on SVFPs and OCPs based numerical method have the best agreement of results. As
a consequence, it is clear from the numerical experiment results that the proposed numerical
approach is extremely effective, accurate, and reliable. In future, we have a plan to work on
fractional stochastic integro-differential equations with the ABC fractional derivative.
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Fig.5 The approximate solution graph by the SVFOM method for m = 4 (Example 3)
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Fig.6 The approximate solution graph by the SVFOM method for m = 6 (Example 3)
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