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Abstract
In this paper, we combine the classical subgradient extragradient method with the Bregman
projection method for solving variational inequality problems in reflexive Banach spaces.
Specifically, we set two different parameters in the two-step projections, as opposed to
consistent parameters in other results. In addition, the application of the inertial technique
accelerates the iteration efficiency. Finally, we compare the proposed algorithm with other
known results and find that our method effectively improves the convergence process.

Keywords Banach space · Bregman projection · Strong convergence · Subgradient
extragradient method · Variational inequality

Mathematics Subject Classification 47H05 · 47H07 · 47H10 · 54H25

1 Introduction

The main purpose of this paper is to study the variational inequality problem in Banach
spaces. It is well known that the variational inequality problem consists in finding p ∈ C
such that

〈F p, q − p〉 ≥ 0, ∀q ∈ C, (1)
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where F : B → B∗ is a nonlinear operator, 〈t, s〉 : B∗ × B → R is the duality pairing
for t ∈ B∗ and s ∈ B, B is a real Banach space with the dual B∗ and C is a nonempty
closed convex subset of B. Throughout the paper, to simplify the narrative, we denote the
variational inequality problem and its solution set by VIP and S respectively.

The theory of variational inequalities can be traced back to the 1960s, when the problem
first appeared in the Signorini problem proposed by Antonio Signorini, and then gradu-
ally obtained complete results in the research of Fichera, Stampacchia and Lions. With the
continuous scientific and technological innovations, many researchers applied this theory to
different fields such as mechanics, economics and mathematics. Particularly, in mathemat-
ics, the VIP is closely related to saddle-point, equilibrium and fixed-point problems, see for
example, Yao et al. (2020), Ceng et al. (2014), Yao et al. (2011), Barbagallo and Di Vincenzo
(2015), Lions (1977), Jitpeera and Kumam (2010) and the references therein.

In recent years, many different methods have been developed to solve VIP. One of the
simplest of these methods is the projected gradient method (for short, PGM), which can be
expressed as follows:

wi+1 = PC(wi − τA wi ), (PGM)

where PC denotes the metric projection from Hilbert space H onto the feasible set C,
the operator A : H → H is strongly monotone. Since the PGM is limited by strong
assumptions, this will greatly affect its applicability. Therefore, Korpelevich (1976) proposed
the extragradient method (for short, EGM) using the double-projection iteration, thereby
weakening this condition and improving the applicability of the iterative method. The EGM
is as follows: {

ti = PC(wi − τA wi ),

wi+1 = PC(wi − τA ti ),
(EGM)

where PC : H → C denotes the metric projection, A is monotone L-Lipschitz continu-
ous operator and τ ∈ (0, 1

L ). Under reasonable assumptions, Korpelevich obtained a weak
convergence theorem for the sequence generated by EGM. Since then, the authors have com-
bined various techniques to improve the convergence based on the EGM and have obtained
further results, see for example, Jitpeera and Kumam (2010), Hieu et al. (2020), Xie et al.
(2021), Dong et al. (2016), Tan et al. (2022) and the references therein.

However, although the EGM weakens the constraints based on the PGM, the projection
onto the feasible set C must to be computed twice during each iteration of the loop. To
reduce the computational effort, Censor et al. (2011) in a later study proposed the following
subgradient extragradient method (for short, SEGM):{

ti = PC(wi − τA wi ),

wi+1 = PTi (wi − τA ti ),
(SEGM)

where PC,A and τ are the same as defined in EGM. In particular, they constructed a half-
space Ti := {x ∈ H : 〈wi − τA wi − ti , x − ti 〉 ≤ 0} to replace the feasible set C in
the second step of the projection process. By the definition of Ti , the projection is easy to
calculate. The weak convergence theorem of SEGM in Hilbert spaces has been proved under
some appropriate assumptions. At the same time, SEGM has also attracted the interest of
many authors, see for instance, Jolaoso et al. (2021), Yao et al. (2022), Yang et al. (2020),
Abubakar et al. (2022) and the references therein.

Noting that the above methods all yield the corresponding weak convergence theorems, it
is natural to further consider the strong convergence. Kraikaew and Saejung (2014) combined
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the SEGM with the Halpern method and obtained the following algorithm:⎧⎪⎨
⎪⎩
ti = PC(wi − τA wi ),

si = PTi (wi − τA ti ),

wi+1 = αiw1 + (1 − αi )si ,

(HSEGM)

where the metric projection PC , the operator A , the parameter τ and the half-space Ti are
defined in the sameway as in the SEGM, {αi } is a sequence in (0,1) satisfying limi→∞ αi = 0
and

∑∞
i=1 αi = ∞. By choosing appropriate values for the parameters, they obtained a strong

convergence theorem for an iterative method for solving VIP in Hilbert space.
On the other hand, it is known that inertial technique can effectively accelerate the iterative

process of algorithms. Therefore, authors added inertia term to the algorithm for solving VIP.
For example, Thong and Hieu (2018) combined the inertial technique with the SEGM and
thus obtained the following approach:⎧⎪⎨

⎪⎩
wi = xi + αi (xi − xi−1),

ti = PC(wi − τA wi ),

xi+1 = PTi (wi − τA ti ),

(ISEGM)

where Ti := {x ∈ H : 〈wi − τA wi − ti , x − ti 〉 ≤ 0}, {αi } is non-decreasing sequence

and 0 ≤ αi ≤ α ≤ √
5 − 2, τ L ≤ 1

2−2α− 1
2α2−δ

1
2−α+ 1

2α2 for some 0 < δ < 1
2 − 2α − 1

2α
2. With

a suitable choice of parameters, they proved that the sequence generated by the algorithm
weakly converges to an element of the solution set S and that the operator A involved is
monotone and L-Lipschitz continuous. Of course, the algorithm proposed by Thong and
Hieu (2018) can be combined with the Halpern method, based on the ideas mentioned above,
to obtain the corresponding strong convergence theorem.

Since Banach spaces have more general properties than Hilbert spaces, some authors have
solved VIP in certain Banach spaces using tools based on existing results in Hilbert spaces.
For example, Cai et al. (2018) combined the SEGM with the Halpern method and solved
variational inequalities in 2-uniformly convex Banach spaces. The algorithm is iterated as
follows: ⎧⎪⎨

⎪⎩
ti = �C (Jwi − τA wi ),

si = �Ti (Jwi − τA ti ),

wi+1 = J−1(αi Jw1 + (1 − αi )Jsi ),

(BSEGM)

where �C : B∗ → C ⊂ B is the generalized projection operator, J : B → 2B
∗
is the

normalized duality mapping andB is a real 2-uniformly convex Banach space with dualB∗.
The step size τ satisfies 0 < τ < 1

μL ,where μ ≥ 1 is the 2-uniform convexity constant ofB
and L is the Lipschitz constant of A . {αi } is a sequence in (0,1) satisfying limi→∞ αi = 0
and

∑∞
i=1 αi = ∞. Cai et al. (2018) obtained a strong convergence theorem by choosing the

appropriate parameters.
Furthermore, some authors have recently considered solving VIP in reflexive Banach

spaces, see for instance, Jolaoso and Shehu (2022), Jolaoso et al. (2022), Oyewole et al.
(2022), Reich et al. (2021), Abass et al. (2022) and the references therein. For example,
Jolaoso and Shehu (2022) generalized the classical Tseng’s extragradient method proposed
by Tseng (2000) to reflexive Banach spaces using Bregman projection, thus obtaining strong
and weak convergence theorems under different conditions, respectively. In addition, Jolaoso
et al. (2022) combined Popov’s method Popov (1980) with the SEGM to obtain that the
sequence generated by the method converges to an element of S in reflexive Banach spaces
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by selecting appropriate parameters with the help of Bregman projection. In Reich et al.
(2021), Reich et al. applied the inertial technique to the reflexive Banach space based on the
hybrid and shrinking projection method and Tseng’s extragradient method and obtained a
strong convergence theorem under reasonable assumptions. These results have a common
feature in that they all achieve a generalization of the known results from Hilbert spaces to
reflexive Banach spaces.

Motivated by the aboveworks, in this paper, we propose a new inertial Bregman projection
method for solving VIP in real reflexive Banach space. The modifications are as follows:

• Reich et al. (2021) successfully combined the inertial technique with the Tseng’s extra-
gradient method and applied it to reflexive Banach spaces. Based on this, we found that
adding inertial terms to the SEGM can also be achieved.

• In contrast to the above mentioned methods, we obtain a strong convergence theorem
in reflexive Banach spaces by Halpern-type iteration and the concepts of Bregman dis-
tance and Bregman projection under suitable conditions. It is well known that strong
convergence can be used to infer weak convergence, but the reverse is not necessarily
true.

• We modify the step size parameter based on the SEGM. We set two different constant
parameters to control the step size,which allows the algorithm to improve the convergence
process of the iterative sequence without the restriction that the two parameters must be
equal.

2 Preliminaries

This section collects several background material to facilitate the study that follows.
Let f : B → R be a proper convex and lower semicontinuous function. For simplicity,

dom f denotes the domain of f , dom f := {s ∈ B : f (s) < ∞}. If s ∈ int(dom f ), then

(i) the subdifferential of f at s is the convex set given by

∂ f (s) := {s∗ ∈ B∗ : f (s) + 〈t − s, s∗〉 ≤ f (t), ∀t ∈ B}. (2)

(ii) the Fenchel conjugate of f is the convex function f ∗ : B∗ → R with

f ∗(s∗) := sup{〈s, s∗〉 − f (s) : s ∈ B}.
(iii) the directional derivative of f at s is defined as

f ◦(s, t) := lim
n→0

f (s + nt) − f (s)

n
, ∀t ∈ B. (3)

(iv) f is called Gâteaux differentiable at s, if the limit of (3) exists. At this time, the
gradient of f at s is the linear function � f (s) satisfying

〈∇ f (s), t〉 := f ◦(s, t), ∀t ∈ B.

(v) f is said to Fréchet differentiable at s, if n → 0 in (3) is attained uniformly for any
‖t‖ = 1. f is called uniformly Fréchet differentiable on a subset C, if n → 0 in (3) is
attained uniformly for any ‖t‖ = 1 and s ∈ C ⊂ B.

The Banach space B is said to be reflexive, if J (B) = B∗∗, where J : B → B∗∗ is
the standard embedding operator. Simultaneously, f is said to be Legendre if and only if it
has the following forms:
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(P1) f is Gâteaux differentiable, dom∇ f =int(dom f ), int(dom f )�= ∅,
(P2) f ∗ is Gâteaux differentiable, dom∇ f ∗=int(dom f ∗), int(dom f ∗)�= ∅.
The reflexivity of B yields (∂ f )−1 = ∂ f ∗. And combining (P1) and (P2) shows that
∇ f = (∇ f ∗)−1, ran∇ f = dom∇ f ∗ = int(dom f ∗), ran∇ f ∗ = dom∇ f = int(dom f ).
Moreover, in the interior of their respective domains, f and f ∗ are strictly convex and f is
Legendre if and only if f ∗ is Legendre.

Assume that f is Gâteaux differentiable, the Bregman distance associated to f is the
function D f :dom f ×int(dom f )→ [0,+∞) given by

D f (t, s) := f (t) − f (s) − 〈� f (s), t − s〉.
One readily observes the following properties concerning to D f :

(i) three point identity:

D f (t, w) + D f (w, s) − D f (t, s) = 〈� f (w) − � f (s), w − t〉,
(ii) four point identity:

D f (w, x) + D f (t, s) − D f (w, s) − D f (t, x) = 〈� f (s) − � f (x), w − t〉,
for any s, t, w, x ∈ B.

We say that a Gâteaux differentiable function f belongs to β-strongly convex if

〈� f (s) − � f (t), s − t〉 ≥ β‖s − t‖2, ∀s, t ∈ dom f ,

namely,

f (t) ≥ f (s) + 〈� f (s), t − s〉 + β

2
‖s − t‖2, ∀s, t ∈ dom f .

This gives that

D f (s, t) ≥ β

2
‖s − t‖2 (4)

for every s ∈ dom f , t ∈int(dom f ).
The modulus of total convexity at s ∈ int(dom f ) denoted v f (s, ·) : [0,+∞) → [0,+∞]

is given by

v f (s, w) := inf{D f (t, s) : t ∈ dom f , ‖t − s‖ = w}.
We say that f is totally convex at u ∈ int(dom f ), if v f (s, w) > 0, ∀w > 0. Furthermore,
the modulus of total convexity of f on nonempty subset C ⊂ B is given by

v f (C, w) := inf{v f (s, w) : s ∈ C ∩ int(dom f )}.
For given bounded subset C and w > 0, the hypothesis of v f (C, w) > 0 yields that f is
totally convex. Moreover, strongly convex function can derive totally convexity. Specially,
when f is a Legendre function, we know that totally convexity is consistent with uniformly

convexity of f . Besides, f belongs to strongly coercive if lim‖s‖→∞
f (s)

‖s‖ = +∞.

Given a nonempty closed convex subset C ⊂ B, the operator F is

(i) monotone on C, if
〈F s − F t, s − t〉 ≥ 0, ∀ s, t ∈ C.
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(ii) pseudomonotone on C, if
〈F s, t − s〉 ≥ 0 ⇒ 〈F t, t − s〉 ≥ 0, ∀ s, t ∈ C.

(iii) L-Lipschitz continuous on C, if there is an absolute constant L with

‖F s − F t‖ ≤ L‖s − t‖, ∀ s, t ∈ C.

Assume that Br := {t ∈ B : ‖t‖ < r , r > 0}, SB := {t ∈ B : ‖t‖ = 1} and
ρr : [0,+∞) → [0,+∞] is the gauge of uniformly convexity of f ,

ρr := inf
x,y∈Br ,‖x−y‖=t,α∈(0,1)

α f (x) + (1 − α) f (y) − f (αx + (1 − α)y)

α(1 − α)
.

Then f : B → R is uniformly convex on bounded subsets of B if ρr (t) > 0, ∀r , t > 0. It
is known that a strongly convex function is uniformly convex.

We will need several lemmas to obtain our main results.

Lemma 1 (Naraghirad and Yao 2013) If f is uniformly convex on bounded subsets of B,
then

f

(
k∑

i=0

αi ti

)
≤

k∑
i=0

αi f (ti ) − αiα jρr (‖ti − t j‖),

for all r > 0, i, j ∈ {0, 1, 2, . . . , k}, ti ∈ Br , αi ∈ (0, 1) with
∑k

i=0 αi = 1, where ρr is the
gauge of uniform convexity of f .

Lemma 2 (Butnariu and Iusem 2000) The function f is totally convex on bounded subsets of
B if and only if, for {ti } ⊂ int(dom f ) and {si } ⊂ dom f , such that the first one is bounded,

lim
i→∞D f (si , ti ) = 0 ⇒ lim

n→∞ ‖si − ti‖ = 0.

Lemma 3 (Reich and Sabach 2009) If f is convex, bounded and uniformly Fréchet differen-
tiable on bounded subsets of B, then ∇ f is uniformly continuous on bounded subsets of B
from the strong topology of B to the strong topology of B∗.

Lemma 4 (Zâlinescu 2002) If f is convex and bounded on bounded subsets of B. Then the
following are equivalent:

1. f is strongly coercive and uniformly convex on bounded subsets of B.
2. dom f ∗ = B∗, f ∗ is bounded on bounded subsets and uniformly smooth on bounded

subsets of B∗.
3. dom f ∗ = B∗, f ∗ is Fréchet differentiable and ∇ f ∗ is uniformly norm-to-norm contin-

uous on bounded subsets of B∗.

Lemma 5 (Butnariu and Iusem 2000) If f is strongly coercive, then

1. ∇ f : B → B∗ is one-to-one, onto and norm-to-weak* continuous.
2. {t ∈ B : D f (t, s) ≤ r} is bounded for all s ∈ B and r > 0.
3. dom f ∗ = B∗, f ∗ is Gâteaux differentiable and ∇ f ∗ = (∇ f )−1.

Lemma 6 (Martín-Márquez et al. 2013) Let f be Gâteaux differentiable on int(dom f ) such
that ∇ f ∗ is bounded on bounded subsets of dom f ∗. Let t0 ∈ B and {ti } ⊂ int(B), if
{D f (t0, ti )} is bounded, then the sequence {ti } is bounded too.
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Lemma 7 (Butnariu and Iusem 2000) Let C be a nonempty closed convex subset of a reflexive
Banach spaceB. A Bregman projection of t ∈ int(dom f ) onto C ⊂ int(dom f ) is the unique
vector Proj fC (t) ∈ C which satisfies

D f (Proj
f
C (t), t) = in f {D f (s, t) : s ∈ C}.

Lemma 8 (Alber 1996; Censor and Lent 1981; Phelps 1993) Let C be a nonempty closed
convex subset of a reflexive Banach spaceB and t ∈ B. Let f be Gâteaux differentiable and
totally convex function. Then

1. p = Proj fC (t) ⇔ 〈∇ f (t) − ∇ f (p), s − p〉 ≤ 0, ∀s ∈ C.

2. D f (s, Proj
f
C (t)) + D f (Proj

f
C (t), t) ≤ D f (s, t), ∀s ∈ C.

Define the bifunction V f : B × B∗ → [0,+∞) by

V f (t, t
∗) := f (t) − 〈t, t∗〉 + f ∗(t∗), ∀t ∈ B, t∗ ∈ B∗.

Then

V f (t, t
∗) = D f (t,∇ f ∗(t∗)), ∀t ∈ B, t∗ ∈ B∗, (5)

and

V f (t, t
∗) + 〈∇ f ∗(t∗) − t, s∗〉 ≤ V f (t, t

∗ + s∗), ∀t ∈ B, t∗, s∗ ∈ B∗. (6)

In addition, if f is a proper lower semicontinuous function, then f ∗ is a proper weak∗ lower
semicontinuous and convex function. Hence, V f is convex in the second variable. And

D f (t,∇ f ∗(
N∑
i=1

si∇ f (ti ))) ≤
N∑
i=1

siD f (t, ti ) (7)

for all x ∈ B, where {ti }Ni=1 ⊂ B and {si }Ni=1 ⊂ (0, 1) with
∑N

i=1 si = 1.

Lemma 9 (Maingé 2008) Let {wi } be a sequence of non-negative real number. If there is
a subsequence {wi j } of {wi } satisfies wi j < wi j+1 for all j ∈ N, then there exists a non-
decreasing sequence {mk} ⊂ N such that limk→∞ mk = ∞ and for all (sufficiently large)
number k ∈ N,

wmk ≤ wmk+1, wk ≤ wmk+1.

In fact, mk := max{i ≤ k : wi < wi+1}.
Lemma 10 (Xu 2002) Let {ai }, {bi }, {ci }, {αi } and {βi } be sequences of non-negative
real numbers such that {αi } ⊂ (0, 1),

∑∞
i=1 αi = ∞, lim supi→∞ bi ≤ 0, {βi } ⊂

[0, 1
2 ],

∑∞
i=1 ci < ∞, for i ≥ 1,

ai+1 ≤ (1 − αi − βi )ai + βi ai−1 + αi bi + ci .

Then limi→∞ ai = 0.

Lemma 11 (Mashreghi and Nasri 2010) If the mapping h : [0, 1] → B∗ defined as h(z) =
F (zs + (1 − z)t) is continuous for all s, t ∈ C, then M (C,F ) := {s∗ ∈ C : 〈F t, t −
s∗〉,∀t ∈ C} ⊂ S. Moreover, if F is pseudomonotone, then M (C,F ) is closed, convex and
M (C,F ) = S.
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3 Main results

In this section, we propose an inertial subgradient extragradient method with Bregman dis-
tance for solvingpseudomonotonevariational inequality problems in reflexiveBanach spaces.
First, we give the following assumptions:

(C1) The feasible set C is a nonempty closed convex subset of real reflexive Banach space
B. The proper lower semicontinuous function f : B → R is strongly coercive
Legendre which is bounded, uniformly Fréchet differentiable and β-strongly convex
on bounded subsets of B.

(C2) The operatorF : B → B∗ is pseudomonotone, L-Lipschitz continuous and satisfies
the following condition:

{qi } ⊂ C, qi⇀q ⇒ ‖Fq‖ ≤ lim inf
i→∞ ‖Fqi‖. (8)

The solution set S is nonempty.
(C3) Let {εi } be a positive sequence such that limi→∞ εi

αi
= 0, where {αi } ⊂

(0, 1), limi→∞ αi = 0 and
∑∞

i=1 αi = ∞.

Now, we introduce the following algorithm.

Algorithm 3

Initialization: Let θ ∈ (0, 1
2 ), τ ∈ (0, β

L ), ξ ∈ (0, τ ] and w0, w1 ∈ B.
Iterative steps: Given the current iterates wi−1 and wi (i ≥ 1).
Step 1. Set xi = ∇ f ∗(∇ f (wi ) + θi (∇ f (wi−1) − ∇ f (wi ))), where

θi =
{
min

{
εi‖wi−wi−1‖ , θ

}
, if wi �= wi−1,

θ, otherwise,

and evaluate

ti = Proj fC
(∇ f ∗(∇ f (xi ) − τF xi )

)
.

If ti = xi or F ti = 0, then stop. Otherwise go to Step 2.
Step 2. Compute

si = Proj fTi
(∇ f ∗(∇ f (xi ) − ξF ti )

)
,

where

Ti := {x ∈ B : 〈∇ f (xi ) − τF xi − ∇ f (ti ), x − ti 〉 ≤ 0}.
Step 3. Calculate

wi+1 = ∇ f ∗(αi∇ f (w1) + (1 − αi )∇ f (si )
)
.

Set i := i + 1 and return to Step 1.
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Remark 1 : 1.Note that limi→∞ θi
αi

‖wi−wi−1‖ = 0. Indeed, for all i wehave θi ≤ εi‖wi−wi−1‖ ,
it follows from (C3) that

lim
i→∞

θi

αi
‖wi − wi−1‖ ≤ lim

i→∞
εi

αi
= 0.

2. If ti = xi , then ti ∈ S. Indeed, the definition of {ti } and Lemma 8(1) show that

〈∇ f (xi ) − τF xi − ∇ f (ti ), y − ti 〉 ≤ 0, ∀y ∈ C.

Due to ti = xi , we get that

τ 〈F ti , y − ti 〉 ≥ 0, ∀y ∈ C.

Since τ > 0, then ti ∈ S. If F ti = 0, it is easy to see that ti ∈ S.

Lemma 12 Assume that the conditions (C1–C3) hold. Let {ti }, {si } and {xi } be the sequences
produced by Algorithm 3. Then

D f (p, si ) ≤ D f (p, xi ) −
(
1 − ξ

τ

)
D f (si , xi ) − ξ

τ

(
1 − τ L

β

)
D f (ti , xi )

− ξ

τ

(
1 − τ L

β

)
D f (si , ti )

for every p ∈ S.

Proof Bearing in mind Lemma 8(1), the definition of {si } yields that
〈∇ f (xi ) − ξF ti − ∇ f (si ), y − si 〉 ≤ 0, ∀y ∈ Ti .

Due to p ∈ S ⊂ Ti , we deduce that

〈∇ f (xi ) − ξF ti − ∇ f (si ), p − si 〉 ≤ 0,

namely

〈∇ f (xi ) − ∇ f (si ), p − si 〉 ≤ ξ 〈F ti , p − si 〉. (9)

In light of the three point identity, we see that

D f (p, si ) + D f (si , xi ) − D f (p, xi ) = 〈∇ f (xi ) − ∇ f (si ), p − si 〉. (10)

Together (9) with (10),

D f (p, si ) ≤ D f (p, xi ) − D f (si , xi ) + ξ 〈F ti , p − si 〉
= D f (p, xi ) − D f (si , xi ) + ξ 〈F ti , p − ti 〉 + ξ 〈F ti , ti − si 〉. (11)

Since ti ∈ C and p ∈ S, we have 〈F p, ti − p〉 ≥ 0. The pseudomonotonicity of F implies
〈F ti , ti − p〉 ≥ 0. Thus (11) can be transformed into

D f (p, si ) ≤ D f (p, xi ) − D f (si , xi ) + ξ 〈F ti , ti − si 〉. (12)

Next we estimate ξ 〈F ti , ti − si 〉. The three point identity shows that

D f (si , xi ) − τ 〈F ti , ti − si 〉
= D f (si , ti ) + D f (ti , xi ) − 〈∇ f (xi ) − ∇ f (ti ) − τF ti , si − ti 〉
= D f (si , ti ) + D f (ti , xi ) − 〈∇ f (xi ) − τF xi − ∇ f (ti ), si − ti 〉

− τ 〈F xi − F ti , si − ti 〉. (13)
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Applying the definition of Ti and si ∈ Ti , one readily observes

〈∇ f (xi ) − τF xi − ∇ f (ti ), si − ti 〉 ≤ 0. (14)

It follows from (4) and (8) that

τ 〈F xi − F ti , si − ti 〉 ≤ τ‖F xi − F ti‖‖si − ti‖
≤ τ L‖xi − ti‖‖si − ti‖
≤ τ L

2

(‖xi − ti‖2 + ‖si − ti‖2
)

≤ τ L

β

(D f (ti , xi ) + D f (si , ti )
)
. (15)

Combining (13), (14) and (15), then

τ 〈F ti , ti − si 〉 ≤ D f (si , xi ) −
(
1 − τ L

β

) (
D f (ti , xi ) + D f (si , ti )

)
. (16)

Substituting (16) into (12), we obtain

D f (p, si ) ≤ D f (p, xi ) − D f (si , xi ) + ξ

τ
D f (si , xi )

− ξ

τ

(
1 − τ L

β

) (D f (ti , xi ) + D f (si , ti )
)

= D f (p, xi ) −
(
1 − ξ

τ

)
D f (si , xi ) − ξ

τ

(
1 − τ L

β

)
D f (ti , xi )

− ξ

τ

(
1 − τ L

β

)
D f (si , ti ), (17)

which is the desired inequality. ��
Lemma 13 Suppose the conditions (C1–C3) hold. The sequence {wi } produced by Algorithm
3 is bounded.

Proof As τ ∈
(
0, β

L

)
and ξ ∈ (0, τ ], we see that

1 − ξ

τ
≥ 0,

ξ

τ

(
1 − τ L

β

)
> 0. (18)

With (18) and Lemma 12 in hand, we get

D f (p, si ) ≤ D f (p, xi ), ∀p ∈ S. (19)

The definition of {wi } and (7) show that

D f (p, xi ) = D f

(
p,∇ f ∗(∇ f (wi ) + θi (∇ f (wi−1) − ∇ f (wi )

))
= D f

(
p,∇ f ∗((1 − θi )∇ f (wi ) + θi (∇ f (wi−1)

))
≤ (1 − θi )D f (p, wi ) + θiD f (p, wi−1).

Hence, with Lemma 1 in hand, the definition of V f and the property of ρ∗
r yield that

D f (p, wi+1) = D f

(
p,∇ f ∗(αi∇ f (w1) + (1 − αi )∇ f (si )

))
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≤ αiD f (p, w1) + (1 − αi )D f (p, si )

≤ αiD f (p, w1) + (1 − αi )D f (p, xi )

≤ αiD f (p, w1) + (1 − αi )
[
(1 − θi )D f (p, wi ) + θiD f (p, wi−1)

]
≤ αiD f (p, w1) + (1 − αi )max

{D f (p, wi ),D f (p, wi−1)
}

≤ max
{D f (p, w1),D f (p, wi ),D f (p, wi−1)

}
By induction, we conclude that

D f (p, wi+1) ≤ max
{D f (p, w1),D f (p, w0)

}
. (20)

Consequently, the sequence {wi } is bounded by Lemma 6. ��
Lemma 14 Assume that the conditions (C1-C3) hold. Let {xik } be a subsequence of {xi }
produced by Algorithm 3 such that xik⇀q and limk→∞ ‖xik − tik‖ = 0, then q ∈ S.

Proof Due to tik := Proj fC
(∇ f ∗(∇ f (xik ) − τF xik )

)
, it follows from Lemma 8(1) that

〈∇ f (xik ) − τF xik − ∇ f (tik ), x − tik 〉 ≤ 0, ∀x ∈ C,

that is

1

τ
〈∇ f (xik ) − ∇ f (tik ), x − tik 〉 ≤ 〈F xik , x − tik 〉, ∀x ∈ C.

Hence,

1

τ
〈∇ f (xik ) − ∇ f (tik ), x − tik 〉 + 〈F xik , tik − xik 〉 ≤ 〈F xik , x − xik 〉, ∀x ∈ C. (21)

Since lim
k→∞ ‖xik − tik‖ = 0, Lemma 3 yields that ∇ f is uniformly continuous, then

lim
k→∞ ‖∇ f (xik ) − ∇ f (tik )‖ = 0.

Putting k → ∞ in (21), τ > 0 shows that

lim inf
k→∞ 〈F xik , x − xik 〉 ≥ 0, ∀x ∈ C. (22)

We then conclude that

〈F tik , x − tik 〉 = 〈F tik − F xik , x − xik 〉
+ 〈F xik , x − xik 〉 + 〈F tik , xik − tik 〉. (23)

Due to lim
k→∞ ‖xik − tik‖ = 0 and the fact that F is Lipschitz continuous, we get

lim inf
k→∞ 〈F tik , x − tik 〉 ≥ 0. (24)

We now proceed to the proof of q ∈ S. Given a sequence {εk} of positive numbers that
decreases and tends to 0, for each k, it follows from (24) that there is the smallest positive
integer Nk such that

〈F ti j , x − ti j 〉 + εk ≥ 0, ∀ j ≥ Nk, (25)

{εk} is decreasing implies that the sequence {Nk} is increasing. Besides, for each k, there is
a bounded sequence {vNk } ⊂ B such that εk = 〈F tNk , εkvNk 〉. Thus, we have

〈F tNk , x + εkvNk − tNk 〉 ≥ 0.

123



254 Page 12 of 20 H. Wu et al.

The pseudomonotonicity of F shows that

〈F (x + εkvNk ), x + εkvNk − tNk 〉 ≥ 0,

which implies that

〈F x, x − tNk 〉 ≥ 〈F x − F (x + εkvNk ), x + εkvNk − tNk 〉 − 〈F x, εkvNk 〉. (26)

In light of xik⇀q and limk→∞ ‖xik − tik‖ = 0, we have tik⇀q (k → ∞) and thus q ∈ C.
According to (8),

0 < ‖Fq‖ ≤ lim inf
k→∞

∥∥F tik
∥∥ ,

which implies that limk→∞ εkvNk = 0. Thus, letting k → ∞ in (26), the Lipschitz continuity
of F and the boundedness of {xNk } and {vNk } show that

lim inf
k→∞ 〈F x, x − tNk 〉 ≥ 0. (27)

Hence, for all x ∈ C,
〈F x, x − q〉 = lim

k→∞〈F x, x − tNk 〉 = lim inf
k→∞ 〈F x, x − tNk 〉 ≥ 0. (28)

By Lemma 11, we see therefore that q ∈ S. ��
Theorem 1 Assume that the conditions (C1–C3) hold. Then the sequence {wi } produced by
Algorithm 3 strongly converges to p = Proj fS (w1).

Proof According to the definition of {wi }, the formulas (5), (6) and (7) show that

D f (p, wi+1) = D f

(
p,∇ f ∗(αi∇ f (w1) + (1 − αi )∇ f (si )

))
= V f

(
p, αi∇ f (w1) + (1 − αi )∇ f (si )

)
≤ V f

(
p, αi∇ f (w1) + (1 − αi )∇ f (si ) − αi (∇ f (w1) − ∇ f (p))

)
+ αi 〈∇ f (w1) − ∇ f (p), wi+1 − p〉

= V f
(
p, αi∇ f (p) + (1 − αi )∇ f (si )

) + αi 〈∇ f (w1) − ∇ f (p), wi+1 − p〉
≤ αiD f (p, p) + (1 − αi )D f (p, si ) + αi 〈∇ f (w1) − ∇ f (p), wi+1 − p〉
≤ (1 − αi )D f (p, xi ) + αi 〈∇ f (w1) − ∇ f (p), wi+1 − p〉
≤ (1 − αi )

[
(1 − θi )D f (p, wi ) + θiD f (p, wi−1)

]
+ αi 〈∇ f (w1) − ∇ f (p), wi+1 − p〉

= [
1 − αi − (1 − αi )θi

]D f (p, wi ) + (1 − αi )θiD f (p, wi−1)

+ αi 〈∇ f (w1) − ∇ f (p), wi+1 − p〉. (29)

We now proceed to the proof of wi → p in two cases:
Case 1: There exists N ∈ N such that {D f (p, wi )}∞n=N is nonincreasing. Thus

{D f (p, wi )} is convergent and
lim
i→∞

(D f (p, wi ) − D f (p, wi+1)
) = lim

i→∞
(D f (p, wi−1) − D f (p, wi )

) = 0.

Moreover, it follows from Lemmas 12 and 13 that

D f (p, wi+1) ≤ αiD f (p, w1) + (1 − αi )D f (p, si )
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≤ αiD f (p, w1) + (1 − αi )
[D f (p, xi ) − (1 − ξ

τ
)D f (si , xi )

− ξ

τ
(1 − τ L

β
)D f (ti , xi ) − ξ

τ
(1 − τ L

β
)D f (si , ti )

]
≤ αiD f (p, w1) + (1 − αi )

{
(1 − θi )D f (p, wi ) + θiD f (p, wi−1)

− (1 − ξ

τ
)D f (si , xi ) − ξ

τ
(1 − τ L

β
)
[D f (ti , xi ) + D f (si , ti )

]}
.

Namely

(1 − αi )
ξ

τ

(
1 − τ L

β

) [D f (ti , xi ) + D f (si , ti )
]

≤ D f (p, wi ) − D f (p, wi+1) + (1 − αi )θn[D f (p, wi−1) − D f (p, wi )] + αnM1, (30)

for some M1 > 0. Due to limi→∞ αi = 0, combining (30) and (18), we can conclude that

lim
i→∞D f (ti , xi ) = lim

i→∞D f (si , ti ) = 0. (31)

Owing to Lemma 2, we have

lim
i→∞ ‖ti − xi‖ = lim

i→∞ ‖si − ti‖ = 0, (32)

which implies that

lim
i→∞ ‖si − xi‖ ≤ lim

i→∞ ‖si − ti‖ + lim
i→∞ ‖ti − xi‖ = 0. (33)

At the same time, let i → ∞, then

‖∇ f (xi ) − ∇ f (wi )‖ = αi
θi

αi
‖∇ f (wi−1) − ∇ f (wi )‖ = αi

θi

αi
‖wi−1 − wi‖ → 0,

‖∇ f (wi+1) − ∇ f (si )‖ = αi‖∇ f (w1) − ∇ f (si )‖ ≤ αi M2 → 0,

for some M2 > 0. From Lemma 4, the uniformly norm-to-norm continuity of ∇ f ∗ implies
that

lim
i→∞ ‖xi − wi‖ = lim

i→∞ ‖wi+1 − si‖ = 0. (34)

Therefore, in light of (33) and (34),

‖wi+1 − wi‖ ≤ ‖wi+1 − si‖ + ‖si − xi‖ + ‖xi − wi‖ → 0 (n → ∞). (35)

Since {wi } is bounded, there is a subsequence {wik } ⊂ {wi } such that wik⇀q and thus
xik⇀q as k → ∞. Owing to Lemma 14, we can conclude that q ∈ S. Combining with

p = Proj fS (w1), then

lim sup
i→∞

〈∇ f (w1) − ∇ f (p), wi − p〉 = lim
k→∞〈∇ f (w1) − ∇ f (p), wik − p〉

= lim
k→∞〈∇ f (w1) − ∇ f (p), q − p〉

≤ 0, (36)

which means that

lim sup
i→∞

〈∇ f (w1) − ∇ f (p), wi+1 − p〉 ≤ 0. (37)
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Combining (29), (37) with Lemma 10, we see therefore thatD f (p, wi ) → 0 as i → ∞, that
is wi → p as i → ∞.

Case 2: There is a subsequence {D f (p, wi j )} ⊂ {D f (p, wi )} such that D f (p, wi j ) <

D f (p, wi j+1) for all j ∈ N. It follows from Lemma 9 that there exists a non-decreasing
sequence {ik} ⊂ N tending to infinity such that

D f (p, wik ) ≤ D f (p, wik+1) and D f (p, wk) ≤ D f (p, wik+1), ∀k ∈ N.

In Lemma 13 we obtain

D f (p, wik+1) ≤ αikD f (p, w1) + (1 − αik )D f (p, wik ).

Therefore, the fact limi→∞ αi = 0 implies

D f (p, wik+1) − D f (p, wik ) → 0 (k → ∞).

Due to boundedness of {wik }, there is a subsequence of {wik } still denoted by {wik } and
wik⇀q . As stated in Case 1, we have

lim
k→∞ ‖wik+1 − wik‖ = 0, lim sup

k→∞
〈∇ f (w1) − ∇ f (p), wik+1 − p〉 ≤ 0.

According to (29),

D f (p, wik+1) ≤ (1 − αik )D f (p, wik ) + αik 〈∇ f (w1) − ∇ f (p), wik+1 − p〉
≤ (1 − αik )D f (p, wik+1) + αik 〈∇ f (w1) − ∇ f (p), wik+1 − p〉.

The fact αik > 0 shows that

D f (p, wk) ≤ D f (p, wik+1) ≤ 〈∇ f (w1) − ∇ f (p), wik+1 − p〉.
Namely,

lim sup
k→∞

D f (p, wk) ≤ lim sup
k→∞

〈∇ f (w1) − ∇ f (p), wik+1 − p〉 ≤ 0.

Hence, wk → p (k → ∞), which is the desired result. ��
Next we apply the above result to Hilbert space. Let f (s) = 1

2‖s‖2, we have D f (s, t) :=
1

2
‖s − t‖2, ∀s, t ∈ C, then

Proj fC
(∇ f ∗(∇ f (xi ) − τF xi )

) =: PC(xi − τA xi ),

where C is nonempty closed convex subset of Hilbert spaceH ,PC is the metric projection
of H onto C. In this case, if θi = 0, we can obtain the following result.

Corollary 1 Assume that the feasible set C is a nonempty closed convex subset of a real Hilbert
spaceH , the solution setS is nonempty and the operatorA : H → H is pseudomonotone,
L-Lipschitz continuous and satisfies {qi } ⊂ C, qi⇀q ⇒ ‖A q‖ ≤ lim inf i→∞ ‖A qi‖.
Suppose τ ∈ (0, 1

L ), ξ ∈ (0, τ ], Ti := {x ∈ H : 〈xi − τA xi − ti , x − ti 〉 ≤ 0}, the sequence
{αi } ⊂ (0, 1) satisfies limi→∞ αi = 0 and

∑∞
i=1 αi = ∞. Then the sequence {xi } produced

by the following algorithm strongly converges to an element p = PS(x1).⎧⎪⎨
⎪⎩
ti = PC(xi − τA xi ),

si = PTi (xi − ξA ti ),

xi+1 = αi x1 + (1 − αi )si .
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4 Numerical experiments

In this section, we perform two numerical examples to show the behaviors of Algorithm 3,
and compare them with other algorithms. In both experiments the parameters are chosen as
αi = 1

i+1 and

θi =
{
min

{
εi‖wi − wi−1‖ , θ

}
, if wi �= wi−1,

θ, otherwise,
(38)

where εi = 1
(i+2)1.1

.

Example 1 Let B = L2([0, 1]) endowed with norm ‖x‖B = (
∫ 1
0 |x(t)|2dt) 1

2 and inner

product 〈x, y〉B = ∫ 1
0 x(t)y(t)dt for all x, y ∈ B. Consider C := {x ∈ B : ‖x‖ ≤ 2}. Let

g : C → R be defined by

g(s) := 1

1 + ‖s‖2 .

Note that g is Lg-Lipchitz continuous with Lg = 16
25 and 1

5 ≤ g(s) ≤ 1, ∀s ∈ C. The
Volterra integral operator V : B → B is given by

V (s)(t) :=
∫ t

0
s(x)dx, ∀s ∈ L2([0, 1]), t ∈ [0, 1].

Then V is bounded linear monotone operator. Define F : C → B by

F (s)(t) := g(s)V (s)(t), ∀s ∈ C, t ∈ [0, 1].
We see that F is not monotone on C but pseudomonotone and L-Lipschitz continuous with
L = 82/π .

We compare our Algorithm 3 (shortly, OUR) with Algorithm 3.5 in Cai et al. (2018)
(shortly, CGIS) and Algorithm 3 in Xie et al. (2023) (shortly, XCD). The parameters are set
as follows:

Our Algorithm 3: τ = 0.99/L, ξ = 0.9/L, θ = 0.63 and αi = 1
i+1 ;

Algorithm 3 in Xie et al. (2023): μ = 0.9, τ1 = 2 and αi = 1
i+1 ;

Algorithm 3.5 in Cai et al. (2018): a = 0.0001, λi = a + i( 1
L −1)
i+1 and αi = 1

i+1 .
Let x0 = x1 = e2t + sin(3t), we observe from Fig. 1 that our Algorithm 3 is better than

Algorithm 3.5 in Cai et al. (2018) and Algorithm 3 in Xie et al. (2023).

Example 2 Compare the performance of Algorithm 3 at different Bregman distances. Define
the feasible set C by

C =
{
x ∈ R

m : xi ≥ 0,
m∑
i=1

xi = 1

}

and define f : Rm → R by

(i) f (x) =
m∑
i=1

xi log(xi ), (i i) f (x) = 1

2
‖x‖2.

We see that f is strongly convex with β = 1. Due toB = R
m , then ∇ f ∗(x) = (∇ f )−1(x).

Therefore, for each f ,
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Fig. 1 The value of error versus the iteration numbers for Example 1

(i) ∇ f (x) = (1 + log(x1), . . . , 1 + log(xm))T ,
(∇ f )−1(x) = (exp(x1 − 1), . . . , exp(xm − 1))T ,

(ii) ∇ f (x) = x and (∇ f )−1(x) = x .

The corresponding Bregman distances are given by

(i) D f (x, y) = ∑m
i=1(xi log(

xi
yi

)+ yi − xi )which is the Kullback–Leibler distance (shortly,
KLD),

(ii) D f (x, y) = 1
2‖x − y‖2 which is the squared Euclidean distance (shortly, SED).

Nextwe define the operatorF byF (x) = max(x, 0). Clearly,F ismonotone andS = 0.We
compare the performance ofAlgorithm3usingSEDandKLD.The initial points are generated
randomly for m = 20, 50, 80, 120, and Dn = ‖xn+1 − xn‖ < 10−4 is used as stopping
criterion. The computation results are shown in Fig. 2 and Table 1. It can be seen that the
convergence of the algorithm is different for different Bregman distances. Different functions
correspond to different Bregman distances. Therefore,we use theBregman projectionmethod
to obtain better convergence behavior.

Example 3 Let the operator F (x) := Mx + q , where

M = BBT + G + D,

and B is an m ×m matrix, G is an m ×m skew-symmetric matrix, D is an m ×m diagonal
matrix, whose diagonal entries are non-negative (so M is positive semidefinite), q is a vector
in R

m . The feasible set C ⊂ R
m is a closed and convex subset defined by C := {x ∈ R

m :
Qx ≤ b}, where Q is an k × m matrix and b is a non-negative vector. It is clear that F is
monotone and L-Lipschitz continuous with L = ‖M‖. Let q = 0. Then, the solution set is
{0}.

In this example, the initial values x0 and x1 are both set to (1, 1, . . . , 1), k = 20,m =
10, αi = 1

i+1 and θ = 0.5. ‖xn+1 − xn‖ represents the error of the n-th step iteration. For the
two key parameters τ and ξ in Algorithm 3, we fix one parameter and change the remaining
one. Finally, we get the following two cases, which are respectively shown in Figs. 3 and 4.

1. τ = 0.99/L, 0.5/L, 0.01/L and ξ = 0.01/L .
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Fig. 2 Numerical behavior of all algorithms with different m in Example 2

Table 1 The number of termination iterations and execution time of our algorithm with different distances in
Example 2

Bregman distance m = 20 m = 50 m = 80 m = 120
Iter. Times Iter. Times Iter. Times Iter. Times

KLD 60 0.0625 31 0.0469 28 0.0625 32 0.1094

SED 35 0.4531 22 0.3750 34 1.4062 44 3.4219

2. ξ = 0.01/L, 0.1/L, 0.2/L and τ = 0.2/L .

As shown in Figs. 3 and 4, each parameter will affect the convergence rate of our proposed
algorithm, and the result of this effect is not monotonically increasing or decreasing with
the parameter value. In particular, the values of τ and ξ are often consistent in other known
results, but our algorithmbreaks this restriction.We can choose that τ and ξ do not necessarily
have to be the same, resulting in a better convergence behavior.

5 Conclusions

In this paper, we introduced an improved subgradient extragradient method with Bregman
distance for solving pseudomonotone variational inequality problems. We generalized the
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Fig. 3 The value of error versus the iteration numbers with different value on τ for Example 3 with k =
20,m = 10, ξ = 0.01/L

Fig. 4 The value of error versus the iteration numbers for Example 3 with k = 20,m = 10, τ = 0.2/L

classical subgradient extragradient method to reflexive Banach spaces and effectively added
an inertia term to speed up the convergence process of the algorithm. In addition, we set two
different step size parameters, which help us to choose more appropriate values and thus
increase the convergence rate. Under reasonable assumptions, we proved that the sequence
generated by the proposed algorithm strongly converges to a solution of variational inequality
problems. Finally,wepresentednumerical experiments to verify that our algorithm is effective
in improving the iteration efficiency.
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