
Computational and Applied Mathematics (2023) 42:247
https://doi.org/10.1007/s40314-023-02383-x

On global well-posedness of semi-infinite set optimization
problems

Tran Quoc Duy1 · Vo Si Trong Long2,3

Received: 9 April 2022 / Revised: 10 May 2023 / Accepted: 10 June 2023 /
Published online: 9 July 2023
© The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023

Abstract
This paper aims to study the well-posedness of semi-infinite set optimization problems. We
first introduce a notion of global well-posedness for efficient solutions of the reference prob-
lems. This notion is then characterized in terms of qualitative properties of approximately
minimal solution maps. Next, we extend this notion for perturbed problems obtained by per-
turbing both the objective set-valuedmaps and the constraints. Finally, we establish sufficient
conditions for the proposedwell-posedness by utilizing the Slater constraint qualification and
converse properties of the objective set-valued maps.

Keywords Semi-infinite set optimization · Efficient solution · Global well-posedness ·
Slater constraint qualification

Mathematics Subject Classification 49J53 · 49K40 · 90C34

1 Introduction

It is widely acknowledged that well-posedness plays an important role in the study of stability
theory in optimization. Tykhonov well-posedness, a classic concept for global optimiza-
tion problems, was initially developed by Tykhonov (1966). This concept was motivated by
numerical algorithms that generate approximate solution sequences for a given optimization
problem and it was based on two main requirements: the unique existence of an optimizer
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and the convergence of all optimizing sequences to this optimizer. Since then, many math-
ematicians have proposed generalized Tykhonov well-posedness concepts for optimization
problems. Three main extensions of this concept can be listed as follows. The first one,
Levitin–Polyak well-posedness, has been studied for families of constrained optimization
problems; see, for instance, Huang and Yang (2006); Peng et al. (2012); Duy (2021) and
the references therein. The second one, generalized well-posedness, has been defined for
optimization problems with more than one optimizer, but requiring a certain convergence of
some subsequences of every optimizing sequence to an optimizer (Miglierina et al. 2005;
Amini-Harandi et al. 2016; Sofonea and Xiao 2019). The third one, known as extended well-
posedness (also called well-posedness under perturbations), was first proposed by Zolezzi
(1996) for scalar optimization problems. This last concept involves embedding the original
problem into a class of perturbed problems and requiring convergence of each asymptoti-
cally optimizing sequence corresponding to slight perturbations to a solution of the original
problem; see, for instance, Crespi et al. (2009); Anh and Duy (2016); Gutiérrez et al. (2016a).

On the other hand, set-valued optimization problems, which involve set-valued objective
maps with values in ordered spaces, have attracted significant attention in recent years due
to their real-world applications in various fields including finance, game theory, engineering
and so on; see Khan et al. (2016); Hamel et al. (2015) and the references therein. There
are various approaches to define an optimal solution of a set-valued optimization problem.
The vector approach involves solution notions inspired by well-known concepts like effi-
cient, weak efficient and proper efficient solutions in vector optimization. The set approach
compares values of a set-valued objective map by using appropriate order relations on the
power set of the objective space. A set-valued optimization problem with the set approach is
called set optimization problem. Many aspects of set optimization theory have been exten-
sively studied, such as existence results (Jahn and Ha 2011; Hernández and López 2019),
optimality conditions (Ansari and Bao 2019), and stability (Gutiérrez et al. 2016b; Anh et al.
2020c, a; Preechasilp andWangkeeree 2019; Duy 2023a, b). In the complete lattice approach,
set order relations are used to create an image space where the inclusion of a subset or super-
set serves as a partial order; see, for instance, Hamel et al. (2015); Hamel and Löhne (2018);
Crespi et al. (2021). Furthermore, it is well known that the class of semi-infinite optimiza-
tion problems plays an important role in approximation theory, optimal design and various
engineering problems. Semi-infinite optimization problems have recently become an active
area of research in mathematical programming due to their broad range of applications; see
Chuong and Yao (2014); Chuong (2018); Kim and Son (2018); Khanh and Tung (2020) and
the references therein for more details and discussions. However, the combination of semi-
infinite optimization theory and set optimization problems has not been well researched so
far.

The study of well-posedness in set optimization dates back to Zhang et al. (2009). Since
then, various concepts ofwell-posedness,which are popularly divided into twoclassifications:
pointwise and global well-posedness, have been proposed and studied for set optimization
problems. The former considers a given efficient solution and examineswell-posedness at that
point, while the latter deals with the entire efficient solution set; see Gutiérrez et al. (2012);
Long andPeng (2013);Crespi et al. (2018);Vui et al. (2020);Han andHuang (2017);Han et al.
(2020); Anh et al. (2020b). It is worth emphasizing that investigating sufficient conditions
for global well-posedness for efficient solutions is not an easy task in set optimization. In
our view, there are two popular approaches in the literature to reach the goal. The first one
is imposing compactness or assumptions related to efficient solution sets; see, for instance,
Zhang et al. (2009); Gutiérrez et al. (2012); Long and Peng (2013); Crespi et al. (2018); Vui
et al. (2020). The second one is relying on additional conditions to ensure the coincidence
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of efficient and weak efficient solution sets; see Han and Huang (2017); Han et al. (2020).
Admittedly, both approaches of investigating sufficient criteria for global well-posedness for
efficient solutions are rather restrictive and unnatural, so an alternative approach is needed
to address these limitations.

Motivated by the above research stream, our aim in this work is to study two notions of
well-posedness that focus on a whole efficient solution set of a semi-infinite set optimization
problem, without fixing a specific efficient solution. We first study a global well-posedness
of a given problem, then we propose a notion of well-posedness under perturbations through
a sequence of approximate problems. We show that these notions can be characterized via
qualitative properties of an approximately minimal solution map associated to the reference
problem. The work also aims to establish sufficient conditions for these notions, even when
efficient and weakly efficient solution sets are different, without imposing any assumption
on the efficient solution sets.

The remainder of this work is organized as follows. Section2 provides some necessary
definitions and results. In Sect. 3, we introduce a notion of global well-posedness in the
setting of a semi-infinite set optimization problem, and then we give its characterizations and
sufficient conditions. In Sect. 4, we extend the study to a well-posedness under perturbations
in terms of a sequence of perturbed problems.

2 Preliminaries

We begin this section by introducing some notation which will be used throughout this article
unless otherwise specified. Let X and T be Banach spaces. For a nonempty subset A of a
Banach space, we denote the interior, closure and boundary of A by int A, cl A and bd A,

respectively. For a given i ∈ N := {1, 2, . . .}, the metric onRi is assumed to be generated by
the Euclidean norm ‖ · ‖i . We write Ri+ to refer the set of all vectors in Ri with non-negative
components; in particular, R+ := R

1+. For an element x in a metric space, the open (closed)
ball of radius r > 0 centered at x is denoted by B(x, r) (B[x, r ]). For nonempty subsets A
and B of Ri , H(A, B) = max{h(A, B), h(B, A)} is the Hausdorff distance between A and
B, where h(A, B) = supa∈A d(a, B) with d(a, B) = infb∈B d(a, b).

For l, m ∈ N, letC ⊂ R
l and K ⊂ R

m be proper, closed, convex, pointed and solid cones.
We define the partial orders ≤K and <K in R

m associated with the cone K as follows: for
x, y ∈ R

m,

x ≤K y (x <K y) ⇐⇒ y − x ∈ K (y − x ∈ int K ).

The following simple property will be used frequently in the sequel.

Lemma 1 Let Z be a Banach space and D ⊂ Z be a proper pointed convex cone with a
nonempty interior. Then for any k ∈ int D, we have Z\(k − D) + D = Z\(k − D).

Proof The inclusion Z \(k − D) ⊂ Z \(k − D) + D is obvious. It suffices to show that the
opposite inclusion is also true. To this end, let an arbitrary vector x ∈ Z\(k − D) + D. Then
there are y ∈ Z\(k − D) and d ∈ D such that x = y +d, or equivalently y = x −d. Suppose
that x ∈ k − D. From y = x − d and the convexity of D, we obtain

y ∈ k − D − D ⊂ k − D,

which is a contradiction. Therefore, Z \(k − D) + D ⊂ Z \ (k − D). �	
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We recall some concepts of cone continuity for a vector-valued map, which are
generalizations of the classical upper and lower semicontinuities of a scalar function.

Definition 1 (Khan et al. 2016, Definition 3.1.28) Let A be a nonempty subset of X and
x̄ ∈ A. A vector-valued map g : A → R

m is said to be

(a) K -lower semicontinuous (K -lsc) at x̄ if for any neighborhood V of g(x̄), there exists a
neighborhood U of x̄ such that

g(x) ∈ V + K , ∀x ∈ U ∩ A;
(b) K -upper semicontinuous (K -usc) at x̄ if (−g) is K -lsc at x̄;
(c) K -continuous at x̄ if it is both K -lsc and K -usc at x̄ .

We next recall a generalized cone convexity notion for a vector-valued map.

Definition 2 (Anh and Khanh 2010) Let A be a nonempty convex subset of X and g : A →
R

m . We say that g is generalized K -quasiconvex on A if for each x1, x2 ∈ A and λ ∈]0, 1[,
one has

g(x1) ∈ −K and g(x2) ∈ − int K imply that g(λx1 + (1 − λ)x2) ∈ − int K .

Definition 3 (Khan et al. 2016, Definitions 3.1.1 and 3.1.12) Let A be a nonempty subset of
X, G : A ⇒ R

l be a set-valued map and x0 ∈ dom G. The set-valued map G is

(a) upper continuous (u.c.) at x0 if for each open subset U ⊂ R
l , G(x0) ⊂ U , there exists

a neighborhood N of x0 such that for all x ∈ N ∩ dom G, G(x) ⊂ U ;
(b) lower continuous (l.c.) at x0 if for each open subset U ⊂ R

l , G(x0) ∩ U = ∅, there is a
neighborhood N of x0 such that for all x ∈ N ∩ dom G, G(x) ∩ U = ∅;

(c) continuous at x0 if it is both u.c. and l.c. at x0;
(d) upper Hausdorff continuous at x0 if for each neighborhood U of 0Rl , there exists a

neighborhood N of x0 such that for all x ∈ N ∩ dom G, G(x) ⊂ G(x0) + U ;
(e) closed at x0 if for all {(xn, yn)} ⊂ gph G, (xn, yn) → (x0, y0), one has y0 ∈ G(x0);
(f) compact at x0 if for all {(xn, yn)} ⊂ gph G, xn → x0, one can extract a subsequence

{ynk } of {yn} such that ynk → y0 ∈ G(x0).

The following result is known as a characterization for the upper and lower continuity
properties of a set-valued map.

Lemma 2 (Khan et al. 2016, Propositions 3.1.6 and 3.1.9) Let A be a nonempty subset of X,
G : A ⇒ R

l be a set-valued map and x0 ∈ dom G. The following assertions hold true.

(a) Suppose that G(x0) is compact. The map G is u.c. at x0 if and only if for all {xn} ⊂
A, xn → x0, every sequence {yn}, yn ∈ G(xn), has a subsequence converging to y0 for
some y0 ∈ G(x0).

(b) G is l.c. at x0 if and only if for each y ∈ G(x0) and for each sequence {xn}, xn → x0,
there is a sequence {yn} such that yn → y and yn ∈ G(xn) for n large enough.

(c) G is l.c. at x0 iff G(x0) ⊂ lim infx→x0 G(x), where

lim inf
x→x0

G(x) = {y ∈ R
l : lim

x→x0
d(y, G(x)) = 0}.

Unless otherwise stated, let A and T be nonempty closed subsets ofX andT, respectively.
Let F : A ⇒ R

l be a set-valued map, f : A×T → R
m be a vector-valued map.We consider

the following semi-infinite set optimization problem:

Minimize F(x) subject to x ∈ �( f ), (SISP)
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where �( f ) = {x ∈ A : f (x, t) ≤K 0Rm , ∀t ∈ T }.
In this article, minimal solutions to the problem (SISP) are defined with respect to the

upper type less order relation, which was introduced by Kuroiwa (1998). For nonempty sets
B1, B2 ⊂ R

l , the upper type less order relation � is defined by

B1 � B2 ⇐⇒ B1 ⊂ B2 − C,

and strictly upper type less order relation ≺ is defined by

B1 ≺ B2 ⇐⇒ B1 ⊂ B2 − int C .

The relation ∼ defined by

B1 ∼ B2 ⇐⇒ B1 � B2 and B2 � B1

is an equivalence relation and we say that B1 is equivalent to B2 with respect to the order �.
By [B1], we denote the equivalence class (with respect to �) of B1.

Definition 4 A feasible solution x̄ ∈ �( f ) is

(a) an efficient solution to (SISP) if

∀x ∈ �( f ), F(x) � F(x̄)impliesF(x̄) ∼ F(x).

(b) a weakly efficient solution to (SISP) if

∀x ∈ �( f ), F(x) ≺ F(x̄) implies F(x̄) ≺ F(x).

We denote the sets of all efficient and weakly efficient solutions to the problem (SISP)

by Eff(F,�( f )) and WEff(F,�( f )), respectively. It is clear that Eff(F,�( f )) ⊂
WEff(F,�( f )).

To end this section, we recall a concept of converse property for a set-valued map with
respect to the order relation �.

Definition 5 (Anh et al. 2020a; Duy 2021) Let A be a nonempty subset of X. We say that
F : A ⇒ R

l has the converse property at x̄ ∈ A with respect to x̂ ∈ A\{x̄}, if and only
if either F(x̂) � F(x̄) or for all sequence {xn} ⊂ A, xn → x̄, there is n0 ∈ N such that
F(x̂) � F(xn0).

The stability of set-valued optimization problems can be studied by relying on the concept
of converse property for set-valued maps, as explored in literature. Xu and Li (2014, 2016);
Preechasilp and Wangkeeree (2019) introduced concepts of converse property with respect
to set order relations for objective set-valued maps perturbed by parameters, which enabled
an examination of the continuity of solution maps in parametric set optimization problems.
More recently, Anh et al. (2020a) proposed an alternative converse property that is based
on the set-less order relation. This approach has been particularly useful in investigating
the external stability of set optimization problems. In fact, Duy (2021) used this property to
investigate various Levitin–Polyak well-posedness properties in set optimization problems.

3 Well-posedness of (SISP)

The aim of this section is to study a notion of global well-posedness for (SISP). Motivated by
the notion of generalized well-posedness for abstract set optimization problems with respect

123



247 Page 6 of 17 T. Q. Duy, V. S. T. Long

to the lower type less order relation introduced by Zhang et al. (2009), we present notions of
approximately minimizing sequence and global well-posedness for (SISP). Then we provide
some characterizations via an approximately minimal solution map and sufficient criteria for
the well-posedness.

From now on let e ∈ int C be a given vector. We introduce the approximately minimal
solution map �e : R+ ⇒ A defined by

�e(ε) = {x ∈ �( f ) : F(x) � F(s) + εe for some s ∈ Eff(F,�( f ))},
for every ε ∈ R+. It is obvious that �e(0) = Eff(F,�( f )) and �e(ε1) ⊂ �e(ε2) whenever
0 ≤ ε1 ≤ ε2.

Definition 6 A sequence {xn} ⊂ A is an approximately minimizing sequence with respect to
e ∈ int C for (SISP) if there is a sequence {εn} ⊂ R+ converging to 0 such that xn ∈ �e(εn)

for all n.

Remark 1 Definition 6 does not depend on the choice of vector e ∈ int C, that is, for any e1
and e2 in int C , a sequence {xn} is an approximately minimizing sequence with respect to
e1 for (SISP) if and only if it is an approximately minimizing sequence with respect to e2.
The proof of this statement can be shown similarly to that of Proposition 5.2 from Gutiérrez
et al. (2012). In the sequel, the term “with respect to e” is, therefore, omitted in claims
about approximately minimizing sequences for (SISP). Note further that when �( f ) ≡ A,
Definition 6 collapses to Definition 3.3 introduced by Long and Peng (2013).

Definition 7 The problem (SISP) is generalized well-posed if every approximately minimiz-
ing sequence {xn} admits a subsequence {xnk } converging to some solution in Eff(F,�( f )).

Remark 2 When �( f ) ≡ A, the problem (SISP) becomes the set optimization problem
(SOP) considered by Long and Peng (2013); Han and Huang (2017). In these works, a
concept of well-posedness in the sense of Bednarczuk is studied, named generalized B-
well-posedness. We recall that (SOP) is generalized B-well-posed iff �e is upper Hausdorff
continuous at 0. According to Theorem 3.1 of Long and Peng (2013), we can see that if a
set optimization problem is generalized well-posed in the sense of Definition 7, then it is
generalized B-well-posed. However, the converse is not in general true. To see this let us
consider the following example.

Example 1 Let X = R, A = [−1, 1] and C = R
2+. We consider the problem

Minimize F(x) subject to x ∈ A, (SOP)

where F : A ⇒ R
2 is given by

F(x) =
{{

λ(x, x2) + (1 − λ)(0, 1) : λ ∈ [0, 1]} , if x = 0,

{0} × [1, 2], if x = 0.

It can be seen that Eff(F, A) = [−1, 0[ and (SOP) is generalized B-well-posed. However, it
is not generalized well-posed for any e ∈ int C .

We now give some characterizations for the generalized well-posedness of the problem
(SISP) via qualitative properties of the approximately minimal solution map �e.

Proposition 3 The following assertions are equivalent.

(a) The problem (SISP) is generalized well-posed.
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(b) �e is u.c. at 0 and Eff(F,�( f )) is compact.
(c) H (�e(ε),Eff(F,�( f ))) → 0 as ε → 0 and Eff(F,�( f )) is compact.

The proof of Proposition 3 is similar to that of Theorem 4.2 from Crespi et al. (2018)
under suitable adjustments.

We are now in a position to establish sufficient conditions for the generalized well-
posedness of (SISP).

Theorem 4 Assume that A is compact and

(i) F is compact-valued and continuous on A;
(ii) F admits the converse property at each x ∈ A with respect to every y ∈ A\{x};
(iii) f (·, t) is K -lsc on A for each t ∈ T .

Then (SISP) is generalized well-posed.

Proof We divide the proof into the following three steps.
Step 1. We prove that �( f ) is a compact set. Let {xn} ⊂ �( f ) be an arbitrary sequence

converging to some x . Of course, x ∈ A as A is closed. By the definition of �( f ), one has
f (xn, t) ∈ −K for all t ∈ T . Let an arbitrary neighborhood N of 0Rm . Then there exists
a balanced neighborhood N1 of 0Rm satisfying N1 ⊂ N . Since f (·, t) is K -lsc at x, for n
sufficiently large, one has

f (xn, t) ∈ f (x, t) + N1 + K ,

or equivalently, f (x, t) ∈ f (xn, t) + N1 − K ⊂ N1 − K . Because N is an arbitrary neigh-
borhood of the origin and K is closed, we get f (x, t) ∈ −K . Therefore, it is concluded that
x ∈ �( f ). By the compactness of A, the set �( f ) is also compact.

Step 2. We show that Eff(F,�( f )) is closed. Let {sn} ⊂ Eff(F,�( f )) be a sequence
converging to some s ∈ �( f ) and let x ∈ �( f ) be such that F(x) � F(s). We will
demonstrate that F(s) � F(x). In fact, it is nothing to prove if x = s; so we assume that
x = s. For any a ∈ F(s), we can find a sequence {an} converging to a and an ∈ F(sn) for n
large enough, inasmuch as F is l.c. at s. According to assumption (ii), there is a subsequence
{snk } ⊂ {sn} satisfying F(x) � F(snk ) for any k. This together with snk ∈ Eff(F,�( f ))

gives F(snk ) � F(x). Consequently,

ank ∈ F(snk ) ⊂ F(x) − C .

The compactness of F(x) ensures that F(x)−C is closed, and hence we conclude by passing
to the limit as k → ∞ that a ∈ F(x) − C . As a result, F(s) ⊂ F(x) − C, or equivalently
F(s) � F(x). Therefore, s ∈ Eff(F,�( f )) which implies that Eff(F,�( f )) is closed.

Step 3. Let {xn} be an approximately minimizing sequence for (SISP) and take any
e ∈ int C (see Remark 1). We get then sequences {εn} ⊂ R+ converging to 0 and {sn} ⊂
Eff(F,�( f )) such that

F(xn) � F(sn) + εne. (1)

Because Eff(F,�( f )) is a closed subset of the compact set�( f ), we can assume,without
loss of generality, that sequences {sn} and {xn} converge to s ∈ Eff(F,�( f )) and x̄ ∈ �( f ),

respectively. We claim that x̄ ∈ Eff(F,�( f )). For any u ∈ F(x̄), since F is l.c. at x̄, we
can find a sequence {un}, un → u, and un ∈ F(xn) for n sufficiently large. By (1), we have
un ∈ F(sn) + εne − C . Consequently, for each n we can pick up wn ∈ F(sn) such that

un ∈ wn + εne − C . (2)
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By the upper continuity and compact-valuedness of F at s, we can assume that {wn} converges
to an element w ∈ F(s) (if necessary we can choose a subsequence). From (2) and the
closedness of C , we obtain, by taking the limit, that u ∈ w−C . Thus, F(x̄) ⊂ F(s)−C due
to the arbitrariness of u. Consequently, x̄ belongs to Eff(F,�( f )). We complete the proof.

�	
Remark 3 In the case when �( f ) ≡ A, the problem (SISP) collapses to the set optimization
problem considered in many papers, for instance, Han and Huang (2017); Long and Peng
(2013); Vui et al. (2020). Even in this special case, Theorem 4 differs from previous ones in
the literature because of the following reasons. First, we do not impose assumptions requiring
to know some information on efficient solution sets as in Long and Peng (2013); Vui et al.
(2020). Second, we establish sufficient conditions for the generalized well-posedness of
(SISP) where efficient solution sets and weakly efficient ones are distinct, and hence our
approach is different from Han and Huang (2017). We give an example to demonstrate the
applicability of Theorem 4 where an efficient solution set does not coincide with a weakly
efficient one.

Example 2 Let X = T = R, C = K = R
2+, T = [0, 1] and A = [−3, 3]. Let f : A × T →

R
2 and F : A ⇒ R

2 be, respectively, defined by: for all x ∈ A and t ∈ T ,

f (x, t) = (x2 − 1 − t,−x2 − t)

and

F(x) = {λ(0, 2) + (1 − λ)(x, |x |) : λ ∈ [0, 1]} .

Obviously, all assumptions of Theorem 4 are satisfied, and hence the problem (SISP) is
generalized well-posed. In fact, using direct calculations, we obtain that �( f ) = [−1, 1]
and Eff(F,�( f )) = [−1, 0], while WEff(F,�( f )) = �( f ).

4 Sequential well-posedness of (SISP)

In this section, we assume that A ⊂ X is a nonempty closed and convex set. Let S be
the set of all vector-valued maps from A × T into R

m and M be the set of all set-valued
maps from A into R

l . Set P := S × M. For each p = ( f , F) ∈ P, the problem (SISP)
is now denoted by (SISPp). We consider the collection of semi-infinite set optimization
problems {(SISPp) : p ∈ P} (we simply write (SISP)). One such collection is a type of
parametric semi-infinite set optimization problem corresponding to a perturbation parameter
p ∈ P. We are interested in studying the problem under perturbations in terms of sequences
{pn = ( fn, Fn)} in P, which means that our perturbed problem is

Minimize Fn(x) subject to x ∈ �( fn), (SISPpn )

where �( fn) = {x ∈ A : fn(x, t) ≤K 0Rm ,∀t ∈ T }.
For each p = ( f , F) ∈ P, let E(p) stand for the efficient solution set of the problem

(SISPp). Then p �→ E(p) is a set-valued map acting from P into A. Furthermore, we say
that p satisfies the Slater condition if there exists x̄ ∈ A such that

f (x̄, t) <K 0Rm , ∀t ∈ T .

Let E = {p ∈ P : p satisfy the Slater condition and E(p) = ∅}.
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For each p1 = ( f1, F1) and p2 = ( f2, F2) in P, we define the distance between p1 and
p2 as:

d(p1, p2) = sup
(x,t)∈A×T

d( f1(x, t), f2(x, t)) + sup
x∈A

H(F1(x), F2(x)).

It is easy to see that (P, d) is a pseudo-metric space; for more details about this space, we
refer the reader to Bonsangue et al. (1998). In this way, we say that a sequence {pn} ⊂ P

converges to p ∈ P if d(pn, p) → 0 as n → ∞.

For a given e ∈ int C and each p = ( f , F) ∈ P, ε ∈ R+, we define the ε-approximately
minimal solution map �e : P × R+ ⇒ A for (SISPp) as:

�e(p, ε) = {x ∈ �( f ) : F(x) � F(s) + εe for some s ∈ E(p)}.
It is obvious that �e(p, 0) = E(p).

Definition 8 For a given p ∈ P, let {pn = ( fn, Fn)} ⊂ P be a sequence converging to p and
let e ∈ int C .A sequence {xn} ⊂ A is said to be an approximately e-minimizing sequence for
the problem (SISPp) corresponding to {pn} if there exists a sequence {εn} ⊂ R+ converging
to 0, such that xn ∈ �e(pn, εn) for all n.

The following result shows that Definition 8 is independent of the choice of vector e.

Proposition 5 For a given p ∈ P, let {pn = ( fn, Fn)} ⊂ P be a sequence converging to
p. A sequence {xn} is an approximately e-minimizing sequence for the problem (SISPp)

corresponding to {pn} if and only if there exist a sequence {cn} ⊂ C converging to 0Rl and
a sequence {sn}, sn ∈ E(pn), such that Fn(xn) � Fn(sn) + cn .

Proof Suppose that {xn} is an approximately e-minimizing sequence for the problem (SISPp)

corresponding to {pn}. Then the conclusion follows immediately from choosing cn = εne.
Conversely, let sequences {cn} ⊂ C, {xn} and {sn} with cn → 0Rl , xn ∈ �( fn) and
sn ∈ E(pn) be such that Fn(xn) � Fn(sn) + cn . Then, one has

Fn(xn) ⊂ Fn(sn) + cn − C . (3)

Note that (e − int C) is a neighborhood of 0Rl , so we can pick up a positive real number r
such that B[0Rl , r ] ⊂ e − int C . Consequently, for each n ∈ N, one has

cn ∈ B
[
0Rl , ‖cn‖] ⊂ ‖cn‖

r
(e − int C) ⊂ ‖cn‖

r
e − C .

This, together with (3), and the convexity of C give us Fn(xn) ⊂ Fn(sn) + εne − C , where
εn = r−1‖cn‖ for each n ∈ N. Of course, the sequence {εn} approaches 0, and therefore
{xn} is an approximately e-minimizing sequence for the problem (SISPp) corresponding to
{pn}. �	

Due to Proposition 5, we will, in what follows, not indicate the vector e in statements
regarding approximately minimizing sequences.

Definition 9 For a given p ∈ P, (SISP) is said to be sequentially generalized well-posed at
p if for any sequence {pn} ⊂ P converging to p, every approximately minimizing sequence
for (SISPp) corresponding to {pn} admits a subsequence converging to some solution in
E(p).
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Remark 4 (a) By treating the positive integer n as a parameter, the problem (SISPpn ) can be
interpreted as a parametric problem that belongs to a special class of problems known as
parameterized problems. Thus, Definitions 8 and 9 appear to be quite close to Zolezzi’s
well-known definitions for parametric well-posedness. In many practical circumstances,
the data of perturbed problems are collected incrementally, throughmethods such asmea-
suring, examining, or observing. As a result, analytical formulations based on parameters
are rarely available. Therefore, Definitions 8 and 9 provide a more useful approach for
analyzing perturbed problems, compared to other parameter-based formulations.

(b) When fn(x, t) ≡ f (x, t) and Fn(x) ≡ F(x), Definitions 8 and 9 collapse, respectively,
toDefinitions 6 and 7 in Sect. 3.Moreover, by replacing the upper-type order relationwith
lower-type one, Definitions 8 and 9 become those of generalized minimizing sequence
and generalizedwell-posedness in the sense of Loridan considered byZhang et al. (2009);
Crespi et al. (2018); Han and Huang (2017); Miholca (2021).

We now provide some characterizations for the sequentially generalized well-posedness
of (SISP) via the map �e.

Theorem 6 (SISP) is sequentially generalized well-posed at p̄ ∈ P if and only if �e is u.c.
and compact-valued at ( p̄, 0).

Proof (⇒) Let a sequence {xn}be in�e( p̄, 0) (be also an approximatelyminimizing sequence
for (SISP p̄)). Thus, it admits a subsequence converging to a solution of E( p̄) = �e( p̄, 0) and
so �e( p̄, 0) is compact. Suppose to the contrary that there are an open subset U ⊂ X with
�e( p̄, 0) ⊂ U and a sequence {(pn, εn)} ⊂ P × R+ with (pn, εn) → ( p̄, 0) such that for
every n we can find xn ∈ �e(pn, εn)\U . By the definition of �, we can pick up a sequence
{sn} with sn ∈ E(pn) such that Fn(xn) � Fn(sn) + εne for all n. Consequently, {xn} is an
approximately minimizing sequence for (SISP p̄) corresponding to {pn} and so it admits a
subsequence converging to some solution x0 ∈ E( p̄) = �e( p̄, 0), which contradicts the fact
xn /∈ U for all n. Therefore, �e is u.c. at ( p̄, 0).

(⇐) For every sequence {pn} with pn = ( fn, Fn) converging to p̄, let {xn} be an
approximately minimizing sequence for (SISP p̄) corresponding to {pn}. Then there are a
sequence {εn} ⊂ R+ converging to 0 and a sequence {sn} with sn ∈ E(pn) satisfying
Fn(xn) � Fn(sn) + εne, that is, xn ∈ �e(pn, εn). Because �e is u.c. and compact-valued
at ( p̄, 0), thank to Lemma 2a, we conclude that the sequence {xn} has a subsequence con-
verging to some solution in�e( p̄, 0) = E( p̄). Therefore, the problem (SISP) is sequentially
generalized well-posed at p̄. �	
Theorem 7 (SISP) is sequentially generalized well-posed at p̄ ∈ P if and only if E( p̄)

is compact and H(ϒe( p̄, δ, ε), E( p̄)) → 0 as (δ, ε) → (0, 0), where ϒe( p̄, δ, ε) =⋃
p∈B( p̄,δ) �e(p, ε).

Proof Let (SISP) be sequentially generalized well-posed at p̄ ∈ P. Obviously, E( p̄) is a
nonempty compact set. It follows from E( p̄) ⊂ ϒe( p̄, δ, ε) that h(E( p̄), ϒe( p̄, δ, ε)) = 0.
We only need to show that h(ϒe( p̄, δ, ε), E( p̄)) → 0 as (δ, ε) → (0, 0). Suppose on
the contrary that there are sequences {(δn, εn)} ⊂ R

2+, (δn, εn) → (0, 0), and {xn}, xn ∈
ϒe( p̄, δn, εn), such that for all n, d(xn, E( p̄)) ≥ r for some r > 0. Note that the sequence
{xn} is an approximately minimizing sequence for (SISP p̄) corresponding to some {pn}with
pn ∈ B( p̄, δn), so it admits a subsequence {xni } converging to some x̄ ∈ E( p̄).Consequently,
we have eventually that d(xni , x̄) < r , which is impossible as d(xn, E( p̄)) ≥ r for all n.

Conversely, let {xn} be an approximately minimizing sequence for (SISP p̄) corresponding
to some {pn} with pn → p̄. Thus, there is a sequence {εn} ⊂ R+ with εn → 0 satisfying
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xn ∈ �e(pn, εn) for all n. By setting δn = d(pn, p̄), we see that xn ∈ ϒe( p̄, δn, εn).
Consequently,

d(xn, E( p̄)) ≤ H(ϒe( p̄, δ, ε), E( p̄)) → 0 as n → ∞,

which gives us a sequence {x̂n} in E( p̄) satisfying d(xn, x̂n) → 0 as n → ∞. By the
compactness of E( p̄), {x̂n} admits a subsequence converging to some x̂ ∈ E( p̄), and thus
the sequence {xn} must have a corresponding subsequence tending to x̂ . Therefore, (SISP)
is sequentially generalized well-posed at p̄. �	

Next, we provide sufficient conditions for the sequentially generalized well-posedness of
(SISP). In this way, we generalize a concept concerning the converse property of a set-valued
map.

Definition 10 We say that a map F ∈ M has the strong converse property at x̄ ∈ A with
respect to x̂ ∈ A\{x̄} if and only if either F(x̂) � F(x̄) or for any sequences {Fn} ⊂ M
with supx∈A H(Fn(x), F(x)) → 0 as n → ∞ and {xn}, {x̂n} ⊂ A respectively converging
to x̄ and x̂, one has Fn0(x̂n0) � Fn0(xn0) for some n0 ∈ N.

We consider the following basic conditions:

(A1) for each t ∈ T , f (·, t) is K -lsc and generalized K -quasiconvex on A;
(A2) for each x ∈ A, f (x, ·) is K -usc on A;
(A3) F is compact-valued and continuous on A;
(A4) F admits the strong converse property at each x ∈ A with respect to every y ∈ A\{x}.

We consider the following subsets of S and M :
Ŝ = { f ∈ S : f satisfies (A1) and (A2)},

M̂ = {F ∈ M : F satisfies (A3) and (A4)}.
Theorem 8 Assume that A and T are compact. Then (SISP) is sequentially generalized
well-posed on E ∩ (Ŝ × M̂).

Proof For every p = ( f , F) ∈ E ∩ (Ŝ × M̂), let {pn = ( fn, Fn)} ⊂ S × M be a sequence
converging to p. Let {xn}, xn ∈ �( fn), be an approximately minimizing sequence for the
problem (SISPp) corresponding to {pn}. Then we can find sequences {εn} ⊂ R

+, εn → 0,
and {sn}, sn ∈ E(pn), such that

Fn(xn) � Fn(sn) + εne. (4)

Since A is compact, one can assume that the sequences {xn} and {sn} respectively converge
to x̄ and s̄ in A.

Step 1.We prove that s̄ ∈ �( f ). Suppose to the contrary that there exists t ∈ T satisfying
f (s̄, t) /∈ −K .Note that we can choose a vector k ∈ int K such that f (s̄, t) /∈ k − K . Indeed,
otherwise we would have a decreasing sequence {kn} ⊂ int K converging to 0Rm such that
f (s̄, t)−kn ∈ −K ; taking the limit when n → ∞ and using the closedness of K ,we arrive at
f (s̄, t) ∈ −K ,which is a contradiction. Hence, f (s̄, t) belongs to the open setRm \ (k − K )

for some k ∈ int K . Since f (·, t) is K -lsc at s̄ andRm\(k − K ) is a neighborhood of f (s̄, t),
there exists a neighborhood U of s̄ such that f (s, t) ∈ R

m\(k − K ) + K for all s ∈ U ∩ A.
Because {sn} ⊂ A converges to s̄, we have sn ∈ U ∩ A for n sufficiently large, which leads
to f (sn, t) ∈ R

m\(k − K ) + K . Applying Lemma 1, we obtain

f (sn, t) ∈ R
m \(k − K ). (5)
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Since k ∈ int K , the set (k − K ) strictly contains −K and thus there exists r > 0 such that
mine∈bd(k−K ) d(e,−K ) = r . This, together with (5), gives

d( f (sn, t),−K ) > r .

On the other hand, fn(sn, t) ∈ −K for all t ∈ T inasmuch as sn ∈ �( fn), and hence

d ( f (sn, t), fn(sn, t)) ≥ d ( f (sn, t),−K ) > r . (6)

It is worth noting that

0 ≤ d ( f (sn, t), fn(sn, t)) ≤ sup
(x,t)∈A×T

d ( f (x, t), fn(x, t)) .

Consequently, d ( f (sn, t), fn(sn, t)) ≤ d(pn, p) → 0, as n → ∞, which contradicts (6).
Therefore, f (s̄, t) ≤K 0Rm for all t ∈ T , that is, s̄ ∈ �( f ).

Step 2. We show that for any ȳ ∈ �( f ), there exists yn ∈ �( fn) satisfying yn → ȳ. In
this way, we first claim that

�̂( f ) ⊂ lim inf �̂( fn), (7)

where �̂( f ) = {x ∈ A : f (x, t) <K 0Rm ,∀t ∈ T }. Otherwise, there would be û ∈ �̂( f )

such that any sequence {un}, un ∈ �̂( fn), would not converge to û. Then we can assume,
without loss of generality, that û /∈ �̂( fn) for all n. Consequently, there is a sequence {tn} ⊂ T
satisfying

fn(û, tn) /∈ − int K . (8)

We can assume, due to the compactness of T , that {tn} converges to some t ∈ T . Because
û ∈ �̂( f ), we can pick up k ∈ int K such that f (û, t) ∈ −k − int K . Since f (û, ·) is K -usc
at t, for n sufficiently large

f (û, tn) ∈ −k − int K − K ⊂ −k − K . (9)

Through (8) and (9), keeping in mind that mine∈bd(−K ) d(e,−k − K ) > r for some r > 0,
we see that

d( fn(û, tn), f (û, tn)) ≥ d( fn(û, tn),−k − K ) > r . (10)

Furthermore, since

0 ≤ d( fn(û, tn), f (û, tn)) ≤ sup
(x,t)∈A×T

d( fn(x, t), f (x, t)) ≤ d(pn, p),

by passing to the limit as n → ∞,we come to d( fn(û, tn), f (û, tn)) → 0,which contradicts
(10). Thus, the inclusion (7) holds true. We next verify that ȳ ∈ cl �̂( f ). Since p holds the
Slater condition, we can find a vector x0 ∈ �̂( f ). It is nothing to prove if ȳ = x0; so we
consider the case in which they are distinct. By setting xλ = (1−λ)ȳ +λx0 for λ ∈]0, 1[ and
utilizing the generalized K -quasiconvexity of f (·, t), we arrive at xλ ∈ �̂( f ). In the limit as
λ → 0, we obtain that ȳ ∈ cl �̂( f ), and hence �( f ) ⊂ cl �̂( f ) as ȳ is arbitrarily chosen.
Combining this with (7) and taking into account the closedness of lim inf �̂( fn), we arrive
at

�( f ) ⊂ cl �̂( f ) ⊂ lim inf �̂( fn) ⊂ lim inf �( fn),

which ensures the existence of a sequence {yn} with yn ∈ �( fn) converging to ȳ.
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Step 3. We show that s̄ ∈ E(p). For each ȳ ∈ �( f )\{s̄}, as proved in Step 2, we can
find a sequence {yn}, yn ∈ �( fn), converging to ȳ. Since sn ∈ E(pn) for all n ∈ N, the
disjunction of the two following propositions

Fn(yn) � Fn(sn) and Fn(yn) ∈ [Fn(sn)]
is true for all n ∈ N.

Case 1. The first proposition is true. Suppose that F(ȳ) � F(s̄). Since F satisfies (A4),
we have Fni (yni ) � Fni (sni ) for some ni ∈ N,which is a contradiction. Thus, F(ȳ) � F(s̄).

Case 2. The second proposition is true. We show that F(ȳ) ∈ [F(s̄)], that is, F(s̄) ⊂
F(ȳ)−C and F(ȳ) ⊂ F(s̄)−C . For any w̄ ∈ F(s̄), because F is l.c. at s̄, we get a sequence
of elements wn ∈ F(sn) with wn → w̄, and thus for any ε > 0 there is n1 ∈ N such that

d(wn, w̄) ≤ ε

2
,∀n ≥ n1. (11)

Because

H (Fn(sn), F(sn)) ≤ sup
x∈A

H (Fn(x), F(x)) → 0 as n → ∞,

for ε > 0 as above, there exists n2 ∈ N such that

H (Fn(sn), F(sn)) ≤ ε

2
,∀n ≥ n2.

Consequently, there exist ŵn ∈ Fn(sn) satisfying

d(ŵn, wn) ≤ ε

2
,∀n ≥ n2. (12)

By choosing m = max{n1, n2}, we have from (11) and (12) that

d(ŵn, w̄) ≤ d(ŵn, wn) + d(wn, w̄) ≤ ε,∀n ≥ m,

that is,

ŵn → w̄, as n → ∞. (13)

Note that Fn(sn) ⊂ Fn(yn) − C inasmuch as Fn(yn) ∈ [Fn(sn)], so we can pick up ẑn ∈
Fn(yn) such that

ŵn ∈ ẑn − C . (14)

Since

H (Fn(yn), F(yn)) ≤ sup
x∈A

H (Fn(x), F(x)) → 0 as n → ∞,

for all δ > 0, there exists n3 ∈ N such that

H (Fn(yn), F(yn)) ≤ δ

2
,∀n ≥ n3.

Hence, due to the compactness of F(yn), there is zn ∈ F(yn) such that

d(ẑn, zn) ≤ δ

2
,∀n ≥ n3. (15)
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Because F is u.c. and compact-valued at ȳ, we can assume that zn → z̄ for some z̄ ∈ F(ȳ).

Thus, there is n4 ∈ N such that d(zn, z̄) ≤ 2−1δ for all n ≥ n4. Utilizing this and (15), we
get

d(ẑn, z̄) ≤ d(ẑn, zn) + d(zn, z̄) ≤ δ,∀n ≥ max{n3, n4},
which implies that {ẑn} converges to z̄ as n → ∞. Combining this with (13), (14) and taking
into account the closedness of C , we arrive at w̄ ∈ z̄ − C . Consequently, F(s̄) ⊂ F(ȳ) − C
as w̄ is arbitrary. Similarly, by interchanging the roles of s̄ and ȳ in the above arguments, we
also get F(ȳ) ⊂ F(s̄) − C , which leads to F(ȳ) ∈ [F(s̄)].

From the conclusions of Cases 1 and 2, we obtain s̄ ∈ E(p).

Step 4. We finally show that x̄ ∈ E(p). Let a be arbitrary in F(x̄). Using the same
arguments given in the first part of Case 2, we obtain a sequence {an} converging to a and
an ∈ Fn(xn) for n sufficiently large. From (4), we get an ∈ Fn(sn) + εne − C, and hence
there exists bn ∈ Fn(sn) satisfying

an ∈ bn + εne − C . (16)

By repeating the argument in the second part of Case 2 after (14), we conclude that the
sequence {bn} (taking a subsequence if necessary) converges to some b ∈ F(s̄). So if we
pass to the limit as n → ∞ in (16), we obtain a ∈ b−C .Consequently, F(x̄) ⊂ F(s̄)−C as a
is chosen arbitrarily, and hence F(x̄) ∈ [F(s̄)]. Therefore, (SISP) is sequentially generalized
well-posed at p. The proof is complete. �	

Tofinalize this section,wegive some examples to justify the importance of the assumptions
in Theorem 8.

Example 3 Let X = T = R, C = K = R
2+, A = [0, 2], T = [0, 1]. Let f : A × T → R

2,

and F : A ⇒ R
2 be, respectively, defined by: for all x ∈ A and t ∈ T ,

f (x, t) = (
t − x − 1, t(x − x2)

)
,

and

F(x) =
{

(u1, u2) ∈ R
2 : (u1 − x)2 + (u2 + x2 − 2x)2 ≤

(
x

x + 1

)2
}

.

Let fn : A × T → R
2 and Fn : A ⇒ R

2 be, respectively, defined by:

fn(x, t) =
(

t − x − 1 − 1

n
, t

(
x + 1

10n

)
− t

(
x + 1

10n

)2
)

and Fn(x) = F(x).

Obviously, the sequence {pn} defined by pn = ( fn, Fn) converges to p = ( f , F) as n → ∞.

One can check that �( fn) = [1 − (10n)−1, 2] and �( f ) = [1, 2] ∪ {0}.
For all x ∈ �( f ), we have F(0) = {(0, 0)} ⊂ F(x) − C , i.e., F(0) � F(x), hence

0 ∈ E(p).Suppose that there exists x ∈ E(p)with x ≥ 1.Then it follows from F(0) � F(x)

that F(x) � F(0), or equivalently F(x) ⊂ −C, which is impossible (see Fig. 1). Therefore,
E(p) = {0}. Moreover, for all x ∈ �( fn) = [1 − (10n)−1, 2], from Fig. 1, we see that
F(x) ⊂ F(2)−C which leads to 2 ∈ E(pn). Then the sequence {xn = 2} is an approximately
minimizing sequence for the problem (SISPp) corresponding to {pn}, but {xn} converges to
2 /∈ E(p), and hence (SISP) is not sequentially generalized well-posed. The reason is that
f (·, t) is not generalized K -quasiconvex on A for some t ∈ A. Indeed, let t = 0.5, x = 0 and
y = 1.5, then we have f (x, t) = (−0.5, 0) ∈ −K and f (y, t) = (−2,−0.375) ∈ − int K ,

but f (0.9x + 0.1y, t) = (−0.65, 0.06375) /∈ − int K .
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Fig. 1 Illustration of F(x) in Example 3

Example 4 Let X,T, C, K , A and T be as in Example 3. Let f : A × T → R
2 and

F : A ⇒ R
2 be, respectively, defined by: for all x ∈ A and t ∈ T ,

f (x, t) = (−t x2, x2 − t2 − 1
)
and F(x) = {(u1, 0) ∈ R

2 : 0 ≤ u1 ≤ x + 2}.
It is clear that f ∈ Ŝ and F satisfies (A3). For p = ( f , F), one can see that �( f ) = [0, 1]
and E(p) = {0}. Now, let fn : A × T → R

2 and Fn : A ⇒ R
2 be, respectively, defined as:

fn(x, t) =
(

t x

n
− t x2, x2 − t2 − 1 − 1

n2

)
,

and

Fn(x) =
{
(u1, u2) ∈ R

2 : 0 ≤ u1 ≤ x + 2, 0 ≤ u2 ≤ 3 − x

n

}
.

Obviously, pn = ( fn, Fn) converges to p = ( f , F) as n → ∞. By direct computations, we
have

�( fn) =
[
1

n
,

√
n2 + 1

n

]
∪ {0}.

Let xn = n−1
√

n2 + 1, thenwe can check that {xn} is an approximatelyminimizing sequence
for the problem (SISPp) corresponding to {pn}, but it converges to 1 /∈ E(p). Thus, (SISP)
is not sequentially generalized well-posed; the reason is that F does not hold (A4). Indeed,
for x̄ = 1 and x̂ = 0, we have F(x̂) � F(x̄), but Fn(x̂n) � Fn(x̄n) for all n, where
x̄n = 1 − (3n + 1)−1 and x̂n = (3n + 1)−1.

5 Conclusions

In this article, we have studied the global well-posedness concerning efficient solution sets
for semi-infinite set optimization problems. We have also introduced and investigated a
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notion of well-posedness under perturbations in terms of convergent sequences of feasible
and objective maps. The obtained results may be useful in situations where we are unable to
obtain an analytic formulation of the reference problemdepending on perturbation parameters
but are instead left with a sequence of perturbed problems. To the best of our knowledge,
it is the first attempt in the literature to study global well-posedness properties for a semi-
infinite set optimization problem under such perturbations. We would like to underline that
the analysis of well-posedness in the present work is carried out only in a decision space. It
would be of interest to deepen in the future some well-posedness properties by means of an
image space approach.
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