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Abstract
In this computational study, stabilized finite element solutions of convection-dominated sta-
tionary and linear reaction–convection–diffusion equations are studied.Although the standard
(Bubnov–) Galerkin finite element method (GFEM) is one of the most robust, efficient,
and reliable methods for solving many engineering problems and scientific computations,
it typically suffers from numerical instabilities when solving convection-dominated prob-
lems. Towards that end, this work deals with a stabilized version of the standard GFEM,
called the streamline-upwind/Petrov–Galerkin (SUPG) formulation, to overcome the insta-
bility issues arising when solving such problems. The SUPG-stabilized formulation is further
supplemented with a shock-capturing mechanism, called YZβ shock-capturing, to provide
additional stability around steep gradients. A comprehensive set of test examples is provided
to assess and compare the performances of the proposedmethods, i.e., the GFEM, SUPG, and
SUPG-YZβ. It is observed that the GFEM approximations involve spurious oscillations for
small values of the diffusion parameter, as expected. We observe through numerical exper-
iments that such globally spread oscillations are suppressed significantly when the SUPG
formulation is employed. It is also demonstrated that the SUPG-stabilized formulation needs
additional stability to resolve localized sharp layers, and the SUPG-YZβ formulation yields
better shock resolutions for such regions.
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1 Introduction

Singular perturbation problems are commonplace in almost every branch of science and
engineering, especially in fluid/solid mechanics, mathematical biology, ecological models,
electrical networks, quantum mechanics, financial mathematics, and control theory. Gen-
erally speaking, singularly perturbed differential equations are differential equations with
positive small parameters controlling the highest-order derivative(s). Assuming that we deal
with second-order differential equations, e.g., convection–reaction–diffusion equations, as
the perturbation parameter tends to zero, i.e., ε→ 0+, the problem is dominated even more
by convection. It is a well-known fact that traditional discretization methods are incapable of
treating such problems accurately, as will be discussed in the following paragraphs. For fur-
ther details on singularly perturbed problems, from their asymptotic analysis to engineering
applications, one can refer to Bender and Orszag (1999), Johnson (2005).

Similar to singularly perturbed problems, reaction–convection–diffusion equations that
model phenomena resulting from transport processes in nature have a wide range of applica-
tions, including fluid dynamics, the kinetic theory of gases, chemotaxis processes, biomedical
problems, semiconductor theory, financial models, and even in environmental sciences
and food engineering. One can refer to Roos et al. (2008) for the numerical treatment of
reaction–convection–diffusion problems and (Bird et al. 2015) for more on the transport
phenomena.

In this study, we are interested in solving singularly perturbed steady-state linear
reaction–convection–diffusion equations numerically by combining two phenomena: sin-
gular perturbation and the transport process, i.e., convection-dominated transport problems.
A class of such problems can be expressed mathematically in the following form:

−ε�u + b · ∇u + cu = f in � = (0, 1)2 , (1)

u = gD on ∂�, (2)

where � = ∂� denotes the boundary of the problem domain �, u = u (x, y) is the unknown
function, the term ε is the diffusion (perturbation) parameter with 0 < ε � 1, and the
term c ∈ L∞ (�) is the reaction constant. If Eqs. (1)–(2) are assumed to model a two-
dimensional problem, then the convection vector, b, which is the coefficient to the gradient
vector ∇u, can be taken as b = (b1, b2)T , where b1, b2 ∈ W 1,∞(�). The source term
f = f (x, y) ∈ L2(�), located on the right hand side ofEq. (1), is assumed to be a sufficiently
smooth function.The function gD = gD (x, y) representsDirichlet-type boundary conditions
with gD ∈ H1/2 (∂�). The interested reader is referred to Adams and Fournier (2003) for
the definitions and properties of these aforementioned special function spaces.

As the diffusion phenomenon dominates the transport process, the model problem
expressed by Eqs. (1)–(2) becomes a convection-dominated elliptic boundary-value prob-
lem. That is, the solution of problem (1)–(2) usually experiences rapid and sharp changes,
called boundary/interior layer behavior. This situation makes it difficult to obtain accurate
and oscillation-free approximations to the solution of the problem by employing standard
methods, e.g., central finite differences and Galerkin finite elements. In order to prevent spu-
rious oscillations and resolve sharp gradients accurately, finer space discretizations can be
invoked (at least near the regions where the boundary/interior layer(s) occur(s)), adaptive
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mesh techniques can be used, standard discretization methods can be modified, or any appro-
priate combination of these can be adopted. It should be noted that, contrary to the general
assumption, spurious oscillations can occur not only in convection-dominated problems but
also in reaction-dominated problemswith sharp gradients due to high reaction rates (Tezduyar
and Park 1986).

The (Bubnov–) Galerkin finite element method (GFEM) is a very powerful computa-
tional tool since it can handle problems defined on severely complex geometries, has a
very well-developed theoretical background with sharp error estimates, and relies primar-
ily on polynomials, for which algebraic manipulations are typically simple. In addition to
these, there are also numerous theoretical and applied studies devoted to the methodology.
Compared to other computational approaches, these are some of the most significant dis-
tinguishing characteristics of finite element methods (FEM). However, due to the method’s
inadequacy in solving convection-dominated problems, various remedies to stabilize the solu-
tions have been sought since the 1970s. The streamline-upwind/Petrov–Galerkin (SUPG)
formulation (Hughes and Brooks 1979; Brooks and Hughes 1982) is one of the most suc-
cessful and well-known of these stabilized formulations. One can refer to Brezzi and Russo
(2000) for further discussion on the need for stabilized formulations in the world of the FEM.

The SUPG formulation was first introduced in an ASME paper (Hughes and Brooks
1979) in 1979, and later in a journal article (Brooks and Hughes 1982) in 1982 by Hughes
and Brooks for computing incompressible flows. Soon after, the method was reformulated
for computing compressible flows in a NASA technical report (Tezduyar and Hughes 1982)
in 1982, published as an AIAA paper (Tezduyar and Hughes 1983) in 1983, and as a journal
article (Hughes and Tezduyar 1984) with further considerations in 1984 by Tezduyar and
Hughes. Even though promising results were achieved by employing these SUPG-based
stabilized formulations in the computations, it was clear that something extra, which we
call shock-capturing or discontinuity-capturing today, was required at shocks, where sudden
and sharp changes in solutions were observed. We refer the interested reader to John and
Schmeyer (2008), Hughes et al. (2010) for more on the application of the SUPG method to
compressible/incompressible flow computations.

Until 2004, the SUPG formulation was almost always complemented with certain types
of shock-capturing techniques for both incompressible and compressible flow simulations,
resulting in better solution profiles at shocks and discontinuities. In 2004, Tezduyar (2004),
Tezduyar (2007) introduced new ways for defining the stabilization and shock-capturing
parameters in the SUPG formulation. The set of stabilization parameters introduced in 2004
is today called “τ04.” The proposed techniques for shock-capturing can be divided into two
main groups: in a style the discontinuity-capturing directional dissipation (DCDD) (Tezduyar
2003) and the YZβ (Tezduyar 2004, 2007) shock-capturing. We restrict our attention to the
latter approach, i.e., the YZβ technique, in the rest of this paper since we adopt it to augment
the standard SUPG formulation. Note that, as can also be seen in the following sections, the
name of the technique comes from its components Y, Z, and β. It is reported in Tezduyar
and Senga (2006), Tezduyar and Senga (2007), Tezduyar et al. (2006) that, by using the YZβ

technique, the shock-capturing parameter can be calculated in a simpler way compared to
previous techniques, also yielding better shock representations. Beyond these, the parameter
β embedded in the formulation allows flexibility for smooth and sharp shocks. One can
refer to Tezduyar and Senga (2006), Tezduyar and Senga (2007), Tezduyar et al. (2006),
Rispoli et al. (2015) for several applications of the technique for solving problems arising
in computational fluid dynamics (CFD). In addition to these, the implementation of the
formulation for Burgers’-type equations at high Reynolds numbers is available in Cengizci
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and Uğur (2023), as is the implementation for reaction–convection–diffusion equations with
nonlinear reaction mechanisms in Cengizci et al. (2022).

We now turn our attention back to the model problem given by Eqs. (1)–(2) and attempt to
provide a brief survey of research conducted on singularly perturbed reaction–convection–
diffusion equations. Johnson et al. (1987) adopted equations having the form

− δuxx − εuyy + ux + u = f , (3)

as amodel problem. They solved the problemby adding a small amount of artificial crosswind
diffusion to the SUPG formulation. Lube (1992) employed the SUPG method for solving
Burgers’-type equations and derived some error estimates. Codina (1993) applied the SUPG
method to both one- and two-dimensional problems by adding shock-capturing crosswind-
dissipation. Stynes andTobiska (1995) investigated linear convection–diffusion equations and
derived necessary conditions for ε-uniform convergence. Zhou (1997) considered equations
in the form of

− ε�u + ux + u = f , (4)

and studied the accuracy of the SUPG formulation in solving them. Brezzi et al. (1998) intro-
duced the pseudo-residual-free bubble concept, compared the results with those obtained
by using the SUPG method, and reported that similar results were obtained. Stynes and
Tobiska (1998), Linß and Stynes (2001a), Linß and Stynes (2001b) considered the model
problem given by Eqs. (1)–(2) on a Shishkin mesh employing the SUPG formulation and
derived some error estimates. John et al. (1998) applied the SUPG method to the model
problem (1)–(2) by adding a parameter-free shock-capturing term. Kopteva (2004) investi-
gated how accurate the SUPG formulation is for solving boundary/interior-layer problems.
John and Knobloch (2007), John and Knobloch (2008), John and Schmeyer (2008) pre-
sented a comprehensive review and comparisons of stabilized formulations used for solving
convection-dominated problems. Matthies (2009) handled the model problem by employing
a local projection stabilization method on Shishkin and Shishkin–Bakhvalov meshes. Franz
(2010) used an edge stabilization technique for the model problem on a Shishkin mesh and
derived some error bounds. Franz and Matthies (2010) used layer-adapted meshes, analyzed
the GFEM and a local projection scheme for bilinear and higher-order finite elements where
enriched spaces were employed. Roos (2012) reviewed the studies that dealt with singularly
perturbed convection–diffusion problems conducted between 2008 and 2012. Finally, Zhang
et al. (2016), Zhang and Liu (2018) examined the SUPG formulation from various aspects
for solving convection-dominated problems on Shishkin meshes.

As summarized and discussed in the previous paragraphs, there are a variety of sta-
bilized formulations supplemented with various shock-capturing mechanisms for solving
convection-dominated problems. The correct determination of stabilization and shock-
capturing parameters used in these formulations is very demanding and is still an active
research area today. In this study, the SUPG formulation is used to overcome the instability
issues encountered in solving problems having the form of Eqs. (1)–(2). To achieve better
solution profiles near sharp gradients, the stabilized formulation is further complemented
with YZβ shock-capturing.

Our main aim in this paper is to implement the YZβ shock-capturing technique as a
supplement to the SUPG formulation for solving convection-dominated linear reaction–
convection–diffusion equations because it has not been employed for solving such problems
specifically. Rather than taking a theoretical approach, we intend to evaluate the performance
of the technique on a comprehensive set of test problems.Although the vastmajority of studies
in the literature dealing with the numerical solution of convection-dominated problems have
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been conducted on Shishkin/Shishkin–Bakhvalov type or other (pre)adaptive meshes, the
computations in this study are performed and compared on uniform meshes.

The next section presents the variational formulations for the model problem given by
Eqs. (1)–(2). The GFEM formulation is derived first, followed by the outline of the SUPG-
stabilized formulation, which also includes shock-capturing terms. Section3 compares the
results obtained by employing the proposed formulations on five test problems and evaluates
the impact of the YZβ shock-capturing mechanism. Finally, the findings are discussed in
detail, and a possible future outlook is presented in Sect. 4.

2 Proposedmethod for themodel problem

In this section, the GFEM and SUPG formulations are presented, and the YZβ shock-
capturing technique is introduced for solving the model problem. To that end, let us recast
the model problem:

−ε�u + b · ∇u + cu = f in � = (0, 1)2 ,

u = gD on ∂�.

Before presenting the variational formulation of the problem, some special function spaces
need to be introduced first. Let w ∈ H1

0 ⊂ H1 be a test (weighting) function, where the
Sobolev spaces H1

0 and H1 are defined as follows:

H1
0 = {

w ∈ H1 : w|∂� = 0
}
, H1 =

{
w : ‖w‖L2

�
+ ‖∇w‖L2

�
< ∞

}
, (5)

where L2
� = L2 (�) represents the space of square-integrable functions on�, and is equipped

with the standard L2–norm:

‖w‖L2
�

=
√∫

�

w2dx . (6)

By multiplying both sides of Eq. (1) by a test function, w ∈ V ⊂ H1
0, and integrating it over

the computational domain �, one obtains
∫

�

w (−∇ · (ε∇u) + b · ∇u + cu) d� =
∫

�

w f d�. (7)

Then, by applying integration by parts to the diffusion term in Eq. (7), the weak formulation
reads: ∫

�

[∇w · ε∇u + w (b · ∇u) + cwu − w f ] d� −
∫

�H

w · H d� = 0, (8)

where H denotes the Neumann boundary condition associated with Eq. (7), and�H is the part
of the boundary� where such conditions are prescribed. Note that, since aDirichlet boundary
condition has been specified inEq. (2), the boundary term associatedwithNeumann boundary
condition can be neglected, and eventually, the weak formulation reads: find u ∈ V such that

∫

�

[∇w · ε∇u + w (b · ∇u) + cwu − w f ] d� = 0, ∀w ∈ V. (9)

Now that a weak formulation is obtained, then a finite element spatial discretization can be
obtained. Introducing the following finite-dimensional function space

Vh =
{
wh ∈ C

(
�

) : wh |∂� = 0, wh |�e ∈ P1
(
�e) ,∀�e ∈ T h

}
, (10)
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the discrete GFEM formulation reads: find uh ∈ Vh such that
∫

�

[
∇wh · ε∇uh + wh

(
bh · ∇uh

)
+ chwhuh − wh f h

]
d� = 0, ∀wh ∈ Vh . (11)

Here, P1 (�e) is the space of linear polynomials over the element �e ∈ T h , and T h is the
triangulation of the domain � into triangular elements.

Now, let us consider the SUPG formulation of Eqs. (1)–(2). In the light of studies by
Tezduyar and Senga (2006), Tezduyar and Senga (2007), Tezduyar et al. (2006), the SUPG-
stabilized discrete formulation enhanced with the YZβ shock-capturing mechanism can be
given as follows: find uh ∈ Vh such that

∫

�

[
∇wh · ε∇uh + wh

(
bh · ∇uh

)
+ chwhuh − wh f h

]
d�

+
nel∑

e=1

∫

�e
τSUPG

(
−∇ ·

(
ε∇uh

)
+ bh · ∇uh + chuh − f h

) (
bh · ∇wh

)
d�

+
nel∑

e=1

∫

�e
νSHOC

(
∇wh · ∇uh

)
d� = 0, ∀wh ∈ Vh, (12)

where the finite-dimensional space Vh is defined by Eq. (10). In this formulation, e is the
element counter, and nel is the number of elements. The terms τSUPG and νSHOC are the
stabilization and shock-capturing parameters, respectively.

Remark 1 Note that the stabilized formulation given by Eq. (12) includes some extra terms
compared to the classical GFEM formulation given by Eq. (11). The first two terms on
the LHS (first two lines) of Eq. (12) represent the SUPG formulation, which introduces
artificial diffusion in the streamline direction. The third term on the LHS (third line) of
formulation (12) is associatedwith the shock-capturingmechanism and introduces additional
numerical diffusion near steep gradients in order to resolve sharp layers.

How the stabilization and shock-capturing parameters are determined directly affects the
accuracy and quality of the numerical solutions. More specifically, while the stabilization
parameter plays an important role in the (global) behavior and accuracy of the approximations,
the shock-capturing parameter has a crucial influence on the (local) quality of the solutions
at shocks and near discontinuities. For defining the stabilization parameter, τSUPG, we adopt
the definition introduced in Shakib (1988):

τSUPG =
[(

2‖bh‖
he

)2

+
(

4ε

(he)2

)2
]− 1

2

. (13)

where ‖ · ‖ denotes the standard Euclidean norm, and he is the cell diameter associated with
element e. For a review of various definitions of the stabilization parameter, τSUPG, one can
refer to Tezduyar (1992), John and Knobloch (2007).

The shock-capturing parameter, νSHOC, is defined in light of studies byTezduyar andSenga
(2006), Tezduyar and Senga (2007), Tezduyar et al. (2006). In this work, we slightly modify
the original definition of this parameter to solve the model problem as follows (Bazilevs et al.
2007):

νSHOC = |Y−1Z|
(

nsd∑

i=1

∣∣∣∣Y
−1 ∂uh

∂xi

∣∣∣∣

2
) β

2 −1 (
hSHOC

2

)β

, (14)
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where
Z = −∇ ·

(
ε∇uh

)
+ bh · ∇uh + chuh − f h . (15)

Remark 2 By using Eq. (15) in computations, we adopt the residual form of Z, which is
similar to that used in Bazilevs et al. (2007) as a variation of the advective form introduced
in Tezduyar (2004, 2007):

Z = bh · ∇uh . (16)

In addition to that used in Bazilevs et al. (2007), following this way, we also include the
reaction term chuh in the definition of Z.

In Eq. (14), the quantity Y is set to a reference value of the scalar field:

Y = uref. (17)

The reference value uref can be determined according to the initial data given for unsteady
problems. Since we are interested in steady-state problems throughout this manuscript, we
determine these reference values through numerical experiments.

Remark 3 In the definition of the shock-capturing parameter given by Eq. (14), the spatial
variables are denoted by xi ’s, where i = 1, 2, . . . , nsd, in order to ensure consistency with the
literature. Since we are interested in two-dimensional problems in this paper, i.e., nsd = 2,
the spatial variables x1 and x2 correspond to x and y, respectively.

The local element length scale, hSHOC, is given as

hSHOC = 2

(
nen∑

a=1

|j · ∇Na |
)−1

, (18)

with the unit vector in the direction of the gradient of uh :

j = ∇uh

‖∇uh‖ . (19)

Here, the term Na represents the interpolating function associated with element node a.
The indices nsd and nen stand for the number of space-dimensions and number of element
nodes. The parameter β is typically set β = 1 for mild shocks and β = 2 for sharper
shocks (Tezduyar and Senga 2006, 2007; Tezduyar et al. 2006). Since the problems we deal
with in this study are highly dominated by convection, we set the sharpness parameter β as
β = 2 in computations.

3 Numerical experiments

In this section, five challenging test computations are provided. Since the first two test prob-
lems have analytical solutions, numerical solutions are compared with the exact solutions.
In computations, three different norms, the L2–norm, ‖ · ‖L2 , the maximum norm, ‖ · ‖L∞ ,
and an ε-weighted energy norm, ‖ · ‖Lε , are used to measure the errors in approximations
obtained. The L2–norm has already been defined by Eq. (6). The maximum and ε-weighted
energy norms are defined as follows:

‖v‖L∞ = max
i

|vi |,
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‖v‖2Lε = ε‖∇v‖2L2 + ‖v‖2L2 .

The rate of convergence, ρN , can be computed in the sense of double-mesh principle using
the formula (Farrell and Hegarty 1991):

ρN = ln EN − ln E2N

ln 2
, (20)

where EN = u−uN and E2N = u−u2N are point-wise errors associated with meshes with
N×N and 2N×2N elements, respectively. Similarly, uN and u2N are the computed solutions
on meshes with N × N and 2N × 2N elements. Since the last three test examples have no
known analytical solution, we estimate the errors in solutions using the formula (Farrell and
Hegarty 1991):

EN
dm = max |uN − u2N |, (21)

where the subscript “dm” indicates that the error is computed in the sense of the double-
mesh principle. However, we do not present error plots for Example 5 because it is given as
a counterexample.

Although the test problems in which we are interested in this study are linear, the algebraic
equation systems arising from their SUPG-YZβ discrete formulations are highly nonlinear.
We employ the Newton–Raphson (N–R) method for solving these systems of nonlinear
equations. The linear systems emerging at each N–R iteration are not too large to solve
with a direct method, and therefore, we use the lower-upper (LU) factorization for solving
the resulting linear equation systems. The absolute and relative error tolerances in the N–R
iterative process are set to εtol = 10−12.

Our test computations and experiences demonstrate that, at least for the problems we deal
with in this study, “sharper shocks” are observed in the solutions for values of the diffusion
parameter less than ε = 10−3, even though it is quite difficult to generalize because the
behavior of solution is closely related to the nature of the problem at hand. Therefore, since
this work deals with lower values of the diffusion parameter ε, on the order of ε = 10−8, we
set the β parameter of YZβ as β = 2.

For developing the finite element solvers and performing computations, the FEn-
iCS (Alnæs et al. 2015) environment, an open-source scientific computing platform, is used.
For the most recent updates on the project, the interested reader can visit the FEniCSwebsite:
https://fenicsproject.org/.

Figure 1shows two meshes used in computations, which have 1849 nodes and 3528 =
2× 42× 42 triangular elements, and 3613 nodes and 7056 = 4× 42× 42 crossed triangular
elements. The mesh constructed with crossed elements is used for solving Examples 4 and
5 only.

Example 1 Consider the following singularly perturbed convection–diffusion equa-
tion (Zhang 2003):

−ε�u + ux + uy = f in � = (0, 1)2 , (22)

u = 0 on ∂�, (23)

where the source term, f = f (x, y), is given as

f (x, y) = (x + y)

(
1 − exp

(
x − 1

ε

)
exp

(
y − 1

ε

))

+ (x − y)

(
exp

(
y − 1

ε

)
− exp

(
x − 1

ε

))
. (24)
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Fig. 1 Meshes used in computations: a 2 × 42 × 42 triangular elements, b 4 × 42 × 42 (crossed) triangular
elements

The exact solution to Eqs. (22)–(23) is

u(x, y) = xy

(
1 − exp

(
x − 1

ε

))(
1 − exp

(
y − 1

ε

))
. (25)

In Fig. 2, the GFEM solutions to the problem (22)–(23) are presented for various values of
ε. Although the GFEM results are quite good for ε = 1 and acceptable for ε = 10−2, it is not
the case for ε = 10−4 and ε = 10−6. Figure3compares the results obtained with the SUPG
and SUPG-YZβ with the corresponding absolute errors for ε = 10−8. Although spurious
oscillations pollute the entire computational domain in the GFEM solutions, the SUPG for-
mulation suppresses them significantly. TheGFEM fails to capture the sharp gradients around
the point (1.0, 1.0); however, the SUPG-YZβ formulation overcomes this issue successfully.
In Fig. 4, logarithmic plots comparing the degrees of freedom and errors in approximations
are given for ε = 10−4 and ε = 10−8. Note that we use the abbreviations “SUPG-YZβ” and
“SUPG-SC” interchangeably, where the suffix “SC” stands for “shock-capturing.”

We also compare the errors in the GFEM, SUPG, and SUPG-YZβ approximations in L∞
and L2 norms for ε = 100, for which the solution is quite smooth, in Fig. 5 . It is clearly
observed that the shock-capturingmechanism does not introduce excessive artificial diffusion
when the solution is smooth. We also see that as the mesh becomes finer, the SUPG-YZβ

approximations are getting even better than those obtained with the SUPG.
In computations, we set the scaling term Y of YZβ as Y = 0.25. The number of Newton–

Raphson iterations in SUPG-YZβ computations is found to be 5.

Example 2 Consider the following singularly perturbed reaction–convection–diffusion equa-
tion (Linß and Stynes 2001b):

−ε�u + 2ux + 3uy + u = f in � = (0, 1)2 , (26)

u = 0 on ∂�, (27)
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Fig. 2 GFEM approximations for solving Example 1: a ε = 1.0, b ε = 10−2, c ε = 10−4, and d ε = 10−6;
nel = 2 × 42 × 42

where the source term, f = f (x, y), is determined such that the exact solution given as

u(x, y) = 2y2 sin(x)

(
1 − exp

(
2(x − 1)

ε

)) (
1 − exp

(
y − 1

ε

))
(28)

is satisfied.

Figure 6demonstrates that the GFEM gives unacceptable solutions when solving Exam-
ple 2 for values of the diffusion parameter less than ε = 10−2. In Fig. 7, the results obtained
with the SUPG and SUPG-YZβ formulations are compared for ε = 10−8, and the corre-
sponding absolute errors are also presented. The effect of the shock-capturing mechanism
proposed is clearly observed. Eventually, in Fig. 8, logarithmic plots comparing the degrees
of freedom and errors in approximations are given. From these error plots, we see that the
SUPG-YZβ formulation results inmore accurate approximations compared to those obtained
without shock-capturing.

The scaling termY of YZβ is set as Y= 0.15. The number of Newton–Raphson iterations
for SUPG-YZβ computations is 6.
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Fig. 3 Effect of shock-capturing for solving Example 1: a SUPG solution, b SUPG-YZβ solution, c absolute
error in SUPG solution, and d absolute error in SUPG-YZβ solution; ε = 10−8, nel = 2 × 42 × 42

Fig. 4 Comparison of errors for solving Example 1: a ε = 10−4, b ε = 10−8
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Fig. 5 Comparison of errors for solving Example 1; ε = 1.0.

Fig. 6 GFEM approximations for solving Example 2: a ε = 1.0, b ε = 10−2, c ε = 10−4, and d ε = 10−6;
nel = 2 × 42 × 42
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Fig. 7 Effect of shock-capturing for solving Example 2: a SUPG solution, b SUPG-YZβ solution, c absolute
error in SUPG solution, and d absolute error in SUPG-YZβ solution; ε = 10−8, nel = 2 × 42 × 42

Fig. 8 Comparison of errors for solving Example 2: a ε = 10−4, b ε = 10−8
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Fig. 9 GFEM approximations for solving Example 3: a ε = 1.0, b ε = 10−2, c ε = 10−4, and d ε = 10−6;
nel = 2 × 42 × 42

Example 3 Consider the following singularly perturbed reaction–convection–diffusion equa-
tion (Linß and Stynes 2001a):

−ε�u + ux + 11

7
uy + u = f in � = (0, 1)2 , (29)

u = 0 on ∂�, (30)

where the source term, f = f (x, y), is given as follows:

f (x, y) = x(1 − x) + y(1 − y). (31)

There is no known analytical solution to this problem. Therefore, the formula given inEq. (21)
is used for measuring the errors in approximations.

One can point out from Fig.9 that, as in the previous test problems, the GFEM yields
unacceptable solutions when solving Example 3 for values of the perturbation parameter less
than ε = 10−2. In Fig. 10 , the approximations obtained with the SUPG and SUPG-YZβ

formulations are compared, and the success of the shock-capturing technique employed is
illustrated. Finally, in Fig. 11, logarithmic plots comparing the degrees of freedom and errors
in approximations are given. We observe that the formulation enhanced with the shock-
capturing mechanism gives better accuracy as finer meshes are used. On the other hand,
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Fig. 10 Effect of shock-capturing for solving Example 3: a SUPG solution, b SUPG-YZβ solution; ε = 10−8,
nel = 2 × 42 × 42

Fig. 11 Comparison of errors for solving Example 3 for a ε = 10−4, b ε = 10−8

errors in the SUPG and SUPG-YZβ approximations are very close to each other for meshes
constructed with nel = 2 × 16 × 16 or more elements.

For solving Example 3, the scaling term Y of YZβ is set as Y = 0.035. The number of
iterations in the N–R process is 6.

Example 4 Consider the following singularly perturbed convection–diffusion equa-
tion (Hughes et al. 1986; John and Knobloch 2007):

−ε�u + cos
(
−π

3

)
ux + sin

(
−π

3

)
uy = 0 in � = (0, 1)2 , (32)

u = gD on ∂�, (33)

where the Dirichlet boundary condition is given as follows:

gD (x, y) =
{
0, if x = 1 or y ≤ 0.7,
1, else.

(34)

In the direction of convection, the solution exhibits an interior layer that starts at the point
(0, 0.7). Exponential layers are developed along the boundary x = 1 and on the right part of
the boundary y = 0.
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Fig. 12 GFEM approximations for solving Example 4: a ε = 1.0, b ε = 10−2, c ε = 10−4, and d ε = 10−6;
nel = 4 × 42 × 42

For solving Example 4, we use the mesh constructed with crossed elements (see Fig. 1b).
Figure12 shows the GFEM solutions to the solution of Example 4 for various values of
the diffusion parameter. The method yields unacceptable approximations for values of the
diffusion parameter ε smaller than 10−2. In Fig. 13 , the SUPG and SUPG-YZβ solutions
are compared. It is clearly seen that shock-capturing provides better resolutions near strong
gradients. In Fig. 14 , logarithmic plots comparing the degrees of freedom and errors in
approximations are given. Figure15 compares the solutions obtained with the SUPG and
SUPG-YZβ formulations for ε = 10−4 and ε = 10−8 along the line y = 0.1. The success
of the YZβ shock-capturing in resolving steep gradients is clearly observed.

In our computations, we set the scaling term Y of YZβ as Y = 0.03. The number of
nonlinear iterations is 5.

Example 5 Consider the following singularly perturbed convection–diffusion equation (John
and Knobloch 2008):

−ε�u + ux = f in � = (0, 1)2 , (35)

u = 0 on ∂�, (36)
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Fig. 13 Effect of shock-capturing for solving Example 4: a SUPG solution, b SUPG-YZβ solution; ε = 10−8,
nel = 4 × 42 × 42

Fig. 14 Comparison of errors for solving Example 4: a ε = 10−4, b ε = 10−8

Fig. 15 Comparison of SUPG and SUPG-YZβ approximations along y = 0.1 for solving Example 4: a
ε = 10−3, b ε = 10−8; nel = 4 × 42 × 42
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Fig. 16 GFEM approximations for solving Example 5: a ε = 1.0, b ε = 10−2, c ε = 10−4, and d ε = 10−6;
nel = 4 × 42 × 42

where the source term, f = f (x, y), is given as follows:

f (x, y) =
{
16 (1 − 2x) , if (x, y) ∈ [0.25, 0.75]2,
0, else.

(37)

The solution of Eqs. (35)–(36) exhibits two interior layers at (0.25, 0.75) × {0.25} and
(0.25, 0.75) × {0.75}.

Figure 16shows the GFEM approximations to the solution of Example 5 for various values
of the diffusion parameter. Themethod yields unacceptable approximations for values smaller
than ε = 10−2. It should also be noticed in Fig. 16d that, although a relatively finer mesh
with 7, 056 elements is used, the GFEM approximation is highly oscillatory for ε = 10−6.
In Fig. 17 , the SUPG and SUPG-YZβ solutions are presented. We also present the result
of computations performed on the mesh constructed with 4 × 42 × 42 crossed elements in
Fig. 18.

Figure 19compares the solutions obtained with the SUPG and SUPG-YZβ formulations
for ε = 10−4 and ε = 10−8 along the line y = 0.1. Although the SUPG formulation gives
oscillation-free solutions, the SUPG-YZβ introduces unwanted layers for solving Example 5.
It is reported by John and Knobloch (2008) that Example 5 is an example for which all the
spurious oscillations at layers diminishing (SOLD)methods examined in John and Knobloch
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Fig. 17 Effect of shock-capturing for solving Example 5: a SUPG solution, b SUPG-YZβ solution; ε = 10−8,
nel = 2 × 42 × 42

Fig. 18 Effect of shock-capturing for solving Example 5: a SUPG solution, b SUPG-YZβ solution; ε = 10−8,
nel = 4 × 42 × 42

Fig. 19 Comparison of SUPG and SUPG-YZβ results along x = 0.85 for solving Example 5: a ε = 10−4, b
ε = 10−8; nel = 2 × 42 × 42
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(2008) fail. Therefore, similar to the results obtained in John and Knobloch (2008), a quali-
tatively correct approximation to the solution of Example 5 is not possible by employing the
SUPG-YZβ formulation. Although tuning the scaling parameter Y of the YZβ can reduce
the effect of the shock-capturing term and produce better solution profiles, since the solutions
obtained with the SUPG formulation do not contain any oscillation, we conclude that the use
of any shock-capturing mechanism is not necessary. Because the SUPG-YZβ formulation
is not required for this problem, we believe that displaying error comparison plots for the
obtained approximations is unnecessary.

The scaling term Y of YZβ is set as Y= 0.5. The numbers of Newton–Raphson iterations
are found to be 5 for both meshes with 2 × 42 × 42 and 4 × 42 × 42 elements.

4 Conclusions

For solving convection-dominated problems, i.e., the problems where the diffusion term
is perturbed by positive small parameters, it is a well-known fact that classical methods
are insufficient in obtaining oscillation-free solutions. Therefore, this study has aimed to
compare the GFEM and SUPG formulations for solving such kinds of problems. In addition
to stabilization terms, the SUPG formulation has also been supplemented with the YZβ

shock-capturing technique, thereby improving the stability near regions where the solution
has steep gradients.

The proposed formulation and techniques have been evaluated on five challenging test
problems. Apart from Example 5 given by Eqs. (35)–(36), it has been observed that quite
good solution profiles were achieved by employing the SUPG-YZβ formulation. Besides, the
errors in approximations obtained have been compared both locally and globally, revealing
that the shock-capturing mechanism yields better results near steep gradients. Therefore, the
SUPG-YZβ formulation exhibits superior performance compared to the SUPG in convection
dominance in terms of maximum (L∞-norm) errors. It can also be stated that errors in the
SUPG and SUPG-YZβ approximations typically show similar trends in the L2 and Lε norms.

The methods and techniques used for solving stationary reaction–convection–diffusion
equations in this study can be extended to solve time-dependent problems and 3-dimensional
computations. Problems with discontinuous data can also be considered. In another aspect,
Shishkin/Shishkin–Bakhvalov-type layer-adapted meshes can be used, and the results can be
compared.
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