
Computational and Applied Mathematics (2023) 42:234
https://doi.org/10.1007/s40314-023-02368-w

TR-STF: a fast and accurate tensor ring decomposition
algorithm via defined scaled tri-factorization

Ting Xu1 · Ting-Zhu Huang1 · Liang-Jian Deng1 · Hong-Xia Dou2 ·
Naoto Yokoya3,4

Received: 2 March 2023 / Revised: 29 May 2023 / Accepted: 9 June 2023 /
Published online: 27 June 2023
© The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023

Abstract
This paper proposes an algorithm based on defined scaled tri-factorization (STF) for fast and
accurate tensor ring (TR)decomposition. First, basedon the fast tri-factorization approach,we
define STF and design a corresponding algorithm that can more accurately represent various
matriceswhilemaintaining a similar level of computational time. Second,we apply sequential
STFs to TR decomposition with theoretical proof and propose a stable (i.e., non-iterative)
algorithm named TR-STF. It is a computationally more efficient algorithm than existing
TR decomposition algorithms, which is beneficial when dealing with big data. Experiments
on multiple randomly simulated data, highly oscillatory functions, and real-world data sets
verify the effectiveness and high efficiency of the proposed TR-STF. For example, on the
Pavia University data set, TR-STF is nearly 9240 and 39 times faster, respectively, and more
accurate than algorithms based on alternating least squares and singular value decomposition.
As an extension, we apply sequential STFs to tensor train (TT) decomposition and propose
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a non-iterative algorithm named TT-STF. Experimental results demonstrate the superiority
of the proposed TT-STF compared with the state-of-the-art TT decomposition algorithm.

Keywords Tensor ring decomposition · Tensor train decomposition · Scaled
tri-factorization · Fast algorithm

Mathematics Subject Classification 68W99

1 Introduction

For an dth-order tensorX ∈ R
n1×n2×···×nd , where n1 = n2 = · · · = nd = n, the storage cost

(as well as the free parameters) of X grows exponentially as d increases. This exponential
growth is commonly referred to as the curse of dimensionality, which makes it impractical
to explicitly store all the entries of the tensor except for the minimal value of d . Even for
n = 4, storing a tensor of order d = 25 would require 9 petabytes. Therefore, it is crucial to
approximate higher-order tensors with compression schemes that do not destroy the inherent
characteristics of tensors as much as possible, for example, low-rank tensor decomposition
(Sultonov et al. 2023; Wang and Yang 2022; Cichocki et al. 2016; Xue et al. 2021b; Wang
et al. 2022). Tensor decomposition, which represents a high-order tensor (i.e., ≥ 3rd-order
tensor), as factor tensors and matrices, has been developed and applied in many fields, such
as computer vision (Fu et al. 2019; Deng et al. 2019; Xiao et al. 2022; Tai et al. 2021; Xue
et al. 2021a, 2022; Wang et al. 2023; Xu et al. 2022; Sun et al. 2023) and machine learning
(Deng et al. 2021, 2022, 2023; Cao et al. 2020; Ran et al. 2023). Themost well-known tensor
decompositions include Canonical Polyadic (CP) decomposition (Bro 1997; De Lathauwer
2006; Jiang et al. 2022; Bozorgmanesh and Hajarian 2022; Xue et al. 2019) and Tucker
decomposition (Tucker 1996; De Lathauwer et al. 2000; Luan et al. 2023; Che et al. 2021;
Che andWei 2020; Xue et al. 2020). Specifically, CP decomposition represents a tensor with
a set of rank-1 tensors, where the smallest number of the rank-1 tensors denotes CP rank.
Consequently, the storage cost of CP decomposition grows linearly with the tensor order.
Assuming that the CP rank of the dth-order tensor with each dimension of n is m, then
the storage cost of CP decomposition is nmd . However, there are no additional structural
assumptions (De et al. 2016; Xu 2016; Qi et al. 2015; Brachat et al. 2010), (1) the estimation
of the CP rank is an NP-hard problem (Hillar and Lim 2013), (2) the estimation of the rank-1
tensors is an ill-posed problem (DE Silva and Lim 2008), and (3) it is difficult to characterize
different correlations among different modes flexibly (Zhao et al. 2016). These lead to (1)
there is no guarantee of the existence of a low-rank approximation of a tensor through its rank-
m CP decomposition, (2) a stable and efficient algorithm to estimate the rank-1 tensors may
not exist, or it has poor performance when dealing with big data tensors, and (3) it performs
poorly in the structure preservation of tensors. Tucker decomposition expresses a tensor by
one core tensor and the factor matrices in all modes; Tucker rank is based on the Tucker
decomposition, where the tensor is unfolded along each mode, which inevitably destroys the
inherent structure of the tensor. In addition, the need for storing the m1 × m2 · · · × md core
tensor renders the Tucker decomposition increasingly unappealing as the tensor order d gets
large. In particular, the storage cost of Tucker decomposition grows exponentially with its
dimensions. Assume that the Tucker rank of X is [m,m, . . . ,m]T , then the storage cost of
Tucker decomposition is dnm + md .
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Fig. 1 Decomposition diagram of tensor Z ∈ R
n1×n2···×nd

Recently, tensor network, as an extension of tensor decomposition, has emerged as ameans
of decomposing a high-order tensor into sparsely interconnected small-scale cores and exhib-
ited superior properties in compressing (Orus 2014; Huckle et al. 2013; Hashemizadeh et al.
2020; Ding et al. 2019; Zniyed et al. 2020). Particularly, some TN models are introduced to
practical applications due to their excellent high-order data representation capabilities. Ten-
sor train (TT) decomposition (Oseledets 2011; Holtz et al. 2012; Oseledets and Tyrtyshnikov
2010; Dektor et al. 2021) and tensor ring (TR) decomposition (Zhao et al. 2016) are two such
networks. Specifically, as shown in Fig. 1a, TT decomposition tries to represent an dth-order
tensor Z ∈ R

n1×n2···×nd by a sequence of cores Gi ∈ R
mi×ni×mi+1 , i = 1, 2, . . . , d , where

G1 ∈ R
n1×m2 andGd ∈ R

md×nd arematrices (i.e.,m1 = md+1 = 1) and the remaining cores
are 3rd-order tensors. Vector [m2,m3, . . . ,md ]T is called the TT rank. TT decomposition
plays an important role in complex tensor networks and has been successfully applied inmany
applications, e.g., hyperspectral image super-resolution and tensor completion (Dian et al.
2019; Ding et al. 2021). However, TT decomposition has some inevitable limitations. For
example, the boundary condition, i.e.,m1 = md+1 = 1, will limit its representation capacity
and flexibility. To overcome these drawbacks, Zhao et al. (2016) propose TR decomposition,
which represents Z by a sequence of cores Gk ∈ R

mk×nk×mk+1 , k = 1, 2, . . . , d , where the
size of the last and first cores satisfies m1 = md+1, and vector m = [m1,m2, . . . ,md ]T is
denoted asTR rank (see Fig. 1b). ComparedwithTTdecomposition, TRdecomposition keeps
the invariance when the tensor dimension makes a circular shift. Thus, TR decomposition
can better represent tensors flexibly with the same parameters as in TT decomposition. Given
an dth-order tensor Z ∈ R

n×n×···×n , the TR rank and TT rank are [m1,m2 . . . ,md ]T and
[m2,m3 . . . ,md ]T , respectively, where m1 = m2 = · · · = md = m. Then, the storage cost
of TR decomposition and TT decomposition is dnm2, which means that the storage cost of
TR decomposition grows linearly with the tensor order d . Therefore, the TR decomposition
helps to break the curse of dimensionality (Oseledets and Tyrtyshnikov 2009). In fact, TR
decomposition degrades to TT decomposition when m1 = md+1 = 1. Based on its strong
representation capacity, TR decomposition has been widely used in many applications and
has produced competitive outputs, e.g., hyperspectral image denoising, hyperspectral image

123



234 Page 4 of 25 T. Xu et al.

compressive sensing, and remote sensing image reconstruction (Chen et al. 2020; He et al.
2019, 2022).

Given the size of input data, a stable and efficient algorithm forTRdecomposition is critical
in this era of big data. The current approaches mainly employ singular value decomposition
(SVD) and alternating least squares (ALS) algorithms. Specifically, Zhao et al. (2016) utilize
sequential SVDs to compute the cores (named TR-SVD), in which the TR rank can be
estimatedwith a prescribed relative error (RE).1 Further, Zhao et al. propose threeALS-based
iterative algorithms, where each of the cores is updated by solving a least-squares problem
(Xiao et al. 2021; Gnanasekaran 2022). Compared to ALS-based algorithms, TR-SVD is a
non-iterative algorithm, resulting in higher computational speed. This advantage arises from
the non-iterative nature of TR-SVD, which eliminates the need for repeated iterations that
are inherent in ALS-based algorithms. However, for high-order data, the efficiency of TR-
SVD is not satisfactory because it involves expensive SVD computation of large matrices.
In this paper, we propose a non-iterative algorithm called TR-STF, based on defined scaled
tri-factorization (STF), for fast and accurate TR decomposition. We are inspired by the fact
that the existing fast tri-factorization (FTF) is often unfeasible when presented with some
matrices without low rank due to its strict condition. We relax the condition to make it widely
used, define STF, and design a corresponding algorithm to represent data more accurately
in an acceptable time growth range. We then apply sequential STFs to TR decomposition
with theoretical proof and propose TR-STF. Extensive experiments show that compared with
the current state-of-the-art algorithms, the proposed TR-STF has advantages in accuracy
and efficiency, especially the latter. As an extension, we apply the sequential STFs to TT
decomposition with theoretical proof and propose the TT-STF, a non-iterative algorithm.
The contributions of this paper are as follows:

• We define STF and design a corresponding algorithm that accurately represents various
matrices.

• We propose a non-iterative TR-STF algorithm for fast and accurate TR decomposition
using sequential STFs with theoretical proof.

• Through experiments on multiple data and tasks, we demonstrate that the proposed
TR-STF outperforms state-of-the-art TR decomposition algorithms in efficiency and
accuracy, especially the former.Moreover, we propose TT-STF based on sequential STFs
for fast and accurate TT decomposition.

We arrange the remaining part as follows: The related work is introduced in Sect. 2. We
present the proposed STF and TR-STF algorithms in Sect. 3. Section4 gives the experimental
results. The application of STF in TT decomposition is shown in Sect. 5. Finally, we conclude
this paper in Sect. 6.

2 Related work

In this section, we will introduce works related to this paper.

2.1 Work-related notations

We use z, z, Z, and Z to represent scalars, vectors, matrices, and tensors, respectively.
The field of real numbers is denoted as R. Given an dth-order tensor Z ∈ R

n1×···×nd , its

1 This denotes the relative error between the given tensor and the approximated tensor.
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Fig. 2 Schematic diagram of FTF of matrix Z ∈ R
n1×n2 , where m � min(n1, n2)

( j1, j2, . . . , jd)th element and ( j1, . . . , ji−1, ji+1, . . . , jd)th mode-i fibe are denoted by
Z( j1, j2, . . . , jd), z( j1, . . . , ji−1, ji+1, . . . , jd), respectively, Frobenius norm is denoted by
‖Z‖F . When the order of Z is 3, i.e., d=3, we denote Z( j, :, :), Z(:, j, :), and Z(:, :, j)
as the j th horizontal, lateral, and frontal slice, respectively, for brevity, Z(:, j, :) is written
as Z( j). The inner product of two nth-order vectors x ∈ R

n and y ∈ R
n is defined as

〈x, y〉 = ∑n
i=1 x(i)y(i); the outer product of two vectors x ∈ R

m and y ∈ R
n is defined a

real matrix of order m × n obtained by multiplying each element in x and each element in y,
denoted as x ◦ y. Tr(·), vec(·), Rank (·), and (·)T represent the trace, vectorization, rank, and
transpose of thematrix, respectively.Q = qr(A)meansQR decomposition ofA of sizem×n,
where Q is the orthogonal matrix of size m × m. We denote eye(m, n) ∈ R

m×n as a matrix
whose elements on the main diagonal are 1 and the remaining elements are 0. We denote I as
an identity matrix. The permuted tensors of Z are denoted as “permute(Z, [i1, i2, . . . , id ])”,
therein [i1, i2, . . . , id ] is a random permutations of [1, 2, . . . , d].

2.2 Fast tri-factorization (FTF)

In recent work, Liu et al. (2013) propose FTF to avoid the high computational complexity
of SVD. Specifically, the authors decompose matrix Z ∈ R

n1×n2 into three factor matrices,
whose dimensions are all much smaller than Z, as shown in Definition 1 and Fig. 2.

Definition 1 [FTF (Liu et al. 2013)] For a given matrix Z ∈ R
n1×n2 , FTF of Z is

Z = ABC, (1)

where B ∈ R
m×m ; A ∈ R

n1×m is column orthogonal, i.e., ATA = I, C ∈ R
m×n2 is

row orthogonal, i.e., CCT = I; and m is an upper bound on the rank of Z and satisfies
m � min(n1, n2).

The condition,m � min(n1, n2), means that FTF is only applicable to low-rank matrices.
However, most data in the real world have complex structures and may not be of low rank.
In that case, this condition is no longer suitable. For example, we select the first band of one
image (x0043) with the size of 321 × 481 × 3 from the CBSD68 data set2 to test FTF with
different values ofm, as shown in Fig. 3. The information of the recovered image is seriously
lost when the value of m is minimal, such as 100. Less information in the recovered image
is lost with the increase in the value of m, such as 200 and 250. Therefore, it is necessary to
increase the value range of m. Especially, when m = 321, the recovered image is perfect. In
addition, with the increase of m, the running time does not increase much. When m is 321,
the time-consuming is only 0.004s longer than when m is 100, but the change of RelCha3

2 The details of this data set can be found at https://www.github.com/clausmichele/CBSD68-dataset.
3 RelCha is defined by

RelCha = ‖Z − R(Z)‖F
‖Z‖F , (2)

whereZ denotes the original image andR(Z) is the reconstructed image. The smaller the RelCha, the better
the result.
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Fig. 3 Comparison of reconstructed image results of FTF under different m, where RelCha denotes the RE
between the reference image and the reconstructed image

is obvious. Based on this observation, we define STF and design its algorithm as shown in
detail in Sect. 3.1.

2.3 Tensor ring (TR) decomposition

This section introduces three forms of TR decomposition and gives several work-related
definitions.

For an dth-order tensor Z ∈ R
n1×n2···×nd , the TR decomposition in the element-wise

form is represented by

Z( j1, j2, . . . , jd) = Tr{G1( j1)G2( j2) . . .Gd( jd)}

= Tr

{
d∏

i=1

Gi ( ji )

}

, (3)

where Gi ( ji ) ∈ R
mi×mi+1 is the ji th lateral slice of the i th core Gi ∈ R

mi×ni×mi+1 . We
rewrite (3) in the index form, i.e.,

Z( j1, j2, . . . , jd) =
m1,m2,...,md∑

β1,β2,...,βd=1

d∏

i=1
Gi (βi , ji , βi+1), (4)

where βd+1 = β1 due to the trace operation. ∀i ∈ {1, . . . , d}, 1 ≤ βi ≤ mi , 1 ≤ ji ≤ ni ,
where i is the index of tensor dimensions; βk is the index of latent dimensions; and jk is
the index of data dimensions. Based on Eq. (4), we express TR decomposition in the tensor
form, i.e.,

Z =
m1,...,md∑

β1,...,βd=1

g1(β1, β2) ◦ g2(β2, β3) ◦ · · · ◦ gd(βd , β1), (5)

where the symbol “◦” denotes the outer product of vectors and gi (βi , βi+1) ∈ R
ni is the

(βi , βi+1)th mode-2 fiber of Gi .
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Definition 2 [k-Unfolding Matrix (Zhao et al. 2016)] Let Z ∈ R
n1×n2···×nd be an dth-order

tensor. The k-unfolding of Z is a matrix, denoted by Z〈k〉 of size
∏k

i=1 ni × ∏d
j=k+1 n j ,

whose elements obey

Z〈k〉( j1 . . . jk, jk+1 . . . jd) = Z( j1, j2, . . . , jd), (6)

where the first k indices enumerate the rows of Z〈k〉, and the last d − k indices for its
columns, the multi-indices j1 . . . jk and jk+1 . . . jd are defined by 1+∑k

i=1( ji −1)
∏i−1

l=1 nl
and 1 + ∑d

i=k+1( ji − 1)
∏i−1

l=k+1 nl , respectively.

Definition 3 [Mode-k Unfolding Matrix (Zhao et al. 2016)] Let Z ∈ R
n1×n2···×nd be an dth-

order tensor. The mode-k unfolding matrix of Z is denoted by Z[k] of size nk × ∏d
j �=k n j

with its elements defined by

Z[k]( jk, jk+1 . . . jd j1 . . . jk−1) = Z( j1, j2, . . . , jd), (7)

where kth indices enumerate the rows of Z[k], and the rest d − 1 indices for its columns.

Definition 4 [Classical Mode-k Unfolding Matrix (Kolda and Bader 2009)] Let Z ∈
R
n1×n2···×nd be an dth-order tensor. The mode-k unfolding matrix of Z is denoted by Z(k)

of size nk × ∏d
j �=k n j , whose elements obey

Z(k)( jk, j1 . . . jk−1 jk+1 . . . jd) = Z( j1, j2, . . . , jd). (8)

where kth indices enumerate the rows of Z(k), and the rest d − 1 indices for its columns.

Definition 5 [Tensor Subchains (Zhao et al. 2016)]

• G≤k ∈ R
m1×∏k

j=1 n j×mk+1 with lateral slice matrices G≤k( j1 j2 . . . jk) = ∏k
i=1 Gi ( ji ).

• G>k ∈ R
mk+1×∏d

j=k+1 n j×m1 with lateral slice matrices G>k( jk+1 jk+2 . . . jd) =∏d
i=k+1 Gi ( ji ).

• G �=k ∈ R
mk+1×∏d

j=1, j �=k n j×mk with slice matrices G �=k( jk+1 . . . jd j1 . . . jk−1) =∏d
i=k+1 Gi ( ji )

∏k−1
i=1 Gi ( ji ).

3 Proposed STF and TR-STF algorithms

In this section, we define STF, design its algorithm, and then apply it to TR decomposition,
thus proposing the TR-STF algorithm.

3.1 Scaled tri-factorization (STF) algorithm

As illustrated in Sect. 2.2, the condition of FTFm � min(n1, n2) is not suitable for matrices
without low-rankness. Based on this fact, we define the following factorization.

Definition 6 (STF) For a matrix Z ∈ R
n1×n2 , STF of Z is

Z = ABC + N, (9)

where N denotes the error; B ∈ R
R×R ; A ∈ R

n1×R is column orthogonal, i.e., ATA = I,
C ∈ R

R×n2 is row orthogonal, i.e., CCT = I; and R denotes an upper bound on the rank of
Z satisfying Rank(Z) ≤ R ≤ min{n1, n2}.
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With STF defined, we need to solve the following problem to find three matrices in Eq.
(9) that satisfy ‖Z − ABC‖2F ≤ δ, where δ is a positive tolerance.

argmin
A,B,C

‖Z − ABC‖2F , s.t . ATA = I,CCT = I. (10)

Problem (10) is convex for each variable when the other two variables are fixed; therefore,
we update A, B, and C alternately. We initialize the three variables as A0 = eye(n1, R),
B0 = eye(R, R), and C0 = eye(R, n2), then the three variables are updated alternately.

1) A-subproblem: With B and C are fixed, we update A by

At+1 = argmin
ATA=I

‖Z − ABtCt‖2F , (11)

which has a closed-form solution (Shen et al. 2014; Wen et al. 2012):

At+1 = Â(:, 1 : R), (12)

where Â = qr(Z(Ct )T ).
2) C-subproblem: With A and B are fixed, we update C by

Ct+1 = argmin
CCT =I

‖Z − At+1BtC‖2F , (13)

which has a closed-form solution (Shen et al. 2014; Wen et al. 2012):

Ct+1 = ĈT , (14)

where Ĉ = C̄(:, 1 : R), C̄ = qr(ZTAt+1).
3) B-subproblem: With A and C are fixed, we update B by

Bt+1 = argmin
B

‖Z − At+1BCt+1‖2F , (15)

which has a closed-form solution:

Bt+1 = (At+1)TZ(Ct+1)T . (16)

We summarize the solving procedure of problem (10) in Algorithm 1, named STF, therein
kmit and δ are the maximum iteration (maxit) and stopping tolerance. In this paper, we
empirically set kmit and δ to 1 and 10−6, respectively.

Algorithm 1 Scaled Tri-Factorization (STF) Algorithm

Input: Z ∈ R
n1×n2

Parameter: Maxit kmit , δ, and R
Output: A, B, and C
Initialization: A0 = eye(n1, R), B0 = eye(R, R), C0 = eye(R, n2)
1: Let t = 0
2: while not converged and t < kmit and ‖Z − AtBtCt‖2F > δ do
3: Update At+1 by Eq. (12)
4: Update Ct+1 by Eq. (14)
5: Update Bt+1 by Eq. (16)

6: Check the convergence criterion:
‖Bt+1−Bt ‖2F

‖Bt ‖2F
< 10−6.

7: t ← t + 1
8: end while
9: return A = At , B = Bt , C = Ct
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Table 1 Comparison of SVD and STF on three random matrices

Matrix size 10,000×2000 10,000×6000 10,000×10,000

RelCha Time (s) RelCha Time (s) RelCha Time (s)

SVD 4.80e−15 2.52 7.00e−15 65.24 7.83e−15 264.70

STF 1.03e−15 1.57 1.36e−15 11.84 1.64−15 31.65

Best values are highlighted in bold

To illustrate the advantages of STF in data representation, we compare it with the well-
known SVD algorithm. Specifically, we randomly generate three matrices with the size of
10,000 × 2000, 10,000 × 6000, and 10,000 × 10,000 from the normal distribution, and
then represent them by SVD and STF, respectively. For STF, we set R as the minimum of
two dimensions of the matrix. Table 1 shows the comparison of running time and accuracy
for these two approaches; the best values are shown in bold font. Both algorithms perform
well in accuracy, but the time consumption of STF is always less than that of SVD, and
the time advantage of STF becomes more obvious as the size increases. The reason for the
shorter running time of STF compared to SVD is primarily attributed to the computational
efficiency of the QR decomposition employed in STF. The QR decomposition is known to
be computationally much cheaper than the SVD (The Singular Value Decomposition (SVD)
2002; Wen et al. 2012).

Motivation 2 Inspired by the powerful data representation ability and high efficiency of
STF, we apply it to complex tensor networks.

3.2 TR-STF algorithm

In this section, we propose an algorithm, TR-STF, for fast and accurate TR decomposition.

Theorem 1 Suppose tensor Z can be expressed by a TR decomposition. If the size of and
the rank of k-unfolding matrix Z〈k〉 are

∏k
j=1 n j × ∏d

j=k+1 n j and Mk+1, respectively, then

there exists a TR decomposition with TR rank m = [m1,m2, . . . ,md ]T which has that ∃ k,
Mk+1 ≤ m1mk+1 ≤ min{∏k

j=1 n j ,
∏d

j=k+1 n j }, the equal sign holds if Z〈k〉 is a full rank
matrix.

Proof Based on Eqs. (3) and (6), we obtain the following equation:

Z〈k〉( j1 . . . jk, jk+1 . . . jd) = Tr

{
d∏

i=1

Gi ( ji )

}

. (17)

Because equation Tr{∏d
i=1 Gi ( ji )} = 〈vec(∏k

i=1 Gi ( ji )), vec(
∏d

i=k+1 G
T
i ( ji ))〉 holds

(Zhao et al. 2016), we obtain the following equation:

Z〈k〉( j1 . . . jk, jk+1 . . . jd) =
〈

vec

(
k∏

i=1

Gi ( ji )

)

, vec

(
d∏

i=k+1

GT
i ( ji )

)〉

. (18)

According to the definition of tensor subchains, we rewrite the Eq. (18) as

Z〈k〉( j1 . . . jk , jk+1 . . . jd ) =
∑

β1,βk+1

G≤k( j1 . . . jk , β1βk+1)G>k(β1βk+1, jk+1 . . . jd ). (19)
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That is,

Z〈k〉 = G≤k
(2)(G

>k[2] )T , (20)

where the classical mode-2 unfolding matrixG≤k
(2) ∈ R

∏k
j=1 n j×m1mk+1 and mode-2 unfolding

matrix G>k[2] ∈ R

∏d
j=k+1 n j×m1mk+1 . Since the rank of matrix Z〈k〉 is Mk+1, we can establish

the following inequalities: Mk+1 ≤ m1mk+1 and Mk+1 ≤ min{∏k
j=1 n j ,

∏d
j=k+1 n j }. We

can always find a value for m1mk+1 that satisfies m1mk+1 ≤ min{∏k
j=1 n j ,

∏d
j=k+1 n j }.

Therefore, we have Mk+1 ≤ m1mk+1 ≤ min{∏k
j=1 n j ,

∏d
j=k+1 n j }. If matrix Z〈k〉 is a

full rank matrix, it means that Mk+1 = min{∏k
j=1 n j ,

∏d
j=k+1 n j }. Hence, the equality

Mk+1 = m1mk+1 = min{∏k
j=1 n j ,

∏d
j=k+1 n j } holds. ��

For TR-STF algorithm, we usually choose a specific mode as the starting point (e.g., the
first mode). According to Eqs. (18) and (19), TR decomposition can be easily written as

Z〈1〉( j1, j2 . . . jd) =
∑

β1,β2

G≤1( j1, β1β2)G>1(β1β2, j2 . . . jd). (21)

Subsequently, we represent Z〈1〉 by STF, i.e., Z〈1〉 = A1B1C1 + N1, where N1 denotes
the error and R = m1m2. The first core G1 ∈ R

m1×n1×m2 can be estimated by A1 with

correct reshaping and permutation. The subchain G>1 ∈ R
m2×∏d

j=2 n j×m1 can be generated
by correct reshaping and permutation of B1C1, which corresponds to the remaining d − 1

dimensions ofZ. Then we reshape G>1 as a matrixG>1 ∈ R
m2n2×∏d

j=3 n jm1 whose elements
can be expressed as

G>1(β2 j2, j3 . . . jdβ1) =
∑

β3

G2(β2 j2, β3)G>2(β3, j3 . . . jdβ1). (22)

Using STF, i.e., G>1 = A2B2C2 + N2, where N2 denotes the error and R = m3, we gen-

erate the second core G2 ∈ R
m2×n2×m3 by reshaping A2 and obtain G>2 ∈ R

m3×∏d
j=3 n j×m1

by reshaping B2C2. We perform this procedure sequentially to obtain all d cores G j ∈
R
m j×n j×m j+1 , j = 1, 2, . . . , d . We summarize the proposed TR-STF in Algorithm 2,

where “reshape” and “permute” are Matlab commands and Rank(G>k−1) ≤ mk+1 ≤
min{mknk,

∏d
j=k+1 n jm1}, k = 2, 3, . . . , d − 1 are the conditions in STF. It is worth noting

that the decomposition will be different if we choose a different mode as the start point. Espe-
cially, we draw a schematic diagram of TR-STF for 4th-order tensor Z ∈ R

n1×n2×n3×n4 , as
shown in Fig. 4, in which we choose the first mode as the start point.

3.3 Complexity analysis

Complexity analysis of STF algorithmAccording to Algorithm 1, the complexity of update
A,C, andB in each iteration isO(n1R2+n1n2R),O(n2R2+n1n2R), andO(n1n2R+n2R2).
Thus, the total complexity of STF is O(n1R2 + 2n2R2 + 3n1n2R).
Complexity analysis ofTR-STFalgorithmAsshown inAlgorithm2, steps 2 and7havehigh
complexity. Specifically, the complexity of step 2 and step 7 isO(P1R2

1+2Q1R2
1+3P1Q1R1)

and O(P2R2
2 + 2Q2R2

2 + 3P2Q2R2), respectively, where P1 = n1, Q1 = ∏d
j=2 n j , R1 =

m1m2, P2 = mknk , Q2 = ∏d
j=k+1 n jm1, and R2 = mk+1. Thus, the total complexity of

TR-STF is O(P1R2
1 + 2Q1R2

1 + 3P1Q1R1 + ∑d−1
k=2(P2R

2
2 + 2Q2R2

2 + 3P2Q2R2)).
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Fig. 4 TR-STF applied to a 4th-order tensor Z ∈ R
n1×n2×n3×n4 . Step 1: Unfold the target tensor Z along

the first mode to generate Z〈1〉; Step 2: Represent Z〈1〉 by STF (i.e., Z〈1〉 = A1B1C1) with R = m1m2, then

obtain the first core G1 byA1 with correct reshaping and permutation and generateG>1 by B1C1 with correct
reshaping and permutation; Step 3: RepresentG>1 by STF (i.e.,G>1 = A2B2C2) with R = m3, then obtain
the second core G2 by reshaping A2 and generate G>2 by reshaping B2C2; Step 4: Represent G>2 by STF
(i.e., G>2 = A3B3C3) with R = m4, then obtain the third core G3 by reshaping A3 and the fourth core G4
by reshaping B3C3

Algorithm 2 TR-STF Algorithm for TR Decomposition

Input: An dth-order tensor Z ∈ R
n1×n2×···×nd and the predefined TR rank m satisfying Rank(Z〈1〉) ≤

m1m2 ≤ min{n1,
∏d

j=2 n j } andRank(G>k−1) ≤ mk+1 ≤ min{mknk ,
∏d

j=k+1 n jm1}, k = 2, 3, . . . , d−1
Output: Core tensors G j , j = 1, 2, . . . , d
1: Select the first mode as the start point and generate Z〈1〉
2: Represent Z〈1〉 by STF: Z〈1〉 = A1B1C1 + N1, therein R = m1m2
3: G1 ← permute(reshape(A1, [n1,m1,m2]), [2, 1, 3])
4: G>1 ← permute(reshape(B1C1, [m1,m2,

∏d
j=2 n j ]), [2, 3, 1])

5: for k = 2 : d − 1 do
6: G>k−1 ← reshape(G>k−1, [mknk ,

∏d
j=k+1 n jm1])

7: Represent G>k−1 by STF: G>k−1 = AkBkCk + Nk , therein R = mk+1
8: Gk ← reshape(Ak , [mk , nk ,mk+1])
9: G>k ← reshape(BkCk , [mk+1,

∏d
j=k+1 n j ,m1])

10: end for
11: Gd = G>d−1
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Fig. 5 Relative error curve of
Algorithm 1
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3.4 Convergence analysis

In this section, we propose two algorithms, i.e., Algorithms 1 and 2, where Algorithm 2 is
a non-iterative algorithm that achieves convergence without the need for iterative processes
(Zhao et al. 2016). Therefore, we only analyze the convergence of Algorithm 1. Specifi-
cally, we conduct an empirical analysis to evaluate the convergence of Algorithm 1. Figure5
illustrates the convergence behavior of Algorithm 1 applied to the first band of the image
(x0023) with a size of 321 × 481 × 3 from the CBSD68 dataset. The figure clearly demon-
strates that Algorithm 1 exhibits rapid and substantial decrease in the relative error, indicating
efficient convergence.

4 Experiments

Because there is little work that focuses on TR decomposition, we compare the proposed TR-
STF with four classical algorithms proposed by Zhao et al. (2016): TR-ALS, TR-ALSAR,
TR-BALS, and TR-SVD, where the first approach needs to be predefined rank and the last
three methods can estimate rank adaptively. In all the experiments, we perform all algorithms
onMATLABR2020a on an Intel(R)Core(TM) i9-10900KFCPU@3.70GHz64.00GBRAM
platform.

4.1 Highly oscillatory function

In this section, we test the performance of all five algorithms on three highly oscillatory

functions, i.e., f1(x) = (x + 1)sin(100(x + 1)2), f2(x) = x− 1
4 sin( 23 x

3
2 ), and f3(x) =

sin(x) cos(x), as shown in Fig. 6 . We evaluate the first two functions at nd point, where
n and d are considered to be the dimension and order of the tensor, respectively. We set
nd as 2003, 1004, 505, and 306, respectively, then reshape them into tensors with the size of
200×200×200, 100×100×100×100, 50×50×50×50×50, and 30×30×30×30×30×30,
respectively. We set the RE and the maximum iteration steps as 10−4 and 20d , respectively,
and use the rank obtained from TR-SVD as the setting of TR-ALS. Table 2 shows the running
time and RelCha comparison with different orders and dimensions; the best and secondary
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Fig. 6 Four highly oscillatory functions, where f1(x) = (x + 1) sin(100(x + 1)2), f2(x) = x− 1
4 sin( 23 x

3
2 ),

f3(x) = sin(x) cos(x), and f4(x) = sin( x4 ) cos(x2)

Table 2 Comparison of the performance of all five algorithms on two highly oscillatory functions (i.e., f1(x)
and f2(x)) at different points nd

Algorithms RelCha Time (s) RelCha Time (s)

f1(x), d = 3, n = 200 f2(x), d = 3, n = 200

TR-ALS 2.91e−05 1.52 1.14e−05 0.78

TR-ALSAR 4.60e−05 8.90 5.15e−05 3.47

TR-BALS 3.82e-06 23.68 6.27e−06 31.12

TR-SVD 2.91e−05 0.21 1.14e−05 0.21

TR-STF (Ours) 8.45e−06 0.03 3.42e-06 0.03

d = 4, n = 100 d = 4, n = 100

TR-ALS 3.13e-05 12.26 1.82e−05 13.00

TR-ALSAR 1.80e−02 90.63 1.92e−02 89.50

TR-BALS 7.14e−05 9.77 1.81e-05 11.31

TR-SVD 3.13e-05 2.68 1.82e−05 3.12

TR-STF (Ours) 8.32e−05 0.13 7.28e−05 0.12

d = 5, n = 50 d = 5, n = 100

TR-ALS 5.52e−05 55.06 4.61e−05 59.77

TR-ALSAR 1.41e−02 405.91 1.55e−02 376.34

TR-BALS 5.24e−05 59.33 3.49e-05 60.38

TR-SVD 5.51e−05 8.35 4.61e−05 9.36

TR-STF (Ours) 3.25e-05 0.60 9.90e−05 0.39

d = 6, n = 30 d = 6, n = 30

TR-ALS 1.44e−05 365.64 2.49e-05 399.57

TR-ALSAR 1.96e−02 1409.52 5.32e−02 1271.90

TR-BALS 8.27e−06 261.39 5.44e−05 213.68

TR-SVD 1.44e−05 31.10 2.49e-05 34.53

TR-STF (Ours) 3.82e-06 1.99 9.32e−05 0.89

Best values are highlighted in bold and second best values are highlighted in underline
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Fig. 7 The running time of TR
decomposition of f3(x) at 30d ,
d = 4, 5, 6, points, using the
proposed TR-STF and other four
state-of-the-art algorithms
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values are bold and underlined, respectively. We find that all the algorithms leaving out
TR-ALSAR can achieve good accuracy. The three ALS-based algorithms exhibit slower
performance primarily because of their iterative nature, which involves repeated iterations
during the computation. In contrast, the non-iterative algorithms, TR-STF and TR-SVD,
demonstrate faster execution times. Among them, TR-STF achieves the best computational
speed due to the utilization of the computationally more efficient QR decomposition. For
example, whenwe decompose f2(x) at d = 6 and n = 30, the speed of the proposed TR-STF
is improved as much as 448× higher than TR-ALS, 1429× higher than TR-ALSAR, 240×
higher than TR-BALS, 38× higher than TR-SVD. Moreover, to more intuitively highlight
the high efficiency of the proposed TR-STF, we evaluate f3(x) at nd , n = 30, d = 4, 5, 6,
points (when d > 6, the computer used for this work does not have enough memory to run
these algorithms). Specifically, we reshape these values into 4th-order, 5th-order, and 6th-
order tensors, respectively, then decompose each of them using five algorithms. We record
the time required for five algorithms to achieve similar accuracy. The results are shown in
Fig. 7. It can be seen that the proposed TR-STF achieves an absolute advantage in time cost.

4.2 Randomly simulated tensor data

In this experiment, we consider randomly generated tensors with fixed rank and variable
dimension. Specifically, we randomly generate four cores Gi ∈ R

5×n×5, i = 1, 2, 3, 4,
where dimension n ranges from 20 to 100. Then, we use Gi to produce 4th-order tensor Z
whose rank is [5, 5, 5, 5]T . Subsequently, we apply the five algorithms to Z; the RE for TR-
ALS, TR-ALSAR, and TR-SVD is set as 10−4, and themaxit for three ALS-based algorithms
is set as 10d (where d is the order of the tensor). Table 3 and Fig. 8 report the accuracy and
time results, respectively; the best and secondary values of RelCha in Table 3 are bold and
underlined, respectively. We observe that TR-ALSAR exhibits poor accuracy performance,
which can be attributed to the fact that its estimated TR rank is too small to capture the full
complexity of the input data, resulting in reduced accuracy compared to other algorithms. In
addition, the running time of TR-ALSAR increases rapidly with the increase of n. TR-ALS
and TR-BALS have similar running times and accuracy performance, and TR-BALS can
accurately estimate rank. The rank estimated by TR-SVD is large, but its performance is
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Fig. 8 Running time comparison
of all the algorithms on randomly
simulated tensor data with
different dimensions n
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Table 4 Comparison of all five
algorithms on two real-world
image data sets

Data set Algorithms RelCha mmax Time (s)

PU TR-ALS 1.25e−14 127 184.81

TR-ALSAR 0.17 10 0.26

TR-BALS 5.39e−15 127 1.02

TR-SVD 7.97e−15 512 0.78

TR-STF (Ours) 1.01e-15 93 0.02

CBSD68 TR-ALS – – –

TR-ALSAR 0.38 2 19.02

TR-BALS 0.37 3 6.38

TR-SVD 8.13e−15 3264 16.91

TR-STF (Ours) 2.71e-15 3300 3.34

Best values are highlighted in bold and second best values are highlighted
in underline
mmax denotes the maximum value in TR rank

excellent. In general, for randomly simulated data, the proposed TR-STF yields secondary
results in accuracy and more advantages in efficiency.

4.3 Real-world image data sets

In this section, we consider the performance of all algorithms on two real-world image data
sets, the Pavia University (PU) Xu et al. (2020) and the CBSD68 data set. The maxit is set
as 10d (where d is the order of the tensor) for three ALS-based algorithms in these two data
sets.

PU data set The PU data set is a low-rank hyperspectral image with the size of 610 ×
340 × 103; we retain 93 bands by removing the low signal-to-noise ratio (SNR) bands, and
then choose the up-left 64×64×93 cube as the reference. We set the RE as 10−4 and use the
rank obtained from TR-SVD as the setting of TR-ALS. The results are shown in Table 4; the
best and secondary values of RelCha and running time are bold and underlined, respectively.
We find that the performance of TR-ALSAR is unsatisfactory in terms of accuracy due to the
small automatically estimated TR ranks. In contrast, TR-ALS, TR-BALS, TR-SVD and the
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Fig. 9 Comparison of visual results on the PU data set. This figure shows images consisting of 10th, 20th, and
30th bands of results represented by all five algorithms and the reference image

proposed TR-STF can achieve the satisfactory accuracy. Moreover, the proposed algorithm
also has more advantages in running time. For example, TR-STF is nearly 39 times faster
than TR-SVD and 9240 times faster than TR-ALS.

CBSD68 data set: The CBSD68 data set contains 68 color images with size of 481 ×
321 × 3 and 321 × 481 × 3. We first downsample them to 256 × 256 × 3, then stack these
images into a tensorZ ∈ R

256×256×3×68. Here,Z is not low-rank since this data set describes
68 different scenarios. We perform four algorithms on tensorZ leaving out TR-ALS because
its memory requirements outstrip the equipment used in these experiments. The RE is set
as 10−5, and the results are presented in Table 4; the best and secondary values of RelCha
and running time are bold and underlined, respectively. We find that images recovered by
TR-ALSAR and TR-BALS are not good, while TR-SVD and the proposed TR-STF can
represent the tensor Z well; with respect to efficiency, TR-STF is more than five times faster
than TR-SVD.

Moreover, we show the visual comparison of the results of the PU and the CBSD68 data
sets, respectively. Figure 9 shows the images consisting of 10th, 20th, and 30th bands of
results generated by all algorithms and of the reference image. We find that all algorithms
except TR-ALSAR can represent the PU data set well. For the CBSD68 data set, the per-
formance of TR-ALSAR and TR-BALS is unsatisfactory, while TR-SVD and TR-STF can
perfectly express this data, as shown in detail in Fig. 10. In general, the performance of TR-
ALSAR is unsatisfactory for these two real data sets. The reason may be that the estimation
of rank is not accurate. The performance of TR-BALS is satisfactory for the PU data set,
and the accuracy of TR-ALS is good, but it is not dominant in efficiency. The rank estimated
by TR-SVD is usually large, but its efficiency and accuracy are the best of the classical
algorithms. The proposed TR-STF has more advantages than TR-SVD.

4.4 Feature extraction for classification

Motivated by experiments in Zhao et al. (2016), we use all five algorithms for feature extrac-
tion for classification. For this experiment, we select the COIL-100 data set4 using 7200
images with the size of 128×128×3, which describe 100 different objects from 72 different
directions. TR-SVD, TR-ALSAR, and TR-BALS also adopt a unified input rank. The RE
and the maxit are set as 10−5 and 10d (where d is the order of the tensor), respectively. We
first downsample each of the images to the size of 32× 32× 3, then stack them into a tensor
Z ∈ R

32×32×3×7200. Next, we use all the algorithms on Z to estimate cores Gi ∈ R
m×ni×m ,

i = 1, 2, 3, 4,with predefined rank ranging from 2 to 4, where the fourth core G4 can be used
as the latent TR features while the subchain G �=4 can be regarded as the basis of latent sub-
space. Bymaking a permutation and reshaping, we generate a feature matrixG4 ∈ R

7200×m2
,

then use the k-nearest neighbor algorithm5 with k = 1 to classification. Table 5 presents the

4 The details of this data set can be found at https://www.kaggle.com/jessicali9530/coil100.
5 https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm.
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Fig. 10 Comparisonof visual results on theCBSD68data set. The1st–4th rowshows the results ofTR-ALSAR,
TR-BALS, TR-SVD, and TR-STF, the 5th row shows the corresponding ground truth (GT)

Table 5 Comparison of all the
algorithms on the COIL-100 data
set for classification with
different TR ranks [m,m,m,m]T

Algorithms Acc (%) Time (s) Acc (%) Time (s)

m = 2 m = 3

TR-ALS 92.56 21.09 98.10 42.19

TR-ALSAR 92.69 14.89 98.51 23.54

TR-BALS 79.71 5.96 86.53 8.73

TR-SVD 87.19 0.71 99.25 0.85

TR-STF (Ours) 88.79 0.05 95.17 0.12

m = 4 m = 5

TR-ALS 99.25 79.15 99.81 152.88

TR-ALSAR 99.21 42.86 99.57 77.44

TR-BALS 86.65 12.49 88.96 11.24

TR-SVD 99.29 0.99 99.56 1.19

TR-STF (Ours) 98.24 0.28 99.00 0.57

Best values are highlighted in bold and second best values are highlighted
in underline

results; the best and secondary values of classification accuracy (Acc) and running time are
bold and underlined, respectively. We find that the classification accuracy of each algorithm
is higher with the increase in rank. In addition, the advantage of the proposed TR-STF in
efficiency is still readily apparent.
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5 Proposed TT-STF algorithm

In this section, we apply the sequential STFs to TT decomposition, thus proposing the TT-
STF algorithm. Specifically, we briefly introduce the TT decomposition and then present the
TT-STF algorithm.

5.1 Tensor train (TT) decomposition

This section introduces three forms of TT decomposition (Oseledets 2011).
For an dth-order tensorZ ∈ R

n1×n2···×nd , the TT decomposition in the element-wise form
is represented by

Z( j1, j2, . . . , jd) = G1( j1)G2( j2) . . .Gd( jd), (23)

where Gi ( ji ) ∈ R
mi×mi+1 are the ji th lateral slice of the i th core Gi ∈ R

mi×ni×mi+1 . The
product of these parameter-dependent matrices is a matrix of size m1 ×md+1, so "boundary
conditions" m1 = md+1 = 1 have been imposed. Therefore, Eq. (23) can be rewritten as

Z( j1, j2, . . . , jd) = g1( j1)G2( j2) . . . gd( jd), (24)

g1( j1) is the j1th row vector of the first coreG1 ∈ R
n1×m2 , gd( jd) is the jd th column vector

of the last core Gd ∈ R
md×nd . We rewrite (23) in the index form, i.e.,

Z( j1, j2, . . . , jd) = ∑

β1,β2,...,βd+1

G1(β1, j1, β2)G2(β2, j2, β3) . . .Gd(βd , jd , βd+1),

(25)

where βd+1 = β1 = 1, 1 ≤ βk ≤ mk , k ∈ {2, . . . , d}; 1 ≤ ji ≤ ni , i ∈ {1, . . . , d}; βk is
the index of latent dimensions; and ji is the index of data dimensions. Based on Eq. (25), we
can express TT decomposition in the tensor form, given by

Z =
∑

β2,...,βd

g1(β2) ◦ g2(β2, β3) ◦ · · · ◦ gd(βd)
T , (26)

where the symbol “◦” denotes the outer product of vectors, g1(β2) and gd(βd) are β2th row
and βd th column of G1 and Gd , respectively, gi (βi , βi+1) ∈ R

ni is the (βi , βi+1)th mode-2
fiber of Gi , therein i ∈ {2, 3, . . . , d − 1}.

5.2 TT-STF algorithm

In this section, we define the matrix subchain similar to tensor subchain for subsequent
description, and then propose TT-STF algorithm.

Definition 7 (Matrix Subchains)

• G≤k ∈ R

∏k
j=1 n j×mk+1 with row vector g≤k( j1 j2 . . . jk) = g1( j1)G2( j2) . . .Gk( jk).

• G>k ∈ R
mk+1×∏d

j=k+1 n j with column vector g>k( jk+1 jk+2 . . . jd) =
Gk+1( jk+1)Gk+2( jk+2) . . . gd( jd).

Next, we propose a fast and accurate algorithm, TT-STF, for TT decomposition using
sequential STFs with theoretical proof.
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Theorem 2 Suppose tensor Z can be expressed by a TT decomposition. If the size of and
the rank of k-unfolding matrix Z〈k〉 are

∏k
j=1 n j × ∏d

j=k+1 n j and Mk+1, respectively, then

there exists a TT decomposition with TT rank m = [m2,m3, . . . ,md ]T which has that ∃
k, Mk+1 ≤ mk+1 ≤ min{∏k

j=1 n j ,
∏d

j=k+1 n j }, the equal sign holds if Z〈k〉 is a full rank
matrix.

Proof Based on Eqs. (6) and (24), we obtain the following equation:

Z〈k〉( j1 . . . jk, jk+1 . . . jd) = g1( j1)G2( j2) . . . gd( jd). (27)

According to the definition of matrix subchains, we rewrite Eq. (27) as

Z〈k〉( j1 . . . jk, jk+1 . . . jd) =
∑

βk+1

G≤k( j1 . . . jk, βk+1)G>k(βk+1, jk+1 . . . jd). (28)

That is,

Z〈k〉 = G≤kG>k, (29)

where the matrix G≤k ∈ R

∏k
j=1 n j×mk+1 and matrix G>k ∈ R

mk+1×∏d
j=k+1 n j . Since

the rank of matrix Z〈k〉 is Mk+1, we can establish the following inequalities: Mk+1 ≤
mk+1 and Mk+1 ≤ min{∏k

j=1 n j ,
∏d

j=k+1 n j }. We can always find a value for

mk+1 that satisfies mk+1 ≤ min{∏k
j=1 n j ,

∏d
j=k+1 n j }. Therefore, we have Mk+1 ≤

mk+1 ≤ min{∏k
j=1 n j ,

∏d
j=k+1 n j }. If matrix Z〈k〉 is a full rank matrix, it means

that Mk+1 = min{∏k
j=1 n j ,

∏d
j=k+1 n j }. Hence, the equality Mk+1 = mk+1 =

min{∏k
j=1 n j ,

∏d
j=k+1 n j } holds. ��

For the TT-STF algorithm, we usually choose a specific mode as the starting point (e.g.,
the first mode). According to Eqs. (27)–(28), TT decomposition can be easily written as

Z〈1〉( j1, j2 . . . jd) =
∑

β2

G≤1( j1, β2)G>1(β2, j2 . . . jd). (30)

Subsequently, we represent Z〈1〉 by STF, i.e., Z〈1〉 = A1B1C1 + N1, where N1 denotes the
error and R = m2. The first core G1 ∈ R

n1×m2 can be estimated by A1. The subchain

G>1 ∈ R
m2×∏d

j=2 n j can be generated by B1C1, which corresponds to the remaining d − 1

dimensions of Z. Then we reshape G>1 as matrix Ẑ2 ∈ R
m2n2×∏d

j=3 n j whose elements can
be expressed as

Ẑ2(β2 j2, j3 . . . jd) =
∑

β3

G2(β2 j2, β3)G>2(β3, j3 . . . jd). (31)

Using STF, i.e., Ẑ2 = A2B2C2 + N2, where N2 denotes the error and R = m3, we generate

the second core G2 ∈ R
m2×n2×m3 by reshaping A2 and obtainG>2 ∈ R

m3×∏d
j=3 n j by B2C2,

which corresponds to the remaining d − 2 dimensions of Z. We perform this procedure
sequentially to obtain all d cores. Finally, the proposed TT-STF is summarized in Algorithm
3, where “reshape” is Matlab commands and Rank(Ẑk) ≤ mk+1 ≤ min{mknk,

∏d
j=k+1 n j },

k = 2, 3, . . . , d − 1 are the conditions in STF. It is worth noting that the decomposition will
be different if we choose a different mode as the start point. Especially, we draw a schematic
diagram of TT-STF for 4th-order tensor Z ∈ R

n1×n2×n3×n4 , as shown in Fig. 11, in which
we choose the first mode as the start point.
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Fig. 11 TT-STF applied to a 4th-order tensor Z ∈ R
n1×n2×n3×n4 . Step 1: Unfold the target tensor Z along

the first mode to generate Z〈1〉; Step 2: Represent Z〈1〉 by STF (i.e., Z〈1〉 = A1B1C1) with R = m2, then
obtain the first core G1 by reshaping A1 and generate Ẑ2 by reshaping B1C1; Step 3: Represent Ẑ2 by STF
(i.e., Ẑ2 = A2B2C2) with R = m3, then obtain the second core G2 by reshaping A2 and generate Ẑ3 by
reshaping B2C2; Step 4: Represent Ẑ3 by STF (i.e., Ẑ3 = A3B3C3) with R = m4, then obtain the third core
G3 by reshaping A3 and the fourth core G4 by reshaping B3C3

Algorithm 3 TT-STF Algorithm for TT Decomposition

Input: An dth-order tensor Z ∈ R
n1×n2×···×nd and the predefined TT rank m satisfying Rank(Z〈1〉) ≤

m2 ≤ min{n1,
∏d

j=2 n j } and Rank(Ẑk ) ≤ mk+1 ≤ min{mknk ,
∏d

j=k+1 n j }, k = 2, 3, . . . , d − 1

Output: Cores G1 ∈ R
n1×m2 , G j ∈ R

mi×ni×mi+1 , j = 2, 3, . . . , d − 1, Gd ∈ R
md×nd , of TT

decomposition
1: Select the first mode as the start point and obtain Z〈1〉
2: for k = 1 : d − 1 do
3: if k == 1 then
4: Represent Z〈1〉 by STF: Z〈1〉 = A1B1C1 + Nk , therein R = m2
5: G1 ← reshape(A1, [n1,m2])
6: else
7: Ẑk ← reshape(G>k−1, [mknk ,

∏d
j=k+1 n j ])

8: Represent Ẑk by STF: Ẑk = AkBkCk + Nk , therein R = mk+1
9: Gk ← reshape(Ak , [mk , nk ,mk+1])
10: end if
11: G>k ← BkCk
12: end for
13: Gd = G>d−1
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Table 6 Comparison of
TT-HSVD and TT-STF on highly
oscillatory function f4(x) at
different points nd

Algorithms RelCha Time (s) RelCha Time (s)

d = 3, n = 200 d = 4, n = 100

TT-HSVD 9.48e−06 0.18 1.66e-05 1.98

TT-STF (Ours) 1.97e-06 0.03 3.15e−05 0.09

d = 5, n = 50 d = 6, n = 30

TT-HSVD 1.84e-05 5.61 3.79e−05 12.87

TT-STF (Ours) 2.45e−05 0.36 4.33e-06 1.03

Best values are highlighted in bold

5.3 Compare TT-STF with TT-HSVD

To evaluate the effectiveness of the proposed TT-STF, we compare TT-STF with the state-of-
the-art TT-HSVD (Zniyed et al. 2020) on highly oscillatory function, f4(x) = sin( x4 ) cos(x2)
(see Fig. 6), to verify its effectiveness and efficiency. Specifically, we evaluate this function at
nd point, where n and d are considered to be the dimension and order of tensor, respectively.
We set nd as 2003, 1004, 505, and 306, then reshape them into tensors with the size of
200×200×200, 100×100×100×100, 50×50×50×50×50, and 30×30×30×30×30×30.
The RE for TT-SVD is set as 10−4, and the indices for TT-HSVD are set as 1, 2, 2, and 3,
respectively. Table 6 shows the running time and RelCha comparison with different n and
d; the best and secondary values of RelCha and running time are bold and underlined,
respectively. We find that the proposed TT-STF has more advantages than TT-HSVD in
efficiency under similar accuracy. For example, when d = 6 and n = 30, the running time
of TT-STF is about one-twelfth that of TT-HSVD.

6 Conclusion

In this paper,wepropose a stableTR-STFalgorithmwith theoretical proof basedon sequential
STFs to achieve fast and accurate TR decomposition. Specifically, to take advantage of the
high efficiency of the existing FTF and overcome its limitation of only being efficient to
low-rank matrices due to its strict condition, we define STF and design a corresponding
algorithm. Compared with FTF, STF has a broader range of applications, can better preserve
the latent information of data, and does not increase processing time appreciably. Equipped
with this tool, we propose TR-STF for efficient TR decomposition. Extensive experimental
results on multiple randomly simulated data, highly oscillatory functions, and real-world
image data sets illustrate the high efficiency and effectiveness of the proposed TR-STF. As
an extension, we use sequential STFs for fast and accurate TT decomposition with theoretical
proof and propose TT-STF. Experimental results on highly oscillatory functions verify its
effectiveness. The proposed TR-STF and TT-STF can generate excellent performance, but
they cannot estimate rank adaptively, a topic for future research.
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