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Abstract
In this paper, we analyze, from the numerical point of view, two thermo-elastic problems
involving the Green–Lindsay theory. The coupling term is different for each case, involving
second order or first order spatial derivatives, respectively. The variational formulation leads
to a linear coupled system which is written in terms of the velocity and temperature speed.
An existence and uniqueness results and the exponential energy decay for the problem with
the stronger coupling are recalled. The polynomial energy decay for the weaker coupling is
then proved but using the theory of linear semigroups. Then, a fully discrete approximation
is introduced using the finite element method and an implicit scheme. A discrete stability
property and a main a priori error estimates result are shown, from which we can derive the
linear convergence of the approximations. Finally, some numerical simulations are presented
to demonstrate the accuracy of the algorithm, the discrete energy decay and the dependence
on the relaxation parameter.
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1 Introduction

In this work, we consider two thermoelastic models based on the Green–Lindsay theory
(Green and Lindsay 1972). Therefore, it is worth recalling that these authors proposed a
theory where the heat conduction was different than the parabolic version. In fact, since that
parabolic version allows the propagation of instantaneous thermal waves (and so, it violates
the so-called “causality principle”), several authors have proposed different theories trying to
overcome this difficulty. Among the pioneering researchers we can cite the above commented
proposal by Green and Lindsay (1972) that, even if it is based on Fourier law, we have an
energy equation which brings us to a damped hyperbolic equation to describe the behavior
of the temperature. There exists a huge number of contributions dealing with this theory
[see the numerous references in the papers by Hetnarski and Ignaczak (1999, 2000) and
the books (Ignaczak and Ostoja-Starzewski 2009; Straughan 2011)]. It is well-known that,
when we consider the usual theory of thermoelasticity of Green–Lindsay type, we conclude
that the solutions decay through the time and, for the one-dimensional case, this decay is of
exponential type. Moreover, if we consider the strain gradient elasticity (or the thermoelastic
plate) with the heat conduction of parabolic type (Avalishvili et al. 2018; Aouadi et al. 2019;
Aouadi and Moulahi 2015; Fernández-Sare et al. 2010; Liu and Renardy 1995; Liu and
Quintanilla 2010; Lindsay and Straughan 1979; Liu et al. 2022; Shivay and Mukhopadhyay
2020), we find that the decay is also exponential in the one-dimensional case or in higher
dimensions for the plate. It led recently to the question if it would also happen similarly for
the heat conduction of the Green–Lindsay type. When we consider the systems of equations
governing both problems we can appreciate a clear similarity, being its main difference the
coupling term. In the case of the strain-gradient thermoelasticity, such coupling is weaker,
obtaining that, for this case, the energy decay is slow (Quintanilla et al. 2023) and, evenmore,
we prove that, in fact, it is polynomial (see the appendix provided in this work). For the other
case, since the coupling is stronger, the energy decay is exponential (even for dimensions
greater than one1). In this paper, our aim is to develop a similar study from the numerical
point of view, which constitutes one of the novelties of this work. We also think that it is
relevant to understand the difference between the behavior of the solutions to these problems
with different coupling mechanisms and so, we will study it numerically. Indeed, even if the
discrete energy decay is always exponential, in this work we will show that it is much faster
when the coupling mechanism is stronger and it leads to an exponential energy decay for the
continuous problem.

The plan of this paper is as follows. The model equations for the two problems and the
assumptions required on the constitutive parameters are presented in Sect. 2. The existence of
a unique solution and the energy decay property, recently proved in Quintanilla et al. (2023),
is recalled. Then, by using the classical finite elementmethod and the implicit Euler scheme, a
fully discrete approximation is introduced in Sect. 3. A discrete stability property and a priori
error estimates are proved, and the linear convergence is derived under some additional
regularity conditions on the continuous solution. Finally, some numerical simulations are
presented in Sect. 4 to demonstrate the numerical convergence, the behavior of the discrete
energy decay and the dependence on the coupling parameter.

1 This fact is remarkable if we compare it with the system corresponding to the Lord–Shulman problemwhich
shows a slow decay (Quintanilla and Racke 2011).
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2 The thermoelastic model

In this section, we describe the thermomechanical problems that we will study in the paper.
We refer the reader to the recently published work (Quintanilla et al. 2023) for further
details. Here, we restrict, for the sake of simplicity in the numerical simulations, to the one-
dimensional case, although the extension of the numerical analysis, presented in the next
section, to the multi-dimensional setting is not difficult. Therefore, we will consider the
following linear systems:

ρutt + μuxxxx − a(θxx + αθt xx ) = 0,
hθt t + dθt − κθxx + autxx = 0,

}
(1)

ρutt + μuxxxx − buxx − a(θx + αθt x ),

hθt t + dθt − κθxx − autx = 0.

}
(2)

We note that the unique difference is that, in the coupling term of the first equation of
both systems, there is a stronger coupling in the first system. Here, u and θ denote the
displacement and the temperature deviation in a rod occupying the interval (0, �), � > 0, ρ
is the mass density, κ is the thermal conductivity, d is the thermal capacity, μ is the elastic
modulus in system (1) but the hyperelastic modulus in system (2) and b is the elastic modulus
in system (2). Moreover, α is a relaxation parameter usually used in the Green–Lindsay
theory which satisfies the condition αd − h > 0, and we also assume that all parameters
ρ, μ, |a|, α, h, d, κ and b are positive.

We will study the deformation of the rod over a finite time interval (0, T ), with T > 0
being the final time.

To obtain a well-posed problem, we need to impose boundary and initial conditions to the
above systems. Therefore, we assume the following Dirichlet-type boundary conditions for
the displacements and Neumann-type boundary conditions for the temperature, that is,

u(0, t) = u(�, t) = ux (0, t) = ux (�, t) = 0 for a.e. t ∈ (0, T ),

θx (0, t) = θx (�, t) = 0 for a.e. t ∈ (0, T ),
(3)

and the initial conditions, for a.e. x ∈ (0, �),

u(x, 0) = u0(x), ut (x, 0) = v0(x), θ(x, 0) = θ0(x), θt (x, 0) = ϑ0(x). (4)

In the above conditions, functions u0, v0, θ0 and ϑ0 represent the initial data of the
problems. Moreover, to guarantee the uniqueness of solutions to the problems we need to
assume that functions θ0 and ϑ0 have null average.

Hence, we will consider two similar problems: the first one defined by system (1) with
boundary conditions (3) and initial conditions (4), and the second one defined by system
(2) with boundary conditions (3) and initial conditions (4). Since no doubt the numerical
analysis of both problems is rather similar, we will focus on the first problem since it has
some additional difficulties due to the stronger coupling between the equations of the system.

The existence and uniqueness, as well as the exponential decay, were recently studied in
Quintanilla et al. (2023) and they are summarized as follows.

Theorem 1 Under the condition αd − h > 0, then problem (1), (3) and (4) admits a unique
solution

u ∈ C1([0, T ]; H2
0 (0, �)) ∩ C2([0, T ]; L2(0, �)),

θ ∈ C([0, T ]; H2
0 (0, �))∩C1([0, T ]; H1(0, �)) ∩ C2([0, T ]; L2(0, �))
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which is exponentially stable. In a similar way, we also conclude that problem (2)–(4) admits
a unique solution with the same regularity but, in this case, the energy decay is slow (not
exponential at least).

The proof of the above theorem is shown in the recent paper (Quintanilla et al. 2023)
and it is based on the use of the theory of linear semigroups, adequate energy functionals
and some a priori estimates. However, following the work done in Bazarra et al. (2022) for
another MGT problem, in fact we could prove that this energy decay is polynomial (see the
Appendix A for details).

3 Fully discrete approximations and an a priori error analysis

In this section, we present an a priori error analysis of a fully discrete scheme for solving
problem (1), (3) and (4). As we commented above, the second problem described in the
previous section can be analyzed analogously.

First, we need to provide a variational formulation of this problem. Therefore, let us denote
Y = L2(0, �) and denote by (·, ·) and ‖ · ‖ the inner product and the norm in this space,
respectively. Moreover, let E = H1(0, �) and V = H2

0 (0, �).
Integrating by parts system (1) and using boundary conditions (3) we obtain the following

weak form of the thermomechanical problem.
Find the velocity v : [0, T ] → V and the temperature speed ϑ : [0, T ] → E such that

v(0) = v0, ϑ(0) = ϑ0, and for a.e. t ∈ (0, T ) and w ∈ V , ξ ∈ E ,

ρ(vt (t), w) + μ(uxx (t), wxx ) − a(θ(t) + αθt (t), wxx ) = 0, (5)

(hϑt (t) + dϑ(t), ξ) + κ(θx (t), ξx ) + a(vxx (t), ξ) = 0, (6)

where the displacements u(t) and the temperature θ(t) are recovered from the relations:

u(t) =
∫ t

0
v(s) ds + u0, θ(t) =

∫ t

0
ϑ(s) ds + θ0. (7)

Remark 1 We note that the variational formulation of the problem defined by system (2) is
rather similar. The unique difference is that we must replace variational equations (5) and (6)
by the following ones:

ρ(vt (t), w) + μ(uxx (t), wxx )+b(ux (t), wx ) + a(θ(t) + αθt (t), wx ) = 0, (8)

(hϑt (t) + dϑ(t), ξ) + κ(θx (t), ξx ) − a(vx (t), ξ) = 0. (9)

Now, we will obtain the approximation of problem (5)–(7). We will proceed in two steps.
First, we approximate the problem in space. Thus, let us assume that the interval [0, �] is
divided into M subintervals of length h = �/M , with nodes a0 = 0 < · · · < aM = �, and
construct the finite element spaces:

Eh = {ξ h ∈ C([0, �]) ∩ E ; ξ h[ai ,ai+1] ∈ P1([ai , ai+1])
∀ i = 0, . . . , M − 1},

V h = {wh ∈ C1([0, �]) ∩ V ; wh[ai ,ai+1] ∈ P3([ai , ai+1])
∀ i = 0, . . . , M − 1},

(10)

where Pr ([ai , ai+1]) represents the space of polynomials of degree r in the subinterval
[ai , ai+1].
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The discrete initial conditions u0h , v0h , θ0h and ϑ0h are approximations of the respective
initial conditions u0, v0, θ0 and ϑ0 defined as

u0h = Ph
1 u

0, v0h = Ph
1 v0, θ0h = Ph

2 θ0, ϑ0h = Ph
2ϑ0. (11)

Here, we denote by Ph
1 and Ph

2 the interpolation operators over the finite element spaces V h

and Eh , respectively (see Ciarlet 1991 for details).
Second, to provide the time discretization, we consider a uniform partition of the time

interval [0, T ], denoted by 0 = t0 < t1 < . . . < tN = T , where k = T /N is the time step
size. If f is a continuous function, we denote fn = f (tn) and, for the sequence {zn}Nn=0, let
δzn = (zn − zn−1)/k be its divided differences.

Therefore, using the well-known implicit Euler scheme we can introduce the following
fully discrete problem.

Find the discrete velocity vhk = {vhkn }Nn=0 ⊂ V h and the discrete temperature speed
ϑhk = {ϑhk

n }Nn=0 ⊂ Eh such that vhk0 = v0h , ϑhk
0 = ϑ0h , and for all n = 1, . . . , N and

wh ∈ V h, ξ h ∈ Eh ,

ρ(δvhkn , wh) + μ((uhkn )xx , w
h
xx ) − a(θhkn + αϑhk

n , wh
xx ) = 0, (12)

(hδϑhk
n + dϑhk

n , ξ h) + κ((θhkn )x , ξ
h
x ) + a((vhkn )xx , ξ

h) = 0, (13)

where the discrete displacements uhkn and the discrete temperature θhkn are updated from the
relations:

uhkn = k
n∑
j=1

vhkj + u0h, θhkn = k
n∑
j=1

ϑhk
j + θ0h . (14)

Using the assumptions on the constitutive coefficients and applying Lax-Milgram lemma,
it is easy to prove that the above discrete problem has a unique solution.

Remark 2 Again, the numerical approximation of the problem obtained by using system (2)
is similar to the previous one. The unique difference is that we must replace the discrete
variational equations (12) and (13) by the following ones (as we also did in (8), (9)):

ρ(δvhkn , wh) + μ((uhkn )xx , w
h
xx ) + b((uhkn )x , w

h
x ) + a(θhkn + αϑhk

n , wh
x ) = 0, (15)

(hδϑhk
n + dϑhk

n , ξ h) + κ((θhkn )x , ξ
h
x ) − a((vhkn )x , ξ

h) = 0. (16)

Now, we will provide a discrete stability property that we summarize in the following.

Lemma 1 Under the assumptions of Theorem 1, the sequences {uhk, vhk, θhk, ϑhk}, gener-
ated by discrete problem (12)–(14), satisfy the stability estimate:

‖vhkn ‖2 + ‖(uhkn )xx‖2 + ‖ϑhk
n ‖2 + ‖(θhkn )x‖2 ≤ C,

where C is a positive constant assumed to be independent of the discretization parameters h
and k.

Proof For the sake of clarity in the calculations, we assume that α = 1. It is straightforward
to extend this result to the general case.

Taking as a test function wh = vhkn in discrete variational equation (12) we obtain

ρ(δvhkn , vhkn ) + μ((uhkn )xx , (v
hk
n )xx ) − a(θhkn + ϑhk

n , (vhkn )xx ) = 0.
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Using the estimates

ρ(δvhkn , vhkn ) ≥ ρ

2k

{
‖vhkn ‖2 − ‖vhkn−1‖

}
,

μ((uhkn )xx , (v
hk
n )xx ) ≥ μ

2k

{
‖(uhkn )xx‖2 − ‖(uhkn−1)xx‖2

}
,

we find that
ρ

2k

{
‖vhkn ‖2 − ‖vhkn−1‖

}
+ μ

2k

{
‖(uhkn )xx‖2 − ‖(uhkn−1)xx‖2

}

−a(θhkn + ϑhk
n , (vhkn )xx ) ≤ 0. (17)

Now, taking the discrete variational equation (13) for a test function ξ h = ϑhk
n we have

(hδϑhk
n + dϑhk

n , ϑhk
n ) + κ((θhkn )x , (ϑ

hk
n )x ) + a((vhkn )xx , ϑ

hk
n ) = 0.

Keeping in mind that

(hδϑhk
n , ϑhk

n ) ≥ h

2k

{
‖ϑhk

n ‖2 − ‖ϑhk
n−1‖

}
,

κ((θhkn )x , (ϑ
hk
n )x ) ≥ κ

2k

{
‖(θhkn )x‖2 − ‖(θhkn−1)x‖2

}
,

it follows that

h

2k

{
‖ϑhk

n ‖2 − ‖ϑhk
n−1‖

}
+ κ

2k

{
‖(θhkn )x‖2 − ‖(θhkn−1)x‖2

}

+a((vhkn )xx , ϑ
hk
n ) ≤ 0. (18)

Combining estimates (17) and (18) we have

ρ

2k

{
‖vhkn ‖2 − ‖vhkn−1‖

}
+ μ

2k

{
‖(uhkn )xx‖2 − ‖(uhkn−1)xx‖2

}
− a(θhkn , (vhkn )xx )

+ h

2k

{
‖ϑhk

n ‖2 − ‖ϑhk
n−1‖

}
+ κ

2k

{
‖(θhkn )x‖2 − ‖(θhkn−1)x‖2

}
≤ 0.

Multiplying the above estimates by k and summing up to n it leads

‖vhkn ‖2 + ‖(uhkn )xx‖2 + ‖ϑhk
n ‖2 + ‖(θhkn )x‖2 − ak

n∑
j=1

(θhkj , (vhkj )xx )

≤ C
(‖v0h‖2 + ‖(u0h)xx‖2 + ‖ϑ0h‖2 + ‖(θ0h)x‖2

)
.

Finally, keeping in mind that

k
n∑
j=1

(θhkj , (vhkj )xx ) =
n∑
j=1

(θhkj , (uhkj )xx − (uhkj−1)xx )

=
n−1∑
j=1

(θhkj − θhkj+1, (u
hk
j )xx ) + (θhkn , (uhkn )xx ) − (θhk1 , (u0h)xx )

= −k
n−1∑
j=1

(ϑhk
j , (uhkj )xx ) + (θhkn , (uhkn )xx ) − (θhk1 , (u0h)xx ),

‖θhkn ‖2 ≤ C

⎛
⎝‖θ0h‖2 + k

n∑
j=1

‖ϑhk
j ‖2

⎞
⎠ ,
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applying several times Cauchy–Schwarz inequality and Cauchy’s inequality ab ≤ εa2 +
1
4ε b

2, a, b, ε ∈ R with ε > 0, and using a discrete version of Gronwall’s inequality (see
Campo et al. (2006)), we obtain the discrete stability. 
�

In the rest of the section, we will obtain some a priori error estimates on the numerical
errors vn − vhkn and ϑn − ϑhk

n , which we state in the following result.

Theorem 2 Let the assumptions of Theorem 1 hold. If we denote by (u, v, θ, ϑ) the solution
to problem (5)–(7)s and by (uhk, vhk, θhk, ϑhk) the solution to problem (12)-(14), then we
have the following a priori error estimates, for all {wh

n }Nn=0 ⊂ V h, {ξ hn }Nn=0 ⊂ Eh,

max
0≤n≤N

{
‖vn − vhkn ‖2 + ‖(un − uhkn )xx‖2 + ‖(θn − θhkn )x‖2 + ‖ϑn − ϑhk

n ‖2
}

≤ Ck
N∑
j=1

[
‖vt (t j ) − δv j‖2 + ‖ut (t j ) − δu j‖2V + ‖v j − wh

j ‖2V + ‖ϑt (t j ) − δϑ j‖2

+‖θt (t j ) − δθ j‖2E + ‖ϑ j − ξ hj ‖2E
]

+C

k

N−1∑
j=1

[
‖v j − wh

j − (v j+1 − wh
j+1)‖2 + ‖ϑ j − ξ hj − (ϑ j+1 − ξ hj+1)‖2 + I j

]

+C max
0≤n≤N

‖vn − wh
n‖2 + C max

0≤n≤N
‖ϑn − ξ hn ‖2

+C
(
‖v0 − v0h‖2 + ‖u0 − u0h‖2V + ‖θ0 − θ0h‖2E + ‖ϑ0 − ϑ0h‖2

)
, (19)

where C is a positive constant which does not depend on parameters h and k, I j is the
integration error given by

I j =
∥∥∥∥∥∥
∫ t j

0
ϑ(s) ds − k

l∑
j=1

ϑl

∥∥∥∥∥∥
2

(20)

and, for a Hilbert space X, let ‖ · ‖X denote the norm in X.

Proof In this proof, to simplify the calculations, we will consider again that α = 1. We note
that we can modify the arguments used below to the general case with some minor changes.

First, we obtain the error estimates on the velocity vn − vhkn . Thus, we subtract variational
equation (5) for a test function w = wh ∈ V h ⊂ V , at time t = tn , and discrete variational
equation (12) to find that, for all wh ∈ V h ,

ρ(vt (tn) − δvhkn , wh) + μ((un − uhkn )xx , w
h
xx ) − a(θn − θhkn + ϑn − ϑhk

n , wh
xx ) = 0.

Then, we find that, for all wh ∈ V h ,

ρ(vt (tn) − δvhkn , vn − vhkn ) + μ((un − uhkn )xx , (vn − vhkn )xx )

−a(θn − θhkn + ϑn − ϑhk
n , (vn − vhkn )xx )

= ρ(vt (tn) − δvhkn , vn − wh) + μ((un − uhkn )xx , (vn − wh)xx )

−a(θn − θhkn + ϑn − ϑhk
n , (vn − wh)xx ).

Taking into account that
(
δvn − δvhkn , vn − vhkn

)
≥ 1

2k

{
‖vn − vhkn ‖2 − ‖vn−1 − vhkn−1‖2

}
,
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((un − uhkn )xx , (vn − vhkn )xx ) = ((un − uhkn )xx , (ut (tn) − δun)xx )

+((un − uhkn )xx , (δun − δuhkn )xx ),(
(un − uhkn )xx , (δun − uhkn )xx

)
≥ 1

2k

{
‖(un − uhkn )xx‖2 − ‖(un−1 − uhkn−1)xx‖2

}
,

where we have used the notations δvn = (vn − vn−1)/k and δun = (un − un−1)/k, applying
several times Cauchy–Schwarz inequality and the previously commented Cauchy’s inequal-
ity, we obtain the following error estimates for the velocity field, for all wh ∈ V h ,

ρ

2k

{
‖vn − vhkn ‖2 − ‖vn−1 − vhkn−1‖2

}

−a(θn − θhkn + ϑn − ϑhk
n , (vn − vhkn )xx )

+ μ

2k

{
‖(un − uhkn )xx‖2 − ‖(un−1 − uhkn−1)xx‖2

}

≤ C
(
‖vt (tn) − δvn‖2 + ‖vn − vhkn ‖2 + ‖vn − wh‖2V + ‖(un − uhkn )xx‖2

+‖ϑn − ϑhk
n ‖2 + ‖θn − θhkn ‖2 + ‖ut (tn) − δun‖2V

+(δvn − δvhkn , vn − wh)
)
, (21)

where, here and in what follows, C will represent a positive constant which depends on the
constitutive coefficients, but it does not depend on the discretization parameters h and k, and
whose value may change even within the same line.

Secondly, we derive the a priori error estimates on the temperature speed ϑn − ϑhk
n .

Subtracting variational equation (6), for a test function ξ = ξ h ∈ Eh ⊂ E at time t = tn ,
and discrete variational equation (13), we have, for all ξ h ∈ Eh ,

(hϑt (tn) − δϑhk
n + d(ϑn − ϑhk

n ), ξ h) + κ((θn − θhkn )x , ξ
h
x ) + a((vn − vhkn )xx , ξ

h) = 0,

and so we obtain, for all ξ h ∈ Eh ,

(hϑt (tn) − δϑhk
n + d(ϑn − ϑhk

n ), ϑn − ϑhk
n ) + κ((θn − θhkn )x , (ϑn − ϑhk

n )x )

+a((vn − vhkn )xx , ϑn − ϑhk
n )

= (hϑt (tn) − δϑhk
n + d(ϑn − ϑhk

n ), ϑn − ξ h) + κ((θn − θhkn )x , (ϑn − ξ h)x )

+a((vn − vhkn )xx , ϑn − ξ h).

Keeping in mind that

(
hδϑn − δϑhk

n , ϑn − ϑhk
n

)
≥

h

2k

{
‖ϑn − ϑhk

n ‖2 − ‖ϑn−1 − ϑhk
n−1‖2

}
,

κ((θn − θhkn )x , (ϑn − ϑhk
n )x ) = κ((θn − θhkn )x , (θt (tn) − δθn)x )

+κ((θn − θhkn )x , (δθn − δθhkn )x ),

κ((θn − θhkn )x , (δθn − δθhkn )x ) ≥ κ

2k

{
‖(θn − θhkn )x‖2 − ‖(θn−1 − θhkn−1)x‖2

}
,

we have, for all ξ h ∈ Eh,

h

2k

{
‖ϑn − ϑhk

n ‖2 − ‖ϑn−1 − ϑhk
n−1‖2

}

+ κ

2k

{
‖(θn − θhkn )x‖2 − ‖(θn−1 − θhkn−1)x‖2

}

+a((vn − vhkn )xx , ϑn − ϑhk
n ) − a((vn − vhkn )xx , ϑn − ξ h)
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≤ C
(
‖ϑt (tn) − δϑn‖2 + ‖ϑn − ϑhk

n ‖2 + ‖ϑn − ξ h‖2E + ‖(θn − θhkn )x‖2

+‖θt (tn) − δθn‖2E + (δϑn − δϑhk
n , ϑn − ξ h)

)
. (22)

Combining estimates (21) and (22) we find that, for all wh ∈ V h, ξ h ∈ Eh ,

ρ

2k

{
‖vn − vhkn ‖2 − ‖vn−1 − vhkn−1‖2

}
− a(θn − θhkn , (δun − δuhkn )xx )

+ μ

2k

{
‖(un − uhkn )xx‖2 − ‖(un−1 − uhkn−1)xx‖2

}
− a((δun − δuhkn )xx , ϑn − ξ h)

+ h

2k

{
‖ϑn − ϑhk

n ‖2 − ‖ϑn−1 − ϑhk
n−1‖2

}
+ κ

2k

{
‖(θn − θhkn )x‖2 − ‖(θn−1 − θhkn−1)x‖2

}

≤ C
(
‖vt (tn) − δvn‖2 + ‖vn − vhkn ‖2 + ‖vn − wh‖2V + ‖(un − uhkn )xx‖2

+‖ϑn − ϑhk
n ‖2 + ‖θn − θhkn ‖2 + ‖ut (tn) − δun‖2V + (δvn − δvhkn , vn − wh)

+‖ϑt (tn) − δϑn‖2 + ‖ϑn − ξ h‖2E + ‖θt (tn) − δθn‖2E + (δϑn − δϑhk
n , ϑn − ξ h)

)
,

Multiplying the above estimates by k and summing up to n we have, for all {wh
j }nj=1 ⊂

V h, {ξ hj }nj=1 ⊂ Eh ,

‖vn − vhkn ‖2 − k
n∑
j=1

(θ j − θhkj , (δu j − δuhkj )xx ) + ‖(un − uhkn )xx‖2

+‖ϑn − ϑhk
n ‖2 − k

n∑
j=1

((δu j − δuhkj )xx , ϑ j − ξ hj ) + ‖(θn − θhkn )x‖2

≤ Ck
n∑
j=1

(
‖vt (t j ) − δv j‖2V + ‖v j − vhkj ‖2 + ‖v j − wh

j ‖2V + ‖(u j − uhkj )xx‖2

+‖ϑ j − ϑhk
j ‖2 + ‖θ j − θhkj ‖2 + ‖ut (t j ) − δu j‖2V + (δv j − δvhkj , v j − wh

j )

+‖ϑt (t j ) − δϑ j‖2 + ‖ϑ j − ξ hj ‖2E + ‖θt (t j ) − δθ j‖2E + (δϑ j − δϑhk
j , ϑ j − ξ hj )

)
.

Since

k
n∑
j=1

(δv j − δvhkj , v j − wh
j ) =

n∑
j=1

(v j − vhkj − (v j−1 − vhkj−1), v j − vhj )

= (vn − vhkn , vn − wh
n ) + (v0h − v0, v1 − wh

1 )

+
n−1∑
j=1

(v j − vhkj , v j − wh
j − (v j+1 − wh

j+1)),

k
n∑
j=1

(δϑ j − δϑhk
j , ϑ j − ξ hj ) =

n∑
j=1

(ϑ j − ϑhk
j − (ϑ j−1 − ϑhk

j−1), ϑ j − ξ hj )

= (ϑn − ϑhk
n , ϑn − ξ hn ) + (ϑ0h − ϑ0, ϑ1 − ξ h1 )

+
n−1∑
j=1

(ϑ j − ϑhk
j , ϑ j − ξ hj − (ϑ j+1 − ξ hj+1)),
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k
n∑
j=1

(θ j − θhkj , (δu j − δuhkj )xx ) =
n∑
j=1

(θ j − θhkj , (u j − uhkj − (u j−1 − uhkj−1))xx )

= (θn − θhkn , (un − uhkn )xx ) + (θhk1 − θ1, (u
0 − u0h)xx )

+k
n−1∑
j=1

(
(ϑ j − ϑhk

j , (u j − uhkj )xx ) + (δθ j − θt (t j ), (u j − uhkj )xx )
)
,

k
n∑
j=1

((δu j − δuhkj )xx , ϑ j − ξ hj ) =
n∑
j=1

((u j − uhkj − (u j−1 − uhkj−1))xx , ϑ j − ξ hj )

= ((un − uhkn )xx , ϑn − ξ hn ) + ((u0h − u0)xx , ϑ1 − ξ h1 )

+
n−1∑
j=1

((u j − uhkj )xx , ϑ j − ξ hj − (ϑ j+1 − ξ hj+1)),

‖θn − θhkn ‖2 ≤ C

⎛
⎝‖θ0 − θ0h‖2 + I j + k

n∑
j=1

‖ϑ j − ϑhk
j ‖2

⎞
⎠ ,

where I j is the integration error given in (20), using again a discrete version of Gronwall’s
inequality (see Campo et al. (2006)) we conclude the desired a priori error estimates.

We note that we can use the above a priori error estimates to derive the convergence order
of the approximations under additional regularity conditions on the continuous solution.
Therefore, if we assume that

u ∈ H3(0, T ; Y ) ∩ W 1,∞(0, T ; H3(0, �)) ∩ H2(0, T ; V ),

θ ∈ H3(0, T ; Y ) ∩ W 1,∞(0, T ; H2(0, �)) ∩ H2(0, T ; E),
(23)

we obtain the following.

Corollary 1 Under the additional regularity conditions (23) and the assumptions of Theorem
2, we find that the approximations obtained by problem (12)–(14) are linearly convergent;
that is, there exists a positive constant C, independent of the discretization parameters h and
k, such that

max
0≤n≤N

{
‖vn − vhkn ‖ + ‖un − uhkn ‖V + ‖θn − θhkn ‖E + ‖ϑn − ϑhk

n ‖
}

≤ C(h + k).

Remark 3 Wenote that we could analyze in a similar way variational problem (8), (6) and (7),
approximated by the fully discrete problem (15), (13) and (14). Proceeding as in the proof
of Lemma 1, we could derive the same dicrete stability property, and, following Theorem 2,
we could prove a priori error estimates (19), which would lead to the linear convergence of
the approximations under additional regularity conditions (23). However, we omit the details
for the sake of clarity in the presentation of this work.

4 Numerical results

Now, we present the numerical algorithm that we have used for solving problem (12)–(14)
and we show some numerical examples.
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4.1 The numerical scheme

In this subsection, we describe the algorithm for solving problem (1), (3) and (4). Thus, given
the solution uhkn−1, v

hk
n−1, θ

hk
n−1 and ϑhk

n−1 at time tn−1, the discrete velocity vhkn and the dicrete
temperature speed ϑhk

n are the solution to the following linear system:

ρ(vhkn , wh) + μk2((vhkn )xx , w
h
xx ) = ρ(vhkn−1, w

h) − μk((uhkn−1)xx , w
h
xx )

+ak(θhkn + αϑhk
n , wh

xx ) ∀wh ∈ V h,

(hϑhk
n + dkϑhk

n , ξ h) + κk2((ϑhk
n )x , ξ

h
x ) = (hϑhk

n−1, ξ
h) − κk((θhkn−1)x , ξ

h
x )

−ak((vhkn )xx , ξ
h) ∀ξ h ∈ Eh .

Using the well-known commercial code MATLAB, this algorithm was implemented on
a 3.2 Ghz PC, and we note that a typical run (h = k = 0.001) took about 1.92 seconds of
CPU time.

4.2 Numerical convergence in a simple problem

As a first example, we solve problem (1), (3) and (4) to show the accuracy of the approxima-
tions. Then, we have used the following data in the simulations:

ρ = 1, μ = 2, a = 2, α = 0.2, h = 1, d = 10, κ = 1.

Defining the following initial conditions, for all x ∈ (0, 1),

u0(x) = v0(x) = θ0(x) = ϑ0(x) = x3(x − 1)3,

considering the homogeneous Dirichlet boundary conditions (3), if we add the (artificial)
supply terms for each equation of system (1), for all (x, t) ∈ (0, 1) × (0, 1),

F1(x, t) = et (x6 − 3x5 − 69x4 + 143x3 + (3168x2)/5 − (3528x)/5 + 144),
F2(x, t) = et x(11x5 − 33x4 + 63x3 − 71x2 + 36x − 6),

the exact solution to this slightly modified version of problem (1), (3) and (4) can be easily
calculated and it has the form, for (x, t) ∈ [0, 1] × [0, 1]:

u(x, t) = θ(x, t) = et x3(x − 1)3.

We note that the analysis of this problem is similar to the one shown in the previous section.
Therefore, in Table 1 we show the approximation errors estimated as

max
0≤n≤N

{
‖vn − vhkn ‖ + ‖un − uhkn ‖V + ‖θn − θhkn ‖E + ‖ϑn − ϑhk

n ‖
}

for several values of the discretization parameters h and k and, in Fig. 1, we plot the evolution
of the error depending on the parameter h + k. As can be clearly seen, the convergence of
the algorithm is observed, and the linear convergence, stated in Corollary 1, is achieved.

If we assume that there are not supply terms, and we use the data:

T = 60, ρ = 5, μ = 2, a = 2, α = 0.5, h = 1, d = 10, κ = 1.

and the initial conditions, for all x ∈ (0, 1),

u0(x) = v0(x) = 0, θ0(x) = ϑ0(x) = 100x3(x − 1)3,
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Table 1 Example 1: Numerical errors for some values of h and k

h ↓ k → 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001

1/23 0.523759 0.522878 0.529184 0.544520 0.561657 0.596643 0.623082

1/24 0.260119 0.259736 0.259665 0.261011 0.264813 0.278217 0.288663

1/25 0.127944 0.127864 0.127804 0.127929 0.129727 0.137718 0.144017

1/26 0.063332 0.063281 0.063259 0.063271 0.063512 0.065251 0.066864

1/27 0.031557 0.031483 0.031459 0.031458 0.031540 0.032215 0.032899

1/28 0.015863 0.015731 0.015691 0.015686 0.015724 0.016060 0.016397

1/29 0.008143 0.007920 0.007846 0.007835 0.007851 0.008017 0.008184

1/210 0.004392 0.004071 0.003938 0.003919 0.003926 0.004007 0.004094

1/211 0.002670 0.002199 0.001904 0.001889 0.002173 0.002004 0.002076

1/212 0.002281 0.000536 0.001264 0.000254 0.001240 0.000250 0.001736

1/213 0.007346 0.002421 0.000229 0.000179 0.003713 0.000999 0.001755

Fig. 1 Example 1: asymptotic constant error with respect to parameter h + k

taking the discretization parameter h = 0.001 and k = 0.001, the evolution in time of the
discrete energy (see Quintanilla et al. 2023) defined as:

E(t) = 5‖vhkn ‖2 + 2‖(uhkn )xx‖2 + ‖ϑhk
n ‖2 + ‖(θhkn )x‖2

is plotted in Fig. 2 (in both natural and semi-log scales). We note that we have represented
their evolution (in natural scale), on the left-hand side, until time t = 10 to see better the
shape of the curves. Even if these decays seem to be exponential, on the right-hand side
(semi-log scale) we can observe that, after time t = 30, the decay is faster for the second-
order coupling corresponding to Problem 1. We recall that, for this problem, it was proved
that the energy decay was exponential meanwhile it was polynomial for Problem 2.
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Fig. 2 Example 1: evolution in time of the discrete energy (natural and semi-log scales)

Fig. 3 Example 2: displacement and velocity for different values of parameter a (Problem 1)

4.3 Dependence of the solution on the coupling parameter a

In this example, we will investigate the dependence on parameter a for the solution to the
thermomechanical problem defined by system (1) with initial conditions (4) and boundary
conditions (3), which we name as Problem 1, and for the solution to the thermomechanical
problem defined by system (2) with initial conditions (4) and boundary conditions (3), which
we name as Problem 2.

In these simulations, we have used the following data:

T = 1, ρ = 10, μ = 2, α = 0.5, h = 1, d = 10, κ = 3,

and the initial conditions, for all x ∈ (0, 1),

u0(x) = v0(x) = x3(x − 1)3, θ0(x) = ϑ0(x) = 100x2(x − 1)2.

Taking the discretization parameters h = k = 0.001, the solution to Problem 1 is plotted in
Figs. 3 and 4 for some values of parameter a. Regarding the displacements and the velocities
(see Fig. 3), we can see that both displacements and velocities have a quadratic form, being
larger when parameter a increases. If we consider the temperature and the temperature speed
(see Fig. 4), we observe that the shape for this largest value of the coupling parameter a is
drastically different.

123



196 Page 14 of 17 N. Bazarra et al.

Fig. 4 Example 2: temperature and thermal velocity for different values of parameter a (Problem 1)

Fig. 5 Example 2-Problem 2: displacement and velocity for different values of parameter a (Problem 2)

Fig. 6 Example 2: temperature and thermal velocity for different values of parameter a (Problem 2)

By using the same data that in the previous simulations, the solution to Problem 2 is
shown in Figs. 5 and 6 for those values of parameter a. We can appreciate that, for values of
parameter a less than 1, the displacements and velocities (see Fig. 5) the solutions are very
similar. However, for the largest value of this parameter, it seems that there is a delay on the
solution. The temperature and the temperature speed are plotted in Fig. 6 and we can see that
both are quadratic, being rather similar.
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Appendix A: Polynomial energy decay

In a recent paper (Bazarra et al. 2022), the authors considered the problem determined by
system (2) with boundary conditions (3) and initial conditions (4). It was proved the existence
and uniqueness of solutions and their slow decay. That is, we cannot expect the uniform
exponential energy decay of the solutions. However, we are going to see that we can obtain
a polynomial energy decay.

We recall that this problem can be written in the following abstract form:

d

dt
U (t) = AU (t), U (0) = U 0, (24)

where the unknownvariable isU = (u, v, θ, ϑ) and so, the initial dataU 0 = (u0, v0, θ0, ϑ0).
This problem is considered in the Hilbert space

H = (H2(0, �) ∩ H1
0 (0, �)) × L2(0, �) × H1∗ (0, �) × L2∗(0, �),

where

L2∗(0, �) = {g ∈ L2(0, �);
∫ �

0
g(x) dx = 0}, H1∗ (0, �) = H1(0, �) ∩ L2∗(0, �).

Moreover, the matrix operator A is defined as

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0

−μ

ρ
D4 + b

ρ
D2 0

a

ρ
D

a

ρ
αD

0 0 0 1

0
a

h
D

h

h
D2 −d

h

⎞
⎟⎟⎟⎟⎟⎠

.

It was proved that A generates a contractive semigroup and that zero belongs to the
resolvent of the operator. We can also show that its domain is the following:

D(A) = {(u, v, θ, ϑ) ; v ∈ H2(0, �) ∩ H1
0 (0, �), ϑ ∈ H1∗ (0, �), θ ∈ H2(0, �),

θx ∈ H1
0 (0, �), u ∈ H4(0, �), uxx ∈ H1

0 (0, �)},
which is a dense subspace.
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Theorem 3 The solutions to problem (24) satisfy

‖U (t)‖H ≤ Mt−1/2‖U (0)‖D(A),

where M is a positive constant.

Proof To prove this result, we recall the characterization given by Borichev and Tomilov
(2009), which guarantees the proposed decay whenever the imaginary axis is contained in
the resolvent of the operator and the condition

lim|ω|→∞ω−2‖(iωI − A)−1‖ < ∞ (25)

holds. Since it was proved in Quintanilla et al. (2023) that the imaginary axis was contained
in the resolvent of the operator, we only need to show condition (25). Let us assume that it
does not hold. Then, we can find a sequence of real numbers ωn → ∞ and a sequence of
unit norm vectors at the domain of the operator (un, vn, θn, ϑn) such that

ω2
n(iωnun − vn) → 0 in H2(0, �),

ω2
n(iρωnvn − (μunxxxx − bunxx − a(θnx + dϑnx ))) → 0 in L2(0, �),

ω2
n(iωnθn − ϑn) → 0 in H1(0, �),

ω2
n(ihωnϑn − (dϑn − κθnxx − avnx )) → 0 in L2(0, �).

The dissipation inequality implies that

ωnθnx , ωnϑn → 0 in L2(0, �).

Now, we see that ω−1
n unxxxx is bounded by the second convergence. Therefore, we can

multiply the last convergence by ω−1
n unxxxx and we find that

〈ϑn, unxxx 〉 = −〈ϑnx , unxx 〉 → 〈iωnθnx , unxx 〉 → 0,
〈θnxx , ω−1

n unxxx 〉 = −〈θnx , ω−1
n unxxxx 〉 → 0.

Then, we conclude that

‖unxx‖2 = 〈unxx , unxx 〉 = −〈unx , unxxx 〉 = 〈ivnx , ω−1
n unxxx 〉.

But

−〈vnx , ω−1
n unxxx 〉 → a−1

[〈ihωnϑn, ω
−1
n unxxx 〉 − d〈ϑn, ω

−1
n unxxx 〉 + κ〈θnxx , ω−1

n unxxx 〉
]

→ −a−1κ〈θnx , ω−1
n unxxxx 〉 → 0,

then we also find that vn → 0 in L2(0, �), and we arrive to a contradiction because we
assumed that condition (25) did not hold. We note that, following the same argument, we
can prove that the imaginary axis is contained at the resolvent. Therefore, it follows that the
thesis of the theorem holds.
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