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Abstract
In this paper, we propose a fast adaptive algorithm for solving nonlinear inverse problems in
Hilbert spaces. The iterative process of the proposed method combines classical two point
gradient method and adaptive accelerate strategy. In practice, it is often encountered that
the reconstruction solution has special feature, such as sparsity and slicing smoothness. To
capture the special feature of solution, convex functions are utilized to be penalty terms in
iterative format.Meanwhile, a complete convergence analysis is given to show the theoretical
rationality of the algorithm. The numerical simulations are provided to demonstrate the
effectiveness and acceleration effect of the proposed method.

Keywords Nonlinear inverse problems · Two point gradient method · Adaptive · Convex
penalty terms

JEL Classification C63

1 Introduction

In this paper, we are interested in nonlinear inverse problem that can be formulated as

F(x) = y. (1)

Here F : D(F) ⊂ X → Y is a nonlinear operator with its definition domainD(F). The core
of the inverse problem is to try to get an approximate solution to problem (1) by knowing the
composition of the data y and the forward operator F (Engl and Ramlau 1996; Kaltenbacher
et al. 2008; Ito and Jin 2014; Schtster et al. 2012; Leonardo et al. 2015). Algorithmically,
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using gradient descent method applied to the functional

J1(x) := ‖F(x) − y‖2,
we obtain the classical Landweber iteration (Hanke et al. 1995; Scherzer 1998) of the form

xn+1 = xn − F ′(xn)∗(F(xn) − y). (2)

Theoretically, the complete convergence analysis of this method has been widely studied. It
is well known that, under the general assumptions of the next section, the rate of convergence
of xn → x∗ (x∗ is the true solution to Eq. (1).) as n → ∞ will, in general, be arbitrarily
slow (Kaltenbacher et al. 2008). Therefore, it is necessary to study acceleration strategies, to
apply it to practice satisfactorily.

Recently, an accelerated gradient method which applied on the convex problem

min{Φ(x) | x ∈ X }
was proposed in Hubmer and Ramlau (2018) with the form

zn = xn + n − 1

n + α − 1
(xn − xn−1),

xn+1 = zn − ω(∇Φ(zn)). (3)

Here, ω > 0 is the step size, and α ≥ 3. This is called the Nesterov acceleration strategy.
It has proved that the convergence rate for Nesterov method is O(n−2). By applying this
method to problem (1) and replacing (n − 1)/(n + α − 1) with the combination parameter
λn , we obtain the so-called two point gradient method (Hubmer and Ramlau 2017) of the
form

zn = xn + λn(xn − xn−1),

xn+1 = zn − ωF ′(zn)∗(F(zn) − y). (4)

In addition, the adaptive strategy uses a novel idea to solve nonlinear inverse problems
(Kaltenbacher et al. 2008; Beck and Teboulle 2003). The key point of this method is to make
the item after each iteration closer to the true solution by projecting the initial iteration point
onto the strip containing the true solution set. We apply this method to replace the step size
used in the iteration with the adaptive step size, the details of which will be discussed later.

In the case that the true solution of (1) has a priori features such as sparsity and slicing
smoothness and so on, we consider Θ : X → (−∞,∞]. Meanwhile, we introduce the
Bregman distance by Θ

DξΘ(x̃, x) := Θ(x̃) − Θ(x) − 〈ξ, x̃ − x〉, x̃ ∈ X ,

where x ∈ X and ξ ∈ ∂Θ(x). Inspired by the above approaches, the sought solution of (1)
with desired feature can be obtained by minimizing the following functional

J2(x) := ‖F(x) − y‖2 + βDξ0Θ(x, x0)

with Tikhonov parameter β > 0 and initial choice x0 ∈ X , ξ0 ∈ ∂Θ(x0) (Jin and Lu 2014;
Wald 2018; Jin 1999). By splitting the terms of F and Θ , we obtain the adaptive two point
gradient iteration with convex penalty term (ATPG-Θ)

ζn = ξn + λn(ξn − ξn−1),

zn = argmin
z∈X {Θ(z) − 〈ζn, z〉},
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ξn+1 = ζn − tn F
′(zn)∗(F(zn) − y),

xn+1 = arg min
x∈X{Θ(x) − 〈ξn+1, x〉}. (5)

Thismethod inherits the acceleration advantage of the twopoint gradientmethod (Nesterov),
and uses the adaptive step size to improve the search direction. In addition,whenwe encounter
true solutions with special features, we use convex penalty terms for reconstruction. In this
paper, we verify the complete convergence analysis of the proposed method and obtain
satisfactory results in several numerical simulations.

The subsequent paper is structured as follows: some hypotheses and follow-up useful
results are introduced in Sect. 2. In Sect. 3, we give the iteration scheme in detail and show
the convergence analysis of ATPG-Θ . Several numerical simulations are present to show the
effectiveness and acceleration of themethod inSect. 4. Finally,we summarize our conclusions
in Sect. 5.

2 Preliminaries

In the following, we discuss some of the necessary tools and assumptions for subsequent
analysis.

2.1 Basic tools

Define a convex function Θ : X → (−∞,∞] with its effective domain D(Θ) := {x ∈ X :
Θ(x) < ∞}. If D(Θ) = ∅, we call it proper. Moreover, it is strongly convex of the proper
lower semi-continuous function Θ if there has c0 > 0 such that

Θ(sx̃ + (1 − s)x) + c0s(1 − s)‖x̃ − x‖2 ≤ sΘ(x̃) + (1 − s)Θ(x) (6)

for all 0 ≤ s ≤ 1 and x̃, x ∈ X . The subdifferential is defined by

∂Θ(x) := {ξ ∈ X : Θ(x̃) − Θ(x) − 〈ξ, x̃ − x〉 ≥ 0 for all x̃ ∈ X }.
For ξ ∈ ∂Θ(x) is the subgradient of x . Meanwhile, there holds

DξΘ(x̃, x) ≥ c0‖x̃ − x‖2, ∀x̃, x ∈ X and ξ ∈ ∂Θ(x), (7)

if Θ is a strongly convex function.
For a proper, lower semi-continuous, convex function Θ : X → (−∞,∞], we define its

Legendre–Fenchel conjugate with the form

Θ∗(ξ) := sup
x∈X

{〈ξ, x〉 − Θ(x)}, ∀ξ ∈ X .

Consequently,

ξ ∈ ∂Θ(x) ⇐⇒ x ∈ ∂Θ∗(ξ) ⇐⇒ Θ(x) + Θ∗(ξ) = 〈ξ, x〉. (8)

Then the Bregman distance can be redefined as

DξΘ(x̃, x) := Θ(x̃) − Θ∗(ξ) − 〈ξ, x̃〉. (9)

According to the reference (Zalinescu 2002; Schirotzek 2007), we know thatΘ∗ is Fréchet
differentiable and its gradient ∇Θ∗ is Lipschitz continuous with the form

‖∇Θ∗(ξ) − ∇Θ∗(ζ )‖ ≤ ‖ξ − ζ‖
2c0

, ∀ξ, ζ ∈ X , (10)
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where c0 is shown in (7).
In this paper, we choose an initial guess ξ0 ∈ X and

x0 = arg min
x∈X{Θ(x) − 〈ξ0, x〉}.

2.2 Assumption

To ensure the convergence property of the proposed method, we give the following assump-
tions, which are mild in iterative methods (Kaltenbacher et al. 2008).

Assumption 2.1 Let the function Θ : X → (−∞,∞] be proper, lower semi-continuous,
and strongly convex in the sense of (6).

Assumption 2.2 Define Bρ(x0) := {x ∈ X : ‖x − x0‖≤ρ} be the closed ball around x0.

A1 (1) has a solution x∗ ∈ D(Θ) satisfying

Dξ0Θ(x∗, x0) ≤ c0ρ
2.

A2 The Gâteaux derivative F ′(·) is bounded, i.e.,
∥
∥F ′(x)

∥
∥ ≤ CF , ∀x ∈ B3ρ(x0)

with the constant CF > 0.
A3 For some 0 < η < 1, the tangential cone condition (TCC) of F holds, namely

∥
∥F(x) − F(x̃) − F ′(x)(x − x̃)

∥
∥ ≤ η ‖F(x) − F(x̃)‖ , ∀x, x̃ ∈ B3ρ(x0). (11)

Corollary 2.1 Under (11) in Assumption 2.2, the following statement holds

‖F ′(x)(x∗ − x̃)‖ ≤ 2(1 + η)‖F(x) − y‖ + (1 + η)‖F(x̃) − y‖ (12)

with x∗, ∀x, x̃ ∈ B3ρ(x0) and y is the data of (1).

Proof For a rigorous proof of this corollary the reader is referred toKaltenbacher et al. (2008).
��

3 Convergence analysis

In the setting of nth iteration, the parameters rn, un, tn are decided by

rn := F(zn) − y,

un := F ′(zn)∗(F(zn) − y),

and

tn := min

{
c1‖rn‖2
‖un‖2 , c2

}

,

where c1, c2 are given positive numbers. As for the selection of combination parameter λn , it
will be given in detail in Algorithm 2. To understand the principle of the adaptive two point
gradient iteration with convex penalty term (ATPG-Θ) more clearly, we give the following
flowchart.
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Algorithm 1 ATPG-Θ
Input Data y, initial choice ξ0, ζ0, x0, z0.
Repeat

(i) For each n = 0, 1, . . . , calculate

ζn = ξn + λn(ξn − ξn−1),

zn = arg min
z∈X {Θ(z) − 〈ζn , z〉};

(ii) Compute tn , rn , un ;
(iii) Update ξn+1 and xn+1 by

ξn+1 = ζn − tn F
′(zn)∗(F(zn) − y),

xn+1 = arg min
x∈X {Θ(x) − 〈ξn+1, x〉}.

Set n = n + 1.
Until Stopping criterion is satisfied.
Output An approximate solution of the problem F(x) = y.

Without loss of generality, we stop the iteration using the residual limit, i.e., defining the
stopping index n∗ and constant C∗ by

‖F(zn∗) − y‖ ≤ C∗ < ‖F(zn) − y‖, 0 ≤ n < n∗. (13)

Lemma 3.1 For any x, x̃ ∈ D(Θ), ξ ∈ ∂Θ(x), ξ̃ ∈ ∂Θ(x̃), there holds

DξΘ(x̃, x) ≤ 1

4c0
‖ξ − ξ̃‖2. (14)

Proof According to (8), (9) and (10) that

DξΘ(x̃, x) = Θ∗(ξ) − Θ∗(ξ̃ ) − 〈ξ − ξ̃ ,∇Θ∗(ξ̃ )〉

=
∫ 1

0
〈ξ − ξ̃ ,∇Θ∗(ξ̃ + t(ξ − ξ̃ )) − ∇Θ∗(ξ̃ )〉dt

≤ ‖ξ − ξ̃‖
∫ 1

0
‖∇Θ∗(ξ̃ + t(ξ − ξ̃ )) − ∇Θ∗(ξ̃ )‖dt

≤ 1

2c0
‖ξ − ξ̃‖

∫ 1

0
t‖ξ − ξ̃‖dt

= 1

4c0
‖ξ − ξ̃‖2.

��
Define

Δn := DξnΘ(x∗, xn) − Dξn−1Θ(x∗, xn−1).

Lemma 3.2 Let Assumptions 2.1 and 2.2 hold. For any solution x∗ of (1) in B2ρ(x0)∩D(Θ),
we have

DζnΘ(x∗, zn) − DξnΘ(x∗, xn) ≤ λnΔn + 1

4c0
(λn + λ2n)‖ξn − ξn−1‖2. (15)

123

RETRACTED A
RTIC

LE



188 Page 6 of 19 G. Ren, G. Gao

Define the adaptive step size tn in each iteration with the form

tn := min

{
c1‖rn‖2
‖un‖2 , c2

}

,

where c1, c2 are given positive numbers. Define further that

Ψ := 1 − c1
4c0

+ η > 0.

Then we have

Dξn+1Θ(x∗, xn+1) − DζnΘ(x∗, zn) ≤ −tnΨ ‖rn‖2. (16)

Proof By means of the definition of Bregman distance and ζn , and (14), there has

DζnΘ(x∗, zn) − DξnΘ(x∗, xn) = DζnΘ(xn, zn) + 〈ζn − ξn, xn − x∗〉
≤ 1

4c0
‖ζn − ξn‖2 + 〈ζn − ξn, xn − x∗〉

= 1

4c0
(λδ

n)
2‖ξδ

n − ξδ
n−1‖2 + λδ

n〈ξδ
n − ξδ

n−1, x
δ
n − x∗〉

= 1

4c0
(λδ

n)
2‖ξδ

n − ξδ
n−1‖2

+ λδ
n

(

Dξδ
n
Θ(x∗, xδ

n) − Dξδ
n−1

Θ(x∗, xδ
n−1) + Dξδ

n−1
Θ(xδ

n, x
δ
n−1)

)

≤ λδ
nΔ

δ
n + 1

4c0

(

λδ
n + (λδ

n)
2) ‖ξδ

n − ξδ
n−1‖2.

It follows from the definition of the proposed method, we have

Dξn+1Θ(x∗, xn+1) − DζnΘ(x∗, zn)
= Dξn+1Θ(zn, xn+1) + 〈ξn+1 − ζn, zn − x∗〉
≤ 1

4c0
‖ξn+1 − ζn‖2 + 〈ξn+1 − ζn, zn − x∗〉

= 1

4c0
t2n‖un‖2 − tn(〈rn, y − F(zn) − F ′(zn)(x∗ − zn)〉 + ‖rn‖2)

≤ −tn(1 − c1
4c0

+ η)‖rn‖2

= −tnΨ ‖rn‖2.
��

Corollary 3.1 Let conditions in Lemma 3.2 hold, there exists

Δn+1 ≤ λnΔn + 1

4c0
(λn + λ2n)‖ξn − ξn−1‖2 − tnΨ ‖rn‖2. (17)

Proof In Eq. (17) is easily obtained by adding (15) and (16). ��
In the following Proposition, we need two necessary conditions for combination param-

eters {λn}. First, assume that

λ0 = 0, 0 ≤ λn ≤ 1, ∀n ∈ N
+ (18)
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holds. Moreover, let

1

4c0
(λn + λ2n)‖ξn − ξn−1‖2 ≤ c0ρ

2. (19)

Proposition 3.1 Let Assumptions 2.1 and 2.2 hold. Assume that the coupling condition

1

4c0
(λn + λ2n)‖ξn − ξn−1‖2 − tnΨ

γ
‖rn‖2 ≤ 0 (20)

holds with γ > 1. Then we have

DξnΘ(x∗, xn) ≤ Dξn−1Θ(x∗, xn−1), xn ∈ B2ρ(x0), zn ∈ B3ρ(x0), ∀n ≥ 0.

Moreover, there holds

∞
∑

n=0

‖rn‖2 < ∞. (21)

Proof We show the first assertions by induction. Due to ξ−1 = ξ0 = ζ0 and x−1 = x0 = z0,
the conclusion is obvious at n = 0. Nowwe assume that the assertions hold for all 0 ≤ n ≤ m
for some integer m ≥ 0. By means of (17) and (20), there holds

Δn+1 ≤ λnΔn −
(

1 − 1

γ

)

tnΨ ‖rn‖2. (22)

Combining λ0 ≥ 0, γ > 1, tn ≥ 0 with the hypothesis Δm ≤ 0 that Δm+1 ≤ 0. Then we
have

Dξm+1Θ(x∗, xm+1) ≤ DξmΘ(x∗, xm) ≤ . . . ≤ Dξ0Θ(x∗, x0) ≤ c0ρ
2.

It follows from (7) that ‖x∗−xm+1‖2 ≤ ρ2. Since x∗ ∈ Bρ(x0) implies that xm+1 ∈ B2ρ(x0).
According to (15) and (19), there holds

Dζm+1Θ(x∗, zm+1) ≤ Dξm+1Θ(x∗, xm+1) + λm+1Δm+1 + c0ρ
2

≤ Dξ0Θ(x∗, x0) + c0ρ
2

≤ 2c0ρ
2,

which implies zm+1 ∈ B3ρ(x0).
Using (22) and Δn ≤ 0, there holds

Δn+1 ≤ −
(

1 − 1

γ

)

tnΨ ‖rn‖2,

i.e.,
(

1 − 1

γ

)

tnΨ ‖rn‖2 ≤ DξnΘ(x∗, xn) − Dξn+1Θ(x∗, xn+1). (23)

Together with the definition of norm and the boundedness of forward operator F , we obtain
that

‖F(zn) − y‖2
‖F ′(zn)∗(F(zn) − y)‖2 ≥ ‖F(zn) − y‖2

C2
F‖F(zn) − y‖2 = 1

C2
F

.
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According to the definition of adaptive step size, we have

tn = min

{
c1‖rn‖2
‖un‖2 , c2

}

≥ min

{

c1
C2
F

, c2

}

.

Apply it to (23) and add it from n = 0 to infinity, there has

min

{

c1
C2
F

, c2

} (

1 − 1

γ

)

Ψ

∞
∑

n=0

‖rn‖2 ≤
∞
∑

n=0

(DξnΘ(x∗, xn) − Dξn+1Θ(x∗, xn+1))

≤ Dξ0Θ(x∗, x0) ≤ ρ2 < ∞.

Then the assertion (21) holds. ��
In the above analysis, we used several assumptions about the combination parameters

{λn}. Based on this, we will discuss the selection rule of {λn}, so as to meet the necessary
conditions and achieve the acceleration effect.

Algorithmically, we consider that the stopping criterion (13) has not been satisfied, then
there has the sufficient coupling condition:

1

4c0
(λn + λ2n)‖ξn − ξn−1‖2 ≤ LC2∗ , (24)

where L := 4c0Ψ
γ

min{ c1
C2
F
, c2}. Combining (24) with Nesterov acceleration technique, we

adopt the choice of combination parameter λn that

λn = min

⎧

⎨

⎩

√

LC2∗
‖ξn − ξn−1‖2 + 1

4
− 1

2
,

n − 1

n + α − 1

⎫

⎬

⎭
. (25)

In addition, we need a more demanding condition to satisfy the subsequent convergence
analysis, i.e,

∞
∑

n=0

λn‖ξn − ξn−1‖ < ∞. (26)

To satisfy this condition we choose a function f : R+ → R
+ satisfying

f (m1) ≤ f (m2), ∀m1 > m2,

∞
∑

n=0

f (n) < ∞. (27)

Then, the diagram in Algorithm 2 of solving {λn} is given.
It is easy to check that

∞
∑

n=0

λn‖ξn − ξn−1‖ ≤
∞
∑

n=0

f (n) < ∞.

Moreover, conditions (18)–(20), (24) and (26) can be satisfied respectively.

Proposition 3.2 Consider problem (1) for which Assumptions 2.1 and 2.2 hold. Let {xn} ⊂
B2ρ(x0) ∩ D(Θ) and {ξn} ⊂ X be such that

1. ξn ∈ ∂Θ(xn) for all n;
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Algorithm 2 Algorithm for calculating combination parameters

Input ξn , ξn−1, F,C∗, L, y, f : R+ → R
+.

Calculate ‖ξn − ξn−1‖ and take

�n = min

{
f (n)

‖ξn − ξn−1‖ ,
n − 1

n + α − 1

}

.

Define ζn = ξn + �n(ξn − ξn−1) and zn = arg min
z∈X {Θ(z) − 〈ζn , z〉}.

If ‖F(zn) − y‖ ≤ C∗
Set λn = �n ;

Else if (�n + �2n)‖ξn − ξn−1‖2 ≤ 4c0tnΨ
γ ‖rn‖2

Set λn = �n ;
Else
Calculate λn by

min

⎧

⎨

⎩

√

LC2∗
‖ξn − ξn−1‖2

+ 1

4
− 1

2
,

f (n)

‖ξn − ξn−1‖ ,
n − 1

n + α − 1

⎫

⎬

⎭
.

End If
Output λn .

2. for any solution x∗ of (1) in B2ρ(x0) ∩D(Θ) the sequence {Dξδ
n
Θ(x∗, xn)} is monoton-

ically decreasing;
3. lim

n→∞ ‖F(xn) − y‖ = 0;

4. there is a subsequence {nk} with nk → ∞ such that for any solution x∗ of (1) in
B2ρ(x0) ∩ D(Θ) there holds

lim
l→∞ sup

k≥l
| 〈ξnk − ξnl , xnk − x∗〉 |= 0. (28)

Then there exists a solution x̂ of (1) in B2ρ(x0) ∩ D(Θ) such that

lim
n→∞ DξnΘ(x̂, xn) = 0.

If, in addition, x† ∈ Bρ(x0) ∩ D(Θ) and ξn+1 − ξn ∈ R (

F ′(x†)∗
)

for all n, then x̂ = x†.

Proof The proof can refer to Jin and Wang (2013, Proposition 3.6). ��
In the following, we present the main theoretical result of this paper, namely the conver-

gence of the proposed method.

Theorem 3.1 (Convergence) Consider problem (1) for which Assumptions 2.1 and 2.2 hold.
Then there hold

lim
n→∞ DξnΘ(x̂, xn) = 0 and lim

n→∞ ‖xn − x̂‖ = 0.

Proof Here we only need to verify conditions (1–4) in Proposition 3.2. From the above
discussion, conditions (1–3) are clearly valid.

Now we consider condition (4) in Proposition 3.2. The first case is that at some finite n,
F(zn) = y, then λn(ξn − ξn−1) = 0 according to (20). Thus, ζn = ξn . It follows ‖rn‖ = 0
that ξn+1 = ζn = ξn = ζn+1. Hence, zn+1 = xn+1 = zn and F(zn+1) = F(zn) = y. Repeat
the above operations to obtain F(zm) = y for all m ≥ n. Consequently, the statement of
Proposition is true in this case.
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The other case is ‖F(zn) = y‖ for all n ∈ N
+, andwe can pick amonotonically increasing

sequence {nk}. Let nk be the first integer meeting

nk ≥ nk−1 + 1, and ‖F(znk ) − y‖ ≤ ‖F(znk−1) − y‖.
Then we have

‖F(znk ) − y‖ ≤ ‖F(zn) − y‖, 0 ≤ n < nk . (29)

For 0 ≤ l < k < ∞, we have

| 〈

ξnk − ξnl , xnk − x∗〉 | =|
nk−1
∑

n=nl

〈

ξn+1 − ξn, xnk − x∗〉 |

≤
nk−1
∑

n=nl

λn | 〈ξn − ξn−1, xnk − x∗〉 |

−
nk−1
∑

n=nl

tn | 〈(F ′(zn)∗rn, xnk − x∗〉 | .

Then we have

λn | 〈ξn − ξn−1, xnk − x∗〉 |≤ λn‖ξn − ξn−1‖‖xnk − x∗‖ ≤ 3ρλn‖ξn − ξn−1‖.
Using the definition of adaptive step size, and (12), (29), we get

tn | 〈(F ′(zn)∗rn, xnk − x∗〉 | ≤ tn‖rn‖‖F ′(zn)(xnk − x∗)‖
≤ tn‖rn‖[2(1 + η)‖rn‖ + (1 + η)‖F(xnk ) − y‖]
≤ 3c2(1 + η)‖rn‖2.

��
Therefore, we obtain that

| 〈

ξnk − ξnl , xnk − x∗〉 | ≤ 3ρ
nk−1
∑

n=nl

λn‖ξn − ξn−1‖ + 3c2(1 + η)

nk−1
∑

n=nl

‖rn‖2

≤ 3ρ
nk−1
∑

n=nl

λn‖ξn − ξn−1‖

+ Cs(Dξnl
Θ(x∗, xnl ) − Dξnk

Θ(x∗, xnk )),

where Cs = 3c2γ
(γ−1)Ψ (1 + η). Combining the monotonicity of {DξnΘ(x∗, xn)} and (26), we

can get condition (4) in Proposition 3.2. Then limn→∞ DξnΘ(x̂, xn) = 0. In view of (7), we
also have limn→∞ ‖xn − x̂‖ = 0, which complete the proof of Proposition.

4 Numerical simulations

In this section, we show some numerical examples to illustrate the effectiveness of the pro-
posed method. For comparison purposes, we define the following related methods.

1. Landweber: The classical Landweber iteration (2).
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2. Landweber-Θ: The classical Landweber iteration (2) with convex penalty term.
3. ATPG-Θ: Adaptive two point gradient method with convex penalty term, as the scheme

(5).

Numerically, we need to solve

x = argmin
z∈X {Θ(z) − 〈ξ, z〉} (30)

in each iteration (Boţ 2012). We can restrict the form of the operator Θ for different features
of the sought solution, such as when the solution is sparse, we can choose Θ be

Θ(x) := 1

2β

∫

Ω

| x(ς) |2 dς +
∫

Ω

| x(ς) | dς.

Then the explicit formula of (30) can be written as

x(ς) = βsign(ξ(ς))max{| ξ(ς) | −1, 0}, ς ∈ Ω. (31)

In addition, when the solution has the property of piecewise continuity, we can choose

Θ(x) := 1

2β

∫

Ω

| x(ς) |2 dς + TV(x)

with β > 0. And TV(x) denotes the total variation of x (Rudin et al. 1992; Beck and Teboulle
2009a, b). Then (30) can be written as

x = arg min
z∈L2(Ω)

{
1

2β
‖z − βξ‖2L2(Ω)

+ TV(z)

}

. (32)

Next, we conduct numerical simulations in two types of cases and adopt the parameter
identification model with the form

{−Δy + xy = f , in Ω,

y = g, on ∂Ω.
(33)

Here, Ω ⊂ R
d , d ≤ 3 is a bounded domain with Lipschitz boundary ∂Ω . And the function

f ∈ H−1(Ω), g ∈ H1/2(Ω) are given. Assume that the sought solution x† ∈ L2(Ω). The
key idea on elliptic equation shows that (33) has a unique solution for every x in the domain

D := {x ∈ L2(Ω) : ‖x − x̃‖L2(Ω) ≤ γ0 for some x̃ ≥ 0, a.e.}
with some γ0 > 0. Consequently, in this problem, the nonlinear operator F : X → Y is
defined as the parameter-to-solution mapping F(x) := y(x). We know that F is Fréchet
differentiable (Jin and Maass 2012). And its Fréchet derivative as well as the adjoint can be
found by the following principle:

F ′(x)h = −A(x)−1(hF(x)), h ∈ L2(Ω),

F ′(x)∗ω = −y(x)A(x)−1(ω), ω ∈ L2(Ω),

where A(x) is defined by A(x)y := −Δy + xy. It is known that F ′(x) is locally Lipschitz
continuous so as the tangential cone condition (11) holds (Real and Jin 2020).
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Table 1 Comparisons between Landweber-Θ and ATPG-Θ methods for the sparsity problem

C∗ (%) Methods n∗ Rate (n∗)a (%) Time(s) Rate (T )b (%) ‖xδ
n∗ − x∗‖/‖x∗‖

1 Landweber-Θ 3950 100 0.55 100 9.44 × 10−1

ATPG-Θ 288 7.29 0.05 9.09 9.28 × 10−1

0.1 Landweber-Θ 7160 100 0.92 100 7.69 × 10−1

ATPG-Θ 786 10.9 0.12 13.0 7.57 × 10−1

0.01 Landweber-Θ 75,479 100 9.83 100 1.17 × 10−1

ATPG-Θ 3599 4.76 0.48 4.88 1.06 × 10−1

aThe acceleration rate on the aspect of iterations, i.e., n∗(ATPG-Θ)/n∗(Landweber-Θ)
bThe acceleration rate on the aspect of CPU time, i.e., T(ATPG-Θ)/T(Landweber-Θ)

4.1 Sparsity

Considering the sparse nature of the solution, we give the following parameter settings:

• Let Ω = [0, 1], f1(x) = 300e−10(x−0.5)2 , and the boundary data y(0) = 1, y(1) = 6,
the sparse solution

x†(t) =

⎧

⎪⎪⎨

⎪⎪⎩

0.5, t ∈ [0.292, 0.300],
1, t ∈ [0.500, 0.508],
0.7, t ∈ [0.700, 0.708],
0, otherwise.

• In the finite difference process of the forward problem, the grid size is set to h = 1/N
with the grid N = 128.

• Set η = 0.1, τ = 2 and CF = 0.1. Moreover, we take f (n) = 1/n1.1 in Algorithm 2.

In Table 1, we consider several different C∗ = 1%, 0.1%, 0.01% of (13) for comparison.
At the same time, several reference indicators are listed such as iteration steps n∗, CPU time
T and relative error ‖xδ

n∗ − x∗‖/‖x∗‖.
By comparison, it is found that under differentC∗, the effect of iteration steps and compu-

tation time is obvious, which reflects the superiority of ATPG-Θ method over Landweber-Θ
method. The resource consumption of ATPG-Θ method (iteration and computation cost) is
only about 10% that of Landweber-Θ method. Meanwhile, under the same conditions, the
relative error of ATPG-Θ is smaller than that of Landweber-Θ after the iteration stops, that
is, it is closer to the true solution.

As can be seen more clearly from Fig. 1, the iterative acceleration advantage of ATPG-Θ
will be more obvious. At the same time, we can see that the combined parameter gradually
approaches 1 as the iteration progresses to achieve a better speedup effect.

More visually, Fig. 2 shows the refactoring results for different scenarios. The left column
represents the reconstruction results after 1000 iterations for different methods, and the right
column represents 5000 iterations. First of all, we find that in the iterative method without
convex penalty (first row), the propagation results are more oscillating, and the sparse points
cannot be caught. By comparing the results of the second and third rows, it can be seen that
under the same conditions, the reconstruction results of ATPG-Θ are more satisfactory.
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Fig. 1 Reconstructed data generated at C∗ = 0.01% in sparsity problem

4.2 Piece-wise continuity property

Next, we consider the case of piecewise continuity, and simulate the two dimensions sepa-
rately (Rudin et al. 1992; Zhu and Chan 2008).

4.2.1 One-dimensional case

In one-dimensional case, some related parameters are set as follows

• Let Ω = [0, 1], and the boundary data y(0) = 1, y(1) = 6, the sought solution

x†(t) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1.5, t ∈ [0.1563, 0.3120],
2.5, t ∈ [0.3120, 0.5469],
1.3, t ∈ [0.5469, 0.7813],
0.5, t ∈ [0.7813, 1.0],
0, otherwise.

And f2(x) = x†(1 + 5x).
• In the finite difference process of the forward problem, the grid size is set to h = 1/N

with the grid N = 128.
• Set η = 0.1, τ = 1.05 and CF = 0.1. Moreover, we take f (n) = 1/n1.1 in Algorithm 2.

Table 2 shows the numerical results for different values of C∗. It is obvious that ATPG-
Θ has great advantages both in terms of iteration speed and computational consumption.
Moreover, the relative error will be smaller after the iteration stops.

Similar to the analysis in the above example, Fig. 3 intuitively shows thewide applicability
of the proposed method. On the one hand, the first line shows that the reconstruction results
without convex penalties are not satisfactory. On the other hand, under the same conditions,
the results of ATPG-Θ in the third row are obviously better than those of Landweber-Θ in
the second row.

Figure 4 shows parameters such as residual curve and relative error curve, which can
directly see the difference between the two methods.
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(b) ATPG-Θ at 5000-th step

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1
Exact
Land

(c) Landweber-Θ at 1000-th step
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(d) Landweber-Θ at 5000-th step
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(e) ATPG-Θ at 1000-th step
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(f) ATPG-Θ at 5000-th step

Fig. 2 The reconstruction results

4.2.2 Two-dimensional case

In two-dimensional case, some related parameters are set as follows:
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Table 2 Comparisons between Landweber-Θ and ATPG-Θ methods in the piecewise continuous case for a
one-dimensional example

C∗ (%) Methods n∗ Rate (n∗)a (%) Time(s) Rate (T )b (%) ‖xδ
n∗ − x∗‖/‖x∗‖

1 Landweber-Θ 302 100 0.46 100 1.81 × 10−1

ATPG-Θ 80 26.5 0.23 5.00 1.82 × 10−1

0.1 Landweber-Θ 4099 100 6.54 100 1.09 × 10−1

ATPG-Θ 745 18.2 2.19 33.5 1.04 × 10−1

0.01 Landweber-Θ 68,664 100 117.4 100 5.63 × 10−2

ATPG-Θ 4343 6.33 12.2 10.4 5.25 × 10−2

aThe acceleration rate on the aspect of iterations, i.e., n∗(ATPG-Θ)/n∗(Landweber-Θ)
bThe acceleration rate on the aspect of CPU time, i.e., T(ATPG-Θ)/T(Landweber-Θ)

• Let Ω = [0, 1] × [0, 1], and the sought solution

x†(t) =
⎧

⎨

⎩

0.25, if (x − 0.35)2 + (y − 0.75)2 ≤ 0.2,
0.5, if (x − 0.65)2 + (y − 0.36)2 ≤ 0.18,
0, otherwise.

And f3(x) = −5exe−2y + x†exe−2y .
• In the multigrid process of the forward problem, the grid size is set to h = 1/N 2 with

the grid N = 32 × 32.
• Set η = 0.1, τ = 1.1 and CF = 0.1. Moreover, we take f (n) = 1/n1.1 in Algorithm 2.

As in the analysis of the results of the first two examples, Table 3 also shows the same
conclusion in the two-dimensional case. It shows that ATPG-Θ is still very powerful and
practical in this case.

In Fig. 5, we can see the reconstruction results of the three types of methods. The first
picture shows that reasonable approximate solutions can not be obtained without convex
penalty terms. We can see that there is no proper feedback at the inflection point. Meanwhile,
under the same conditions, the reconstruction result of ATPG-Θ is closer to the sought
solution.

5 Conclusions

In this paper, we propose an accelerated method (ATPG-Θ) for solving inverse problems.
Thismethod can be regarded as a combination of two-point gradientmethod and adaptive step
size. In addition, the convex penalty term is proposed to solve the case that the true solution
has special properties. In the theoretical analysis, we analyze the iteration mechanism of
ATPG-Θ , and verify the strong convergence of the method. Numerically, we show numerical
results with different properties of the true solution. ATPG-Θ has outstanding acceleration
advantage and reconstruction effect.
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(a) Landweber at 1000-th step
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(b) Landweber at 5000-th step
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(c) Landweber-Θ at 1000-th step
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(d) Landweber-Θ at 5000-th step
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(e) ATPG-Θ at 1000-th step
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(f) ATPG-Θ at 5000-th step

Fig. 3 The reconstruction results
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Fig. 4 Parametric curves in 500 iterations

Table 3 Comparisons between Landweber-Θ and ATPG-Θ methods in the piecewise continuous case for a
two-dimensional example

C∗ (%) Methods n∗ Rate(n∗)a (%) Time(s) Rate(T)b (%) ‖xδ
n∗ − x∗‖/‖x∗‖

1 Landweber-Θ 41 100 3.97 100 2.99 × 10−1

ATPG-Θ 25 60.9 2.84 71.5 2.84 × 10−1

0.1 Landweber-Θ 321 100 30.2 100 1.15 × 10−1

ATPG-Θ 116 36.1 13.2 43.7 1.06 × 10−1

0.01 Landweber-Θ 4782 100 464.2 100 6.29 × 10−2

ATPG-Θ 686 14.3 77.0 16.6 5.60 × 10−2

aThe acceleration rate on the aspect of iterations, i.e., n∗(ATPG-Θ)/n∗(Landweber-Θ)
b The acceleration rate on the aspect of CPU time, i.e., T(ATPG-Θ)/T(Landweber-Θ)

In the following research, we will continue to study the acceleration method of inverse
problem solving and apply it to a wider range of practical applications.

123

RETRACTED A
RTIC

LE



188 Page 18 of 19 G. Ren, G. Gao

Fig. 5 The reconstruction results
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