
Computational and Applied Mathematics (2023) 42:167
https://doi.org/10.1007/s40314-023-02307-9

Stochastic perturbation of subgradient algorithm for
nonconvex deep neural networks

A. El Mouatasim1 · J. E. Souza de Cursi2 · R. Ellaia3

Received: 19 January 2023 / Revised: 19 January 2023 / Accepted: 15 April 2023 /
Published online: 1 May 2023
© The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023

Abstract
Choosing a learning rate is a necessary part of any subgradient method optimization. With
deeper models such as convolutional neural networks of image classification, fine-tuning the
learning rate can quickly become tedious, and it does not always result in optimal conver-
gence. In this work, we suggest a variation of the subgradient method in which the learning
rate is updated by a control step in each iteration of each epoch. Stochastic Perturbation
Subgradient Algorithm (SPSA) is our approach for tackling image classification issues with
deep neural networks including convolutional neural networks. Used MNIST dataset, the
numerical results reveal that our SPSA method is faster than Stochastic Gradient Descent
and its variants with a fixed learning rate. However SPSA and convolutional neural network
model improve the results of image classification including loss and accuracy.

Keywords Subgradient algorithm · Nonconvex nonsmooth optimization · Stochastic
perturbation · Learning rate · Image classification · Deep neural networks and CNN

Mathematics Subject Classification 52B55 · 49J52 · 90C26 · 60H30 · 68T05

Communicated by Antonio José Silva Neto.

B A. El Mouatasim
a.elmouatasim@uiz.ac.ma

J. E. Souza de Cursi
souza@insa-rouen.fr

R. Ellaia
rachid.ellaia@um5r.emi.ma

1 Mathematical and Management Department, Ibnou Zohr University, FPO, Ouarzazate, Morocco

2 Laboratoire de Mécanique de Normandie, Normandie Université, INSA Rouen Normandie, 685,
Avenue de l’Université Saint-Etienne du Rouvray, Rouen, France

3 LERMA, Mohammadia School of Engineers, Mohammed V University in Rabat, Avenue Ibn Sina
BP765, Agdal, Rabat, Morocco

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-023-02307-9&domain=pdf
http://orcid.org/0000-0001-9947-1408


167 Page 2 of 26 A. E. Mouatasim et al.

1 Introduction

The learning capacities of the human brain, which is made up of neurons connected by
synapses, provide the inspiration for Artificial Neural Networks (ANN) (Singh et al. 2015).
In fact, they can learn any given mapping up to arbitrary accuracy (Stutz 2014), at least
theoretically. They also make it simple to incorporate past task information into the network
design. As a consequence, LeCun et al. (1989) proposed Convolutional Neural Networks
(CNN) for computer vision including image classification and Natural Language Processing
(NLP) including text classification and text generation.
We can find the major real-world applications of image classification in autonomous vehicles
(Bojarski et al. 2016), face recognition (Xinhua and Qian 2015), medical diagnosis (Singh
et al. 2015), and satellite image (Pelletier et al. 2019).

When discussing the learning of feature hierarchies, we are usually talking about deep
learning, that is training deep neural networks (DNN) (Huang et al. 2019). Here, DNNusually
refers to neural networks with more than 3 layers. To date, deep learning is still considered
challenging (Bengio 2009).

Due to the constrained architecture of CNN,1 they allow to train deep architectures with
traditional methods,2 in 2020 El Mouatasim improved gradient algorithm (El Mouatasim
2020) via Nesterov step for softmax classifier without using any activation function ReLu (
Rectified Linear Units) and activation function tanh, see Sect. 3.

This allows a CNN to learn feature hierarchies, that means that the CNN is used to learn a
hierarchy of task-specific features which can then be used for classification using traditional
multilayer perceptrons.3 This property is a huge advantage of CNN over fully-connected
multilayer perceptrons where learning deep architectures is considered difficult (Bengio
2009).

However, when using a popular and applicable activation function ReLU (nonsmooth) or
tanh (nonconvex) in the architecture of DeepNeural Networks (DNN)model (Konstantin and
Johannes 2019), the training of DNN is a hard problem, since it is a nonsmooth nonconvex
optimization problem; therefore, the local minimum can not be a global minimum. To find
the parameters updated by the Stochastic Gradient Descent (SGD) algorithm (Tuyen and
Hang-Tuan 2021) and its variants including Nesterov accelerated gradient (NAG) algorithm
(Botev et al. 2017), Adagrad (Duchi et al. 2011) and Adam (Kingma and Ba 2015) are easy
to converge into the local minimum of loss function slowly. The theory and numerical results
show that the SGD algorithm and its variants need more improvements for nonsmooth global
optimization DNN.

Therefore, the learning rate of optimization algorithm can be improved, the parameters
update, such as learning rate annulling (Nakamura et al. 2021), cyclical learning rate [35]
and (Liu and Liu 2019). We propose in this paper a fast iterative algorithm with a control
learning rate called stochastic perturbation of subgradient algorithm (SPSA) for solving a
nonsmooth nonconvex DNN including image classification.

We analyze the propose algorithmSPSAand offer some encouraging findings fromnumer-
ical tests using theMNIST dataset (LeCun andCortes 2010), demonstrating that the proposed

1 CNN as introduced in LeCun et al. (1989) make use of weight sharing as introduced in Sect. 4 which reduces
the complexity and size of the network and allows to train deep architectures.
2 Usually this includes gradient descent (Singh et al. 2015; Tuyen and Hang-Tuan 2021) optimization as
discussed in Sect. 5 as well as error backpropagation as introduced in Sect. 3 to evaluate the gradient of a
chosen loss function.
3 The multilayer perceptron is discussed in detail in Sect. 3.

123



Stochastic perturbation of subgradient. . . Page 3 of 26 167

classification method SPSA is more accurate and anti-overfitting than previous image clas-
sification methods such as SGD and its variants.

Although neural networks can be used to solve computer vision problems, previous
knowledge should be incorporated into the network architecture to improve generalization
performance (LeCun 1989). The goal of CNN is to exploit spatial information between image
pixels. As a result, they rely on discrete convolution. We explore the essential components
of CNN in Sect. 3.7, as reported in Jarrett et al. (2009) and LeCun et al. (2010).

This work is organized as follows: after the introduction, Sect. 2 presents notation and
assumptions. Section3 gives a brief view of deep neural network modeling. Section4: con-
siders the optimization of a DNN, including SPSA. Finally, in Sect. 5, the numerical results
are examined, and Sect. 6 presents the conclusions and perspectives.

2 Notations and assumptions

We denote by IR the set of the real numbers (−∞,+∞), IR+ the set of positive real numbers
[0,+∞), IE = IRn , the n-dimensional real Euclidean space. For w = (w1, w2, . . . , wn)

t ∈
IE, wt denotes the transpose of w. We denote by ‖ w ‖ = √

wtw = (w2
1 + · · · + w2

n)
1/2 the

Euclidean norm of w and by ( w,y) = wty the scalar product on IE.
We shall denote Id the n × n Identity matrix.
Training a DNN implies the solution of an optimization problem of the kind:

Find w∗ ∈ IE such that G(w∗) = G∗ = min
w∈IE

G(w), (1)

w∗ is said to be a global minimum solution of of problem (1) and G∗ is the corresponding
global minimal value. In the context of DNN, the objective function G : IE −→ IR is referred
as loss function and w is a vector of weights. In general, the weights of a network form a list
of vectors w = (

w1), . . . ,w(K )
)
, where K is the number of layers in the DNN (see Sect. 3)

and w(�) ∈ IRη� , where η� is the number of units in the layer no. �, 1 ≤ � ≤ K . The list of
vectors is brought to a vector w (see Sect. 3).

The problem (1) is unconstrained, since the admissible set is IE = IRn . Typical loss
functions are bounded from below on IE:

∃m ∈ IR such that G(w) ≥ m,∀w ∈ IE . (2)

Such an asumption is verified if, for instance, G continuous and coercive, i.e.,

G is continuous on IE and lim‖w‖→+∞G(w) = +∞.

Under these asumptions, there exists a solution w∗ ∈ IE and G∗ = G(w∗). Let us introduce
Sα = {w ∈ IE G(w) ≤ α}. We assume also that

∀α > m : Sα is not empty, closed and bounded, meas (Sα) > 0 (3)

where meas ( Sα ) is the Lebesgue measure of Sα . Notice that these asumptions eliminate
the trivial situation where G is constant on IE (in such a situation, Problem (1) is trivial: any
point of IE is a global minimum). Equation (3) is verified when G is continuous and coercive.

Finally, we assume that G is uniformly Lipschitz continuous, i.e.,

∃L ∈ IR such that ∀(w, y) ∈ IE × IE |G(w) − G(y)| ≤ L‖w − y‖2,

123



167 Page 4 of 26 A. E. Mouatasim et al.

In thiswork,we consider the determination of these globalminimaby subgradientmethods
involving stochastic perturbations. These methods have shown to be efficient and robust for
nonconvex nonsmooth problems (El Mouatasim et al. 2006, 2011).

Subgradientmethods are descentmethods, id est, methods that generate a sequence {w(n) :
n ∈ IN}, from a given initial vector w(0) ∈ IE, using iterations:

w(k+1) = Q
(
w(k),d(k), ρ(k)

) = w(k) + ρ(k)d(k) , ∀k ≥ 0 . (4)

In the framework of descentmethods, d(k) is the descent direction and ρ(k) is the step, referred
as learning rate in the context of DNN. For subgradient methods, the descent direction is
given by (notice the sign minus preceding d(k)):

− d(k) ∈ ∂G(w(k)). (5)

where ∂G(w) is the Clarke’s subdifferential at point w ∈ IE, see for instance (Bagirov et al.
2013).
To simplify the analysis, we assume that there is a constant M ∈ IR+, such that

∥
∥ d(k)

∥
∥ ≤ M . (6)

The determination of the step ρ(k) ≥ 0 involves often one-dimensional search with a
previously established maximal step ρmax. For instance, the optimal step is determined by

ρ(k) = argmin
{
f (ρ) = G

(
w(k) + ρd(k)

)
: 0 ≤ ρ ≤ ρmax

}
(7)

So, the step is given by a function ρ : IE × IE → IR and reads as

ρ(k) = ρ
(
w(k), d(k)

)
; 0 ≤ ρ

(
w(k), d(k)

) ≤ ρmax. (8)

Stochastic perturbations are introduced to prevent from convergence to local minima and
the difficulties. They consist of a controlled random search (see, for instance El Mouatasim
et al. 2006, 2011, 2014 and El Mouatasim (2018)). In such an approach,

{
w(k) : k ∈ IN

}

becomes a sequence of random vectors
{
W(k) : k ∈ IN

}
, withW(0) = w(0) and the iterations

(4) modified as follows (again, notice the sign minus preceding D(k)):

W(k+1) = Q
(
W(k),D(k), ρ(k)

) + P(k), , − D(k) ∈ ∂G(W(k)) . (9)

Here,
{
P(k) : k ∈ IN∗} is a suitable sequence of randomvectors—the stochastic perturbations.

A convenient choice of {P(k) : k ∈ IN∗} ensures the convergence ofW(k) tow� almost surely.
The step (or learning rate) is given by

ρ(k) = ρ
(
W(k), D(k)

) ; 0 ≤ ρ
(
Wk , D(k)

) ≤ ρmax . (10)

The practical implementation of (9)–(10) involves finite samples of P(k) (see Sect. 5).

3 Deep neural networkmodeling

The goal of this section is to present briefly the mathematical modeling of DNN including the
graph of DNN, activation functions, loss function, forward evaluation, backpropagation and
regularization. The contents of this section are classical in the literature and our presentation
is largely based on Bishop (1995), Stutz (2014) and Haykin (2005).

The basic element of an ANN is a unit usually referred as neuron, perceptron or unit.
Indeed, at the origins of ANN, the units were intended to represent a neuron and simulate its
activity (Marvin 1954). Later, perceptrons were designed to simulate the behavior of the eye

123



Stochastic perturbation of subgradient. . . Page 5 of 26 167

Fig. 1 Basic unit of a neural net. The basic unit transforms the inputs e = (e1, . . . , en)t into a value a by
aggregation involving weightsw = (w0, w1, . . . , wn)t : a = w0 +w1e1 +· · ·+wnen (w0 is the bias). Using
a dummy input e0 = 1, we have a = α(e,w) = wt e. The value of a is modified by an activation function δ

to produce the output y = δ(a)

(Rosenblatt 1958). Nowadays, the terminology unit is often preferred since it is neutral and
does not imply analogies with the human organism.

Indeed, the basic element is a processing unity that computes an output y, using given a
vector of n input values e = (e1, . . . , en)t . Usually, the output is determined as a function of
unknown parameters brought to a row vector w = (w0, w1, . . . , wn):

y = δ(a) , a = α(e,w) . (11)

The unknown parameters w must be determined from available observed data given in a
dataset D = {(es, ys), 1 ≤ s ≤ ns}—observations that form a sample from the (e, y). The
determination of the unknown values w is called training. It is usually carried by dividing D
is divided in three parts: a training set T , a validation set V and a test set S. training usually
consists in minimizing the gap between the predictions of the ANN and the observations on
T , with verifications on V . After the training, the performance of the ANN is evaluated on
S. In the framework of ANN, w0 is usually referred as bias—it can be seen as an external
element, independent from the inputs; (w1, . . . , wn)

t are the weights; δ is the activation
function and α is a weighted sum of the input values (Haykin 2005):

α(e,w) = w0 + w1e1 + · · · + wnen . (12)

It is usual to introduce a dummy input e0 = 1, so that the bias can be treated as a weight (see
Fig. 1):

α(e,w) = wte =
n∑

i=0

wi ei . (13)

To generate anANN, different units are interconnected, so that the output of a unit becomes
one of the inputs of another unit (Bishop 1995). The units are organized according to a directed
graph4—the network graph—where each unit becomes a node (generally labeled according
to its output) and the directed edges represent the information flow in the network: an arrow
from a first unit to a second one, indicates that the output of the first unit is used as input for
the second unity (see Figs. 2, 3)

4 A directed graph is an ordered pair G = (V , E), where V is a set of nodes and E is a set of edges linking
the nodes in its most general form: Within the graph, (u, v) ∈ E denotes the presence of a directed edge from
node u to node v. Given two units u and v in a network graph, a directed edge from u to v indicates that the
output of unit u is used as input by unit v.

123



167 Page 6 of 26 A. E. Mouatasim et al.

Fig. 2 Using a directed graph to generate an ANN. Each � is an unity. Arrows show the flow of information

Fig. 3 DNN graph of a K -layer perceptron. The �th hidden layer contains η� hidden units. As usual in this
kind of diagram, the bias is not represented

3.1 Multilayer perceptrons

The units of an ANN are generally organized in layers—i. e., in subsets of units receiving
the same inputs and producing different outputs each, which will form the inputs of the next
layer. Each subset is visualized as a stack of units (see Fig. 3) and referred by indexes (�, k)
indicating their positions (stack �, position k from the top). The first layer receives the input
and the last layer furnishes the output of the ANN—these layers are particularly referred as
being the input layer and the output layer. The other intermediating layers are called hidden
layers and are generally invisible to the user.

When there are more than three hidden layers, we refer to the multilayer perceptron as
a Deep Neural Network (DNN). Training a DNN—or Deep Learning—is considered as
challenging (Bengio 2009).

Let us consider a multilayer perceptron5 formed by the input layer (numbered as 0) and
K other layers, where K is a strictly positive integer. Layers 1, . . . , K − 1 are hidden ones,
layer K is the output layer. Layer number � contains η� units and produces outputs h(�)

i ,

1 ≤ i ≤ η�, as shown in Fig. 3. The input layer performs the identity: h(0)
i = xi . With these

notations,the net receives η0 inputs and generates ηK outputs.

Let us denote, for � ≥ 0, h(�) =
(
h(�)
1 , . . . , h(�)

η�

)t
. The vector h(�) contains the outputs

of the layer � which are the inputs of the layer � + 1. Analogously, let us introduce, for

5 A K -layer perceptron, on the other hand, is made up of (K + 1) layers, including the input layer. The
input layer remains uncounted (or is numbered to zero), since it does not perform processing: the input units
compute the identity (Bishop 1995, 2006).

123



Stochastic perturbation of subgradient. . . Page 7 of 26 167

� > 0, wi
(�) = (w

(�)
i,0, . . . , w

(�)
i,�−1): wi

(�) is a row vector containing the weigths for the unit

(�, i)—id est,w(�)
i,k is the weight corresponding to the oriented edge going from unit (�−1, k)

to unit (�, i) (from the kth unit in layer (� − 1) to the i th unit in layer �), and w
(�)
i,0 is the bias.

We have (see Eq. (12) )

h(�)
i = δ

(�)
i (a(�)

i ) , a(�)
i = α

(�)
i (h(�−1),wi

(�)) , 1 ≤ i ≤ η� , 1 ≤ � ≤ K ; (14)

with (see Eq. (13) )

α
(�)
i (h(�−1),wi

(�)) = wi
(�)h(�−1) , 1 ≤ � ≤ K . (15)

Let us introduce w(�) =
(
w

(�)
i,k : 1 ≤ i ≤ η�, 0 ≤ k ≤ η�−1

)
—a matrix containg the

weights of layer �; α(�)
(
h(�−1),w(�)

) =
(
α

(�)
1

(
h(�−1),w1

(�)
)
, . . . , α

(�)
η�

(
h(�−1),w(�)

η�

))
,

a(�) =
(
a(�)
1 , . . . , a(�)

η�

)t
—vectors containing all the agregations of layer �; and δ(�)(a) =

(
δ
(�)
1 (a(�)

1 ), . . . , δ
(�)
η�

(a(�)
η�

)
)
—a vector containing all the activations of layer �. Then, Eqs.

(14)-(15) can be written in a concise form

h(�) = δ(�)(a) , a(�) = α(�)(h(�−1),w(�)) = w(�)h(�−1) 1 ≤ � ≤ K . (16)

Let x = (
x1, . . . , xη0

)
be the vector of inputs, and w = (

w(�) : 1 ≤ � ≤ K
)
represent the

list of all weights in the network: w is brought to a vector w:

w =
(
v(1), . . . , v(K )

)

where

v(i) =
(
w

(i)
1,0, . . . , w

(i)
1,ηi−1

, . . . , w
(i)
ηi ,0

, . . . , w(i)
ηiηi−1

)
.

Then
h(K ) = τ (x,w) , (17)

where
τ (x,w) = δ(K )

(
δ(K−1)

(
δ(K−2)

(
. . . ,w(K−2)

)
,w(K−1)

)
,w(K )

)
, (18)

and the multilayer perceptron can be considered as a function

h(•,w) : Rη0 → R
ηK , x �→ h(x,w), (19)

associating to the inputs x the outputs h(x,w) =
(
h(K )
1 , . . . , h(K )

ηK

)
.

From the standpoint of mathematical modeling, the training of a DNN summarizes as

(a) Data: a set of observations D = {(xs, ys) , 1 ≤ s ≤ ns} ⊂ IRη0 × IRηK is given. A loss
function L : IRηk × IRηK �→ IR+ is given to measure the gap between two elements from
IRηK (for instance, a distance or a pseudo-distance). Examples of standard loss functions
are given in 3.3.

(b) The decision variables are the weights and bias, grouped in w—these are the model
parameters to be determined.

(c) The performance of a given set of model parameters w is evaluated by the aggregation
of the values of the gaps between the outputs τ (xs,w) and the observed values ys , for
1 ≤ s ≤ ns . The aggregation is performed by a function A : IRns �→ IR+, transforming

123



167 Page 8 of 26 A. E. Mouatasim et al.

the vector of distances d(w) = (L(τ (x1,w), y1), . . . ,L(τ (xns ,w), yns )
)
into a non-

negative real number. The global loss function to be minimized is

G (w) = A (d(w)) . (20)

For instance, we can use the arithmetic mean of the gaps:

A (d(w)) = 1

n

ns∑

s=1

ds(w) = 1

n

ns∑

s=1

L(τ (xs), ys) . (21)

(d) Find the model parameters that minimize the global loss function f , id est, find

w∗ = argmin {G (w) : w} . (22)

In the sequel, we use this model for the training of a DNN on a daset of images X and
labels Y : D = {(Xs, Ys) , i = 1, . . . ns}.

3.2 Activation functions

Although the activation functions are, in principle, specific to each unit—as indicated in
the preceding—it is usual to consider a single activation function for all the hidden layers:
δ
(�)
i = δ, for 1 ≤ i ≤ η� and 1 ≤ � ≤ K − 1. Often, a distinct activation function is

used for the output layer: δ
(K )
i = δ, for 1 ≤ i ≤ ηK , with a choice adapted to the problem

under consideration. The choice of δ and δ is considered as important, since it modifies the
behavior of the network. Today, the choice for δ is mostly dictated by experience and trial
(Feng and Lu 2019; Szandała yyy), while the choice of δ results from the characteristics of
the expected output (binary, discrete, bounde, unbounded). Concerning the hidden layers, a
popular choice is a family of Rectified Linear Units—activation functions usually referred
as ReLU:

δ(z) = ReLU(z) = max(0, z). (23)

Notice that ReLU(IR) = (0,+∞), so that the outputs are positive but unbounded (Stutz
2014), (Krizhevsky et al. 2012). A variant of ReLU is PReLU or LeakyReLU (El Jaafari
et al. 2021), given by (a > 0 is a parameter to be chosen by the user):

δ(z) = PReLU(z) = max(0, z) + a min(0, z) (a > 0). (24)

PReLU(IR) = (−∞,+∞), so that the outputs are unbounded, and can take negative
values.

For the output layer, a popular family of activation functions is the sigmoid family. For
instance, the logistic sigmoid, given by

δ(z) = σ(z) = 1

1 + exp(−z)
, z ∈ IR. (25)

This function has a bounded range: we have σ(IR) = (0, 1). From the same family, the
hyperbolic tangent δ(z) = th(z) = tanh(z) takes negative values, since th(IR) = [−1, 1],
so that th can be used if the user desires bounded outputs including negative values (Stutz
2014), (Duda et al. 2001). These sigmoid family is often used when we are interested in
binary outputs. However, according to Stutz (2014), Glorot and Bengio (2010) both the

123



Stochastic perturbation of subgradient. . . Page 9 of 26 167

logistic sigmoid and the hyperbolic tangent perform badly in deep learning. These authors
recommend the use of the softsign activation function:

δ(z) = s(z) = 1

1 + |z| . (26)

Nevertheless, some works tend to show that the combination of the family ReLU with the
hyperbolic tangent activation produces good results (Jarrett et al. 2009).

When considering classification in ηK classes with neural networks,6 the user to choose
a most relevant output among h(K ) = (h(K )

1 , . . . , h(K )
ηK ).

Thus, we can design a DNN destined to classify data X in one among ηK classes, by
producing an output that can be interpreted in terms of probability: the class i , 1 ≤ i ≤ ηK

corresponds to the unit (K , i) in the output layer and pi = h(K )
i is a prediction of the

probability of the event “ X ∈ class i” (id est, “ X is member of class i ”). Let us denote by
Y the class number: Y ∈ {1, . . . , ηK }: we look for a DNN such that

pi = P(Y = i |X) ⇒ p = (p1, . . . , pηK )t ∈ IRηK :
ηK∑

i=1

pi = 1, (27)

where P(•|•) denotes the conditional probability.
In this case, a popular choice is the softmax activation functions, whose outputs can be

interpreted as probabilities:

δ
(K )
i (a(K )) = softmax(a(K ), i) = exp(a(K )

i )
∑ηK

j=1 exp(a
(K )
j )

. (28)

Indeed, pi = δ
(K )
i (a(K )) verifies pi > 0 and

∑ηK
j=1 pi = 1, so that the outputs pi = h(K )

i ,
1 ≤ i ≤ ηK , can be interpreted as probabilities (Bishop 2006).

3.3 Loss functions for classification

Let be given X belonging to the class Y : we have as exact probability p∗
Y = 1, so that the

exact vector of probabilities is p∗(Y ) = (p1, . . . , pηK ) such that p∗
Y = 1 and p∗

i = 0, if
i �= Y—it is a one-hot vector.7

The gap between the probabilities of the classes furnished by p = τ (X,w) and the exact
probabilities p∗ can be evaluated by the cross-entropy loss function

L (
p,p∗(Y ))

) = −
ηK−1∑

j=0

p∗
j (Y ) log(p j ). (29)

We can consider this loss function under the form

L (p, Y )) = −
ηK∑

j=1

1Y= j log(p j ) , (30)

6 The objective is to assign x to one among ηK discrete classes, using the outputs h(K ) (Bishop 2006; Stutz
2014).
7 A one-hot vector v is then a binary vector with a single non-zero component, which takes the value 1.

123



167 Page 10 of 26 A. E. Mouatasim et al.

where

1Y= j =
{
1 if Y = j
0 otherwise.

The global loss function becomes

G (w) = 1

ns

ns∑

s=1

L(τ (Xs,w), Ys)) , (31)

id est,

G (w) = − 1

ns

ns∑

s=1

ηK∑

j=1

1Ys= j log(τ j (Xs,w)), (32)

with h(K )
j = τ j (X,w).

3.4 Forward evaluation

The evaluation of the objective function f requests the determination of the global outputs
h(K )
s = τ (Xs,w), for 1 ≤ s ≤ ns . As usual in the framework of DNN, such a determination

is carried by forward propagation, which consists in the successive determination of the
outputs h(�), for 0 ≤ � ≤ K . Forward propagation implements the evaluation of τ (X,w),
by generating the finite sequence h(1), . . . , h(K ), defined by Eqs. (14)–(15), with the initial
data h(0) = X. For the classification of a image,X is a η ×η square matrix containing values
of the pixels—for a black-and-white image, the pixels take either the value 0 either the value
1, so that X ∈ {0, 1}η×η. The final outputs of the net are the probabilities of membership, as
described in the preceding section: we have 0 ≤ h(K )

j ≤ 1, so that τ (X,w) ∈ [0, 1]ηk and
the forward propagation implements a map

τw : {0, 1}η×η �→ [0, 1]ηk , τw (X) = τ (X,w) . (33)

3.5 Backpropagation

To implement the optimization methods described in Sect. 2, we need to evaluate the gradient
of the global loss function f with respect to the weigths w. In the framework of DNN,
such an evaluation is performed by backpropagation., which corresponds to the successive
application of the chain rule for the derivation of the composition of functions. The rule
is successively applied from the last layer to the first one, to generate ∂wG = ∂G

/
∂w,

id est, the derivatives ∂
w

(�)
i j
G = ∂G/∂w

(�)
i j , corresponding to each weight w

(�)
i j of the net:

0 ≤ j ≤ η�−1, 1 ≤ i ≤ η�, 1 ≤ � ≤ K . As previously observed, the global loss functions
are defined by Eqs. (20), (21), (31) and involves a loss function L destined to evaluate the
gap between the prediction τw (X) and the real value p∗(Y ). From Eq. (31):

∂wG = 1

ns

ns∑

s=1

∂wL(τ (Xs,w), Ys)) , (34)

Thus, we must evaluate the derivatives ∂wL, id est, ∂w
(�)
i j
L, for 0 ≤ j ≤ η�−1, 1 ≤ i ≤ η�,

1 ≤ � ≤ K . The derivatives can be evaluated by recurrence, using Eqs. (14)–(15) or Eq.

123



Stochastic perturbation of subgradient. . . Page 11 of 26 167

(16). Indeed, we observe that

∂
h(�−1)
s

h(�)
t = D(�)

t w
(�)
ts , D(�)

t =
(
δ
(�)
t

)′
(a(�)

t ). (35)

Moreover,

∂
w

(�)
i j
h(�)
t = D(�)

t ∂
w

(�)
i j
a(�)
t =

η�−1∑

s=0

D(�)
t w

(�)
ts ∂

w
(�)
i j
h(�−1)
s , (36)

so that

∂
w

(�)
i j
h(�)
t =

η�−1∑

s=0

∂
h(�−1)
s

h(�)
t ∂

w
(�)
i j
h(�−1)
s , (37)

and
∂
w

(�)
i j
h(�)
t = ∂h(�−1)h(�)∂

w
(�)
i j
h(�−1) . (38)

Thus,
∂wh

(�)
t = ∂h(�−1)h(�)∂wh(�−1) . (39)

We have
∂wL(τw(X), Y ) = ∂τwL(τw(X), Y ) ∂wτw(X) , (40)

id est,
∂wL(τw(X), Y ) = ∂τwL(τw(X), Y ) ∂wh(K ). (41)

Thus, Eq. (39) yields that, for 0 ≤ � ≤ K − 1

∂wL(τw(X), Y ) = ∂h(K )L(h(K ), Y )

[
K−�−1∏

i=0

∂h(K−i−1)h(K−i)

]

∂wh(�) . (42)

Equations (35) and (42) furnish ∂wL. Then, Eq. (34) furnishes ∂wG. Practical implemen-
tation is made by the algorithms of backpropagation, such as:

Algorithm 1 Error backpropagation algorithm.
External Data: a sample D = {(Xs , Ys ) , i = 1, . . . ns }.
Input: weights w.
Output: subgradient of loss function for w.

(1) For a sample D, propagate the inputs Xs through the network to compute the outputs (τw(Xs ) (in
topological order).

(2) Compute the loss Ls := L(τw(Xs ), Ys )
(3) Compute the subgradient ∂wG(w) using Eqs. (35), (42) and (34).

3.6 Regularization

Multilayer perceptrons with at least one hidden layer have been shown to approximate any
target mapping to arbitrary precision. As a result, the training data may be overfitted, with a
low training error on the training set but a large training error on unknown data (Bengio 2009).
Regularization is the jobof avoidingoverfitting to improvegeneralization performance,which
means that the trained network should also perform well on unknown data (Haykin 2005).

123



167 Page 12 of 26 A. E. Mouatasim et al.

As a result, the training set is frequently divided into two parts: real training and validation.
The neural network is subsequently trained with the new training set, and its generalization
performance is assessed using the validation set (Duda et al. 2001).

Regularization canbedone in a variety ofways.The training set is frequently supplemented
to include particular invariances that the network is supposed to learn (Krizhevsky et al.
2012). Other methods include a regularization component in the error measure to manage
the solution’s complexity and form (Bishop 1995)—the objective function to be minimized
is modified by the adjonction of a penalty term:

Gλ(w) = G(w) + λϕ(w), (43)

where ϕ(w) affects the solution’s shape and λ is a balancing parameter. A popular ϕ is the
�2-regularization8

ϕ(w) = ‖w‖22 =
K∑

�=1

η�∑

i=1

η�−1∑

j=1

(w
(�)
i j )

2
.

The goal is to punish big weights because they are associated with overfitting (Bishop
1995). More generally, we can consider �p-regularization. For instance, for p = 1, �1-
regularization9 is used in El Mouatasim (2015, 2019) to enforce sparsity of the weights, that
is many of the weights should vanish.

3.6.1 Early stopping

While the error on the training set tends to decrease with the number of iterations, once the
network starts to overfit the training set, the error on the validation set usually starts to climb
again. Tominimize overfitting, training should be halted as soon as the error on the validation
set reaches a minimum, i.e. before the error on the validation set rises again (Bishop 1995).
This technique is known as early stopping.

3.6.2 Dropout

Another regularization strategy based on human brain observation is proposed in Hinton et al.
(2012). Each hidden unit is skipped with probability P = 1

2 whenever the neural network
is given a training sample (Hinton et al. 2012). This method can be interpreted in a variety
of ways. Units cannot, for starters, rely on the presence of other units. Second, this strategy
allows for the simultaneous training of numerous distinct networks. As a result, dropout can
be equated to model averaging.10

In this situation, nearly half of the neurons are inactive and are not regarded to be part of the
neural network. As you can see, the neural network grows more basic.

Overfitting can be reduced by using a simpler version of the neural network with less
complexity. At each forward propagation and weight update step, neurons with a particular
probability P are deactivated.

8 Weight decay is a term used to describe the �2-regularization; see Bishop (1995) for more information.
9 For p = 1, the norm ‖ · ‖1 is defined as ‖w‖1 = ∑K

�=1
∑η�

i=1
∑η�−1

j=1 |w(�)
i j |.

10 By averaging the predictions of different models, model averaging attempts to reduce inaccuracy (Hinton
et al. 2012).

123



Stochastic perturbation of subgradient. . . Page 13 of 26 167

convolutional
layers

fully-connected
hidden layers

input
layer

output
layer

Fig. 4 Flow diagram of deep CNN (Figure from Izaak (2022), under licence CC BY-SA 4.0)

3.7 Convolutional neural networks

Themathematicalmodeling ofCNN including convolution, convolutional layer, non-linearity
layer, local contrast normalization layer, fully connected layer and architectures is given in
Stutz (2014).

We look at the architecture employed in Krizhevsky et al. (2012) as an example of a
modern CNN that performs well on the ImageNet Dataset (Zeiler and Fergus 2013). Five
convolutional layers are followed by a rectified linear unit non-linearity layer, brightness
normalization, and overlapping pooling in the architecture. Three additional fully-connected
layers are used for classification. Krizhevsky et al. (2012) employs dropout as a regularization
strategy to avoid overfitting.

The authors of Ciresan et al. (2012) integrate many deep CNN with comparable architec-
tures and average their classification/prediction results. The multi-column deep CNN is the
name for this architecture.

We summarized the description of the CNNs by the flow diagram in Fig.4.

4 Optimization DNN

The goal of this section is given the mathematical modeling of optimization DNN including
analysis of the optimization problem, SGD, Subgradient algorithm, control learning rate and
SPSA.

4.1 Nonconvex optimization DNN problem

Piecewise affine activation functions provide a dilemma since the resultantmathematical issue
is a multicomposite optimization problem with associated nonconvexity and non differentia-
bility. The variable linear transformation from one layer to the next, where the transformation
matrix is multiplied by the variable input of that layer, which is determined from the previous

123



167 Page 14 of 26 A. E. Mouatasim et al.

layer, causes the nonconvexity. By gradually aggregating the resultant bilinearity over all lay-
ers, a highly nonconvex composite objective functionmay be reduced. This property of linked
nonconvexity and nondifferentiability poses significant hurdles for solving the optimization
issue using a mathematically rigorous approach with a proved guarantee of convergence to
some form of stable solution. Indeed, there is no known solution that can achieve the latter
stated aim as a stand-alone deterministic optimization problem (Cui et al. 2020). In particular,
usually SGD algorithms converges to suitable local minimum even though the problem itself
is highly nonconvex optimization, for more about analysis of the optimization error, see for
instance (Kutyniok 2022).

4.2 Stochastic gradient descent (SGD)

SGD techniques are prominent strategies for estimating the parameters w of DNN.

(I) Forward: Let w(k) be the current weights.
For � = 1 to K

• Calculate the predicted values (τw(Xs), s = 1, . . . , ns .
• Calculate the corresponding values of (a(�)

s ,h(�)
s ), s = 1, . . . , ns .

(II) Backpropagation:

• Calculate the gradient of the output

∇a(K )(x)L(τw(Xs), Ys) = τw(Xs) − p∗(Ys),

where p∗(Ys) ∈ IRηK is a one-hot vector such that p∗
Ys

= 1, id est, p∗
i = 1i=Ys ,

1 ≤ ı ≤ ηK .
• For � = K to 1 - Calculate the gradient at hidden layer � using Eqs. (35), (42) and

(34)

(III) Mini-Batch: The technique employed in SGD algorithms is to replace the Eq. (31) of
classification error with

f (w, s) = −1

|Ms |
∑

i :zi∈Ms

ηK∑

j=1

1Ys= j log(τw(Xs)), (44)

for each iteration s, where Ms is mini-batch and |Ms | is mini-batch size.
Then

E[G(w, s)] = G(w),

where E[.] is mathematical expectation, and

E[∇wG(w, t)] = ∇wG(w).

are satisfied by Eq. (44).

However, prior to testing, the sample is randomly mixed, sorted into batches of a defined
size, and each batch is used one at a time until all of the samples have been gathered. This is
then repeated in the same order as the previous batch. Then, starting with the first batch and
finishing with the last, each epoch is made up of sequential batches that encompass all of the
training data.

123



Stochastic perturbation of subgradient. . . Page 15 of 26 167

Algorithm 2 The general gradient descent algorithm.
Input: initial weights w(0), maximum number of iterations kmax
Output: final weights w(kmax)

1. for k = 0 to kmax − 1
2. estimate ∇G

(
w(k)

)

3. compute g(k) = −∇G
(
w(k)

)

4. compute learning rate ρ(k) = argmin
ρ

{
G

(
w(k) − ρg(k)

)}
.

5. w(k+1) := w(k) + ρ(k)g(k)
6. return w(kmax)

4.3 Subgradient algorithm

To determine the global optimum, the DNN algorithm employs an optimization strategy.
The SGD algorithm, a well-referenced artificial intelligence function to model a first-order
optimization technique that helps us identify a local minimum, was employed in the neural
network algorithm.

A subgradient algorithm is an unconstrained minimization method that’s used to reduce
the size of a function, in this case the loss function. In this section, the loss function (43) can
be presented the objective function of the nonconvex nonsmooth optimization problem 1.

The goal was to find a w value that produced the least amount of error and allowed the
loss function to attain a local minimum. In this strategy, each iteration seeks to find a new w
value that gives a somewhat smaller error than the preceding iteration.

Typically, (1) computationalmethods rely on the usage of subgradient iteration algorithms,
which supply information at any point w, the value of the loss function G(w), as well as a
subgradient g from the subdifferential set ∂G(w).
Remember that every vector g that fulfills the inequality

G(y) ≥ G(w) + gt (y − w) ∀y ∈ IRn, (45)

is a subgradient of G(w) at w.
Since the subgradient algorithm with learning rate ρ starts with some initial w(0) and

updates it repeatedly:

w(k+1) = wk − ρkgk, gk ∈ ∂G(wk), k = 0, 1, . . . (46)

which have been the subject of extensive research since the 1960s.
A convex function is known to be subdifferentiable at all points in its domain. The sub-

differential is also a non-empty convex, closed, and bounded set (Dem’vanov and Vasil’ev
1985). At all locations in its domain, a convex function isn’t necessarily differentiable. If a
convex function is differentiable at a point w, then ∇G(w) is a subgradient of G at w. Also
we have

∂G(w) = {∇G(w)}.
Subgradient can be thought of as a generalized gradient of a convex function in this

context.
For nonconvex function ∂G(w) is Clarke subdifferential at point w ∈ IE (Bagirov et al.

2013). A learning rate is also employed to govern the size of the downward step we take
throughout each iteration. For learning rate ρ(k) meeting the "divergence series" criterion, it

123



167 Page 16 of 26 A. E. Mouatasim et al.

was proven that (46) converges under relatively mild conditions:

ρ(k)
k→∞−−−→ 0 + ,

∑

k

ρ(k) = ∞. (47)

Theorem 1 Let G satisfy the asumptions on the objective function of optimization problem 1.
Let the sequence {w(k) : k ∈ IN} given by the formula (46) and the learning rate ρ(k) satisfy
the conditions (47). Then G(w(k)) → G∗.

Proof To demonstrate the theorem, we must show that

∀ε > 0, ∃nk ∈ IN such that k ≥ nk ⇒ G
(
w(k)

) − G
(
w∗) < ε.

Let us proof it by reductio ad absurdum: assume that ∃ε > 0 such that

∀k ∈ IN : G(w(σk )) − G(w∗) ≥ ε, (48)

where G(w(σk )) is a subsequence of G(w(k)).
Let w = w(σk ), y = w∗ in (45) then:

G(w∗) ≥ G(w(σk )) + gt(σk )
(
w∗ − w(σk )

)
, (49)

from (48) and (49) we have:
gt(σk )

(
w(σk ) − w∗) ≥ ε. (50)

Since ρ(σk ) > 0, multiplying (50) by −2ρ(σk ) yields

−2ρ(σk )g
t
(σk )

(
w(σk ) − w∗) ≤ −2ρ(σk )ε.

As a consequence, Eq. (46) is used in the estimations that follow:

‖w(σk+1) − w∗‖2 = ‖w(σk ) − ρ(σk )g(σk ) − w∗‖2
= ‖w(σk ) − w∗‖2 + (ρ(σk ))

2‖g(σk )‖2
− 2ρ(σk )g

t
(σk )

(
w(σk ) − w∗)

≤ ‖w(σk ) − w∗‖2 + (ρ(σk ))
2‖g(σk )‖2 − 2ρ(σk )ε.

Since ∂G(w(σk )) is a bounded set (Dem’vanov and Vasil’ev 1985), then ∃M > 0 such that
‖g(σk )‖2 ≤ M .
Using the first condition of (47) ∃nk ∈ IN such that

∀k ≥ nk : ρ(σk ) ≤ ε

M
⇔ ρ(σk )M ≤ ε.

Then we have:

∀k ≥ nk : ‖w(σk ) − w∗‖2 ≤ ‖w(σk ) − w∗‖2 + ρ(σk )(ρ(σk )M − 2ε)
≤ ‖w(σk ) − w∗‖2 − ρ(σk )ε.

Recursively expressed, this last inequality produces for every arbitrary integer n > nk :

‖w(n+1) − w∗‖2 ≤ ‖w(nk ) − w∗‖2 − ε

n∑

k=nk

ρ(σk ). (51)

Using the second condition of (47), the right side of (51) tends to−∞, so that a contradiction
with 0 ≤ ‖wn+1 − w∗‖2 ≤ −∞, what is a contradiction. Thus, we conclude that the theorem
is true. ��

123



Stochastic perturbation of subgradient. . . Page 17 of 26 167

4.4 Control learning rate

However, numerical experimentation and theoretical research revealed that this learning rate
rule leads to delayed convergence as a rule, and future development followed in the footsteps
of the subgradient technique (El Mouatasim 2015).

Let �(ρ) = G(w − ρg), gG ∈ ∂G(w). Let us consider ψ a smooth quadratic approx-
imation of �, verifying the following conditions: �(0) = ψ(0), �(ρ) = ψ(ρ) and
ψ

′
(0) ∈ ∂�(0), where ψ

′
(w) is the derivative of ψ at point w. For instance, ψ can be

defined as follows:

ψ(h) = G(w) − ‖gG‖2h + νρ

‖g‖2
ρ

h2,

where νρ = �(ρ) − (G(w) − ρ‖g‖2)
ρ‖g‖2 . Then

ψ
′
(ρ) = −‖g‖2 + 2νρ

‖g‖2
ρ

ρ = ‖g‖2(2νρ − 1).

This suggests that if νρ ≤ 0.5; the derivative of functionψ at point ρ is negative, we should
increasing the learning rate to reduce loss function G. If, on the other hand, νρ ≥ 0.5; the
derivative of function ψ at point ρ is positive, and so the learning rate should be decreasing
to reduce loss function G (Wójcik1 et al. 2018).

Let us suppose a learning rate of ρ(k) was used at iteration k and let us identify at w(k+1)
relation between ρ(k) and the learning rate providing minimization of G in the direction −gk

(El Mouatasim 2020; Uryas’ev 1991).
In this paper, we propose this control learning rate:

ρ(k+1) =
{

ρincrρ(k), if νρ ≤ 0.5,
ρdecrρ(k), if νρ ≥ 0.5,

(52)

where:

ρ(0)0 is starting learning rate,
ρincr > 1 is a increasing coefficient,

ρdecr = 1

ρincr
< 1 is a decreasing coefficient.

Theorem 2 If the sequence {w(k) : k ∈ IN} given by the formula (46) and the learning rate
ρ(k) given by (52), then G(w(k)) → G∗.

Proof Let
{
ρ(k j )|ρ(k j ) = ρ(0)ρ

k j
incr

}
be a subsequence of a sequence {ρ(k) : k ∈ IN}, since

ρincr > 1, we have
∑∞

j=1 ρ(k j ) = +∞. The problem (1) is nonconvex and we assume

∃M > 0 such that ρk ≤ Mρk
decr. Since ρdecr < 1 then ρk

decr → +0. Thus, we have also

ρ(k)
k→∞−−−→ +0. (53)

The conditions of (47) are satisfied by (53). So we can apply the Theorem 1. ��

4.5 Stochastic perturbation of subgradient algorithm (SPSA)

Themain difficulty remains the lack of convexity: ifG is nonconvex, the Kuhn–Tucker points
may not correspond to global minimum (El Mouatasim et al. 2006, 2011). In the sequel, we

123



167 Page 18 of 26 A. E. Mouatasim et al.

shall improve this point by using an appropriate random perturbation: as previously observed,
the real quantities are replaced by random variables (Eqs. (9)–(10)). Since

Q
(
W(k),D(k), ρ(k)

) + P(k) = Q
(
W(k),D(k) + P(k)/ρk, ρk

)
, (54)

the stochastic iterations may be considered as perturbations of the descent direction D(k).
In the sequel, we describe the general properties of these elements leading to convenient
sequences and we show that sequences of Gaussian vectors may be used.

A simple way for the generation of a convenient sequence of perturbations
{
P(k) : k ∈N

}

is
P(k) = ξ(k)Z(k),

where

1.
{
ξ(k) : k ∈ IN

}
is a nonincreasing sequence of strictly positive real numbers converging

to zero and such that ξ(0) ≤ 1.
2.

{
Z(k) : k ∈ IN

}
is a sequence of random vectors taking their values on E .

Let us introduce U(k) = G(W(k)). Since, at each iteration number k ≥ 0, the step ρ(k) is
determined into a way that reduces the value of the objective function (Eq. (7)), the sequence{
U(k) : k ∈ IN

}
is decreasing by construction. Moreover, it has a lower bound given by G∗.

∀k ≥ 0 : G∗ ≤ U(k+1) ≤ U(k). (55)

Thus,
{
U(k) : k ∈ IN

}
is nonincreasing and bounded from below bym: there existsU ≥ m

such that U(k) → U for k → +∞. The aim is to establish that U = G∗.

Theorem 3 Let Z(k) = Z, where Z is a random variable following N ( 0, σ Id), ( σ > 0)
and let

ξ(k) =
√

a

log (k + d)
, (56)

where a > 0, d > 0 and k is the iteration number. Then, for a large enough, U = l∗ almost
surely.

Proof See, for instance, Pogu and Souza de Cursi (1994) and El Mouatasim et al. (2006). ��

5 Computational experiment

All of the tests were run on a personal PC with an HP i5 CPU processor running at 1.20GHz,
4 GB of RAM, and Python 3.9 for Windows 10 installed.

In this paper, we implement CNN (LeNet-5) using PyTorch3, an open source Python
library for deep learning classification.

5.1 Algorithm of SPSA

The pseudocode of SPSA is given as follows:
The pytorch implementation of SPSA algorithm is available in public repository https://

github.com/el-mouatasim/SPSA.

123

https://github.com/el-mouatasim/SPSA
https://github.com/el-mouatasim/SPSA


Stochastic perturbation of subgradient. . . Page 19 of 26 167

Algorithm 3 Stochastic perturbation of subgradient algorithm (SPSA).
Input: initial weights w(0), number of global iterations kglobnumber of local iterations kmax number of
stochastic perturbations nsto.
Output: final optimal weights w(kopt ).

1. set w(kopt ) = w(0)
2. for kg = 0 to kglob − 1

3. set w0
ac = w(kopt ) and w

opt
ac = w(kopt )

4. for k = 0 to kmax − 1
5. estimate the subgradient g(k) ∈ ∂G(wk

ac)
6. select control learning rate ρ(k) by Eq. (52)

7. calculate wk+1
ac := wk

ac − ρkgk

8. if G(wk+1
ac ) ≤ G(wopt

ac )

9. set wopt
ac = wk+1

ac
10. return wopt

ac
11. set w(kopt ) = wopt

ac

12. set w0
sto = w(kopt ) and w

opt
sto = w(kopt )

13. for k = 1 to nsto
14. add perturbation stochastic wk

sto = wopt
sto + ξ(k)Z(k) by Theorem (3)

15. estimate the subgradient g(k) ∈ ∂G(wk
sto)

16. select control learning rate ρ(k) by Eq. (52)

17. calculate wk+1
sto := wk

sto − ρ(k)g(k)

18. if G(wk+1
sto ) ≤ G(wopt

sto )

19. chose wopt
sto = wk+1

sto
20. return wopt

sto
21. set w(kopt ) = wopt

sto
22. return w(kopt )

Fig. 5 Samples from the MNIST dataset (Figure from Steppan (2022), under licence CC BY-SA 4.0)

5.2 MNIST dataset

MNIST dataset (LeCun and Cortes 2010), consisting 70,000 images 28 × 28 grayscale of
handwritten digits in the range of 0 to 9, for a total of 10 classes, which includes 60,000
training and validation, and 10,000 test, Fig. 5.

123



167 Page 20 of 26 A. E. Mouatasim et al.

Fig. 6 Architect of the LeNet model

We present digits from the 54,000 MNIST training set to the network LeNet5 to train it,
6000 images for the validation set and 10,000 for test set. A 32 mini-batch size was used.

5.3 LeNet-5 model

Deep learning models might have a lot of hyperparameters that need to be adjusted. The
number of layers to add, the number of filters to apply to each layer, whether to subsample,
kernel size, stride, padding, dropout, learning rate, momentum, batch size, and so on are
all options. Because the number of possible choices for these variables is unlimited, using
cross-validation to estimate any of these hyperparameters without specialist GPU technology
to expedite the process is extremely challenging.

As a result, we suggest a model the LeNet-5 model (Fig. 6). The LeNet architecture pad
the input image with to make it 32× 32 pixels, then convolution and subsampling with tanh
activation in two layers. The next two layers are completely connected linear layers with tanh
activation, followed by a layer of Gaussian connections, which are fully connected nodes
that use mean squared-error as the loss function.

5.4 Comparing results

We start learning rate of SPSA by lr = 1e − 2 and the coffecient of update ρincr = 1.05 are
applied, We used Kmax = 20 epochs and additional Ksto = 5 stochastic perturbation epochs
applied to the best epoch with minimal train loss of subgradient algorithms with control
learning rate. also we comparing with popular algorithms such as Adam Kingma and Ba
(2015) (with initial learning rate lr = 1e − 3), SGD (with initial learning rate lr = 1e − 2)
and Adagrad. Table 1 give the results of the algorithms in 25 training epochs. Figures7, 8,
9, 10 exhibit the results of comparing approaches: training loss, training accuracy, validation
loss, and validation accuracy, respectively.

The network’s classification accuracy was then measured using the class-assigned neuron
response in the 10,000MNIST test set and SPSA for LeNet-5 model. Figure11 for confusion
matrix show how to determine the estimated number by multiplying each neuron’s responses
by class and then choosing the class with the largest average frequency; also the classification
report in Table 2, and Fig. 12 give the predict of random sample in test set.

123



Stochastic perturbation of subgradient. . . Page 21 of 26 167

Table 1 LeNet-5 model: comparison between SPSA, Adam, Adagrad and SGD in terms of accuracy and loss

Algorithm Training Training Validation Validation Test Test
loss accuracy (%) loss accuracy (%) loss accuracy (%)

SPSA 0.007 99.75 0.004 98.73 0.043 98.74

Adam 0.008 99.74 0.005 98.83 0.05 98.74

Adagrad 0.015 99.65 0.004 98.78 0.04 98.72

SGD 0.033 99.01 0.004 98.90 0.042 98.65

Fig. 7 LeNet-5 model. Comparing training losses results of SPSA, Adam, Adagrad and SGD

Fig. 8 LeNet-5 model. Comparing training accuracy results of SPSA, Adam, Adagrad and SGD

123



167 Page 22 of 26 A. E. Mouatasim et al.

Fig. 9 LeNet-5 model. Comparing evaluation losses results of SPSA, Adam, Adagrad and SGD

Fig. 10 LeNet-5 model. Comparing evaluation accuracy results of SPSA, Adam, Adagrad and SGD

6 Concluding remarks

We considered the training of DNN including multilayer perceptrons (MP), and CNN for
image classification with tanh activation function, ReLU activation function or �1 regulariza-
tion. In such a context, training leads to a nonsmooth nonconvex optimization problem,which
has been solved by subgradient techniques—SGD with with controlled learning rate, using
locally optimal conditions. The results were improved when compared with the literature.

123



Stochastic perturbation of subgradient. . . Page 23 of 26 167

Fig. 11 Average confusion
matrix of the testing results was
calculated over ten presentations
of the MNIST test set digits,
using the SPSA for LeNet-5
model

Table 2 LeNet-5 model:
classification report for classifier
SPSA

Precision Recall f1-score Support

0 0.99 0.99 0.99 980

1 0.99 0.99 0.99 1135

2 0.99 0.99 0.99 1032

3 0.98 0.99 0.99 1010

4 0.99 0.99 0.99 982

5 0.98 0.99 0.99 892

6 0.99 0.98 0.99 958

7 0.98 0.99 0.98 1028

8 0.98 0.98 0.98 974

9 0.99 0.98 0.98 1009

Accuracy 0.99 10,000

Macro avg 0.99 0.99 0.99 10,000

Weighted avg 0.99 0.99 0.99 10,000

Additional stochastic perturbation epochs are applied to find a global solution for nonconvex
CNN cases. The convergence theorem of the stochastic perturbation subgradient algorithm
with control learning rate (SPSA) was established, and numerical results of SPSA compared
to the SGD and its variant algorithms in the dataset MNIST for LeNet-5 model revealed that
SPSA is more robust and faster than other approaches when a large number of stochastic
perturbations was used.

In future work, we shall consider Hilbert networks (Khalij 2021).

123



167 Page 24 of 26 A. E. Mouatasim et al.

Fig. 12 Predict sample in MNIST
test set, using the SPSA for
LeNet-5 model

Acknowledgements We are indebted to the anonymous Reviewers and Editors for their many helpful recom-
mendations and insightful remarks that helped us improve the original article.

Declarations

Conflict of interest The authors have no conflicts of interest to declare. All co-authors have seen and agree
with the contents of the manuscript “Stochastic Perturbation of Subgradient Algorithm for Nonconvex Deep
Neural Networks” and there is no financial interest to report. We certify that the submission is original work
and is not under review at any other publication.

References

Bagirov AM, Jin L, Karmitsa N, Al Nuaimat A, Sultanova N (2013) Subgradient method for nonconvex
nonsmooth optimization. J Optim Theory Appl 157:416–435

Bengio Y (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1–127
Bishop C (1995) Neural networks for pattern recognition. Clarendon Press, Oxford
Bishop C (2006) Pattern recognition and machine learning. Springer, New York
Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel LD, Monfort M, Muller U,

Zhang J et al (2016) End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316
Botev A, Lever G, Barber D (2017) Nesterov’s accelerated gradient and momentum as approximations to

regularised update descent. In: Neural networks (IJCNN) 2017 international joint conference on, pp
1899–1903

Ciresan DC, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification.
Comput Res Repos. arXiv:abs/1202.2745

Cui Y, He Z, Pang J (2020) Multicomposite nonconvex optimization for training deep neural networks. SIAM
J Optim 30(2):1693–1723

Dem’vanov VF, Vasil’ev LV (1985) Nondifferentiable optimization. Optimization Software, Inc., Publications
Division, New York

Duchi JC, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic opti-
mization. J Mach Learn Res 12:2121–2159

Duda R, Hart P, Stork D (2001) Pattern classification. Wiley, New York
El Jaafari I, Ellahyani A, Charfi S (2021) Parametric rectified nonlinear unit (PRenu) for convolution neural

networks. J Signal Image Video Process (SIViP) 15:241–246
El Mouatasim A (2018) Implementation of reduced gradient with bisection algorithms for non-convex opti-

mization problem via stochastic perturbation. J Numer Algorithms 78(1):41–62

123

http://arxiv.org/abs/1604.07316
http://arxiv.org/1202.2745


Stochastic perturbation of subgradient. . . Page 25 of 26 167

El Mouatasim A (2019) Control proximal gradient algorithm for �1 regularization image. J Signal Image
Video Process (SIViP) 13(6):1113–1121

ElMouatasimA (2020) Fast gradient descent algorithm for image classification with neural networks. J Signal
Image Video Process (SIViP) 14:1565–1572

El Mouatasim A, Wakrim M (2015) Control subgradient algorithm for image regularization. J Signal Image
Video Process (SIViP) 9:275–283

El Mouatasim A, Ellaia R, Souza de Cursi JE (2006) Random perturbation of variable metric method for
unconstraint nonsmooth nonconvex optimization. Appl Math Comput Sci 16(4):463–474

El Mouatasim A, Ellaia R, Souza de Cursi JE (2011) Projected variable metric method for linear constrained
nonsmooth global optimization via perturbation stochastic. Int J Appl Math Comput Sci 21(2):317–329

El Mouatasim A, Ellaia R, Souza de Cursi JE (2014) Stochastic perturbation of reduced gradient & GRG
methods for nonconvex programming problems. J Appl Math Comput 226:198–211

Feng J, Lu S (2019) Performance analysis of various activation functions in artificial neural networks. J Phys
Conf Ser. https://doi.org/10.1088/1742-6596/1237/2/022030

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In:
International conference on artificial intelligence and statistics, pp 249–256

Haykin S (2005) Neural networks a comprehensive foundation. Pearson Education, New Delhi
Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R (2012) Improving neural networks by

preventing co-adaptation of feature detectors. Comput Res Repos. arXiv:abs/1207.0580
HuangK,HussainA,WangQ, ZhangR (2019)Deep learning: fundamentals, theory and applications. Springer,

Berlin
Jarrett K, Kavukcuogl K, Ranzato M, LeCun Y (2009) What is the best multi-stage architecture for object

recognition? In: International conference on computer vision, pp 2146–2153
Josef S (2022) A few samples from the MNIST test dataset. https://commons.wikimedia.org/wiki/File:

MnistExamples.png. Accessed 12 Dec. Under Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License

Khalij L, de Cursi ES (2021) Uncertainty quantification in data fitting neural and Hilbert networks. In: Pro-
ceedings of the 5th international symposium on uncertainty quantification and stochastic modelling, pp
222–241. https://doi.org/10.1007/978-3-030-53669-5_17

KingmaDP, Ba JL (2015) Adam: a method for stochastic optimization. In: Proceedings of the 3rd international
conference on learning representations, San Diego, CA

Konstantin E, Johannes S (2019) A comparison of deep networks with ReLU activation function and linear
spline-type methods. Neural Netw 110:232–242

KrizhevskyA, Sutskever I,HintonGE (2012) ImageNet classificationwith deep convolutional neural networks.
Adv Neural Inf Process Syst 60:1097–1105

Kutyniok G (2022) The mathematics of artificial intelligence. arXiv preprint arXiv:2203.08890
LeCun Y (1989) Generalization and network design strategies. Connect Perspect 19:143–155
LeCun Y, Cortes C (2010) MNIST handwritten digit database
LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation

applied to handwritten zip code recognition. Neural Comput 1(4):541–551
LeCun Y, Kavukvuoglu K, Farabet C (2010) Convolutional networks and applications in vision. In: Interna-

tional symposium on circuits and systems, vol 5, pp 253–256
Liu Z, Liu H (2019) An efficient gradient method with approximately optimal stepsize based on tensor model

for unconstrained optimization. J Optim Theory Appl 181:608–633
Li J, Yang X (2020) A cyclical learning rate method in deep learning training. In: International conference on

computer, information and telecommunication systems (CITS), pp 1–5
Minsky ML (1954) Theory of neural-analog reinforcement systems and its application to the brain-model

problem. Ph.D. dissertation, Princeton University
Nakamura K, Derbel B, Won K-J, Hong B-W (2021) Learning-rate annealing methods for deep neural net-

works. Electronics 10:2029
Neutelings I (2022)Graphicswith TikZ in LaTeX.Neural networks. https://tikz.net/neura_networks. Accessed

12 Dec. Under Creative Commons Attribution-ShareAlike 4.0 International License
Pelletier C, Webb GI, Petitjean F (2019) Temporal convolutional neural network for the classification of

satellite image time series. Remote Sens 11(5):523
Pogu M, Souza de Cursi JE (1994) Global optimization by random perturbation of the gradient method with

a fixed parameter. J Global Optim 5:159–180
Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the

brain. Psychol Rev 65(6):386–408. https://doi.org/10.1037/h0042519
Singh BK, Verma K, Thoke AS (2015) Adaptive gradient descent backpropagation for classification of breast

tumors in ultrasound imaging. Procedia Comput Sci 46:1601–1609

123

https://doi.org/10.1088/1742-6596/1237/2/022030
http://arxiv.org/1207.0580
https://commons.wikimedia.org/wiki/File:MnistExamples.png
https://commons.wikimedia.org/wiki/File:MnistExamples.png
https://doi.org/10.1007/978-3-030-53669-5_17
http://arxiv.org/abs/2203.08890
https://tikz.net/neura_networks
https://doi.org/10.1037/h0042519


167 Page 26 of 26 A. E. Mouatasim et al.

Stutz D (2014) Understanding convolutional neural networks. Seminar report, Fakultät für Mathematik, Infor-
matik und Naturwissenschaften

Szandała T (2021) Review and comparison of commonly used activation functions for deep neural networks.
In: Bhoi A, Mallick P, Liu CM, Balas V (eds) Bio-inspired neurocomputing. Studies in computational
intelligence, vol 903. Springer, Singapore. https://doi.org/10.1007/978-981-15-5495-7_11

Tuyen TT, Hang-Tuan N (2021) Backtracking gradient descent method and some applications in large scale
optimisation. Part 2. Appl Math Optim 84:2557–2586

Uryas’ev SP (1991) New variable-metric algorithms for nondifferentiable optimization problems. J Optim
Theory Appl 71(2):359–388

Wójcik B, Maziarka L, Tabor J (2018) Automatic learning rate in gradient descent. Schedae Inf 27:47–57
Xinhua L, Qian Y (2015) Face recognition based on deep neural network. Int J Signal Process Image Process

Pattern Recogn 8(10):29–38
Zeiler MD, Fergus R (2013) Visualizing and understanding convolutional networks. Comput Res Repos.

arXiv:abs/1311.2901

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1007/978-981-15-5495-7_11
http://arxiv.org/1311.2901

	Stochastic perturbation of subgradient algorithm for nonconvex deep neural networks
	Abstract
	1 Introduction
	2  Notations and assumptions 
	3 Deep neural network modeling 
	3.1 Multilayer perceptrons
	3.2 Activation functions
	3.3 Loss functions for classification 
	3.4 Forward evaluation
	3.5 Backpropagation
	3.6 Regularization
	3.6.1 Early stopping
	3.6.2 Dropout

	3.7 Convolutional neural networks

	4 Optimization DNN
	4.1 Nonconvex optimization DNN problem 
	4.2 Stochastic gradient descent (SGD)
	4.3 Subgradient algorithm
	4.4 Control learning rate
	4.5 Stochastic perturbation of subgradient algorithm (SPSA) 

	5 Computational experiment 
	5.1 Algorithm of SPSA
	5.2 MNIST dataset
	5.3 LeNet-5 model
	5.4 Comparing results

	6 Concluding remarks
	Acknowledgements
	References




