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Abstract
This paper investigates finite-time stability and observer-based finite-time control for non-
linear uncertain switched discrete-time system. Firstly, sufficient conditions are given to
ensure that a class of switched nonlinear uncertain discrete-time system is finite-time stable
under arbitrary switching. The observer-based controller is constructed. By constructing the
switched Lyapunov function, sufficient conditions are derived to ensure the resulting closed-
loop system is finite-time stable via observer-based control. The observer-based controller
is designed to guarantee a switched nonlinear discrete-time system is finite-time stabilized.
Finally, two numerical examples are given to illustrate the effectiveness of the proposed
results.

Keywords Finite-time stability · Observer-based control · Nonlinear switched system ·
Switched Lyapunov function

Mathematics Subject Classification 93C55 · 93D15

1 Introduction

In recent years, the study of switched systems has attractedmuch research attention in control
theory and practice. A switched system is a class of hybrid systems consisting of a family
of subsystems, which are described by continuous or discrete-time dynamics, and a rule
that orchestrates the switching between these subsystems. Switched system appears in many
engineering applications, such as automatic engineering control, network control system,
robot control system, motor engine control and so on (Cheng 2004; Lu et al. 2018; Balluchi
et al. 1997; Bishop and Spong 1998).
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It iswell-known that stability is the primary consideration in systemanalysis and synthesis.
The stability in Lyapunov sense describes the asymptotic behavior of the state trajectory of the
systemwhen time approaches infinity. In the current literature, most results on the stability of
switched systems mainly focus on Lyapunov sense stability (Liberzon and Morse 1999; Liu
et al. 2017; Kundu and Chatterjee 2017). However, in many practical systems, we need to pay
attention to the behavior of the system in a limited time interval. The concept of finite-time
stability was proposed in Dorato (1961). In recent years, finite-time stability and finite-time
stabilization have gained importance as research topics due to their practical significance, and
many results have been reported in Zuo et al. (2013), Zang et al. (2019), Chen and Jiao (2010),
Xiang and Xiao (2011), Dong et al. (2021), Hu et al. (2015), Kheloufi et al. (2016). Zuo et al.
(2013) considered the finite-time stability for linear discrete-time systems with time-varying
delay. In Chen and Jiao (2010) finite-time stability theorem for stochastic nonlinear systems
was presented. In Xiang and Xiao (2011), H∞ finite-time control for switched nonlinear
discrete-time systems with norm-bounded disturbance was investigated. Dong et al. (2021)
considered the robust observer-based finite-time H∞ control designs for discrete time delay
nonlinear systems.

Usually, the design of state feedback control is achieved with the assumption that the sys-
tem states are available. However, this unrealistic assumption is not always verified. Hence
a state observer is proposed to estimate the unknown states. In recent years, observer based
control has attracted the attention of researchers, and some control design methods have
been proposed in Dong et al. (2021), Kheloufi et al. (2016), Dong et al. (2014) and Ahmad
and Rehan (2016). Kheloufi et al. (2016) proposed a robust H∞ observer-based stabiliza-
tion method for uncertain nonlinear systems. Dong et al. (2014) investigated the problem of
observer-based feedback control for discrete-time nonlinear time-delay systems. In Ahmad
and Rehan (2016), the observer-based control for one-sided Lipschitz system was consid-
ered. However, so far, the problem of observer-based finite-time stabilization for uncertain
nonlinear discrete-time switched system has not been addressed, which is the focus of our
research.

In this paper, we address the finite-time stability and finite-time stabilization for nonlin-
ear discrete switched systems with parameter uncertainty. Firstly, we derive new sufficient
conditions which ensure that a class of switched nonlinear uncertain discrete-time system
is finite-time stable under arbitrary switching. We construct an observer-based controller.
By observer-based control, and utilizing sector-bounded conditions, the sufficient conditions
of finite-time stabilization for nonlinear uncertain discrete-time systems are established in
terms of matrices inequality. The design methods of controller and observer gain matrix are
provided. Finally, two numerical examples are given to confirm the effectiveness and less
conservatism of the proposed method.

The paper is organized as follows. Some preliminaries and the problem statement are
introduced in Sect. 2. Themain results, finite-time stable analysis and finite-time stabilization
via observer-based control are given in Sect. 3. Two numerical examples are presented in
Sect. 4. Conclusions are drawn in Sect. 5.

Notations: Throughout this paper, the superscript T denotes the transpose of a matrix. X >

Y (X < Y ) denotes the matrix X − Y is a positive definite (negative definite) symmetric
matrix. λmax(P) and λmin(P) denotes the maximum eigenvalue and minimum eigenvalue of a
matrix P, respectively. N denotes the non-negative integer set. A⊗ B denotes the Kronecker
product of two matrices A and B. ∗ denotes the symmetric block in symmetric matrix. Diag
(· · ·) denotes a block-diagonal matrix.
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2 Problem formulation

Consider the following nonlinear uncertain discrete-time switched system{
x(k + 1) � (Aσ (k) + �Aσ (k))x(k) + Bσ (k)u(k) + Gσ (k) f (x(k)),

y(k) � Cσ (k)x(k),
(1)

where x(k) ∈ Rn is the state vector; u(k) ∈ Rm is the control input; y(k) ∈ Rp is themeasured
output, σ (k) : Z+ → � � {1, 2, · · · , N } is a piecewise constant function of discrete time k,
called switching law or switching signal, which takes its value in finite set �. N > 0 is the
number of subsystems. For simplicity, at any arbitrary discrete time k ∈ Z

+, the switching
signal σ (k) is denoted by σ .Ai , Bi ,Ci ,Gi , i ∈ {1, 2, · · · , N } are appropriate dimension
constant matrices. Assume that �Aσ (k) are unknown matrices representing time-varying
parameter uncertainties and are assumed to be of the following form:

�Aσ (k) � Dσ Fσ (k)Nσ , (2)

where, for each σ ∈ �, the uncertainty Fσ (k) is the unknown time-varying matrix-valued
function subject to the following condition:

FT
σ (k)Fσ (k) ≤ I . (3)

Di , Ni , i ∈ {1, 2, · · · , N }, are constantmatrices.Thenonlinear functions f (·) are assumed
to be continuous with f (0) � 0, and satisfy the following sector-bounded conditions:

[ f (x) − f (y) − H1(x − y)]T [ f (x) − f (y) − H2(x − y)] ≤ 0, ∀x, y ∈ Rn, (4)

where H1, H2 are real matrices of appropriate dimensions.

Remark 1 The parameter uncertain structure in (2) appears in many uncertain systems (Ji
et al. 2010; Dong et al. 2020; Dong and Wang 2020). It comprises the ‘matching conditions’
and many physical systems can be either exactly modeled in this manner or overbounded by
(3).

Remark 2 As in Wang et al. (2008), the nonlinear function f is said to belong to sectors. In
other words, the nonlinearities are bounded by sectors. The nonlinear description in (4) is
more general than the usual sigmoid functions and the commonly used Lipschitz conditions.

Remark 3 In this paper, we assume that the switching rule σ is not known a priori, but it
is available in real time, i.e. the activated subsystems is explicity known at each switching
instant and the corresponding controller can be activated immediately.

Before presenting the main results, some useful definition and lemmas are given.

Definition 1 (Finite-time stability) Given a positive integer M, two positive scalars c1, c2
with 0 < c1 ≤ c2, and a positive definite matrix R, switched system (1) with u(k) � 0 is
said to be finite-time stable with respect to (c1, c2, R, M), if

xT (0)Rx(0) ≤ c1 ⇒ xT (k)Rx(k) < c2, ∀k ∈ {1, 2, · · · , M}.
Remark 4 The concept of finite-time stability is quite different from asymptotic stability.
These are two independent concepts. Finite-time stability concerns the state trajectory of
the system over the finite interval [0, M], M ∈ Z

+ with respect to given initial condition. A
system satisfying finite-time stability may be not asymptotic stable, and vice versa (Xiang
and Xiao 2011).
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Problem 1 Given nonlinear switched system (1) with u(k) � 0, find sufficient conditions
ensuring the system finite-time stable with respect to (c1, c2, R, M).

We construct an observer-based controller for system (1) as follows⎧⎪⎨
⎪⎩
x̂(k + 1) � Aσ (k) x̂(k) + Bσ (k)u(k) + Gσ (k) f (x̂(k)) + Lσ (k)(y(k) − Cσ (k) x̂(k)),

y(k) � Cσ (k) x̂(k),

u(k) � Kσ (k) x̂(k),

(5)

where x̂(k) ∈ Rn is the estimated state vector; Ki and Li are controller gain and observer
gain, respectively. Let e(k) � x(k) − x̂(k). The error dynamic system is

e(k + 1) � (Aσ (k) − Lσ (k)Cσ (k))e(k) + �Aσ (k)x(k) + Gσ (k)[ f (x(k)) − f (x̂(k))]. (6)

Denoting x(k) � [
xT (k) eT (k)

]T
, then by (1) and (6), we get the following closed-loop

system

x(k + 1) � Ãσ (k)x(k) + Gσ (k) f (x(k)), (7)

where

Ãi�
[
Ai+�Ai + Bi Ki −Bi Ki

�Ai Ai − LiCi

]
,Gi �

[
Gi 0
0 Gi

]
, f (x(k)) �

[
f (x(k))

f (x(k)) − f (x̂(k))

]
.

(8)

Definition 2 Given a positive integer M, two positive scalars c1, c2, with 0 < c1 ≤ c2,
and a positive definite matrix R, switched system (1) is said to be finite-time stabilized
with respect to (c1, c2, R, M), if there exists an observer-based controller (5), such that the
resulting closed-loop system (7) is finite-time stable with respect to (c1, c2, R, M).

Problem2 Given nonlinear switched system (1), find the observer-based controllers to ensure
the closed-loop system (7) is finite-time stable with respect to (c1, c2, R, M).

Lemma 1 (Kheloufi et al. 2016). Let S1, S2, and S3 be three real matrices of appropriate
dimension such that S1 � ST1 and S3 � ST3 . Then S3 < 0 and S1 − S2S

−1
3 ST2 < 0 if and

only if (
S1 S2
ST2 S3

)
< 0.

Lemma 2 (Ban et al. 2018). Let D, F, N are real matrices of appropriate dimension with F
satisfying FT F ≤ I . Then, for any scalar ε > 0.

DFN + (DFN )T ≤ ε−1DDT + εNT N .

3 Main results

In this section, Problems 1 and 2 are taken into consideration.Wewill first give the finite-time
stability condition for nonlinear switched discrete-time system (1) with u(k) � 0. Then, we
design the stabilizing observer-based controllers for the system (1).
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Define the indicator function α(k) � [α1(k), · · · , αN (k)]T , where

αi (k) �
{
1, when the switched system is described by the i thmode,

0, otherwise,
i ∈ �. (9)

Then, the nonlinear switched system (1) with u(k) � 0 can be written as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(k + 1) �
N∑
i�1

αi (k)[(Ai + �Ai )x(k) + Gi f (x(k))],

y(k) �
N∑
i�1

αi (k)Ci x(k).

(10)

3.1 Finite-time stability analysis

In this subsection, we give sufficient conditions which guarantee that the switched system
(1) with u(k) � 0 is finite-time stable.

Theorem1 The nonlinear switched system (1) with u(k) � 0 is finite-time stable with respect
to (c1, c2, R, M), if there exist positive-definite matrices Pi , i ∈ �,and scalars μ ≥ 0,
ε > 0,γ > 0 such that the following conditions are satisfied ∀(i, j) ∈ � × � :⎡

⎢⎢⎢⎢⎢⎣

−(1 + μ)Pi − γ H̃1 −γ H̃2 AT
i Pj 0 NT

i
∗ −γ I GT

i Pj 0 0
∗ ∗ −Pj Pj Di 0
∗ ∗ ∗ −ε I 0
∗ ∗ ∗ ∗ −(2 − ε)I

⎤
⎥⎥⎥⎥⎥⎦ < 0, (11)

(1 + μ)Mλc1 − λc2 < 0, (12)

where

H̃1 � (HT
1 H2 + HT

2 H1)
/
2, H̃2 � (H1 + H2)

/
2,

λ � sup
i∈�

{λmax(R
− 1

2 Pi R
− 1

2 )}, λ � inf
i∈�

{λmin(R
− 1

2 Pi R
− 1

2 )}.

Proof Construct the switched Lyapunov function candidate

V (k) � xT (k)P(α(k))x(k) � xT (k)

(
N∑
l�1

αl (k)Pl

)
x(k), (13)

where P1, P2, · · · , PN are symmetric positive-definite matrices. We have

�V (k) � V (k + 1) − V (k)

� xT (k + 1)P(α(k + 1))x(k + 1) − xT (k)P(α(k))x(k)

� [(A(α(k)) + �A(α(k)))x(k) + G(α(k)) f (x(k))]T P(α(k + 1))

× [(A(α(k)) + �A(α(k)))x(k) + G(α(k)) f (x(k))] − xT (k)P(α(k))x(k).
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As this has to be satisfied under arbitrary switching laws, it follows that αi (k) �
1, αl ��i (k) � 0, α j (k + 1) � 1, αl �� j (k + 1) � 0. Then

�V (k) �
[

N∑
l�1

αl (k)((Al (k) + �Al (k))x(k) + Gl (k) f (x(k)))

]T N∑
l�1

αl (k + 1)Pl

×
[

N∑
l�1

αl (k)((Al (k) + �Al (k))x(k) + Gl (k) f (x(k)))

]
− xT (k)

N∑
l�1

αl (k)Pl (k)x(k)

� [(Ai + �Ai )x(k) + Gi f (x(k))]
T Pj [(Ai + �Ai )x(k) + Gi f (x(k))] − xT (k)Pi x(k)

� xT (k)(Ai + �Ai )
T Pj (Ai + �Ai )x(k) + xT (k)(Ai + �Ai )

T PjGi f (x(k))

+ f T (x(k))GT
i Pj (Ai + �Ai )x(k) + f T (x(k))GT

i PjGi f (x(k)) − xT (k)Pi x(k).
(14)

From Eq. (4), we have[
x(k)
f (x(k))

]T [
H̃1 H̃2

H̃ T
2 I

][
x(k)
f (x(k))

]
≤ 0, (15)

where H̃1 � (HT
1 H2 + HT

2 H1)
/
2, H̃2 � (H1 + H2)

/
2.

From (14) and (15), it follows that

�V (k) ≤ xT (k)(Ai + �Ai )
T Pj (Ai + �Ai )x(k) + xT (k)(Ai + �Ai )

T PjGi f (x(k))

+ f T (x(k))GT
i Pj (Ai + �Ai )x(k) + f T (x(k))GT

i PjGi f (x(k)) − xT (k)Pi x(k)

− γ

[
x(k)
f (x(k))

]T [
H̃1 H̃2

H̃ T
2 I

][
x(k)
f (x(k))

]

� ξ T (k)
ξ (k), (16)

where

ξ (k)�[
xT (k) f T (x(k))

]T
, 
 �

[

11 
12

∗ 
22

]
, (17)


11 � (Ai + �Ai )
T Pj (Ai + �Ai ) − Pi − γ H̃1,


12 � (Ai + �Ai )
T PjGi − γ H̃2, 
22 � GT

i PjGi − γ I
.

Let

� � 
 −
[

μPi 0
0 0

]
�

[
�11 
12

∗ 
22

]
, (18)

where �11 � (Ai + �Ai )T Pj (Ai + �Ai ) − (1 + μ)Pi − γ H̃1.

� can be rewritten as

� � �1+�2, (19)

where

�1�
[−(1+μ)Pi − γ H̃1 −γ H̃2

∗ −γ I

]
, �2 �

[
(Ai + �Ai )T Pj

GT
i Pj

]
P−1
j

[
Pj (Ai + �Ai ) PjGi

]
.
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From (18)–(19) and Lemma 1, � < 0 is equivalent to

� �
⎡
⎣−(1+μ)Pi − γ H̃1 −γ H̃2 (Ai + �Ai )T Pj

∗ −γ I GT
i Pj

∗ ∗ −Pj

⎤
⎦ < 0. (20)

� can be written as:

� � �̂ + ��, (21)

where

�̂�
⎡
⎣−(1 + μ)Pi − γ H̃1 −γ H̃2 AT

i Pj

∗ −γ I GT
i Pj

∗ ∗ −Pj

⎤
⎦,

�� �
⎡
⎣ 0 0 �AT

i Pj

∗ 0 0
∗ ∗ 0

⎤
⎦ � DFi (k)N + NT FT

i (k)DT ,

D � [
0 0 DT

i Pj
]T

, N � [
Ni 0 0

]
.

By Lemma 2, one can have:

�� ≤ ε−1DDT + εNT N . (22)

For any ε > 0, we have

−ε−1 I < −(2 − ε)I . (23)

By applying Lemma 1 and (11), it can be seen that � < 0, which implies that � < 0.
Then it follows that

�V (k) ≤ ξ T (k)
ξ (k)

� ξ T (k)(� +

[
μPi 0
0 0

]
)ξ (k)

< ξ T (k)

[
μPi 0
0 0

]
ξ (k)

� μV (k). (24)

From (24), we get

V (k + 1) ≤ (1 + μ)V (k), (25)

which implies that

V (k) ≤ (1 + μ)V (k − 1)

≤ · · ·
≤ (1 + μ)kV (0). (26)

From (13), we know that for ∀i ∈ �, ∀k ∈ {1, 2, · · · , M}
(1 + μ)kV (0) ≤ (1 + μ)k sup

i∈�

{λmax(R
− 1

2 Pi R
− 1

2 )}xT (0)Rx(0)

≤ (1 + μ)kλc1, (27)
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V (k) ≥ inf
i∈�

{λmin(R
− 1

2 Pi R
− 1

2 )}xT (k)Rx(k)
� λxT (k)Rx(k), (28)

where λ � sup
i∈�

{λmax(R− 1
2 Pi R− 1

2 )}, λ � inf
i∈�

{λmin(R− 1
2 Pi R− 1

2 )}.
So, from (25)–(28), we have ∀k ∈ {1, 2, · · · , M}

λxT (k)Rx(k) ≤ (1 + μ)kV (0)

≤ (1 + μ)kλc1

≤ (1 + μ)Mλc1, (29)

From (12) and (29), we get that

xT (k)Rx(k) < c2,

whichmeans that system (1) with u(k) � 0 is finite-time stable with respect to (c1, c2, R, M).
This completes the proof.

Corollary 1 The nonlinear switched system (1) with u(k) � 0 and �Aσ (k) � 0 is finite-time
stable with respect to (c1, c2, R, M), if there exist positive-definite matrices Pi , i ∈ �, and
scalarsμ ≥ 0, ε > 0, γ > 0 such that the following conditions are satisfied ∀(i, j) ∈ �×� :⎡

⎣−(1 + μ)Pi − γ H̃1 −γ H̃2 AT
i Pj

∗ −γ I GT
i Pj

∗ ∗ −Pj

⎤
⎦ < 0,

(1 + μ)Mλc1 − λc2 < 0,

where

H̃1 � (HT
1 H2 + HT

2 H1)
/
2, H̃2 � (H1 + H2)

/
2,

λ � sup
i∈�

{λmax(R
− 1

2 Pi R
− 1

2 )}, λ � inf
i∈�

{λmin(R
− 1

2 Pi R
− 1

2 )}.

Proof The proof is similar to that for Theorem 1 and is omitted here. �

3.2 Finite-time stabilization

The closed-loop system (7) can be written as

x(k + 1) �
N∑
i�1

αi (k)[ Ãi x(k) + Gi f (x(k))], (30)

Next, sufficient conditions are proposed to guarantee discrete-time switched system (7) is
finite-time stable via observer-based control.

Theorem 2 The nonlinear discrete-time switched system (1) is finite-time stabilized with
respect to (c1, c2, R, M),if there exists symmetric matrices 0 < Si � diag( Si Si ) ∈

123
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R2n×2n,scalars μ ≥ 0, ε > 0, γ > 0, and any matrices K i , Li , i ∈ �,such that the
following conditions are satisfied ∀(i, j) ∈ � × � :⎡

⎢⎢⎢⎢⎢⎣

−(1 + μ)Si + γ (H
−T
1 − 2Si ) −γ Si H2 
13 0 Si N

T
i

∗ −γ I GT
i 0 0

∗ ∗ −S j Di 0
∗ ∗ ∗ −ε I 0
∗ ∗ ∗ ∗ −(2 − ε)I

⎤
⎥⎥⎥⎥⎥⎦ < 0, (31)

(1 + μ)Mλ1c1 − λ2c2 < 0, (32)

SiC
T
i � CT

i Ŝi , (33)

where


13 �
[
Si AT

i + K i BT
i 0

−K i BT
i Si AT

i − CT
i Li

]
, Gi �

[
Gi 0
0 Gi

]
, Ni �

[
Ni 0

]
, Di �

[
DT
i DT

i

]T
,

H1 � I ⊗ [(HT
1 H2 + HT

2 H1)
/

2], H2 � −I ⊗ [(H1 + H2)
/
2], P

−1
i � Si ,

λ1� sup
i∈�

{λmax(R
− 1

2 Pi R
− 1

2 )}, λ2� inf
i∈�

{λmin(R
− 1

2 Pi R
− 1

2 )}.

Furthermore, if the conditions (31)–(33) have feasible solutions, the controller gain and
observer gain can be given by

Li � L
T
i Ŝ

−T
i , Ki � K

T
i S

−T
i , ∀i ∈ �.

Proof Construct the Lyapunov function for system (30)

V (k) � xT (k)P(α(k))x(k) � xT (k)

(
N∑
l�1

αl (k)Pl

)
x(k), ∀l ∈ �, (34)

where Pi � diag
(
Pi Pi

)
> 0 and αi (k) � 1, αl ��i (k) � 0, α j (k+1) � 1, αl �� j (k+1) � 0.

Then the difference of V (k) along the solution of the closed-loop system (30) is given by

�V (k) � V (k + 1) − V (k)

� xT (k + 1)P(α(k + 1))x(k + 1) − xT (k)P(α(k))x(k)

�
[
Ã(α(k))x(k) + G(α(k)) f (x(k))

]T
P(α(k + 1))

[
Ã(α(k))x(k) + G(α(k)) f (x(k))

]
− xT (k)P(α(k))x(k)

�
[

N∑
l�1

αl (k)( Ãl x(k) + Gl f (x(k)))

]T N∑
l�1

αl (k + 1)Pl

[
N∑
l�1

αl (k)( Ãl x(k) + Gl f (x(k)))

]

−
N∑
l�1

αl (k)x
T (k)Pl x(k)

� [ Ãi x(k) + Gi f (x(k))]
T P j [( Ãi x(k) + Gi f (x(k))] − xT (k)Pi x(k). (35)

From Eq. (4), we have[
x(k)
f (x(k))

]T
[
H1 H2

H
T
2 I

][
x(k)
f (x(k))

]
≤ 0, (36)
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where H1 � I ⊗ [(HT
1 H2 + HT

2 H1)
/
2], H2 � −I ⊗ [(H1 + H2)

/
2].

From (35) and (36), we get

�V (k) ≤ [ Ãi x(k) + Gi f (x(k))]
T P j [( Ãi x(k) + Gi f (x(k))] − xT (k)Pi x(k)

− γ

[
x(k)
f (x(k))

]T
[
H1 H2

H
T
2 I

][
x(k)
f (x(k))

]

� ςT (k)�ς(k).

where

ς(k) � [ xT (k) f
T
(x(k)) ]T , ��

[
ÃT
i P j Ãi − Pi − γ H1 ÃT

i P jGi − γ H2

∗ G
T
i P jGi − γ I

]
.

Let

� � � −
[

μPi 0
0 0

]

�
[−(1 + μ)Pi − γ H1 −γ H2

∗ −γ I

]
+

[
ÃT
i P j

G
T
i P j

]
P

−1
j

[
P j Ãi P jGi

]
, (37)

By Lemma 1, we have that � < 0 is equivalent to

�̃�
⎡
⎢⎣−(1 + μ)Pi − γ H1 −γ H2 ÃT

i P j

∗ −γ I G
T
i P j

∗ ∗ −P j

⎤
⎥⎦ < 0, (38)

where

Ãi � Ai + �Ai

�
[
Ai + Bi Ki −Bi Ki

0 Ai − LiCi

]
+

[
�Ai 0
�Ai 0

]
.

Then Eq. (38) can be written to

�̃��1 + �2 < 0, (39)

where

�1 �
⎡
⎢⎣−(1 + μ)Pi − γ H1 −γ H2 A

T
i P j

∗ −γ I G
T
i P j

∗ ∗ −P j

⎤
⎥⎦,

�2 �
⎡
⎢⎣ 0 0 �A

T
i P j

∗ 0 0
∗ ∗ 0

⎤
⎥⎦ � OF(k)Y + (OF(k)Y )T ,

O � [
0 0 (P j Di)T

]T
, Y � [

Ni 0 0
]
,

Gi �
[
Gi 0
0 Gi

]
, Ni � [

Ni 0
]
, Di � [

DT
i DT

i

]T
.

Applying Lemma 2, we have that �̃ < 0 if

�1 + ε−1OOT + εY T Y < 0. (40)
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By Lemma 1, (40) is satisfied if and only if

�̂ �

⎡
⎢⎢⎢⎢⎢⎣

−(1 + μ)Pi − γ H1 −γ H2 A
T
i P j 0 N

T
i

∗ −γ I GT
i P j 0 0

∗ ∗ −P j P j Di 0
∗ ∗ ∗ −ε I 0
∗ ∗ ∗ ∗ −ε−1 I

⎤
⎥⎥⎥⎥⎥⎦ < 0, (41)

Setting Si � P
−1
i , pre and post multiplying (41) by T � diag

(
Si , I , S j , I , I

)
, we have

��

⎡
⎢⎢⎢⎢⎢⎣

−(1 + μ)Si − γ Si H1Si −γ Si H2 Si A
T
i 0 Si N

T
i

∗ −γ I G
T
i 0 0

∗ ∗ −S j Di 0
∗ ∗ ∗ −ε I 0
∗ ∗ ∗ ∗ −ε−1 I

⎤
⎥⎥⎥⎥⎥⎦ < 0. (42)

From (23) and −γ Si H1Si ≤ γ (H
−T
1 − 2Si ), we get that � < 0 if⎡

⎢⎢⎢⎢⎢⎣

−(1 + μ)Si + γ (H
−T
1 − 2Si ) −γ Si H2 Si A

T
i 0 Si N

T
i

∗ −γ I G
T
i 0 0

∗ ∗ −S j Di 0
∗ ∗ ∗ −ε I 0
∗ ∗ ∗ ∗ −(2 − ε)I

⎤
⎥⎥⎥⎥⎥⎦ < 0. (43)

Let Si � P−1
i , K i � Si K T

i , L i � Ŝi LT
i . From (31) and (33), we get that � < 0. Then

�V ≤ ςT (k)

(
� +

[
μPi 0
0 0

])
ς(k)

< ςT (k)

[
μPi 0
0 0

]
ς(k)

� μV (k),

i.e.

V (k + 1) ≤ (1 + μ)V (k), (44)

which implies that

V (k) ≤ (1 + μ)V (k − 1) ≤ · · · ≤ (1 + μ)kV (0). (45)

From (34), we know that for ∀i ∈ �, ∀k ∈ {1, 2, · · · , M},
(1 + μ)kV (0) ≤ (1 + μ)k sup

i∈�

{λmax(R
− 1

2 Pi R
− 1

2 )}xT (0)Rx(0)

≤ (1 + μ)kλ1c1, (46)

V (k) ≥ inf
i∈�

{
λmin

(
R

− 1
2 Pi R

− 1
2

)}
� λ2x

T (k)Rx(k), (47)

where λ1� sup
i∈�

{λmax(R
− 1

2 Pi R
− 1

2 )},λ2� inf
i∈�

{λmin(R
− 1

2 Pi R
− 1

2 )}.
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From (45)–(47), it follows that

λ2x
T (k)Rx(k) ≤ (1 + μ)kV (0)

≤ (1 + μ)kλ1c1

≤ (1 + μ)Mλ1c1. (48)

From (32), we get that

xT (k)Rx(k) < c2.

This completes the proof of the theorem.

Corollary 2 The nonlinear discrete-time switched system (1) with �Aσ (k) � 0is finite-time
stabilizable with respect to (c1, c2, R, M),if there exists symmetric matrices 0 < Si �
diag( Si Si ) ∈ R2n×2n,scalars μ ≥ 0, γ > 0,and any matrices K i , Li ,∀i ∈ �,such that
the following conditions are satisfied ∀(i, j) ∈ � × � :⎡

⎢⎣−(1 + μ)Si + γ (H
−T
1 − 2Si ) −γ Si H2 
13

∗ −γ I GT
i

∗ ∗ −S j

⎤
⎥⎦ < 0, (49)

(1 + μ)Mλ1c1 − λ2c2 < 0, (50)

SiC
T
i � CT

i Ŝi , (51)

where


13 �
[
Si AT

i + K i BT
i −K iBT

i

∗ Si AT
i − CT

i Li

]
, Gi �

[
Gi 0
0 Gi

]
, H1 � I ⊗ [(HT

1 H2 + HT
2 H1)

/
2],

H2 � −I ⊗ [(H1 + H2)
/
2], λ1� sup

i∈�

{λmax(R
− 1

2 Pi R
− 1

2 )}, λ2� inf
i∈�

{λmin(R
− 1

2 Pi R
− 1

2 )}, P−1
i � Si .

Furthermore, if the conditions (31)–(33) have feasible solutions, the controller gain and
observer gain can be given by

Li � L
T
i Ŝ

−T
i , Ki � K

T
i S

−T
i , ∀i ∈ �.

Proof The proof is similar to that for Theorem 2 and is omitted here. �

4 Numerical examples

In this section, two numerical examples are presented to show the application of the developed
theory.

Example 1 Consider the uncertain discrete-time switched system (1) with u(k) � 0 and the
following parameters:
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A1 �
[

−0.1 0.1
0.2 −0.1

]
, C1 �

[
0.2 0.1
0.1 0.2

]
, G1 �

[
0.1 0
0 −0.2

]
, D1 �

[
−0.1 0.2
0 0.2

]
,

N1 �
[
0.1 0.2
0.1 0.2

]
, A2 �

[
−0.2 0.02
0.02 −0.2

]
, C2 �

[
0.2 0
0 0.3

]
,G2 �

[
0.02 0
0 −0.3

]
,

D2 �
[

−0.2 0.1
0 0.1

]
, N2 �

[
0.2 0.1
0.1 0.1

]
, F1(k) �

[
0.8δ 0
0 0.8δ

]
, F2(k) �

[
0.9δ 0
0 0.9δ

]
, |δ| ≤ 1,

H1 �
[
0.7 0
0 0.7

]
, H2 �

[
0.3 0
0 0.1

]
, f (x(k)) �

[
0.5x1 + 0.2 sin(x1)
0.4x2 + 0.3 sin(x2)

]
.

Take μ � 0.5, γ � 0.4, ε � 0.2, c1 � 0.25, R � I2, M � 10. By using Matlab LMI
Toolbox to solve inequalities (11) and (12), we can get a set of feasible solution as follows:

P1 � P2 �
[

1.1461 −0.0006
−0.0006 1.1358

]
, c2 � 14.55.

According to Theorem 1, system (1) with u(k) � 0 is finite-time stable with respect to
(0.25, 14.55, I2, 10). Figure 1 shows the simulation results of the state trajectory x(k) with

δ�1. Figure 2 shows the evolution of xT (k)Rx(k) for an initial value x(0) � [−0.25 0.3
]T

.

It can be seen that, the state responses satisfy

xT (k)Rx(k) ≤ 14.55, k ∈ {1, 2, · · · , 10}.
For μ � 0.5, γ � 0.4, ε � 0.2, R � I2, c1 � 0.25 and M ∈ {2, 5, 8, 10}, the smallest

eligible value of the parameter c2 is computed by using Theorem 1, and the obtained results
are listed in Table 1. From Table 1, it can be seen that the smallest eligible value of the
parameter c2 increases asM increases.

0 1 2 3 4 5 6 7 8 9 10
Time  (sec)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
State responses

Fig. 1 State response of the system in Example 1
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0 1 2 3 4 5 6 7 8 9 10
Time(sec)

0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 2 Trajectory of xT (k)Rx(k) in Example 1

Table 1 The smallest eligible value of the parameter c2

M 2 5 8 10

Theorem 1 0.254 1.916 6.466 14.548

0 1 2 3 4 5 6 7 8 9 10
Time  (sec)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
State responses

Fig. 3 Responses of state x1(k) and the estimate of x1(k) in Example 2
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Example 2 Consider the nonlinear switched system (1) with the following parameters and
two modes (i � 1, 2):

A1 �
[

−0.1 0.02
0.01 −0.2

]
, B1 �

[
0.1 0.2
0.2 −0.1

]
, C1 �

[
0.1 0
0 0.2

]
, G1 �

[
0.02 0
0 −0.3

]
, D1 �

[
−0.2 0.1
0 0.1

]
,

N1 �
[
0.2 0.1
0.1 0.2

]
, A2 �

[
−0.1 0.01
0.02 −0.1

]
, B2 �

[
0.1 0.1
0.2 −0.3

]
,C2 �

[
0.2 0.1
0.1 0.2

]
, G2 �

[
0.01 0.1
0.1 −0.1

]
,

D2 �
[

−0.1 0.2
0 0.2

]
, N2 �

[
0.1 0.2
0.1 0.2

]
, F1(k) �

[
0.85δ 0
0 0.85δ

]
, F2(k) �

[
0.95δ 0
0 0.95δ

]
, |δ| ≤ 1,

H1 �
[
0.5 0
0 0.7

]
, H2 �

[
0.1 0
0 0.3

]
, f (x(k)) �

[
0.3x1 + 0.2 sin(x1)
0.5x2 + 0.2 sin(x2)

]
.

Take μ � 0.5, γ � 0.2, ε � 0.3, c1 � 0.8, R � I4, M � 10. By using Matlab LMI
Toolbox to solve inequalities (31) and (32), we can get a set of feasible solution as follows:

S1 �

⎡
⎢⎢⎣
0.8410 0.0061 0 0
0.0061 0.8427 0 0

0 0 0.8410 0.0061
0 0 0.0061 0.8427

⎤
⎥⎥⎦,

K 1 �
[
0.0465 0.1833
0.1833 −0.1540

]
, L1 �

[−0.8362 0.0793
0.0793 −0.9370

]
,

S2 �

⎡
⎢⎢⎣
0.9507 0.0059 0 0
0.0059 0.9527 0 0

0 0 0.9507 0.0059
0 0 0.0059 0.9527

⎤
⎥⎥⎦,

K 2 �
[
0.1681 0.1298
0.1298 −0.0757

]
, L2 �

[−0.7173 0.4640
0.4640 −0.7401

]
, c2 � 52.85.

The controller gain matrices are

K1 �
[
0.0537 0.2172
0.2193 −0.1844

]
, K2 �

[
0.1759 0.1353
0.1370 −0.0804

]
,

and the observer gain matrices are

L1 �
[−0.9957 0.0978

0.1106 −1.1124

]
, L2 �

[−0.7574 0.4925
0.4924 −0.7805

]
.

According to Theorem 2, system (1) is finite-time stabilized with respect to
(0.8, 52.85, I4, 10) via an observer-based control (28). Figures 3 and 4 show the states
and estimate states of the closed-loop system with δ�1. Figure 5 shows the evolution
of xT (k)Rx(k). In addition, it can be seen that, the state responses satisfy

xT (k)Rx(k) ≤ 52.85, k ∈ {1, 2, · · · , 10}.
For μ � 0.5, γ � 0.2, ε � 0.3, R � I4,c1 � 0.8 and M ∈ {2, 5, 8, 10}, the smallest

eligible value of the parameter c2 is computed by using Theorem 2, and the obtained results
are listed in Table 2.
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Fig. 4 Responses of state x2(k) and the estimate of x2(k) in Example 2
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Fig. 5 The trajectory of xT (k)Rx(k) in Example 2

Table 2 The smallest eligible value of the parameter c2

M 2 5 8 10

Theorem 2 3.985 6.960 23.489 52.85
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From Table 2, it can be seen that the smallest eligible value of the parameter c2 increases
as M increases.

5 Conclusions

Unlike most existing research results focusing on Lyapunov stability property of switched
system, this paper studies the finite-time stability for uncertain nonlinear switched discrete-
time system. As themain contribution of this paper, for a class of nonlinear switched discrete-
time system with uncertain under arbitrary switching, sufficient conditions of finite-time
stability have been given by constructing the Lyapunov function. Then using the matrix
inequality technique, and based on the analysis result, the sufficient conditions to guarantee
that the closed-loop system is finite-time stability via observer-based control are derived.
Finally, two numerical examples are given to demonstrate the validity of the proposed results.
It should be also pointed out that how to extend the main results to the observer-based
H∞ finite-time control for discrete-time switched systems with time delays and nonlinear
disturbance, are very meaningful topics that deserves further exploration.

Acknowledgements This work was supported by the National Nature Science Foundation of China under
Grant No. 61873186.

Data availability statement The data used to support the findings of this study are included within the article.

Declarations

Conflict of interest The authors declared that they have no conflict of interest.

References

Ahmad S, Rehan M (2016) On observer-based control of one-sided Lipschitz systems. J Franklin Inst
353(4):903–916

Balluchi A, Benedetto MD, Pinello C, Rossi C, Sangiovanni-Vincentelli, A (1997) Cut-off in engine con-
trol: a hybrid system approach. In: Proceedings of the 36th IEEE Conference on Decision and Control
4720–4725

Ban J, Kwon W, Won S, Kim S (2018) Robust H∞ finite-time control for discrete-time polytopic uncertain
switched linear systems. Nonlinear Anal Hybrid Syst 29:348–362

BishopBE, SpongMW(1998)Control of redundantmanipulators using logic-based switching. In: Proceedings
of the 36th IEEE Conference on Decision and Control 16–18

Chen W, Jiao L (2010) Finite-time stability theorem of stochastic nonlinear systems. Automatica
46(12):2105–2218

Cheng D (2004) Stabilization of planar switched systems. Syst Control Lett 51(2):79–88
Dong Y, Wang H (2020) Robust output feedback stabilization for uncertain discrete-time stochastic neural

networks with time-varying delay. Neural Process Lett 51:83–103
Dong Y, Zhang Y, Zhang X (2014) Design of observer-based feedback control for a class of discrete-time

nonlinear systems with time-delay. Appl Comput Math 13(1):107–121
Dong Y, Guo L, Hao J (2020) Robust exponential stabilization for uncertain neutral neural networks with

interval time-varying delays by periodically intermittent control. Neural Comput Appl 32:2651–2664
DongY,WangH, DengM (2021) Robust observer-based finite-timeH∞ control designs for discrete nonlinear

systems with time-varying delay. Kybernetika 57(1):102–117
Dorato P (1961) Short time stability in linear time-varying systems. In: Proc. IRE Int. Convention Record,

New York, 9 May 1961, pp 83–87

123



168 Page 18 of 18 Y. Dong, X. Tang

Hu M, Cao J, Hu A, Yang Y, Jin Y (2015) A novel finite-time stability criterion for linear discrete-time
stochastic system with applications to consensus of multi-agent system. Circuits Syst Signal Process
34(1):41–59

Ji X, Yang Z, Su H (2010) Robust stabilization for uncertain discrete singular time-delay systems. Asian J
Control 12(2):216–222

KheloufiH, Zemouche A, Bedouhene F (2016) ARobustH∞ observer-based stabilizationmethod for systems
with uncertain parameters and Lipschitz nonlinearities. Int J Robust Nonlinear Control 26(9):1962–1979

Kundu A, Chatterjee D (2017) On stability of discrete-time switched systems. Nonlinear Anal Hybrid Syst
23:191–210

Liberzon D, Morse AS (1999) Basic problems in stability and design of switched systems. IEEE Control Syst
Mag 19(5):59–70

Liu C, Yang Z, Sun D, Liu X, Liu W (2017) Stability of variable-time switched systems. Arab J Sci Eng
42(7):2971–2980

Lu R, Shi P, Su H, Wu Z, Lu J (2018) Synchronization of general chaotic neural networks with nonuni-
form sampling and packet missing: a switched system approach. IEEE Trans Neural Netw Learn Syst
29(3):523–533

Wang Z, Liu Y, Liu X (2008) H∞ filtering for uncertain stochastic time-delay systems with sector-bounded
nonlinearities. Automatica 44(5):1268–1277

XiangW, Xiao J (2011) H-infinity finite-time control for switched nonlinear discrete-time systems with norm-
bounded disturbance. J Franklin Inst 348(2):331–352

ZangT,DengF,ZhangW(2019) Finite-time stability and stabilization of linear discrete time-varying stochastic
systems. J Franklin Inst 356:1247–1267

Zuo Z, Li H, Wang Y (2013) New criterion for finite-time stability of linear discrete-time systems with
time-varying delay. J Franklin Inst 350:2745–2756

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Finite-time stability and observer-based control for nonlinear uncertain discrete-time switched system
	Abstract
	1 Introduction
	2 Problem formulation
	3 Main results
	3.1 Finite-time stability analysis
	3.2 Finite-time stabilization

	4 Numerical examples
	5 Conclusions
	Acknowledgements
	References




