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Abstract
The J-Bessel univariate kernel �d introduced by Schoenberg plays a central role in the char-
acterization of stationary isotropic covariance models defined in a d-dimensional Euclidean
space. In the multivariate setting, a matrix-valued isotropic covariance is a scale mixture of
the kernel �d against a matrix-valued measure that is nondecreasing with respect to matrix
inequality. We prove that constructions based on a p-variate kernel [�di j ]pi, j=1 are feasible
for different dimensions di j , at the expense of some parametric restrictions. We illustrate
how multivariate covariance models inherit such restrictions and provide new classes of
hypergeometric, Matérn, Cauchy and compactly-supported models to illustrate our findings.

Keywords Matrix-valued covariance · Schoenberg measure · Multivariate hypergeometric
covariance · Multivariate Matérn covariance · Multivariate Cauchy covariance

Mathematics Subject Classification 42A82 · 60G10 · 86A32

1 Introduction

The last 30years have seen a plethora of approaches to multivariate modeling, estimation
and prediction in spatial statistics. Chilès and Delfiner (2012) and Genton and Kleiber (2015)
provide an overview of modeling approaches that are centered on the second-order properties
of a zero-mean p-variate random field Z in R

d with real-valued components. The mapping
C, defined through

C(s, s′) = E(Z(s) · Z(s′)�), s, s′ ∈ R
d , (1)
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with E denoting the mathematical expectation, is the matrix-valued (or multivariate)
covariance function of Z.

A necessary and sufficient condition for a function C : R
d × R

d → R
p×p to be the

covariance of a p-variate random field in R
d is that C is positive semidefinite, i.e., the

matrix [[Ci j (sk, s�)]pi, j=1]nk,�=1, where Ci j denotes the (i, j)-th entry of C, is symmetric
and positive semidefinite for any choice of the positive integer n and of the set of points
{s1, . . . , sn} in R

d .

Under assumptions of second-order stationarity and isotropy, one has

C(s, s′) = ϕ(‖s − s′‖), s, s′ ∈ R
d , (2)

where the matrix-valued function ϕ : [0,∞) → R
p×p is known as the isotropic or radial

part of C, and ‖ · ‖ is the Euclidean norm in Rd .

Hereinafter, we denote�
p
d the class of continuous matrix-valued mappings ϕ : [0,∞) →

R
p×p such that (2) holds for a covariance functionC defined inRd×R

d .Weabuse of notation
by writing �d for �1

d .

1.1 Context and problem

Let d be a positive integer. Following Schoenberg (1938), we define the mapping �d :
[0,∞) → R through

�d(x) = �

(
d

2

)(
2

x

) d
2 −1

Jd
2 −1(x), x ≥ 0, (3)

with Jν being the Bessel function of the first kind of order ν > 0 (Olver et al. 2010, for-
mula10.2.2). �d plays a crucial role to characterize the class �

p
d : in fact, Alonso-Malaver

et al. (2015) proved that a continuous mapping ϕ : [0,∞) → R
p×p belongs to �

p
d if and

only if it can be uniquely written as

ϕ(x) =
∫ ∞

0
�d(r x)Fd,p(dr), x ≥ 0, (4)

where the integral is understood as componentwise and where the measure Fd,p =[
Fi j;d,p

]p
i, j=1 is finite and nondecreasing with respect to matrix inequality, i.e., the matrix

[
Fi j;d,p(r + �) − Fi j;d,p(r)

]p
i, j=1

is positive semidefinite for all positive r and �.

The case p = 1 is due to Schoenberg (1938) and is especially useful as it offers the dual view
of the members ϕ(·)/ϕ(0) in �d as being both the isotropic parts of correlation functions
in R

d and the characteristic functions of random vectors that are equal in distribution to
the product between a nonnegative random variable with probability distribution Fd (the
scalar-valued version of Fd,p) with a random vector that is uniformly distributed over the
unit sphere embedded in Rd , with �d being its characteristic function. Following Daley and
Porcu (2014), we term Fd,p a (d, p)-Schoenberg measure and, for the scalar-valued case,
we term Fd a d-Schoenberg measure.

There has been considerable criticism about the flexibility of current multivariate covari-
ance models. Most of them are based on the adaptation principle (Porcu et al. 2018). Let
{ϕ(·; θ) ; θ ∈ R

m} be a parametric family of members of �d , with θ being a parameter
vector, such that ϕ(0; θ) = 1. Let Fd(·; θ) be the d-Schoenberg measure of ϕ(·; θ). Then,
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most of the proposals in the literature provide members ϕ ∈ �
p
d having elements ϕi j that are

identically equal to

ϕi j (x) = σiσ jρi jϕ(x; θ i j )

= σiσ jρi j

∫ ∞

0
�d(r x)Fd(dr; θ i j ), x ≥ 0, i, j = 1, . . . , p, (5)

where σi is the standard deviation of the i-th component Zi of Z, ρi j is the collocated
correlation coefficient between Zi and Z j , and θ i j belongs to Rm . This principle is the core
of the celebrated multivariate Matérn model (Gneiting et al. 2010). Similar constructions
have been proposed by Daley et al. (2015) for a multivariate model with compact support,
by Emery and Alegría (2022) for a general formulation that encompasses both Matérn and
compactly-supported models, and by Bourotte et al. (2016) and Allard et al. (2022) for the
nonseparable Gneiting space-time model.

There are certainly issues with the formulation (5), which appears as a particular case of
(4) where the components of Fd,p are determined from a single parametric family Fd(·, θ)

of univariate Schoenberg measures. Bevilacqua et al. (2015) note how the constraints on the
vectors θ i j imply restrictions on the collocated correlations coefficient ρi j , which are no
longer free to vary between −1 and 1. Further limits can be found by studying measures of
discrepancies between the elements on the diagonal and those on the anti-diagonal of the
mapping ϕ. Yet, the adaptation principle remains a valid instrument to provide parametric
families of matrix-valued covariance functions and to determine sufficient validity condi-
tions on their parameters. The present paper digs into this principle and introduces more
flexibility by allowing the generating kernel �d to have multiple indices di j associated with
the components ϕi j in Eq. (5).

1.2 Our contribution

Schoenberg’s representation for the case p = 1 in (4) implies that�d is a member of the class
�d .Hence, all members ϕ in�

p
d are written as a scale mixture of a univariate member of�d

against a (d, p)-Schoenberg measure. A tempting choice for flexible multivariate modeling
would be to consider a matrix of integers d = [

di j
]p
i, j=1 and representations of the type

ϕ(x) =
∫ ∞

0
�d(r x)Fd,p(dr), x ≥ 0, (6)

with �d(x) = [
�di j (x)

]p
i, j=1

. Again, the integration is taken componentwise and
�d(·x)Fd,p(d·) is the matrix-valued function having elements �di j (·x)Fi j;d,p(d·). We will
show that such a construction is possible under suitable parametric restrictions. As a conse-
quence, we will prove that there is room for improving the classical adaptation construction
(5) that has been the gold standard for many years in multivariate spatial statistics modeling.
An important by-product of the representation (6) will be the possibility to devise parametric
families of members of �

p
d and to derive sufficient validity conditions on their parameters,

thus to extend the current state of knowledge on multivariate covariance modeling. Some
examples will illustrate the versatility of our approach. We will also provide an operator
viewpoint for the �d -based construction and prove that this entirely maps �d into �

p
d .
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Table 1 Ordinary and special functions used in the paper; see Olver et al. (2010) for mathematical definitions

Notation Function name

I(a,b)(·) Indicator function of the open interval (a, b)

(·)+ Positive part function

	·
 Ceil function

Jν(·) Bessel function of the first kind of order ν

Kν(·) Modified Bessel function of the second kind of order ν

Mλ,μ(·), Wλ,μ(·) Whittaker functions

�(·) Gamma function

B(·, ·) Beta function

(·)k Falling factorial

0F1(; β; ·) Confluent hypergeometric function

1F1(α; β; ·) Kummer confluent hypergeometric function

2F1(α1, α2;β; ·) Gauss hypergeometric function

q Fq ′ (α1, . . . , αq ; β1, . . . , βq ′ ; ·) Generalized hypergeometric function

1.3 Notation

Throughout, the functions listed in Table 1will be used. Bold letters will refer to matrices and
vectors (one-column matrices), p and d will denote positive integers, 0 and 1 the zero and
all-ones matrices of size p × p, and � the transposition operator. Continuity, differentiation
and integration involving matrix-valued functions are understood as componentwise. So
will be any mathematical operation (e.g., product, ratio, square root, power, exponentiation,
composition, and indicator function) involving matrices or matrix-valued functions.

The next section provides a technical result that supports the main findings contained in
Sect. 3. Technical definitions, lemmas and proofs are deferred to appendices for a neater
exposition.

2 An auxiliary result

Proposition 1 Let ρ = [
ρi j

]p
i, j=1 , b = [

bi j
]p
i, j=1 and ν = [

νi j
]p
i, j=1 be real symmetric

matrices, with bi j > 0 and νi j > d for i, j = 1, . . . , p. Define γi j and κi j,d as

γi j = νi j − d

2
− 1 (7)

and

κi j,d = 2�
( νi j

2

)
�(γi j + 1)�

( d
2

) . (8)

Let Bi j (r) =
(
1 − b2i j r

2
)γi j

+ for r > 0 and i, j = 1, . . . , p. Let the matrix A(r) =[
Ai j (r)

]p
i, j=1 have entries

Ai j (r) = ρi j κi j,d Bi j (r), i, j = 1, . . . , p. (9)

123



The Schoenberg kernel and more flexible multivariate… Page 5 of 16 148

Then, A(r) is positive semidefinite for all r > 0 under any of the three following sets of
conditions:
1. (a) [ρi j ]pi, j=1 is positive semidefinite;

(b) bi j = max{bi , b j } for i �= j and bii = bi − βi , with b1, . . . , bp > 0 and
β1, . . . , βp ≥ 0;

(c) νi j = ν for i, j = 1, . . . , p;
or

2. (a) [−γi j ]pi, j=1 is positive semidefinite;
(b) [b2i j ]pi, j=1 is positive semidefinite;
(c) [ρi j κi j,d I(bi j ,∞)(z)]pi, j=1 is positive semidefinite for any z > 0;
or

3. (a) ρi i ≥ 0 for i = 1, . . . , p;
(b) bii < bi j and γi j ≥ 0, or bii > bi j and γi i < 0 ≤ γi j , or bii = bi j and γi i ≤ γi j ,

for i, j = 1, . . . , p with i �= j;
(c) for i = 1, . . . , p,

ρi i κi i,d ≥
∑
i �= j

ρi j κi j,d

{(
1 − I(0,1)

(
γi j b2i j − γi i b2i i
b2i i (γi j − γi i )

))

+I(0,1)

(
γi j b2i j − γi i b2i i
b2i i (γi j − γi i )

) (
γi j (b2i j − b2i i )

b2i i (γi i − γi j )

)γi j
(

γi i (b2i j − b2i i )

b2i j (γi i − γi j )

)−γi i
}

,

with the convention 00 = 1.

3 Main results

3.1 The Schoenberg kernelÄ�

Let ν be a positive real number. We generalize the exposition in Sect. 1 by considering the
mapping �ν : [0,∞) → R through the identity

�ν(x) = �
(ν

2

)(
2

x

) ν
2−1

J ν
2−1(x), x ≥ 0. (10)

Arguments in Schoenberg (1938) prove that, for d ≤ ν < d + 1 with d a positive integer,
�ν belongs to �d \ �d+1.

Proposition 2 Let ρ = [ρi j ]pi, j=1, b = [bi j ]pi, j=1 and ν = [νi j ]pi, j=1 be real symmetric
matrices with the restriction that bi j > 0 and νi j > d for i, j = 1, . . . , p. Then, the
mapping λ : [0,∞) → R

p×p defined through

λi j (x) = ρi j

bdi j
�νi j

(
x

bi j

)
, x ≥ 0, i, j = 1, . . . , p, (11)

belongs to �
p
d provided that the matrix A(r) defined at (9) is positive semidefinite for any

r > 0.

Some comments are in order. Proposition 2 is related to the kernel �d as in (6) when
the matrix ν is restricted to coefficients being integers and representing spatial dimensions.
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Clearly, Proposition 1 shows that the choice of these dimensions cannot be arbitrary. On the
other hand, the proof of Proposition 2 (AppendixB) shows that λ is actually the scale mixture
of �d against a (d, p)-Schoenberg measure that is absolutely continuous with respect to the
Lebesgue measure, with a (d, p)-Schoenberg density equal to the mapping v → vd−1A(v),

with A defined at (9). This fact suggests to take the following operator perspective.

Proposition 3 Let ϕ : [0,∞) → R be a member of �d . Let ϒd be the operator from �d into
R

p×p defined through

ϒd(ϕ)(x) = ψ(x) :=
[ ∫ ∞

0
ϕ(vx)vd−1A(v)dv

]p

i, j=1

, x ≥ 0, (12)

with A(·) defined at (9), such that b and ν − d have positive entries and ρ, b and ν satisfy
one of the three sets of conditions in Proposition 1. Then, ϒd maps �d into �

p
d .

We finally prove that the operator ϒd can provide walks through dimensions as much as
in Matheron (1965) and in Daley and Porcu (2014). Let ϕ ∈ �d and ψ be as defined at (12).
We now define the operator I : �

p
d → R

p×p through I(ψ) having components

I(ψi j )(x) =
∫ ∞

x
uψi j (u)du, x ≥ 0, i, j = 1, . . . , p, (13)

provided that the integral is convergent. The following result shows that a suitable
combination of I with ϒd allows mapping �d into �

p
d−2.

Proposition 4 Let d ≥ 3. Let ϕ ∈ �d with d-Schoenberg measure Fd such that∫ ∞
0 u−2Fd(du) is well-defined. Let ϒd be the operator defined at (12), and let I be the
operator defined at (13). Then, I(ϒd(ϕ)) is well-defined. Furthermore, ϕ(·) := I(ϒd(ϕ))(·)
belongs to �

p
d−2.

3.2 Application: multivariate hypergeometric covariances

Table 2 provides some examples of absolutely continuous d-Schoenberg measures Fd , asso-
ciated with a probability density function fd , for which an analytical expression of ϒd(ϕ)

can be obtained. In this table, κ is a normalization constant to ensure that fd has a unit
integral, while κ ′ is a positive constant depending on κ and on the parameters of fd . The first
four entries of the table have been established by using formulae6.621.1, 6.631.1, 6.569 and
7.661.3 of Gradshteyn and Ryzhik (2007), respectively, and the last three entries by using
formulae8.5.4, 8.5.24 and 8.13.4 of Erdélyi (1954).

More hypergeometric models than those reported in Table 2 can be designed, as explained
next. First, note that �ν can be written as (Olver et al. 2010, formula10.16.9)

�ν(x) = 0F1

(
; ν

2
;− x2

4

)
, x ≥ 0. (14)

Second, a beta or a gamma mixture of hypergeometric functions is another hypergeometric
function (Olver et al. 2010, formulae16.5.2 and 16.5.3):

q+1Fq ′+1(α0, . . . , αq ;β0 + α0, β1, . . . , βq ′ ; −x)

= 1

B(α0, β0)

∫ 1

0
tα0−1(1 − t)β0−1

q Fq ′(α1, . . . , αq ;β1, . . . , βq ′ ; −xt)dt, x ≥ 0,

(15)
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(μ
)
e−
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μ

−1
ρ
ij bd ij

2
F
1

( μ 2
,

μ
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;ν
ij 2

;−
x2 b2 ij

)
μ

>
0

κ
e−

r2
rμ

−1
ρ
ij

κ
′

bd ij
1
F
1

( μ 2
;ν

ij 2
;−

x2 4b
2 ij

)
μ

>
0

κ
rδ

(1
−
r)

μ
−1

I
(0

,1
)(
r)

ρ
ij

κ
′

bd ij
2
F
3

( δ
+1 2

,
δ 2

+
1;

ν
ij 2

,
δ
+μ

+1
2

,
δ
+μ 2

+
1;

−
x2 4
b2 ij

)
μ

>
0,
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>

−1

κ
r2

μ
W

1 2
−μ

,μ
(r
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μ

−
1 2
,μ

(r
)

ρ
ij
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′

bd ij

( ν
ij 2

−
1) b

2 ij x2
2
F
1

( μ
,
μ

+
1 2
;ν

ij 2
−

1;
−

x2 b2 ij

)
μ

>
−

1 2
,
ν
ij

>
3

3 2
r
I
(0

,1
)
(r

)
ρ
ij

κ
′

bd ij

( ν
ij 2

−
1) b

2 ij x2

[ 1
−

0
F
1

( ;ν
ij 2

−
1;

−
x2 4b
2 ij

) ]

κ
r

√ 1−
r2

I
(0

,1
)
(r

)
ρ
ij

κ
′

bd ij
1
F
2

( 1;
3 2
,

ν
ij 2

;−
x2 4b
2 ij

)

κ
K

μ
(r

)
ρ
ij

κ
′

bd ij
2
F
1

( 1−
μ 2

,
1+

μ 2
;ν

ij 2
;−

x2 b2 ij

)
1

>
μ

≥
0
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and

q+1Fq ′(α0, . . . , αq ;β1, . . . , βq ′ ; −x)

= 1

�(α0)

∫ ∞

0
e−t tα0−1

q Fq ′(α1, . . . , αq ;β1, . . . , βq ′ ; −xt)dt, x ≥ 0, (16)

where q, q ′ ∈ N, β0 > 0, α0 > 0, and the α’s and β’s are such that the above hypergeometric
functions are well-defined.

Combining the previous facts, one obtains the following result.

Proposition 5 Let q, q ′ ∈ N with q ≥ q ′. Let α1, . . . ,αq ′ , β1, . . . ,βq ′ be conditionally
negative semidefinite matrices of size p × p with positive entries. Let αq ′+1, . . . ,αq be
conditionally null semidefinite matrices of size p × p with positive entries. Let ρ′ be a real
symmetric matrix of size p × p. Then, the matrix-valued function C defined by

C(x) = ρ′

bd
q Fq ′+1

(
α1, . . . ,αq ; ν

2
,α1 + β1, . . . ,αq ′ + βq ′ ; − x2

4b2

)
, x ≥ 0, (17)

belongs to �
p
d if ρ, b and ν are real symmetric matrices of size p × p satisfying one of the

three sets of conditions in Proposition 1, with

ρ = ρ′
∏q ′

k=1 B(αk,βk)
∏q

k=q ′+1 �(αk)
.

Remark 1 The first three entries and the last entry of Table 2 are particular cases of (17).

3.3 Matérn, compactly-supported and Cauchymultivariate covariances

The following proposition provides an integral representation of members of�p
d in a slightly

more general form than (6). Applications to the determination of validity conditions for three
parametric families of isotropic covariances (Matérn, compactly-supported hypergeometric
and Cauchy) follow in Propositions 7–9.

Proposition 6 Let Fd,p be a (d, p)-Schoenberg measure. Let ψ be a matrix-valued function
defined through

ψ(x) :=
∫ ∞

0
λ(r x)Fd,p(dr), x ≥ 0, (18)

with λ as in (11), ρ, b and ν satisfying one of the three sets of conditions in Proposition 1,
and b and ν − d having positive entries. Then, ψ belongs to �

p
d .

Proposition 7 (Multivariate Matérn covariance) Define the isotropic part of the univariate
Matérn covariance with range b > 0 and shape parameter μ > 0 as

M(x; b, μ) = 21−μ

�(μ)

( x
b

)μ

Kμ

( x
b

)
, x ≥ 0.

Let σ , b, μ and ν − d be symmetric matrices of size p × p, the latter three with positive
entries. Then, the matrix-valued functionM(·; b,μ, σ ) = [σi j M(·; bi j , μi j )]pi, j=1 belongs

to �
p
d if the following sufficient conditions hold:

1. μ is conditionally negative semidefinite;
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2. ν is conditionally negative semidefinite;
3. b, ν and ρ = bd σ

B(μ, ν
2 )

fulfill the conditions of Proposition 1.

Proposition 8 (Multivariate compactly-supported hypergeometric covariance)For b > 0, α,

β, γ and ν such that ν
2 < α < min{β, γ }, define the function H(·; b, α, β, γ, ν) on [0,∞)

by

H(x; b, α, β, γ, ν) = �(β − ν
2 )�(γ − ν

2 )

�(β − α + γ − ν
2 )�(α − ν

2 )

(
1 − x2

b2

)β−α+γ− ν
2−1

+

×2F1

(
β − α, γ − α;β − α + γ − ν

2
;
(
1 − x2

b2

)
+

)
, x ≥ 0.

Let α > d
2 , and let b, β, γ , σ and ν be symmetric matrices of size p× p, the former (b) with

positive entries and the latter (ν) with entries in (d, 2α). Then, the matrix-valued function
H(·; b, α,β, γ , ν, σ ) = [σi j H(·; bi j , α, βi j , γi j , νi j )]pi, j=1 belongs to �

p
d if one of the two

sets of sufficient conditions holds:
1. (a) β = β1 with β > 0;

(b) γ = γ 1 with γ > 0;
(c) 2(β − α)(γ − α) ≥ α and 2(β + γ ) ≥ 6α + 1;
(d) ν is conditionally null semidefinite;
(e) ρ, b and ν fulfill the conditions of Proposition 1, where

ρ = bd �
(
β − ν

2

)
�

(
γ − ν

2

)
σ

2ν�
(

ν
2

)
�

(
α − ν

2

) ; (19)

or
2. (a) β is conditionally negative semidefinite, with entries greater than β;

(b) γ is conditionally negative semidefinite, with entries greater than γ ;
(c) 2(β − α)(γ − α) ≥ α and 2(β + γ ) ≥ 6α + 1;
(d) ν is conditionally null semidefinite;
(e) ρ, b and ν fulfill the conditions of Proposition 1, where

ρ = bd �
(
β − ν

2

)
�

(
γ − ν

2

)
σ

2ν�(β − β)�(γ − γ )�
(

ν
2

)
�

(
α − ν

2

) . (20)

Proposition 9 (Multivariate Cauchy covariance) For b > 0 and μ > 0, define the function
C(·; b, μ) on [0,∞) by

C(x; b, μ) =
(
1 + x2

b2

)−μ

, x ≥ 0.

Let b, μ, ν and σ be symmetric matrices of size p × p, the former two with positive entries.
Then, the matrix-valued function C(·; b,μ, σ ) = [σi j C(·; bi j , μi j )]pi, j=1 belongs to �

p
d if

the following conditions hold:
1. ν − d and ν − μ are conditionally null semidefinite, with positive entries;
2. ρ, b and ν fulfill the conditions of Proposition 1, where

ρ = bd σ

�(μ)�
(

ν
2

) . (21)
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3.4 Comparison with previously proposedmodels

The validity conditions found in Propositions 7 and 8 differ from those reported in the
literature, see Gneiting et al. (2010), Apanasovich et al. (2012), Du et al. (2012) and Emery
et al. (2022) for the multivariate Matérn covariance and Emery and Alegría (2022) for the
multivariate Gauss hypergeometric covariance.

For instance, for the multivariate Matérn modelM(·; b,μ, σ ), combining the conditions
given in Proposition 7 with the second set of conditions given in Proposition 1, one finds the
following sufficient validity conditions:

1. μ is conditionally negative semidefinite;
2. (d + 2) − ν is positive semidefinite, with ν having entries greater than d;
3. b2 is positive semidefinite;

4. I(b,∞)(z)
�(μ+ ν

2 )

�( ν−d
2 )�(μ)

bd σ is positive semidefinite for any z > 0,

where I(b,∞)(z) = [I(bi j ,∞)(z)]pi, j=1. Note that the last condition only requires checking the

positive semidefiniteness of finitely many (at most p(p+1)
2 ) matrices. In particular, choosing

ν = (d + ε)1 with ε ∈ (0, 2] and letting ε tend to zero stills yields valid conditions, since
positive semidefiniteness is preserved under limits, namely:

1. μ is conditionally negative semidefinite;
2. b2 is positive semidefinite;

3. I(b,∞)(z)
�(μ+ d

2 )

�(μ)
bd σ is positive semidefinite for any z > 0.

Clearly, these conditions evade from any of the conditions provided in the cited literature.
Concerning the Gauss hypergeometric model H(·; b, α,β, γ , ν, σ ), conditions (2) in

Proposition 8 bear resemblance to conditions (1) of Theorem17 in Emery andAlegría (2022).
Yet, any set of parameters (b, α,β, γ , σ ) satisfying the latter conditions is the limit of a set
of parameters satisfying the former conditions (take b = b1 with b > 0 and ν = (d + ε)1
with ε > 0, and then let ε tend to zero), which means that the conditions in Proposition8
are more general. In particular, they are not limited to matrices b and ν that are proportional
to the all-ones matrix, and therefore allow more varied shapes for the direct and cross-
covariance functions, which can be associated with different dimension parameters νi j and
correlation ranges bi j . For instance, with the same reasoning as above, by combining results
of Propositions 1 and 8, one finds the following simplified set of validity conditions for
H(·; b, α,β, γ , ν, σ ):

1. β is conditionally negative semidefinite, with entries greater than β;
2. γ is conditionally negative semidefinite, with entries greater than γ ;
3. 2(β − α)(γ − α) ≥ α > d

2 and 2(β + γ ) ≥ 6α + 1;
4. b2 is positive semidefinite;

5. I(b,∞)(z)
�(β− d

2 )�(γ− d
2 )

�(β−β)�(γ−γ )
bd σ is positive semidefinite for any z > 0.

4 Conclusions

The findings of this paper contribute to the construction of parametric families of multivariate
covariance models in Euclidean spaces and to the determination of sufficient validity condi-
tions on their parameters. We have proven that the parametric adaptation modeling strategy
based on the representation (6) may be more versatile and allow identifying wider validity
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conditions than the traditional strategy based on the representation (5). In particular, the mul-
tivariate hypergeometric models given in Table 2 and Proposition 5 are, to the best of our
knowledge, novel and provide a wealth of matrix-valued covariances in Euclidean spaces.
Also, the conditions given in Propositions 7–9 extend currently known validity conditions
for the multivariate Matérn, compactly-supported hypergeometric, and Cauchy covariances,
respectively.

Convolution-based approaches have been successful in multivariate covariance modeling
(Gaspari and Cohn 1999). It would therefore be extremely useful to construct covariance
models from kernels that are closed under convolution, instead of the Schoenberg kernel�ν,

so as to be able to build new models based on the convolution principle. Also, the results of
this paper could be the starting point for future research to provide more general covariance
structures that are not stationary and isotropic. This represents a major challenge.
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Appendix A: Definitions and lemmas

Definition 1 A real symmetric matrix a = [ai j ]pi, j=1 is conditionally negative semidefinite

if
∑p

i, j=1 λiλ j ai j ≤ 0 for all λ1, . . . , λp ∈ R such that
∑p

i=1 λi = 0.

Definition 2 A real symmetric matrix a = [ai j ]pi, j=1 is conditionally null semidefinite if both
a and −a are conditionally negative semidefinite.

Lemma 1 Let α and β be symmetric conditionally negative semidefinite matrices of size
p × p. Then, for any t ∈ (0, 1), the matrix tα−1(1 − t)β−1 is positive semidefinite.

Proof The claim follows from the Schur product theorem and the fact that, under the men-
tioned conditions, both e(α−1) ln(t) and e(β−1) ln(1−t) are positive semidefinite (Berg et al.
1984, Chapter3, Theorem2.2). ��
Lemma 2 Let α be a conditionally null semidefinite real matrix of size p × p. Then, for any
t ∈ (0,∞), the matrix tα−1 is positive semidefinite.

Proof The claim follows from the fact that α is addition-separable, i.e., the (i, j)-th entry is
the arithmetic average of the (i, i)-th and ( j, j)-th entries (Allard et al. 2022). Accordingly,
for any t ∈ (0,∞), tα−1 has positive entries and is product-separable, i.e., the (i, j)-th entry
is the geometric average of the (i, i)-th and ( j, j)-th entries, which entails that it is positive
semidefinite (Berg et al. 1984, Chapter3, Property1.9). ��
Lemma 3 Let a = [ai j ]pi, j=1 be a symmetric conditionally negative semidefinite matrix with
nonnegative entries. Then:
(1) for any t ≤ 1, t a is positive semidefinite;
(2) for any t ≥ 1, t−a is positive semidefinite;
(3) for any t ≥ 0,

(
1

1+a

)t
is positive semidefinite.
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Proof Assertions (1) and (2) are a consequence of Theorem2.2 in Chapter3 of Berg et al.
(1984). Assertion (3) holds for t = 0; for positive t, one has

(
1

1 + a

)t

=
(

1

(1 + a)
t

	t


)	t

.

The result follows from the application of Corollary2.10 and Exercise2.21 in Chapter3 of
Berg et al. (1984) and of the Schur product theorem. ��

Appendix B: Proofs

Proof of Proposition 1 We start by proving the first set of conditions. Under conditions (1.b)
and (1.c), for any r > 0, [Bi j (r)]pi, j=1 is the sum of a nonnegative diagonal matrix and a
min matrix with nonnegative entries, hence it is positive semidefinite (Horn and Johnson
2013, problem7.1.P18). So is [ρi j κi j,d ]pi, j=1 due to conditions (1.a) and (1.c). The positive
semidefiniteness of A(r) then stems from the Schur product theorem.

To prove the sufficiency of the second set of conditions, let us use Newton’s generalized
binomial theorem (Olver et al. 2010, formula4.6.7) to rewrite Ai j (r) as

Ai j (r) =
∞∑
k=0

ρi j κi j,d I(bi j ,∞)(r
−1) (γi j )

k
(−b2i j r

2)k

k!

=
∞∑
k=0

ρi j κi j,d I(bi j ,∞)(r
−1)(γi j )

2k (b2i j r
2)2k

[
1

(2k)! + 2k − γi j

(2k + 1)!b
2
i j r

2
]

=
∞∑
k=0

ρi j κi j,d I(bi j ,∞)(r
−1)

2k−1∏
q=0

(
q − γi j

)
(b2i j r

2)2k
[

1

(2k)! + 2k − γi j

(2k + 1)!b
2
i j r

2
]

.

Under conditions (2.a), (2.b) and (2.c), the claim follows from the fact that the set of symmetric
positive semidefinite matrices is closed under Schur products, sums and limits.

The third set of conditions is obtained by following the reasoning of Daley et al. (2015,
Lemma2); it ensures that, for all r > 0, A(r) is a diagonally dominant matrix with nonnega-
tive diagonal entries, hence positive semidefinite (Horn and Johnson 2013, Theorem6.1.10).

��
Proof of Proposition 2 We invoke formula6.567.1 in Gradshteyn and Ryzhik (2007) to write
�νi j as

�νi j (x) = κi j,d

∫ 1

0
�d(r x)r

d−1(1 − r2
)γi j dr ,

with κi j,d defined through (8). Hence, we can write λi j in (11) as

λi j (x) = ρi j
κi j,d

bdi j

∫ 1

0
�d

(
r
x

bi j

)
rd−1(1 − r2

)γi j dr

= ρi j κi j,d

∫ b−1
i j

0
�d

(
vx

)
vd−1(1 − b2i jv

2)γi j dv

= ρi j κi j,d

∫ ∞

0
�d

(
vx

)
vd−1(1 − b2i jv

2)γi j
+ dv

=
∫ ∞

0
�d

(
vx

)
vd−1Ai j (v)dv. (22)
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We note that x → �d(vx) belongs to �d for any v > 0. Also, by assumption, A(v) is
symmetric positive semidefinite for each v > 0. Hence, we can invoke Theorem 1 in Porcu
and Zastavnyi (2011) to claim that the matrix-valued function

x → �d(vx)A(v), x ≥ 0,

belongs to �
p
d for all v > 0. The proof is completed by invoking again Theorem1 in Porcu

and Zastavnyi (2011) in concert with the fact that the integral above is well-defined because
0 ≤ x → |�d(x)| is uniformly bounded by 1 and the function Ai j is compactly supported,
strictly decreasing, and bounded at zero, which ensures integrability. ��
Proof of Proposition 3 We provide a constructive proof. First, note that the integral in (12) is
well-defined because v → Ai j (v) is compactly supported and the integrand is a continuous
function of v. By assumption ϕ is a member of the class �d . Hence, we can invoke Schoen-
berg’s theorem (Schoenberg 1938) to claim that ϕ admits a uniquely determined expansion
of the type

ϕ(x) =
∫ ∞

0
�d(r x)Fd(dr), x ≥ 0, (23)

where Fd is a d-Schoenberg measure on [0,∞). Hence, we have ψ = [ψi j ]pi, j=1 with

ψi j (x) =
∫ ∞

0
ϕ(vx)vd−1Ai j (v)dv

=
∫ ∞

0

∫ ∞

0
�d(rvx)Fd(dr)v

d−1Ai j (v)dv

=
∫ ∞

0

(∫ ∞

0
�d(rvx)v

d−1Ai j (v)dv

)
Fd(dr) (24)

=
∫ ∞

0
λi j (r x)Fd(dr),

which completes the proof because the class �
p
d is closed in the topology of finite measures,

so that scalemixtures provide elementswithin the same class. The interchange of the integrals
in (24) is justified by Fubini’s theorem, insofar as |�d | is uniformly bounded by 1 and Ai j is
continuous and compactly supported, so that

∫ ∞

0

∫ ∞

0
|�d(rvx)v

d−1Ai j (v)|Fd(dr)dv ≤
∫ ∞

0
Fd(dr)

∫ b−1
i j

0
vd−1Ai j (v)dv < ∞.

��
Proof of Proposition 4 We start by evaluating the integral∫ x

0
uϒd(ϕ)(u)du =

∫ x

0
u

∫ ∞

0

(∫ ∞

0
�d(vur)v

d−1A(v)dv

)
Fd(dr)du

=
∫ ∞

0
vd−1A(v)

∫ ∞

0
Fd(dr)

∫ x

0
u �d(vur)du dv

=
∫ ∞

0
vd−3A(v)

∫ ∞

0

d − 2

r2

(
�d−2(0) − �d−2(vxr)

)
Fd(dr)dv,

where the last identity comes from Equation (2.3) in Daley and Porcu (2014). The last inner
integrand is everywhere positive for x > 0.When Fd−2(dr) = r−2Fd(dr) is a finite measure
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on R+, we can bound the absolute value of the difference in the last inner integral by 2 and
use dominated convergence to justify taking the limit for x → ∞ there. This proves that∫ ∞
0 uϒd(ϕ)(u)du is well-defined. Also, we notice that Fd−2 is the (d − 2)-Schoenberg
measure associated with the montée of order 2 (sensu Matheron 1965) of ϕ, say ϕ̂. We can
now use the previous chain of equalities to write

I(ϒd(ϕ))(x) =
∫ ∞

0
vd−3A(v)

∫ ∞

0
�d−2(vxr)Fd−2(dr)dv

= ϒd−2(ϕ̂(x)), (25)

which provides an element of �
p
d−2 thanks to Proposition 3. ��

Proof of Proposition 5 The proof can be made by recursivity on account of (14), (15), (16)
and Lemmas 1 and 2 in AppendixA, based on the fact that a mixture of functions belonging
to �

p
d weighted by positive semidefinite matrices still belongs to �

p
d , insofar as �

p
d is closed

under Schur products, sums and limits. ��
Proof of Proposition 6 The proposition results from Proposition 2 and the fact that �

p
d is

closed under Schur products, sums and limits. ��
Proof of Proposition 7 Let ν be a positive integer. From the spectral representation of the
Matérn covariance in Rν (Lantuéjoul 2002; Arroyo and Emery 2021), one has

M(x; b, μ) = 2

B(μ, ν
2 )

∫ ∞

0
�ν

(r x
b

) rν−1

(1 + r2)μ+ ν
2
dr , x ≥ 0,

a formula that is actually valid for any ν > 0 (not necessarily an integer) and μ > 0 (Erdélyi
1954, formula8.5.20). Accordingly, for μ and ν − d with positive entries:

M(x; b,μ, σ ) = 2
σ

B(μ, ν
2 )

∫ ∞

0
�ν

(r x
b

) rν−1

(1 + r2)μ+ ν
2
dr , x ≥ 0.

Under condition (3), x → ρ

bd
�ν

( r x
b

)
belongs to �

p
d (Proposition 2). Furthermore, owing

to Lemma 3 in AppendixA, (r2/(1+ r2))
ν
2 and (1 + r2)−μ are positive semidefinite for all

r ≥ 0 under conditions (1) and (2). The claim follows from Proposition 6. ��
Proof of Proposition 8 Let ν be a positive integer less than2α. From the spectral representation
of the Gauss hypergeometric covariance in Rν (Emery and Alegría 2022), one has

H(x; b, α, β, γ, ν) = 21−ν�(α)�(β − ν
2 )�(γ − ν

2 )

�( ν
2 )�(α − ν

2 )�(β)�(γ )

×
∫ ∞

0
�ν

(r x
b

)
rν−1

1F2

(
α;β, γ ;−r2

4

)
dr , x ≥ 0,

a formula that is actually valid for any real value (not necessarily an integer) ν ∈ (0, 2α)

owing to formulae3–10 in Emery and Alegría (2022).
We now prove (1). Under the assumption that ν has entries in (0, 2α), one can write:

H(x; b, α, β, γ, ν, σ ) = 2�(α)ρ

�(β) �(γ )bd

∫ ∞

0
�ν

(r x
b

)
rν−1

1F2

(
α;β, γ ;−r2

4

)
dr ,

with ρ defined as in (19). The claim then follows from Proposition 6, Lemma 2 and from the

fact that, under the specified conditions on (α, β, γ ), the mapping r → 1F2(α;β, γ ;− r2
4 )

is nonnegative on [0,∞) (Cho et al. 2020).
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Concerning (2), one has (Emery and Alegría 2022, Equation25)

1F2

(
α;β, γ ;−r2

4

)
= �(β)�(γ )

�(β)�(β − β)�(γ )�(γ − γ )

×
∫ 1

0

∫ 1

0
1F2

(
α;β, γ ;−t1t2

r2

4

)
tβ−1
1 (1 − t1)

β−β−1tγ−1
2 (1 − t2)

γ−γ−1dt1dt2,

with the integrand being a positive semidefinite matrix for any t1, t2 ∈ [0, 1] and r ∈ [0,∞)

under conditions (a), (b) and (c) (Lemma 3). The claim follows from Proposition 6 and
Lemma 2, which apply under conditions (d) and (e). ��
Proof of Proposition 9 For b > 0 and ν > μ > 0, one has (Gradshteyn and Ryzhik 2007,
formula6.576.7)

C(x; b, μ) = 2

�(μ)�
(

ν
2

)
∫ ∞

0
�ν

(r x
b

) ( r
2

)μ+ ν
2−1

Kμ− ν
2
(r)dr , x ≥ 0.

Accordingly, under the assumption that b, μ and ν − μ have positive entries, one has:

C(x; b,μ, σ ) = 2σ

�(μ)�
(

ν
2

)
∫ ∞

0
�ν

(r x
b

) ( r
2

)μ+ ν
2−1

Kμ− ν
2
(r)dr , x ≥ 0,

where (Gradshteyn and Ryzhik 2007, formula3.471.9)

2
( r
2

)μ+ ν
2−1

Kμ− ν
2
(r) =

( r
2

)ν−1
∫ ∞

0
exp

(
−r2

4t

)
exp(−t)tμ− ν

2−1dt

is, under condition (1), positive semidefinite for all r ∈ [0,∞) owing to Lemma 2 and the
fact that positive semidefinite matrices are closed under Schur products, sums and limits. The
claim follows from Proposition 6, considering condition (2) and the fact that, from condition
(1), the entries of ν are greater than d. ��
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