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Abstract
Cubical fuzzy sets, a novel structure, deal with the fuzziness of information more effectively
thanpicture fuzzy sets and spherical fuzzy sets. Eachmember of aCFS is anorderedquadruple
consisting of an element of the universe of discourse and three numbers in the unit inter-
val called, respectively, membership grade, neutral membership grade, and non-membership
grade, such that their cubic sum is bounded by one. CFSs, being an extension of PFSs and
CFSs by enlarging the space of membership grades, give decision-makers more leeway in
assigning values. In this paper,wefirst integrate the notion ofHamacherT-normandT-conorm
with the structure of CFSs to devise the novel cubical fuzzy Hamacher operations and discuss
their essential properties. Then, by employing the idea of cubical fuzzyHamacher operations,
we introduce novel aggregation operators called cubical fuzzy Hamacher aggregation oper-
ators. The concepts of the cubical fuzzy Hamacher weighted average operator, the cubical
fuzzy Hamacher ordered weighted average operator, and the cubical fuzzy Hamacher hybrid
average weighted operator are presented and discussed thoroughly in the first section of this
work. The cubical fuzzyHamacherweighted geometric operator, the cubical fuzzyHamacher
orderedweighted geometric operator, and the cubical fuzzyHamacher hybrid geometric oper-
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ator are introduced in the second portion, and its essential features are explored. The proposed
operators are then used to create some strategies for solving cubical fuzzy information-based
multiple attribute decision-making issues. Finally, to demonstrate the applicability and effi-
ciency of the proposed methodology, a real-world example of cyclone disaster appraisal is
provided.

Keywords Multiple attribute decision-making (MADM) · Cubical fuzzy Hamacher
weighted average (CFHWA) operator · Cubical fuzzy Hamacher ordered weighted average
(CFHOWA) operator · Cubical fuzzy Hamacher hybrid weighted average (CFHHWA)
operator · Cubical fuzzy Hamacher weighted geometric (CFHWG) operator · Cubical fuzzy
Hamacher ordered weighted geometric (CFHOWG) operator · Cubical fuzzy Hamacher
hybrid weighted geometric (CFHHWG) operator

Mathematics Subject Classification 03E72 · 08A72 · 15B15

1 Introduction

Over the decades, decision-making problems have grownmore complex. Consequently, there
has been a lot of focus on creating and putting into practice effective mathematical models to
support these type of problems. In recent years, scholars have paid increasing attention to the
science of decision-making. Decision-making is the process in which an individual, team,
or organization determines what possible steps to take in light of a set of goals and resource
constraints. This iterative approach will include problem formulation, information gather-
ing, drawing conclusions, and gaining understanding. Multiple attribute decision-making
(MADM) is the branch of decision science in which the decision-makers evaluate a finite
number of alternatives subject to a finite number of attributes and thus find the best alter-
native(s). MADM approaches are widely used in a variety of domains, including operations
research, economics, and engineering. In the study of MADM problems, the aggregation
operators provide a broad range of analysis. Many researchers have contributed to MADM
by devising noval techniques based on aggregation operators (AOs) defined on various exten-
sions of the fuzzy set (FS). The field of AOs is highly applicable and is gainingmore andmore
attention from researchers. The concept of T-norms (TNs) and T-conorms (TCNs), as well
as their generalizations, underpins these AOs. Algebraic, Einstein, Hamacher, Archimedean,
and Dombi, to name a few, have been suggested as generalizations of the ordinary TNs
and TCNs. Hamacher TN and TCN are comprehensive and powerful generalizations of the
algebraic and Einstein TN and TCN. The study of Hamacher operations-based aggregation
operators and their implementation to MADM scenarios is crucially significant. Wu andWei
(2017) developed various Pythagorean fuzzy (PyF) arithmetic and geometricAOs and offered
techniques to tackle PyF MADM issues using Hamacher operations. By the consolidation
of the conceptions of Hamacher operations and attribute prioritization, Gao (2018) sug-
gested some PyF Hamacher Prioritized AOs. Hadi et al. (2021) constructed Fermatean fuzzy
Hamacher arithmetic and geometric AOs by applying Hamacher operations to Fermatean
fuzzy numbers. By developing bipolar fuzzy Hamacher arithmetic and geometric AOs, Wei
et al. (2018) probed the MADM problems. For the MADM problems, Zhou et al. and Wei
(2018) studied the picture fuzzy set (PFS) under Hamacher operations and developed vari-
ous Hamacher AOs for picture fuzzy environment. Jana and Pal (2019) developed MADM
techniques for enterprise performance evaluation based on Hamacher operations defined on
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picture fuzzy numbers. In Jana et al. (2019a) Jana et al. developed noval approaches to address
decision-making issues using bipolar fuzzy soft weighted AOs. Jana and Pal (2021) also
proposed various dynamic intuitionistic fuzzy weighted aggregation operators for interval
uncertainty and applied them to the dynamic hybrid multi-attribute decision-making pro-
cess. Based on various intuitionistic fuzzy Dombi hybrid aggregation operators, Jana et al.
(2021) proposed the MADM approach for the assessment of the enterprise financial perfor-
mance. A multiple attribute border approximation area comparison approach was used by
Jana (2021) to addressmultiple attribute group decision-making using bipolar fuzzy numbers.
Khan et al. (2022a) developed a novel multi-attribute group decision-making approach with
linguistic Pythagorean fuzzy numbers. Guner et al. (2022) presented a new approach based
on Hamacher AOs for the spherical fuzzy data. To establish some novel Pythagorean fuzzy
power Dombi operators, Jana et al. (2022) integrated Dombi operations with PA operations
to investigate MADM problems.

Recently, another structure called cubical fuzzy set (CFS) has been developed in Khan
et al. (2022b), which is a generalization of picture fuzzy set (PFS) and spherical fuzzy
set (SFS). In some situations where neither PFS nor SFS frameworks can be employed, a
cubical fuzzy model can be used. In CFS, three real values, namely the membership degree,
the neutral membership degree, and the negative membership degree, is used to represent an
object. Similar to SFS, the range of membership grades of the cubical fuzzy set is also [0, 1].
But in CFSs, the cubic sum of membership grades is bounded by 0 and 1. Hence a cubical
fuzzy model has more potential for application in situations where ambiguous information
is involved. CFSs are helpful in circumstances where a person’s opinion is not just yes or
no, but additionally includes abstinence or refusal. A good example of an CFS could be in
decision-making when four decision-makers have four distinct kinds of judgments about a
candidate. Another case is of voting, where there are four categories of voters: those who
vote in favor, those who vote against, those who avoid to vote or abstain. In SFSs and PFSs,
due to the constraints on the membership grades, the decision-makers are still restricted to a
specific domain in assigning values to the membership grades. For instance, if μ(x) = 0.8,
η(x) = 0.5, and ν(x) = 0.6, thenμ(x)+η(x)+ν(x) = 1.9 � 1,which clearly does not fulfill
the PFS requirement. Furthermore, we have (0.8)2 + (0.5)2 + (0.6)2 = 1.25 � 1, indicating
that the SFS criterion is not met. However, if we take (0.8)3 + (0.5)3 + (0.6)3 = 0.853 < 1,
which is an adequate rationale to build another type of fuzzy set with greater capacity to
capture uncertainty, so we defined a cubical fuzzy set.

The flexibility parameter in Hamacher t-norms allows for more exact decision-making
outcomes. On the other hand, CFSs provide a broader range of membership grades. The
purpose of this article is to combine the essence of these two ideas in order to construct novel
aggregation operators and hence develop decision-making algorithms that will contribute to
the field of decision-making science. The rest of the article is organized as follows.

In Sect. 2, a brief summary of the essential ideas behind IFSs, PFSs, SFSs, and CFSs is
given, alongwith an overviewof theCFSs’ core operations. In Sect. 3, we have proposed cubi-
cal fuzzy Hamacher weighted average (CFHWA) operator, cubical fuzzy Hamacher ordered
weighted average (CFHOWA) operator, cubical fuzzy Hamacher hybrid average (CFHHA)
operator, cubical fuzzy Hamacher weighted geometric (CFHWG) operator, cubical fuzzy
Hamacher ordered weighted geometric (CFHOWG) operator, and cubical fuzzy Hamacher
hybrid geometric (CFHHG) operator. We also analyze the features and special cases of these
operators. We use these operators in Sect. 4 to create some methods for resolving the cubical
fuzzy multiple attribute decision-making issues. A cyclone disaster evaluation example is
provided in Sect. 5. Section6 wraps up the article.
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2 Preliminaries

In this section, we go over some of the key ideas around PFS and SFS, as well as their
operations and properties. In addition, we offer ideas that are employed later on in this article.
In this section, D and I denote a universe of discourse and the interval [0, 1] respectively.

Definition 1 (Atanassov 1986) A set of ordered triplets

F = {〈t, ξ(t), ∂(t)〉 |t ∈ D}

is defined to be an intuitionistic fuzzy set (IFS) on D where ξ and ∂ are functions from
D to I such that for every t ∈ D, the images ξ(t) and ∂(t) denote the membership, and the
non-membership degrees of t to F, respectively, and meet the condition: ξ(t) + ∂(t) ≤ 1 for
all t ∈ D. The degree of refusal π(t) for each t ∈ D to F is defined as

π(t) = 1 − (ξ(t) + ∂(t))

Definition 2 A set of ordered quadruples

F = {〈t, ξ(t), θ(t), ∂(t)〉 |t ∈ D}
is called a picture fuzzy set (PFS) on D where ξ , θ and ∂ are functions from D to I such
that for every t ∈ D, the images ξ(t), θ(t) and ∂(t) denote the positive membership, the
neutral membership and the negative membership degrees of t to F, respectively, and meet
the condition: ξ(t) + θ(t) + ∂(t) ≤ 1. The degree of refusal π(t) for each t ∈ D to F is
defined as

π(t) = 1 − (ξ(t) + θ(t) + ∂(t))

Definition 3 (Ashraf et al. 2019) A set of ordered quadruples

F = {〈t, ξ(t), θ(t), ∂(t)〉 |t ∈ D}
is called a spherical fuzzy set (SFS) on D where ξ , θ and ∂ are functions from D to I such
that for every t ∈ D, the images ξ(t), θ(t) and ∂(t) denote the positive membership, the
neutral membership and the negative membership degrees of t to F, respectively, and meet
the condition: (ξ(t))2 + (θ(t))2 + (∂(t))2 ≤ 1. The degree of refusal π(t) for each t ∈ D to
F is defined as

π(t) =
√
1 − (

(ξ(t))2 + (θ(t))2 + (∂(t))2
)

Ashraf et al. (2019), also proposed the following operations of SFSs.

Definition 4 (Ashraf et al. 2019)The intersection, union, complement, inclusion, and equality
of spherical fuzzy sets is given as

(i) F1 ⊆ F2 if ξ1 (t) ≤ ξ2 (t) , θ1 (t) ≤ θ2 (t) and ∂1 (t) ≥ ∂2 (t) ,∀ t∈ D;
(ii) F1 = F2 if F1 ⊆ F2 and F2 ⊆ F1;
(iii) Fc

1 = {(t, (∂1(t), θ1(t), ξ1(t))) |t ∈ D} ;
(iv) F1 ∩ F2 = {(t,min {ξ1 (t) , ξ2 (t)} , min {θ1 (t) , θ2 (t)} , max {∂1 (t) , ∂2 (t)}) |t ∈ D}
(v) F1 ∪ F2= {(t,max {ξ1 (t) , ξ2 (t)} , min {θ1 (t) , θ2 (t)} , min {∂1 (t) , ∂2 (t)}) |t ∈ D}
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3 Cubical fuzzy set

This section comprehensively explores the notion of a cubical fuzzy set (CFS) and its prop-
erties. For the purpose of comparing CFEs, the scoring function and accuracy degree are also
provided.

Definition 5 (Khan et al. 2022b) A set of ordered quadruples

F = {〈t, ξ(t), θ(t), ∂(t)〉 |t ∈ D}
is called a cubical fuzzy set (CFS) on D where ξ , θ and ∂ are functions from D to I such
that for every t ∈ D, the images ξ(t), θ(t) and ∂(t) denote the membership, the neutral
membership and the non-membership degrees of t to F, respectively, and meet the condition:
(ξ(t))3 + (θ(t))3 + (∂(t))3 ≤ 1. The refusal membership degree π(t) for each t ∈ D to F is
defined as

π(t) = 3
√
1 − (

(ξ(t))3 + (θ(t))3 + (∂(t))3
)

For a fixed t ∈ D, the ordered triplet (ξ (t) , θ (t) , ∂ (t)) is called a cubical fuzzy element
abbreviated as CFE. For simplicity, we write (ξ (t) , θ (t) , ∂ (t)) as ĕ = (ξ, θ, ∂) .

Definition 6 (Khan et al. 2022b) Let ĕ = (ξ, θ, ∂) , ĕ1 = (
ξ1 , θ1 , ∂1

)
, and ĕ2 = (

ξ2 , θ2 , ∂2

)
,

be any three CFEs, then we have the following set operations for CFEs:

(i) ĕ1 ⊆ ĕ2 iff ξ1 ≤ ξ2 , θ1 ≤ θ2 and ∂1 ≥ ∂2 ;
(i) ĕ1 = ĕ2 iff ĕ1 ⊆ ĕ2 and ĕ2 ⊆ ĕ1;
(ii) ĕ1 ∪ ĕ2 = (

max
{
ξ1 , ξ2

}
,min

{
θ1 , θ2

}
,min

{
∂1 , ∂2

}) ;
(iii) ĕ1 ∩ ĕ2 = (

min
{
ξ1 , ξ2

}
,min

{
θ1 , θ2

}
,max

{
∂1 , ∂2

}) ;
(iv) ĕc = (∂, θ, ξ) .

Definition 7 Khan et al. (2022b) Let ĕ = (ξ, θ, ∂) , ĕ1 = (
ξ1 , θ1 , ∂1

)
, and ĕ2 = (

ξ2 , θ2 , ∂2

)
,

be any three CFEs, and κ > 0, then the algebraic operations are defined as follows:

(i) ĕ1 ⊕ ĕ2 =
(

3
√

ξ3
1

+ ξ3
2

− ξ3
1
ξ3
2
, θ1 .θ2 , ∂1 .∂2

)
;

(ii) ĕ1 ⊗ ĕ2 =
(
ξ1 .ξ2 , θ1 .θ2 ,

3
√

∂3
1

+ ∂3
2

− ∂3
1
.∂3

2

)
;

(iii) κ (ĕ) =
(

3
√
1 − (

1 − ξ3
)κ

, θκ , ∂κ

)
;

(iv) (ĕ)κ =
(

ξκ , θκ , 3
√
1 − (

1 − ∂3
)κ

)
.

Theorem 8 (Khan et al. 2022b) For three CFEs ĕ, ĕ1, and ĕ2, we have

(i) ĕ1 ⊗ ĕ2 = ĕ2 ⊗ ĕ1;
(ii) ĕ1 ⊕ ĕ2 = ĕ2 ⊕ ĕ1;
(iii) (ĕ1 ⊗ ĕ2)

κ = ĕκ
1 ⊗ ĕκ

2 , κ > 0;
(iv) ĕκ1 ⊗ ĕκ2 = ĕκ1+κ2 , κ1, κ2 > 0;
(v) κ ĕ1 ⊕ κ ĕ2 = κ (ĕ1 ⊕ ĕ2) , κ > 0;
(vi) κ1ĕ ⊕ κ2ĕ= (κ1 ⊕ κ2) ĕ, κ1, κ2 > 0.

In the following, we define the score function of the CFEs in order to rank them.
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Definition 9 (Khan et al. 2022b) For any given CFE ĕ = (ξ, θ, ∂) the score function is given
as

sc (ĕ) = ξ3 − ∂3.

In particular sc (ĕ) =
{
1, if ĕ = (1, 0, 0)
−1 if ĕ = (0, 0, 1)

.

For the comparison of CFEs, we have the following procedure:

Definition 10 For two CFEs ĕ1 and ĕ2, we have

(i) If sc (ĕ1) < sc (ĕ2) , then ĕ1<ĕ2;
(ii) If sc (ĕ1) > sc (ĕ2) , then ĕ1 > ĕ2.

Two CFEs cannot be ranked if their score values are identical. So the accuracy degree of
CFEs is introduced.

Definition 11 Let ĕ = (ξ, θ, ∂) , be a CFE, then the accuracy degree of ĕ is given as

ac (ĕ) = ξ3 + θ3 + ∂3.

Now, we provide a comprehensive criteria for rating CFEs.

Definition 12 Let ĕ1, and ĕ2 be any two CFEs then

(I) If sc (ĕ1)< sc (ĕ2) , then ĕ1 < ĕ2;
(II) If sc (ĕ1) > sc (ĕ2) , then ĕ1 > ĕ2;
(III) If sc (ĕ1) = sc (ĕ2) , then

(i) If ac (ĕ1) < ac (ĕ2) , then ĕ1 < ĕ2;
(ii) If ac (ĕ1) > ac (ĕ2) , then ĕ1 > ĕ2;
(iii) If ac (ĕ1) = ac (ĕ2) , then ĕ1 ∼ ĕ2.

3.1 Hamacher operations

As a more general form of the usual triangular norms, Hamacher introduced Hamacher
triangular norms. The Hamacher generalization of triangular norms is as follows.

Definition 13 (Hamacher 1975) For any ε, ε
′ ∈ R then, theHamacher t-norm⊗ and t-conorm

⊕ are given as

ε ⊗ ε
′ = εε

′

σ + (1 − σ)
(
ε + ε

′ − εε
′) , σ > 0

ε ⊕ ε
′ = ε + ε

′ − εε
′ − (1 − σ)εε

′

1 − (1 − σ) εε
′ , σ > 0 (1)

For σ = 1, Eqs. (1) reduces to the algebraic TN and TCN given as

t
(
ε, ε

′) = ε ⊗ ε
′ = εε

′

t∗
(
ε, ε

′) = ε ⊕ ε
′ = ε + ε

′ − εε
′

(2)

For σ = 2, Eqs. (1) reduces to the Einstein TN and TCN given as

t
(
ε, ε

′) = ε ⊗ ε
′ = εε

′

1 + (1 − ε)
(
1 − ε

′)
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t∗
(
ε, ε

′) = ε ⊕ ε
′ = ε + ε

′

1 + εε
′ (3)

4 Cubical fuzzy Hamacher operations

Now, we provide the Hamacher operations for CFEs, referred to as the CF Hamacher oper-
ations, using the Hamacher triangular norms given in Definition 13.

Definition 14 Let ĕr = (ξr , θr , ∂r ) (r = 1, 2) be two CFEs, σ > 0 and κ > 0, then, the
cubical fuzzy Hamacher operations are given as follows:

(i) ĕ1⊕ĕ2 =

⎛
⎜⎜⎝

3

√
(ξ1)

3+(ξ2)
3−(ξ1)

3(ξ2)
3−(1−σ)(ξ1)

3(ξ2)
3

1−(1−σ)(ξ1)
3(ξ2)

3 , θ1θ2
3
√

σ+(1−σ)
(
(θ1)

3+(θ2)
3−(θ1)

3(θ2)
3) ,

∂1∂2
3
√

σ+(1−σ)
(
(∂1)

3+(∂2)
3−(∂1)

3(∂2)
3)

⎞
⎟⎟⎠ ;

(ii) ĕ1⊗ĕ2 =

⎛
⎜⎜⎝

ξ1ξ2
3
√

σ+(1−σ)
(
(ξ1)

3+(ξ2)
3−(ξ1)

3(ξ2)
3) ,

3

√
(θ1)

3+(θ2)
3−(θ1)

3(θ2)
3−(1−σ)(θ1)

3(θ2)
3

1−(1−σ)(θ1)
3(θ2)

3 ,

3

√
(∂1)

3+(∂2)
3−(∂1)

3(∂2)
3−(1−σ)(∂1)

3(∂2)
3

1−(1−σ)(∂1)
3(∂2)

3

⎞
⎟⎟⎠ ;

(iii) κ (ĕ1) =

⎛
⎜⎜⎝

3

√ (
1+(σ−1)(ξ1)3

)κ−(
1−(ξ1)

3)κ
(
1+(σ−1)(ξ1)3

)κ+(σ−1)
(
1−(ξ1)

3)κ ,
3√σθκ

1
3
√(

1+(σ−1)
(
1−(θ1)

3))κ+(σ−1)(θ1)3κ
,

3√σ∂κ
1

3
√(

1+(σ−1)
(
1−(∂1)

3))κ+(σ−1)(∂1)3κ

⎞
⎟⎟⎠ ;

(iv) (ĕ1)
κ =

⎛
⎜⎜⎝

3√σ(ξ1)
κ

3
√(

1+(σ−1)
(
1−(ξ1)

3))κ+(σ−1)(ξ1)3κ
, 3

√ (
1+(σ−1)(θ1)3

)κ−(
1−(θ1)

3)κ
(
1+(σ−1)(θ1)3

)κ+(σ−1)
(
1−(θ1)

3)κ ,

3

√ (
1+(σ−1)(∂1)3

)κ−(
1−(∂1)

3)κ
(
1+(σ−1)(∂1)3

)κ+(σ−1)
(
1−(∂1)

3)κ

⎞
⎟⎟⎠ .

The following theorem can easily be proved.

Theorem 15 Let ĕ, ĕ1 and ĕ2 be three CFEs and κ, κ1, κ2 > 0, then

(i) ĕ1 ⊕ ĕ2, ĕ1 ⊗ ĕ2, κ (ĕ) , and (ĕ)κ are also CFEs;
(ii) ĕ1 ⊕ ĕ2 = ĕ2 ⊕ ĕ1;
(iii) ĕ1 ⊗ ĕ2 = ĕ2 ⊗ ĕ1;
(iv) κ (ĕ1 ⊕ ĕ2) = κ ĕ1 ⊕ κ ĕ2;
(v) (ĕ1 ⊗ ĕ2)

κ = ĕκ
1 ⊗ ĕκ

2 ;
(vi) (κ1 + κ2) ĕ = κ1ĕ ⊕ κ2ĕ;
(vii) ĕκ1+κ2 = ĕκ1 ⊗ ĕκ2 ;
(viii) (ĕκ1)κ2 = ĕκ1κ2 .

5 Cubical fuzzy Hamacher aggregation operators

We employ cubical fuzzy Hamacher operations in this section and offer new aggregation
operators based on CFEs. First we suggest the cubical fuzzy arithmetic aggregation opera-
tors such as cubical fuzzy Hamacher weighted averaging operator, cubical fuzzy Hamacher
ordered weighted averaging operator and cubical fuzzy Hamacher hybrid weighted average
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operator. Then we propose cubical fuzzy geometric aggregation operators such as cubical
fuzzy Hamacher weighted geometric operator, cubical fuzzy Hamacher ordered weighted
geometric operator and cubical fuzzy Hamacher hybrid weighted geometric operator. We
discuss the key features of both types of the operators. In this section, L denotes the collec-
tion of all CFEs on some universe of discourseD.

5.1 Cubical fuzzy Hamacher arithmetic aggregation operators

Definition 16 A function CFHWAź : Lp −→ L given as

CFHWAź

(
ĕ1, ĕ2, ..., ĕp

) = ⊕p
r=1

(
źr ĕr

)

is called a cubical fuzzy Hamacher weighted averaging (CFHWA) operator of dimension
P , where the weight vector of the vector ĕ = (

ĕ1, ĕ2, ..., ĕp
)
is ź = (

ź1, ź2, ..., ź p
)T with the

conditions źr > 0 and �
p
r=1źr = 1.

The Hamacher operations on CFEs are used in the following theorem to prove that the
aggregate value of a group of CFEs subject to the CFHWA operator is again a CFE. In terms
of CFE membership grades, we also propose a formula for the CFHWA operator.

Theorem 17 For a collection of CFEs ĕr = (ξr , θr , ∂r ) (r = 1, ..., p), CFHWAź (ĕ1, ĕ2, ...,
ĕp

)
is again a CFE and is given as

CFHWAź

(
ĕ1, ĕ2, ..., ĕp

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3

√
�

p
r=1

(
1+(σ−1)(ξr )3

)źr −�
p
r=1

(
1−(ξr )

3)źr
�

p
r=1

(
1+(σ−1)(ξr )3

)źr +(σ−1)�p
r=1

(
1−(ξr )

3)źr ,

3√σ�
p
r=1(θr )

źr

3
√

�
p
r=1

(
1+(σ−1)

(
1−(θr )

3))źr +(σ−1)�p
r=1(θr )

3źr
,

3√σ�
p
r=1(∂r )

źr

3
√

�
p
r=1

(
1+(σ−1)

(
1−(∂r )

3))źr +(σ−1)�p
r=1(∂r )

3źr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4)

such that the weight vector of vector ĕ = (
ĕ1, ĕ2, ..., ĕp

)
is ź = (

ź1, ź2, ..., źp
)T with

źr > 0 and �
p
r=1 źr = 1.

Proof We utilize the technique of mathematical induction on p to establish this result. Thus
(i) For p = 1, we get ź1 = 1 and the left hand side of Eq. (4) yields

CFHWAź

(
ĕ1, ĕ2, ..., ĕp

) = (ξ1, θ1, ∂1)

and the right side of Eq. (4) gives
⎛
⎜⎜⎜⎜⎜⎜⎝

3

√ (
1+(σ−1)(ξ1)3

)−(
1−(ξ1)

3)
(
1+(σ−1)(ξ1)3

)+(σ−1)
(
1−(ξ1)

3) ,
3√σθ1

3
√(

1+(σ−1)
(
1−(θ1)

3))+(σ−1)(θ1)3
,

3√σ∂1
3
√(

1+(σ−1)
(
1−(∂1)

3))+(σ−1)(∂1)3

⎞
⎟⎟⎟⎟⎟⎟⎠

= (ξ1, θ1, ∂1) .

Thus, Eq. (4) holds for p = 1. Also since CFHWAź

(
ĕ1, ĕ2, ..., ĕp

) = ĕ1, so for p = 1,
CFHWAź

(
ĕ1, ĕ2, ..., ĕp

)
is a CFE.

(ii) Assume that the theorem holds for p = k, where k ∈ N, then CFHWAź (ĕ1, ĕ2, ..., ĕk) is
a CFE and Eq. (4) becomes

CFHWAź (ĕ1, ĕ2, ..., ĕk) = k
�
r=1

(
źr ĕr

)
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3

√
�k

r=1

(
1+(σ−1)(ξr )3

)źr −�k
r=1

(
1−(ξr )

3)źr
�k

r=1

(
1+(σ−1)(ξr )3

)źr +(σ−1)�k
r=1

(
1−(ξr )

3)źr ,

3√σ�k
r=1(θr )

źr

3
√

�k
r=1

(
1+(σ−1)

(
1−(θr )

3))źr +(σ−1)�k
r=1(θr )

3źr
,

3√σ�k
r=1(∂r )

źr

3
√

�k
r=1

(
1+(σ−1)

(
1−(∂r )

3))źr +(σ−1)�k
r=1(∂r )

3źr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(iii) Now, for p = k + 1, we employ the Definition 14 as follows:

CFHWAź (ĕ1, ĕ2, ..., ĕk , ĕk+1)

=
(

k⊕
r=1

(
źr ĕr

)) ⊕ (
źk+1ĕk+1

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3

√
�k

r=1

(
1+(σ−1)(ξr )3

)źr −�k
r=1

(
1−(ξr )

3)źr
�k

r=1

(
1+(σ−1)(ξr )3

)źr +(σ−1)�k
r=1

(
1−(ξr )

3)źr ,

3√σ�k
r=1(θr )

źr

3
√

�k
r=1

(
1+(σ−1)

(
1−(θr )

3))źr +(σ−1)�k
r=1(θr )

3źr
,

3√σ�k
r=1(∂r )

źr

3
√

�k
r=1

(
1+(σ−1)

(
1−(∂r )

3))źr +(σ−1)�k
r=1(∂r )

3źr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⊕

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3

√ (
1+(σ−1)(ξk+1)

3)źk+1−(
1−(ξk+1)

3)źk+1

(
1+(σ−1)(ξk+1)

3)źk+1+(σ−1)
(
1−(ξk+1)

3)źk+1
,

3√σ(θk+1)
źk+1

3
√(

1+(σ−1)
(
1−(θk+1)

3))źk+1+(σ−1)(θk+1)
3źk+1

,

3√σ(∂k+1)
źk+1

3
√(

1+(σ−1)
(
1−(∂k+1)

3))źk+1+(σ−1)(∂k+1)
3źk+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√√√

�k
r=1

(
1 + (σ − 1) (ξr )

3)źr (
1 + (σ − 1) (ξk+1)

3)źk+1

−�k
r=1

(
1 − (ξr )

3)źr (
1 − (ξk+1)

3)źk+1

�k
r=1

(
1 + (σ − 1) (ξr )

3)źr (
1 + (σ − 1) (ξk+1)

3)źk+1

+ (σ − 1)�k
r=1

(
1 − (ξr )

3)źr (
1 − (ξk+1)

3)źk+1

,

3√σ�k
r=1(θr )

źr (θk+1)
źk+1

3

√√√√√√√√

�k
r=1

(
1 + (σ − 1)

(
1 − (θr )

3))źr
(
1 + (σ − 1)

(
1 − (θk+1)

3))źk+1

+ (σ − 1)�k
r=1 (θr )

3źr (θk+1)
3źk+1

,

3√σ�k
r=1(∂r )

źr (∂k+1)
źk+1

3

√√√√√√√√

�k
r=1

(
1 + (σ − 1)

(
1 − (∂r )

3))źr
(
1 + (σ − 1)

(
1 − (∂k+1)

3))źk+1

+ (σ − 1)�k
r=1 (∂r )

3źr (∂k+1)
3źk+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3

√
�k+1

r=1

(
1+(σ−1)(ξr )3

)źr −�k+1
r=1

(
1−(ξr )

3)źr
�k+1

r=1

(
1+(σ−1)(ξr )3

)źr +(σ−1)�k+1
r=1

(
1−(ξr )

3)źr ,

3√σ�k+1
r=1(θr )

źr

3
√

�k+1
r=1

(
1+(σ−1)

(
1−(θr )

3))źr +(σ−1)�k+1
r=1(θr )

3źr
,

3√σ�k+1
r=1(∂r )

źr

3
√

�k+1
r=1

(
1+(σ−1)

(
1−(∂r )

3))źr +(σ−1)�k+1
r=1(∂r )

3źr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Therefore, Eq. (4) holds for p = k + 1. Also since ⊕k
r=1

(
źr ĕr

)
and ĕk+1 are CFEs so by

Theorem 15 CFHWAź (ĕ1, ĕ2, ..., ĕk, ĕk+1) = (⊕k
r=1

(
źr ĕr

)) ⊕ (
źk+1ĕk+1

)
is also a CFE.

Therefore, It is established that the theorem is true for any p ∈ N. This completes the proof.
��

The CFHWA operator may conveniently be shown to meet the following features.

Theorem 18 (Idempotency Property) If ĕ1, ĕ2, ..., ĕp are CFEs such that ĕr = ĕ ∀ r , then

CFHWAź (ĕ1, ĕ2, ..., ĕr ) = ĕ.

Theorem 19 (Boundedness property)Let ĕ1, ĕ2, ..., ĕp beCFEs, such thatmin
{
ĕ1, ĕ2, ..., ĕp

}
= ĕ− and max

{
ĕ1, ĕ2, ..., ĕp

} = ĕ+. Then

ĕ− ≤ CFHWAź

(
ĕ1, ĕ2, ..., ĕp

) ≤ ĕ+.

Theorem 20 (Monotonicity property) If ĕ1, ĕ2, ..., ĕp and ĕ′
1, ĕ

′
2, ..., ĕ

′
p be two families of

CFEs, such that ĕr ≤ ĕ′
r for all r , then

CFHWAź

(
ĕ1, ĕ2, ..., ĕp

) ≤ CFHWAź

(
ĕ′
1, ĕ

′
2, ..., ĕ

′
p

)
.

Theorem 21 (Commutativity property) Let ĕ1, ĕ2, ..., ĕp be CFEs, then

CFHWAź

(
ĕ1, ĕ2, ..., ĕp

) ≤ CFHWAź

(
ĕ′
1, ĕ

′
2, ..., ĕ

′
p

)
.

where
(
ĕ′
1, ĕ

′
2, ..., ĕ

′
p

)
is a permutation of

(
ĕ1, ĕ2, ..., ĕp

)
.

The CFHWA operator’s two special cases are as follows:
(1) In case when σ = 1, we obtain the cubical fuzzy weighted average (CFWA) operator

from the CFHWA operator.

CFWA
(
ĕ1, ĕ2, ..., ĕp

)

=
(

3
√
1 − �

p
r=1

(
1 − (ξr )

3)źr ,�p
r=1θ

źr
r ,�

p
r=1∂

źr
r

)
.

(2) We get the cubical fuzzy Einstein weighted average (CFEWA) operator from the
CFHWA operator when σ = 2.

CFHWAź

(
ĕ1, ĕ2, ..., ĕp

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3

√
�

p
r=1

(
1+(ξr )

3)źr −�
p
r=1

(
1−(ξr )

3)źr
�

p
r=1

(
1+(ξr )

3)źr +�
p
r=1

(
1−(ξr )

3)źr ,

3√2�p
r=1(θr )

źr

3
√

�
p
r=1

(
2−(θr )

3)źr +�
p
r=1(θr )

3źr
,

3√2�p
r=1(∂r )

źr

3
√

�
p
r=1

(
2−(∂r )

3)źr +�
p
r=1(∂r )

3źr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The concept of a cubical fuzzy Hamacher ordered weighted averaging (CFHOWA) oper-
ator is now offered, along with its fundamental properties.

Definition 22 A function CFHOWAź : Lp −→ L given as

CFHOWAź

(
ĕ1, ĕ2, ..., ĕp

) = ⊕p
r=1

(
źr ĕjr

)
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is called a CFHOWA operator of dimension P , where
(
j1, j2, ..., jp

)
is a rearrangement

of (1, 2, ..., p) such that ĕjr−1 ≥ ĕjr for all r = 2, 3, ..., p and the weight vector of ĕ =(
ĕj1 , ĕj2 , ..., ĕjp

)
is ź = (

ź1, ź2, ..., źp
)T with the conditions źr > 0 and �

p
r=1źr = 1.

Theorem 23 For a collection of CFEs ĕr = (ξr , θr , ∂r ) (r = 1, ..., p), CFHOWAź (ĕ1, ĕ2
..., ĕp

)
is again a CFE and is given as

CFHOWAź

(
ĕ1, ĕ2, ..., ĕp

) = p⊕
r=1

(
źr ĕjr

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√ �
p
r=1

(
1+(σ−1)(ξjr )

3
)źr −�

p
r=1

(
1−(ξjr )

3
)źr

�
p
r=1

(
1+(σ−1)(ξjr )

3
)źr +(σ−1)�p

r=1

(
1−(ξjr )

3
)źr ,

3√σ�
p
r=1(θjr )

źr

3
√

�
p
r=1

(
1+(σ−1)

(
1−(θjr )

3
))źr +(σ−1)�p

r=1(θjr )
3źr

,

3√σ�
p
r=1(∂jr )

źr

3
√

�
p
r=1

(
1+(σ−1)

(
1−(∂jr )

3
))źr +(σ−1)�p

r=1(∂jr )
3źr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where
(
j1, j2, ..., jp

)
is a rearrangement of (1, 2, ..., p) with ĕjr−1 ≥ ĕjr (r = 2, 3, ..., p)

and the weight vector of ĕ = (
ĕj1 , ĕj2 , ..., ĕjp

)
is ź = (

ź1, ź2, ..., źp
)T with źr > 0 and

�
p
r=1źr = 1.
The following characteristics of a CFHOWA operator are simple to prove:

Theorem 24 (Idempotency property) If ĕ1, ĕ2, ..., ĕp (r = 1, ..., p) are CFEs such that ĕr =
ĕ for all r , then

CFHOWAź (ĕ1, ĕ2, ..., ĕr ) = ĕ.

Theorem 25 (Boundedness property)Let ĕr (r = 1, 2, ..., p) beCFEs, and ĕ− =min{ĕ1, ĕ2,
..., ĕp

}
and ĕ+ =max

{
ĕ1, ĕ2, ..., ĕp

}
. Then

ĕ− ≤ CFHOWAź

(
ĕ1, ĕ2, ..., ĕp

) ≤ ĕ+.

Theorem 26 (Monotonicity property) For two groups of CFEs ĕr (r = 1, 2, ..., p) and ĕ′
r

(r = 1, 2, ..., p) if ĕr ≤ ĕ′
r for all r , then

CFHOWAź

(
ĕ1, ĕ2, ..., ĕp

) ≤ CFHOWAź

(
ĕ′
1, ĕ

′
2, ..., ĕ

′
p

)
.

Theorem 27 (Commutativity property) Let ĕ1, ĕ2, ..., ĕp be a family of CFEs, then

CFHOWAź

(
ĕ1, ĕ2, ..., ĕp

) ≤ CFHOWAź

(
ĕ′
1, ĕ

′
2, ..., ĕ

′
p

)
.

where
(
ĕ′
1, ĕ

′
2, ..., ĕ

′
p

)
is a permutation of

(
ĕ1, ĕ2, ..., ĕp

)
.

The CFHOWA operator’s two special cases are as follows:
(1) In case when σ = 1,we obtain the cubical fuzzy ordered weighted average (CFOWA)

operator from the CFHOWA operator.

CFOWAź

(
ĕ1, ĕ2, ..., ĕp

) =
(

3

√
1 − �

p
r=1

(
1 − (

ξjr
)3)źr

,�
p
r=1

(
θjr

)źr ,�
p
r=1

(
∂jr

)źr
)

.
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(2)We get the cubical fuzzy Einstein ordered weighted average (CFEOWA) operator from
the CFHOWA operator when σ = 2.

CFEOWAź

(
ĕ1, ĕ2, ..., ĕp

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√
�

p
r=1

(
1+

(
ξ
jr

)3)źr
−�

p
r=1

(
1−

(
ξ
jr

)3)źr

�
p
r=1

(
1+

(
ξ
jr

)3)źr
+�

p
r=1

(
1−

(
ξ
jr

)3)źr
,

3√2�p
r=1

(
θ
jr

)źr

3

√
�

p
r=1

(
2−

(
θ
jr

)3)źr
+�

p
r=1

(
θ
jr

)3źr
,

3√2�p
r=1

(
∂
jr

)źr

3

√
�

p
r=1

(
2−

(
∂
jr

)3)źr
+�

p
r=1(∂jr )

3źr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The CFHWA operator and the CFHOWA operator, respectively, weigh the CFEs and the
ordered position of the CFEs, as we can see in Definitions 16 and 22. In order to combine
the qualities of both operators, we define the concept of a cubical fuzzy Hamacher hybrid
weighted average (CFHHWA) operator in the next section.

Definition 28 A function CFHHWA(ź,) : Lp −→ Ldefined by

CFHHWA(ź,)

(
ĕ1, ĕ2, ..., ĕp

) = p⊕
r=1

(
źr

·
ĕjr

)
(5)

is called a CFHHWA operator of dimension P , where the weight vector of ĕ =( ·
ĕj1 ,

·
ĕj2 , ...,

·
ĕjp

)
is ź = (

ź1, ź2, ..., źp
)T such that źr > 0 and �

p
r=1źr = 1 and

·
ĕjr is

the r th maximum of the CFEs
·
ĕr

( ·
ĕr = pr ĕr , r = 1, 2, ..., p

)
and the weight vector of

·
ĕ =

( ·
ĕ1,

·
ĕ2, ...,

·
ĕ p

)
is = (

1,2, ..., p
)T with the conditionr > 0 and�

p
r=1r = 1,

and p works as the balancing coefficient.

Theorem 29 Fora collectionofCFEs ĕr = (ξr , θr , ∂r ) (r = 1, ..., p), CFHHWA(ź,) (ĕ1, ĕ2,

..., ĕp
)
is again a CFE and is given as

CFHHWA(ź,)

(
ĕ1, ĕ2, ..., ĕp

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√
�

p
r=1

(
1+(σ−1)

( ·
ξ̃jr

)3
)źr

−�
p
r=1

(
1−

( ·
ξ̃jr

)3
)źr

�
p
r=1

(
1+(σ−1)

( ·
ξ̃jr

)3
)źr

+(σ−1)�p
r=1

(
1−

( ·
ξ̃jr

)3
)źr

,

3√σ�
p
r=1

( ·
θ̃jr

)źr

3

√√√√
�

p
r=1

(
1+(σ−1)

(
1−

( ·
θ̃jr

)3
))źr

+(σ−1)�p
r=1

( ·
θ̃jr

)3źr
,

3√σ�
p
r=1

( ·
∂̃jr

)źr

3

√√√√
�

p
r=1

(
1+(σ−1)−

( ·
∂̃jr

)3
)źr

+(σ−1)�p
r=1

( ·
∂̃jr

)3źr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where the weight vector of
·
ĕ =

( ·
ĕj1 ,

·
ĕj2 , ...,

·
ĕjp

)
is ź = (

ź1, ź2, ..., źp
)T such that źr > 0

and �
p
r=1źr = 1 and

·
ĕjr is the r th maximum of the CFEs

·
ĕr

( ·
ĕr = pr ĕr , r = 1, 2, ..., p

)

and the weight vector of
·
ĕ
∗

=
( ·
ĕ1,

·
ĕ2, ...,

·
ĕ p

)
is  = (

1,2, ..., p
)T with the condition

r > 0 and �
p
r=1r = 1, and p works as the balancing coefficient.

In the CFHHWA operator

(i) When we take ź = ( 1
n , 1

n , ..., 1
n

)T
, then we obtain CFHWA operator.

(ii) When we take  = ( 1
n , 1

n , ..., 1
n

)
, then we get CFHOWA operator.

5.2 Cubical fuzzy Hamacher geometric aggregation operators

Definition 30 A function CFHWG ź : Lp −→ L given as

CFHWGź

(
ĕ1, ĕ2, ..., ĕp

) = ⊕p
r=1 (ĕr )

źr

is called a cubical fuzzy Hamacher weighted geometric (CFHWG) operator of dimension
P , where the weight vector of ĕ = (

ĕ1, ĕ2, ..., ĕp
)
is ź = (

ź1, ź2, ..., źp
)T with the conditions

źr > 0 and �
p
r=1źr = 1.

In the following theorem, we establish a relationship between CFHWG operator of a
family of CFEs and the membership grades of the CFEs.

Theorem 31 For a collection of CFEs ĕr = (ξr , θr , ∂r ) (r = 1, ..., p), CFHWGź (ĕ1, ĕ2, ,
..., ĕp

)
is again a CFE and is given as

CFHWGź

(
ĕ1, ĕ2, ..., ĕp

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3√σ�
p
r=1ξ

źr
r

3
√

�
p
r=1

(
1+(σ−1)

(
1−(ξr )

3))źr +(σ−1)�p
r=1ξ

3źr
r

,

3

√
�

p
r=1

(
1+(σ−1)(θr )3

)źr −�
p
r=1

(
1−(θr )

3)źr
�

p
r=1

(
1+(σ−1)(θr )3

)źr +(σ−1)�p
r=1

(
1−(θr )

3)źr ,

3

√
�

p
r=1

(
1+(σ−1)(∂r )3

)źr −�
p
r=1

(
1−(∂r )

3)źr
�

p
r=1

(
1+(σ−1)(∂r )3

)źr +(σ−1)�p
r=1

(
1−(∂r )

3)źr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the weight vector of ĕ = (
ĕ1, ĕ2, ..., ĕp

)
is ź = (

ź1, ź2, ..., źp
)T with the conditions

źr > 0 and �
p
r=1 źr = 1.

Proof Same as the proof of Theorem 17. ��
The CFHWG operator satisfy the following properties:

Theorem 32 (Idempotency property) If ĕr (r = 1, ..., p) be CFEs such that ĕr = ĕ for all r ,
then

CFHWGź (ĕ1, ĕ2, ..., ĕr ) = ĕ.

Theorem 33 (Boundedness property)Let ĕ1, ĕ2, ..., ĕp be a family ofCFEs, and ĕ− =min{ĕ1, ,
ĕ2, ..., ĕp

}
and ĕ+ =max

{
ĕ1, ĕ2, ..., ĕp

}
. Then

ĕ− ≤ CFHWGź

(
ĕ1, ĕ2, ..., ĕp

) ≤ ĕ+.
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Theorem 34 (Monotonicity property)For two groups of CFEs ĕ1, ĕ2, ..., ĕp and ĕ′
1, ĕ

′
2, ..., ĕ

′
p

if ĕr ≤ ĕ′
r for all r , then

CFHWGź

(
ĕ1, ĕ2, ..., ĕp

) ≤ CFHWGź

(
ĕ′
1, ĕ

′
2, ..., ĕ

′
p

)
.

Theorem 35 (Commutativity property) Let ĕ1, ĕ2, ..., ĕp be a family of CFEs, then

CFHWGź

(
ĕ1, ĕ2, ..., ĕp

) ≤ CFHWGź

(
ĕ′
1, ĕ

′
2, ..., ĕ

′
p

)
.

where
(
ĕ′
1, ĕ

′
2, ..., ĕ

′
p

)
is a permutation of

(
ĕ1, ĕ2, ..., ĕp

)
.

The CFHWG operator’s two special cases are as follows:

(1) In casewhenσ = 1,weobtain the cubical fuzzyweighted geometric (CFWG) operator
from the CFHWG operator.

CFWGź

(
ĕ1, ĕ2, ..., ĕp

)

=
(

p
�
r=1

(ξr )
źr , 3

√
1 − p

�
r=1

(
1 − (θr )

3)źr , 3

√
1 − p

�
r=1

(
1 − (∂r )

3)źr
)

.

(2) We get the cubical fuzzy Einstein weighted geometric (CFEWG) operator from the
CFHWG operator when σ = 2.

CFEWGź

(
ĕ1, ĕ2, ..., ĕp

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3√2�p
r=1ξ

źr
r

3
√

�
p
r=1

(
2−(ξr )

3)źr +�
p
r=1ξ

3źr
r

,

3

√
�

p
r=1

(
1+(θr )

3)źr −�
p
r=1

(
1−(θr )

3)źr
�

p
r=1

(
1+(θr )

3)źr +�
p
r=1

(
1−(θr )

3)źr ,

3

√
�

p
r=1

(
1+(∂r )

3)źr −�
p
r=1

(
1−(∂r )

3)źr
�

p
r=1

(
1+(∂r )

3)źr +�
p
r=1

(
1−(∂r )

3)źr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The idea of a cubical fuzzy Hamacher ordered weighted geometric (CFHOWG) operator
is now proposed, along with its basic features.

Definition 36 A function CFHOWGź : Lp −→ L given as

CFHOWGź

(
ĕ1, ĕ2, ..., ĕp

) = ⊕p
r=1

(
ĕjr

)źr
is called a CFHOWG operator of dimension P , where

(
j1, j2, ..., jp

)
is a rearrangement

of (1, 2, ..., p) such that ĕjr−1 ≥ ĕjr for all r = 2, 3, ..., p and the weight vector of ĕ =(
ĕj1 , ĕj2 , ..., ĕjp

)
is ź = (

ź1, ź2, ..., źp
)T with the conditions źr > 0 and �

p
r=1źr = 1.

Now, we establish a useful formula for CFHOWG operator.

Theorem 37 For a collection of CFEs ĕr = (ξr , θr , ∂r ) (r = 1, ..., p), CFHOWGź (ĕ1, ĕ2, ,
..., ĕp

)
is again a CFE and is given as

CFHOWGw

(
ĕ1, ĕ2, ..., ĕp

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3√σ�
p
r=1(ξjr )

źr

3
√

�
p
r=1

(
1−(1−σ)

(
1−(ξjr )

3
))źr −(1−σ)�

p
r=1(ξjr )

3źr
,

3

√√√√ �
p
r=1

(
1−(1−σ)(θjr )

3
)źr −�

p
r=1

(
1−(θjr )

3
)źr

�
p
r=1

(
1−(1−σ)(θjr )

3
)źr −(1−σ)�

p
r=1

(
1−(θjr )

3
)źr ,

3

√√√√ �
p
r=1

(
1−(1−σ)(∂jr )

3
)źr −�

p
r=1

(
1−(∂jr )

3
)źr

�
p
r=1

(
1−(1−σ)(∂jr )

3
)źr −(1−σ)�

p
r=1

(
1−(∂jr )

3
)źr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where
(
j1, j2, ..., jp

)
is a permutation of (1, 2, ..., p) such that ĕjr−1 ≥ ĕjr for all r =

2, 3, ..., p and the weight vector of ĕ = (
ĕj1 , ĕj2 , ..., ĕjp

)
is ź = (

ź1, ź2, ..., źp
)T with the

conditions źr > 0, � p
r=1 źr = 1.

Now, we give two special cases of CFHOWG operator.
(1) In case when σ = 1, we obtain the cubical fuzzy ordered weighted geometric

(CFOWG) operator from the CFHOWG operator.

CFOWGź (ĕ1, ĕ2, ..., ĕr )

=
⎛
⎝ p

�
r=1

(
ξjr

)źr ,
3

√
1 − p

�
r=1

(
1 − (

θjr
)3)źr

,
3

√
1 − p

�
r=1

(
1 − (

∂jr
)3)źr

⎞
⎠ .

(2) We get the cubical fuzzy Einstein weighted ordered geometric (CFEOWG) operator
from the CFHOWG operator when σ = 2.

CFEOWGź (ĕ1, ĕ2, ..., ĕr ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3√2�p
r=1(ξjr )

źr

3
√

�
p
r=1

(
2−(ξjr )

3
)źr +�

p
r=1(ξjr )

3źr
,

3

√√√√�
p
r=1

(
1+(θjr )

3
)źr −�

p
r=1

(
1−(θjr )

3
)źr

�
p
r=1

(
1+(θjr )

3
)źr +�

p
r=1

(
1−(θjr )

3
)źr ,

3

√√√√�
p
r=1

(
1+(∂jr )

3
)źr −�

p
r=1

(
1−(∂jr )

3
)źr

�
p
r=1

(
1+(∂jr )

3
)źr +�

p
r=1

(
1−(∂jr )

3
)źr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to establish the following properties of a CFHOWG operator.

Theorem 38 (Idempotency property) If ĕr (r = 1, ..., p) is are CFEs such that ĕr = ĕ for
all r , then

CFHOWGź (ĕ1, ĕ2, ..., ĕr ) = ĕ.

Theorem 39 (Boundedness property)Let ĕr (r = 1, 2, ..., p)beCFEs, andmin
{
ĕ1, ĕ2, ..., ĕp

}
= ĕ− and max

{
ĕ1, ĕ2, ..., ĕp

} = ĕ+. Then

ĕ− ≤ CFHOWGź

(
ĕ1, ĕ2, ..., ĕp

) ≤ ĕ+.

Theorem 40 (Monotonicity property) For two groups of CFEs ĕr (r = 1, 2, ..., p) and ĕ′
r

(r = 1, 2, ..., p), if ĕr ≤ ĕ′
r for all r , then

CFHOWGź

(
ĕ1, ĕ2, ..., ĕp

) ≤ CFHOWGź

(
ĕ′
1, ĕ

′
2, ..., ĕ

′
p

)
.

Theorem 41 (Commutativity property) Let ĕ1, ĕ2, ..., ĕp be a family of CFEs, then

CFHOWGź

(
ĕ1, ĕ2, ..., ĕp

) ≤ CFHOWGź

(
ĕ′
1, ĕ

′
2, ..., ĕ

′
p

)
.

where
(
ĕ′
1, ĕ

′
2, ..., ĕ

′
p

)
is any reordering of

(
ĕ1, ĕ2, ..., ĕp

)
.

The CFHWG operator and the CFHOWG operator, respectively, weigh the CFEs and the
ordered position of the CFEs, as we can see in Definitions 30 and 36. In order to combine
the qualities of both operators, we define the concept of a cubical fuzzy Hamacher hybrid
weighted geometric (CFHHWG) operator in the next section.
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Definition 42 A CFHHWG operator is a function CFHHWG(ź,) : Lp −→ L defined by

CFHHWG(ź,)

(
ĕ1, ĕ2, ..., ĕp

) = p⊕
r=1

( ·
ĕjr

)źr

(6)

where the weight vector of ĕ =
( ·
ĕj1 ,

·
ĕj2 , ...,

·
ĕjp

)
is ź = (

ź1, ź2, ..., źp
)T such that źr > 0

and�
p
r=1źr = 1 and

·
ĕjr is the r th maximum of the CFEs

·
ĕr

( ·
ĕr = (ĕr )

pr , r = 1, 2, ..., p

)

and the weight vector of ĕ = (
ĕ1, ĕ2, ..., ĕp

)
is  = (

1,2, ..., p
)T with the condition

r > 0 and �
p
r=1r = 1, and p works as the balancing coefficient.

Theorem 43 For a collection of CFEs ĕr = (ξr , θr , ∂r ) (r = 1, ..., p), CFHHWGź (ĕ1, ĕ2, ,
..., ĕp

)
is again a CFE and is given as

CFHHWG(ź,)

(
ĕ1, ĕ2, ..., ĕp

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3√σ�
p
r=1

( ·
ξ̃jr

)źr

3

√√√√
�

p
r=1

(
1+(σ−1)

(
1−

( ·
ξ̃jr

)3
))źr

+(σ−1)�p
r=1

( ·
ξ̃jr

)3źr
,

3

√√√√√√√
�

p
r=1

(
1+(σ−1)

( ·
θ̃jr

)3
)źr

−�
p
r=1

(
1−

( ·
θ̃jr

)3
)źr

�
p
r=1

(
1+(σ−1)

( ·
θ̃jr

)3
)źr

+(σ−1)�p
r=1

(
1−

( ·
θ̃jr

)3
)źr

,

3

√√√√√√√
�

p
r=1

(
1+(σ−1)

( ·
∂̃jr

)3
)źr

−�
p
r=1

(
1−

( ·
∂̃jr

)3
)źr

�
p
r=1

(
1+(σ−1)

( ·
∂̃jr

)3
)źr

+(σ−1)�p
r=1

(
1−

( ·
∂̃jr

)3
)źr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the weight vector of
·
ĕ =

( ·
ĕj1 ,

·
ĕj2 , ...,

·
ĕjp

)
is ź = (

ź1, ź2, ..., źp
)T such that źr > 0

and�
p
r=1źr = 1 and

·
ĕjr is the r th maximum of the CFEs

·
ĕr

( ·
ĕr = (ĕr )

pr , r = 1, 2, ..., p

)

and the weight vector of ĕ = (
ĕ1, ĕ2, ..., ĕp

)
is  = (

1,2, ..., p
)T with the condition

r > 0 and �
p
r=1r = 1, and p works as the balancing coefficient.

In the CFHHWG operator

(i) When we take ź = ( 1
n , 1

n , ..., 1
n

)T
, then we obtain CFHWG operator.

(ii) When we take  = ( 1
n , 1

n , ..., 1
n

)
, then we get CFHOWG operator.

The CFHHWG operator’s two special cases are as follows:
(1) If σ = 1, then CFHHWG operator changes to CFHWG operator:

CFHWGź

( ·
ĕ1,

·
ĕ2, ...,

·
ĕr

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

�
p
r=1

( ·
ξ jr

)źr

,
3

√√√√1 − �
p
r=1

(
1 −

( ·
θ jr

)3
)źr

,

3

√√√√1 − �
p
r=1

(
1 −

( ·
∂jr

)3
)źr

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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(2) If σ = 2, then CFHHWG operator converts to CFEHWG operator:

CFEHWGź

( ·
ĕ1,

·
ĕ2, ...,

·
ĕr

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3√2�p
r=1

( ·
ξ̃jr

)źr

3

√√√√
�

p
r=1

(
2−

( ·
ξ̃jr

)3
)źr

+�
p
r=1

( ·
ξ̃jr

)3źr
,

3

√√√√√√√
�

p
r=1

(
1+

( ·
θ̃jr

)3
)źr

−�
p
r=1

(
1−

( ·
θ̃jr

)3
)źr

�
p
r=1

(
1+

( ·
θ̃jr

)3
)źr

+(σ−1)�p
r=1

(
1−

( ·
θ̃jr

)3
)źr

,

3

√√√√√√√
�

p
r=1

(
1+

( ·
∂̃jr

)3
)źr

−�
p
r=1

(
1−

( ·
∂̃jr

)3
)źr

�
p
r=1

(
1+

( ·
∂̃jr

)3
)źr

+�
p
r=1

(
1−

( ·
∂̃jr

)3
)źr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

6 Decision-making algorithm based on CF Hamacher aggregation
operators

We employ our proposed AOs to devise a technique for the solution of MADM problems
involving cubical fuzzy data. The technique is formulated as follows. Let K1,K2, ...,Km

be m alternatives to be assessed by experts for n attributes B1,B2, ...,Bn . Let the weight
vector of the operator under consideration be w = (

ź1, ź2, ..., źn
)
and its components satisfy

the conditions ź j > 0 and �n
j=1ź j = 1. Let the team of experts assess each alternative Ki

for its satisfaction of the attribute Bi and assign it the cubical fuzzy element
(
ξi j , θi j , ∂i j

)
and M = (

ĕi j
)
m×n = (

ξi j , θi j , ∂i j
)
m×n . The algorithm to solve MADM problems under the

CFHHWA (or CFHHWG) operator is formulated as given as follows.
Algorithm
Step 1. Aggregate the CFEs ĕi1, ĕi2, ..., ĕin in the decision matrix M corresponding to the

alternative Ki , i = 1, 2, ...,m by employing the CFHHWA operator to find the aggregated
CFNs ĕi given as follows:

ĕi = CFHHWAź (ĕi1, ĕi2, ..., ĕin)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

√√√√√√√
�n

j=1

(
1+(σ−1)

( ·
ξ̃ id( j)

)3
)ź j

−�n
j=1

(
1−

( ·
ξ̃ id( j)

)3
)ź j

�n
j=1

(
1+(σ−1)

( ·
ξ̃ id( j)

)3
)ź j

+(σ−1)�n
j=1

(
1−

( ·
ξ̃ id( j)

)3
)ź j

,

3√σ�n
j=1

( ·
θ̃ id( j)

)ź j

3

√√√√
�n

j=1

(
1+(σ−1)

(
1−

( ·
θ̃ id( j)

)3
))ź j

+(σ−1)�n
j=1

( ·
θ̃ id( j)

)3ź j
,

3√σ�n
j=1

( ·
∂̃ id( j)

)ź j

3

√√√√
�n

j=1

(
1+(σ−1)

(
1−

( ·
∂̃ id( j)

)3
))ź j

+(σ−1)�n
j=1

( ·
∂̃ id( j)

)3ź j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)
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Or alternatively use the CFHHWG operator, given as under

ĕi = CFHHWGź (ĕi1, ĕi2, ..., ĕin)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3√σ�n
j=1

( ·
ξ̃ id( j)

)ź j

3

√√√√�n
j=1

(
1+(σ−1)

(
1−

( ·
ξ̃ id( j)

)3
))ź j

+(σ−1)�n
j=1

( ·
ξ̃ id( j)

)3ź j
,

3

√√√√√√√
�n

j=1

(
1+(σ−1)

( ·
θ̃ id( j)

)3
)ź j

−�n
j=1

(
1−

( ·
θ̃ id( j)

)3
)ź j

�n
j=1

(
1+(σ−1)

( ·
θ̃ id( j)

)3
)ź j

+(σ−1)�n
j=1

(
1−

( ·
θ̃ id( j)

)3
)ź j

,

3

√√√√√√√
�n

j=1

(
1+(σ−1)

( ·
∂̃ id( j)

)3
)ź j

−�n
j=1

(
1−

( ·
∂̃ id( j)

)3
)ź j

�n
j=1

(
1+(σ−1)

( ·
∂̃ id( j)

)3
)ź j

+(σ−1)�n
j=1

(
1−

( ·
∂̃ id( j)

)3
)ź j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

Step 2. For every alternative Ki calculate the value sc (ĕi ) of the score function of the
corresponding aggregated CFE ĕi .

Step 3. Arrange in descending order all of the options Ki in accordance with the values
of the score function sc (ĕi ). Use accuracy degree ac (ĕi ) for the ranking of the CFEs with
equal score values.

Step 4. Pick the most suitable option(s).

7 Cyclone disaster appraisal with the proposed algorithm

To demonstrate how to utilize the suggested techniques, we study a real-world case of the
MADMproblem in this section. Adverseweather conditions like gales, rainstorms, and storm
surges frequently accompany cyclones, an extremely destructive weather system, and cause
secondary disasters like flash floods, landslides, and mudslides. Disasters caused by cyclones
are unpredictable and inevitable. Consequently, cyclone risk study is essential (adopted from
Hadi et al. (2021)). One of the regions most susceptible to cyclones is the Pakistani province
of Khyber Pakhtunkhwa (KP), and each year, huge economic losses are caused by cyclones.
The catastrophic losses caused by various cyclones have been the subject of numerous stud-
ies. A severe storm struck the northwest of Pakistan in the night of April 26, 2015. In several
of KP’s cities, it seriously damaged the infrastructure. Heavy rain, hail, and gusty winds of
more than 120km/h were all part of the storm’s effects. The devastating consequences of the
storm resulted in numerous deaths or injuries. The stormalso killed several animals, destroyed
numerous harvests, toppled numerous electricity poles, and tore down numerous walls, roofs,
and houses in rural areas of KP. To accurately evaluate cyclone devastation, it is important
to note that a variety of indices must be considered at once. Let B = {B1,B2,B3}, where
B1,B2, and B3 respectively indicate the three most important indicators: economic catas-
trophe, social impact, and environmental destruction. Let the weight vector of the operator be
ź = (0.23, 0.45, 0.32)T and σ = 3. Nowshehra (K1), Sawat (K2), Mardan (K3), Charsadda
(K4), and Peshawar (K5) are the five cities in KP that are being appraised. The data for this
appraisal is in the form of CFNs, and it is performed by three experts. These CFNs are used
to generate the CF decision matrix M = (

ĕi j
)
5×3, as shown in Table 1.
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Table 1 Cubical fuzzy decision matrix

B1 B2 B3

K1 (0.93, 0.53, 0.33) (0.97, 0.39, 0.22) (0.87, 0.65, 0.12)

K2 (0.80, 0.50, 0.30) (0.63, 0.23, 0.43) (0.43, 0.63, 0.33)

K3 (0.91, 0.21, 0.33) (0.27, 0.17, 0.87) (0.24, 0.22, 0.88)

K4 (0.85, 0.25, 0.45) (0.84, 0.24, 0.44) (0.20, 0.89, 0.39)

K5 (0.90, 0.15, 0.32) (0.68, 0.58, 0.28) (0.45, 0.87, 0.35)

Table 2 Cubical fuzzy Hamacher ordered weighted decision matrix

Bd(1) Bd(2) Bd(3)

K1 (.9890, .2687, .1267) (.9418, .4959, .2960) (.7595, .7950, .2995)

K2 (.8177, .4652, .2670) (.6885, .1342, .3061) (.3671, .7823, .5505)

K3 (.9235, .1817, .2960) (.2945, .0906, .8234) (.2055, .4338, .9293)

K4 (.8972, .1419, .3157) (.8666, .2193, .4146) (.1713, .9349, .6051)

K5 (.9142, .1265, .2863) (.7416, .4604, .1736) (.3840, .9236, .5693)

In the following, we use the algorithm developed in the preceding section to identify the
city in KP province that is the most affected. We take  = (0.3585, 0.4316, 0.2099)T as the
weight vector for the attributesBi .

7.1 By CFHHWA operator

Step 1. In this step, first, we utilize the relation
·
ĕi j = 3 j ĕi j along with the Definition 14 to

Table 1 to order the attribute Bi for every alternative Ki and obtain Table 2.
Applying the CFHHWA operator from Eq. (7) to Table 2 yields the aggregated values of the
cities as follows:

ĕ1 = (.9353, .5138, .2447) , ĕ2 = (.6626, .3263, .3600) , ĕ3 = (.6048, .1764, .7172) ,

ĕ4 = (.7879, .3405, .4421) , ĕ5 = (.7377, .4573, .2877) .

Step 2. Score function is applied, and the result is

sc (ĕ1) = .8035, sc (ĕ2) = .2443, sc (ĕ3) = −.1477, sc (ĕ4) = .4027, sc (ĕ5) = .3776.

Step 3. According to descending order of scores, the following is how the cities are ranked:

K1,K4,K5,K2,K3.

Step 4. Nowshehra (K1) turns out to be the city that has sustained the most damage as a
result.

7.2 By CFHHWG operator

Step 1. In this step first we utilize the relation
·
ĕi j = (

ĕi j
)3 j along with the Definition 14 to

Table 1 to order the attribute Bi for every alternative Ki and obtain Table 3.
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Table 3 Cubical fuzzy Hamacher ordered weighted decision matrix

Bd(1) Bd(2) Bd(3)

K1 (.9602, .4261, .2399) (.9236, .5535, .1028) (.9238, .5436, .3382)

K2 (.7818, .5128, .3075) (.6387, .5364, .2823) (.5169, .2508, .4700)

K3 (.9020, .2152, .3382) (.4569, .1884, .7707) (.1655, .1853, .9223)

K4 (.8364, .2562, .4614) (.7825, .2617, .4810) (.4096, .7822, .3332)

K5 (.8910, .1537, .3280) (.6548, .7595, .2993) (.5761, .6345, .3055)

Applying the CFHHWG operator from Eq. (8) to Table 3 yields the aggregated values of the
cities as follows:

ĕ1 = (.9323, .5256, .2516) , ĕ2 = (.6299, .4708, .3673) , ĕ3 = (.4044, .1943, .7939) ,

ĕ4 = (.6642, .5457, .4382) , ĕ5 = (.6843, .6537, .3083) .

Step 2. Score function is applied, and the result is

sc (ĕ1) = .7944, sc (ĕ2) = .2004, sc (ĕ3) = −.4342, sc (ĕ4) = .2089, sc (ĕ5) = .2911.

Step 3. According to descending order of scores, the following is how the cities are ranked:

K1,K5,K4,K2,K3.

Step 4. Nowshehra (K1) turns out to be the city that has sustained the most damage as a
result.

According to the discussion above, the most damaged city, which is K1, remains the same
even though the rating orders of the alternatives are different when utilizing the CFHHWA
and CFHHWG operators.

8 Effect of different values of working parameter on the
decision-making process

In order to know the different ranking order of alternatives by assigning values to working
parameter σ, in the interval [1, 10] using CFHHA and CFHHG operators, we get Tables
4 and 5 respectively. In Table 4, different ranking orders of alternative are discussed using
CFHHWA operator. In Table 5, we adopted CFHHWG operator and selected several values
of the working parameter σ, in the interval [1, 10].

From Table 4, we observe that when σ takes on integral values from 1 to 10, the ranking
of the alternatives remains the same.

Table 5 shows that with the exception of when σ is 1, the ordering of the alternatives
remains the same when σ takes on integral values from 1 to 10.

From the discussion above, we note that the highest grading order of alternatives for both
operators of CFHHWA & CFHHWG operators occurred at K1 and the lowest alternative is
at K3.
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Table 4 Ranks of alternatives for different values of σ using CFHHWA operator

σ sc(ĕ1) sc(ĕ2) sc(ĕ3) sc(ĕ4) sc(ĕ5) Ranking order

1 .8088 .2557 −.0160 .4329 .4054 K1,K4,K5,K2,K3

2 .8052 .2485 −.1025 .4150 .3872 K1,K4,K5,K2,K3

3 .8035 .2443 −.1477 .4027 .3776 K1,K4,K5,K2,K3

4 .8024 .2414 −.1767 .3929 .3715 K1,K4,K5,K2,K3

5 .8015 .2392 −.1980 .3846 .3673 K1,K4,K5,K2,K3

6 .8010 .2377 −.2132 .3778 .3642 K1,K4,K5,K2,K3

7 .8007 .2364 −.2255 .3718 .3619 K1,K4,K5,K2,K3

8 .8001 .2354 −.2352 .3665 .3601 K1,K4,K5,K2,K3

9 .8001 .2347 −.2432 .3619 .3586 K1,K4,K5,K2,K3

10 .7995 .2341 −.2494 .3578 .3575 K1,K4,K5,K2,K3

Table 5 Ranks of alternatives for different values of σ using CFHHWG operator

σ sc(ĕ1) sc(ĕ2) sc(ĕ3) sc(ĕ4) sc(ĕ5) Ranking order

1 .7859 .1827 −.4863 .1630 .2612 K1,K5,K2,K4,K3

2 .7914 .1945 −.4549 .1956 .2809 K1,K5,K4,K2,K3

3 .7944 .2004 −.4342 .2089 .2911 K1,K5,K4,K2,K3

4 .7971 .2046 −.4190 .2161 .2981 K1,K5,K4,K2,K3

5 .8009 .2082 −.4069 .2212 .3038 K1,K5,K4,K2,K3

6 .8028 .2107 −.3971 .2239 .3076 K1,K5,K4,K2,K3

7 .8050 .2130 −.3886 .2262 .3111 K1,K5,K4,K2,K3

8 .8064 .2148 −.3817 .2276 .3138 K1,K5,K4,K2,K3

9 .8078 .2163 −.3756 .2286 .3159 K1,K5,K4,K2,K3

10 .8082 .2175 −.3702 .2291 .3176 K1,K5,K4,K2,K3

9 Comparative analysis

The proposed and preexisting operators are contrasted in this section. The reader will see our
attempt to demonstrate why the suggested operators are more dependable and effective. The
PF Hamacher aggregation operators listed in Wei et al. (2018) are taken into consideration
in order to accomplish this. For the model proposed in Wei et al. (2018) as an illustrative
example, the following decision matrix was taken into account. Assume that the operators’
weight vector is ź = (.4, .1, .2, .3)T.
To choose the most favorable alternative, we use the PFHHWA and PFHHWGoperators with
σ = 3. We start using the PFHHWA operator. Table 7 is obtained by applying the relation
·
ĕi j = 4 j ĕi j under PF Hamacher operations on Table 6 with ω = (.2, .1, .3, .4)T as the
attributes’ weight vector:
Using the PFHHWA operator on Table 7, we calculate the aggregated values ĕi (i =
1, 2, ..., 5) of attributes for the alternatives Ki (i = 1, 2, ..., 5) given as

ĕ1 = (.4127, .4346, .0696) , ĕ2 = (.585 8, .242 3, .0777) , ĕ3 = (.5707, .2453, .0 452) ,

ĕ4 = (.4886, .3744, .2394) , ĕ5 = (.4544, .4048, .02 47) .
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Table 6 The PF decision matrix

B1 B2 B3 B4

K1 (.53, .33, .09) (.89, .08, .03) (.42, .35, .18) (.08, .89, .02)

K2 (.73, .12, .08) (.13, .64, .21) (.03, .82, .13) (.73, .15, .08)

K3 (.91, .03, .02) (.07, .09, .05) (.04, .85, .10) (.68, .26, .06)

K4 (.85, .09, .05) (.74, .16, .10) (.02, .89, .05) (.08, .84, .06)

K5 (.90, .05, .02) (.68, .08, .21) (.05, .87, .06) (.13, .75, .09)

Table 7 The PF Hamacher ordered weighted decision matrix

Bd(1) Bd(2) Bd(3) Bd(4)

K1 (.4997, .2591, .1107) (.4298, .4417, .1692) (.1302, .8205, .0010) (.4680, .4863, .3632)

K2 (.9174, .0289, .0099) (.6182, .2100, .1548) (.0361, .7822, .0736) (.0505, .8608, .6346)

K3 (.8866, .0771, .0061) (.8308, .0729, .0531) (.0482, .8185, .0531) (.0275, .5028, .4241)

K4 (.7520, .1692, .1081) (.0240, .8670, .0226) (.3281, .5897, .5180) (.2897, .4863, .6346)

K5 (.8168, .1081, .0531) (.2123, .5962, .0120) (.1302, .7387, .0061) (.0602, .8428, .0283)

Table 8 The PF Hamacher ordered weighted decision matrix

Bd(1) Bd(2) Bd(3) Bd(4)

K1 (.9571, .0314, .0119) (.6219, .2623, .0715) (.3284, .4197, .2178) (.0099, .9831, .0322)

K2 (.7859, .0952, .0636) (.5571, .2669, .0810) (.5659, .2450, .1302) (.0121, .8893, .1572)

K3 (.9285, .0239, .0160) (.4680, .0352, .0197) (.4926, .4190, .0973) (.0172, .9120, .1208)

K4 (.8999, .0620, .0391) (.8811, .0715, .0398) (.0074, .9403, .0602) (.0099, .9677, .0973)

K5 (.9206, .0398, .0160) (.8766, .0314, .0810) (.0226, .9264, .0723) (.0225, .9282, .1466)

Score function is utilized, and the result is

sc (ĕ1) = .6716, sc (ĕ2) = .7541, sc (ĕ3) = .7628 ,sc (ĕ4) = .6246,sc (ĕ5) = .7149.

The alternatives are ordered in descending order of scores as follows:

K3,K2,K5,K1,K4.

Now, in order to select the optimal substitute, we use the PFHHWG operator(s). Applying

the relation
·
ĕi j = (

ĕi j
)4 j under PF Hamacher operations to Table 6 yields Table 8.

Using the PFHHWG operator on Table 8, we calculate the aggregated values ĕi (i =
1, 2, ..., 5) of attributes for the alternatives Ki (i = 1, 2, ..., 5) given as

ĕ1 = (.2591, .6522, .0634) , ĕ2 = (.2609, .4662, .1063) , ĕ3 = (.3051, .4741, .0633) ,

ĕ4 = (.1284, .7326, .0606) , ĕ5 = (.1999, .6527, .0720) .

After employing the score function, the output is

sc (ĕ1) = .5979, sc (ĕ2) = .5773, sc (ĕ3) = .6209, sc (ĕ4) = .5339, sc (ĕ5) = .5640.
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Table 9 The CF Hamacher ordered weighted decision matrix

Bd(1) Bd(2) Bd(3) Bd(4)

K1 (.6731, .4445, .3044) (.4905, .4375, .1566) (.4472, .2656, .1188) (.0936, .8085, .0015)

K2 (.8440, .0386, .0141) (.6771, .1970, .1425) (.0319, .7764, .0804) (.0958, .8764, .6286)

K3 (.8630, .0651, .0470) (.6771, .1970, .1425) (.0425, .8137, .0586) (.0516, .4646, .3714)

K4 (.7966, .1566, .0979) (.5401, .5725, .4831) (.0936, .7213, .0089) (.0212, .8637, .0255)

K5 (.8514, .0979, .0470) (.1521, .5771, .0170) (.0531, .8386, .0318) (.4948, .4445, .6286)

Table 10 The CF Hamacher ordered weighted decision matrix

Bd(1) Bd(2) Bd(3) Bd(4)

K1 (.9604, .0589, .0221) (.6270, .3060, .0835) (.3321, .3724, .1913) (.0141, .9664, .0234)

K2 (.7922, .1114, .0743) (.5477, .1755, .0936) (.5317, .4656, .1546) (.0138, .8627, .1382)

K3 (.9300, .0278, .0186) (.4786, .3046, .0702) (.4226, .0663, .0368) (.0195, .8904, .1063)

K4 (.9112, .1178, .0737) (.8844, .0835, .0464) (.0085, .9253, .0531) (.0141, .9361, .0702)

K5 (.9224, .0464, .0186) (.8907, .0589, .1546) (.0255, .9081, .0638) (.0307, .8630, .1053)

The alternatives are ordered in descending order of scores as follows:

K3,K1,K2,K5,K4.

To assess the alternatives, we now use the CFHHWA and CFHHWG operators. We start

using the CFHHWA operator. Applying the relation
·
ĕi j = 4 j ĕi j under CF Hamacher

operations to Table 6 yields Table 9.
Using the CFHHWA operator on Table 9, we calculate the aggregated values ĕi (i =
1, 2, ..., 5) of attributes for the alternatives Ki (i = 1, 2, ..., 5) given as

ĕ1 = (.5301, 0.4919, .0481) , ĕ2 = (.6532, .2293, .0801) , ĕ3 = (.6698, .2248, .1024) ,

ĕ4 = (.6013, .4296, .0476) , ĕ5 = (.6649, .2938, .0870) .

After employing the score function, the output is

sc (ĕ1) = .1489, sc (ĕ2) = .2782, sc (ĕ3) = .2994, sc (ĕ4) = .2173, sc (ĕ5) = .2933.

The alternatives are ordered in descending order of scores as follows:

K3,K5,K2,K4,K1.

TheCFHHWGoperator is nowused.When theCFHamacher operations are used, the relation
·
ĕi j = (

ĕi j
)4 j and Table 6 results in Table 10.

Using the CFHHWG operator on Table 10, we calculate the aggregated values ĕi (i =
1, 2, ..., 5) of attributes for the alternatives Ki (i = 1, 2, ..., 5) given as

ĕ1 = (.2373, .7251, .1135) , ĕ2 = (.2225, .6051, .1211) , ĕ3 = (.2588, .6127, .0741) ,

ĕ4 = (.1144, .7803, .0672) , ĕ5 = (.1819, .7180, .0918) .

The following are the values of the score function employed to ĕi :
sc (ĕ1) = .0119, sc (ĕ2) = .0092, sc (ĕ3) = .0169, sc (ĕ4) = .0012, sc (ĕ5) = .0052.
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Table 11 Comparison of
PFHHWA and CFHHWA
operators

PFHHWA-operator CFHHWA-operator

K3,K2,K5,K1,K4 K3,K5,K2,K4,K1

Table 12 Comparison of
PFHHWG and CFHHWG
operators

PFHHWG operator CFHHWG operator

K3,K1,K2,K5,K4 K3,K1,K2,K5,K4

The alternatives are ordered in descending order of scores as follows:

K3,K1,K2,K5,K4.

Tables 11 and 12 compare the PFHHWA/PFHHWG operator’s ranking order of alterna-
tives with the suggested operators.

Table 11 reveals that the optimal alternative for the PFHHWA operator and proposed
operator (CFHHWA) is K3. The ranking order of alternatives when applying both types of
operators differs, which is another important point to consider. According to Table 12, the
best alternative is once again K3, and the suggested operator (PFHHWG) and the PFHHWG
operator both grade the alternatives in the same order.

We can infer from the discussion above that K3 is the optimal option for both existing
and proposed operators. Since the idea of cubical fuzzy sets has a larger area than that of
picture fuzzy sets, our recommended operators are more reliable and effective at solving
decision-making problems.

10 Concluding remarks

Using cubical fuzzy information based on Hamacher operations, we investigated a multi-
ple attribute decision-making problem in this paper. From the idea of Hamacher operations,
we have introduced arithmetic and geometric operations to construct various cubical fuzzy
Hamacher aggregation operators likeCFHWAoperator, CFHOWAoperator, CFHHWAoper-
ator, CFHWG operator, CFHOWG operator, and CFHHWG operator. The various properties
of these suggested operators are discussed. Then, we developed a few ways to address multi-
attribute decision-making issues using these operators. Finally, a real-world example of how
to assess a cyclone disaster is presented to show how effective the suggested approaches are.
A comparative analysis was also give and it was found that the optimal alternative for the
PFHHWA operator and proposed operator (CFHHWA) was the same but the ranking order of
alternatives was different differs, an important point to consider. In the case of PFHHWG and
the suggested (CFHHWG) operator, the best alternative was once again the same, and both
of the operators graded the alternatives in the same order. Therefore, the suggested operators
are just as efficient as the existing operators, with the added benefit of having a wider range
of membership grades.
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